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Abstract. Let G be a group and ω(G) be the set of element orders of G. Let k ∈ ω(G)
and sk be the number of elements of order k in G. Let nse(G) = {sk

∣∣k ∈ ω(G)}. The
projective special linear groups L3(4) and L3(5) are uniquely determined by nse. In
this paper, we prove that if G is a group such that nse(G)=nse(M) where M is a
sporadic Higman-Sims or Held group, then G ∼= M .

1 Introduction

Let G be a group and ω(G) be the set of element orders of G. Let k ∈ ω(G) and
sk be the number of elements of order k in G. Let nse(G) = {sk

∣∣k ∈ ω(G)}. Let
T (G) = {(n, sn)

∣∣n ∈ ω(G) and sn ∈nse(G)}, where sn is the number of elements with
order n. Thompson in 1987 put forward a very interesting problem with respect to
algebraic number fields as follows (see [18]).

Thompson’s Problem. Suppose that groups G and H are such that T (G) =
T (H). If G is a finite solvable group, is it true that H is also necessarily solvable?

We see that if G and H are of the same order type, then

nse(G)=nse(H) and |G| = |H|.

Let G be a group and M some simple Ki-group, i = 3, 4, then G ∼= M if and only if
|G| = |M | and nse(G)=nse(M) (see [16, 15]). Also the group A12 is characterizable
by its order and nse (see [12]). Recently it was proved that all sporadic simple groups
and projective special linear groups L2(2

m) with 2m − 1 prime or 2m + 1 prime, are
characterizable by nse and their orders (see [2], [14] respectively).

Related to Thompson’s Problem is the following one: can nse characterize fi-
nite simple groups? Up to now it is known that the projective special linear groups
L2(q), where q ∈ {7, 8, 9, 11, 13, 16} and projective general groups PGL(2, p) can be
characterized by only the set nse(G) (see [8, 17, 20], [1] respectively).

In this paper, it is shown that the sporadic Higman-Sims group HS and sporadic
Held group He are determined by nse.
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We introduce some notations which will be used in the proof of the main theorems.
Let a.b denote the products of an integer a by an integer b. Let r be a prime. Then
we denote the number of the Sylow r-subgroups Pr of G by nr or nr(G). Let Ln(q)
and Un(q) denote the projective special linear and unitary group of degree n over finite
fields of order q. Let Sn(q) and On(q) denote the projective symplectic and symmetric
group, respectively. The group G2(q) is the algebraic group G2 over the finite field of
order q. The other notations are standard (see [3], for instance).

2 Some lemmas

Lemma 2.1. [4] Let G be a finite group and m be a positive integer dividing |G|. If
Lm(G) = {g ∈ G

∣∣gm = 1}, then m
∣∣|Lm(G)|.

Lemma 2.2. [13] Let G be a finite group and p ∈ π(G) be odd. Suppose that P is a
Sylow p-subgroup of G and n = psm with (p,m) = 1. If P is not cyclic and s > 1, then
the number of elements of order n is always a multiple of ps.

Lemma 2.3. [17] Let G be a group containing more than two elements. If the maximal
number s of elements of the same order in G is finite, then G is finite and |G| ≤
s(s2 − 1).

Lemma 2.4. [6, Theorem 9.3.1] Let G be a finite solvable group and |G| = mn,
where m = pα1

1 · · · pαr
r , (m,n) = 1. Let π = {p1, · · · , pr} and hm be the number of

Hall π-subgroups of G. Then hm = qβ1

1 · · · qβs
s satisfies the following conditions for all

i ∈ {1, 2, · · · , s}:

(1) qβi

i ≡ 1 (mod pj) for some pj.

(2) The order of some chief factor of G is divided by qβi

i .

To prove G ∼= HS or He, we need the structure of simple Ki-groups with i = 4, 5.

Lemma 2.5. [19] Let G be a simple K4-group. Then G is isomorphic to one of the
following groups:

(1) A7, A8, A9 or A10.

(2) M11, M12 or J2.

(3) One of the following:

(a) L2(r), where r is a prime and r2 − 1 = 2a · 3b · vc with a ≥ 1, b ≥ 1, c ≥ 1,
and v is a prime greater than 3.

(b) L2(2
m), where 2m− 1 = u, 2m + 1 = 3tb with m ≥ 2, u, t are primes, t > 3,

b ≥ 1.

(c) L2(3
m), where 3m+1 = 4t, 3m− 1 = 2uc or 3m+1 = 4tb, 3m− 1 = 2u, with

m ≥ 2, u, t are odd primes, b ≥ 1, c ≥ 1.
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(4) One of the following 28 simple groups: L2(16), L2(25), L2(49), L2(81), L3(4),
L3(5), L3(7), L3(8), L3(17), L4(3), S4(4), S4(5), S4(7), S4(9), S6(2), O+

8 (2),
G2(3), U3(4), U3(5), U3(7), U3(8), U3(9), U4(3), U5(2), Sz(8), Sz(32), 2D4(2) or
2F4(2)

′.

Lemma 2.6. [7] Each simple K5-group is isomorphic to one of the following simple
groups:

(1) L2(q) with |π(q2 − 1)| = 4.

(2) L3(q) with |π((q2 − 1)(q3 − 1))| = 4.

(3) U3(q) with q satisfies |π((q2 − 1)(q3 + 1))| = 4.

(4) O5(q) with |π(q4 − 1)| = 4.

(5) Sz(22m+1) with |π((22m+1 − 1)(24m+2 + 1))| = 4.

(6) R(q) where q is an odd power of 3 and |π(q2 − 1)| = 3 and |π(q2 − q + 1)| = 1.

(7) The following 30 simple groups: A11, A12, M22, J3, HS, He, McL, L4(4), L4(5),
L4(7), L5(2), L5(3), L6(2), O7(3), O9(2), PSp6(3), PSp8(2), U4(4), U4(5), U4(7),
U4(9), U5(3), U6(2), O+

8 (3), O−
8 (2), 3D4(3), G2(4), G2(5), G2(7) or G2(9).

Lemma 2.7. Let G be a simple Ki-group with i=4, 5 and 7 | |G| | 210.33.52.73.17.
Then then G∼=He.

Proof. We will prove the Lemma with the following two steps.
Step 1. G is a simple K4-group.

By Lemma 2.5(1)(2), order consideration rules out this case. So we consider Lemma
2.5(3). We will deal with this with the following cases.

• Case 1. G ∼= L2(r), where r ∈ {3, 5, 7, 17}.

– Let r = 3, then |π(r2 − 1)| = 1, which contradicts |π(r2 − 1)| = 3.

– Let r = 5, 7, 17, then |π(r2 − 1)| = 2, which contradicts |π(r2 − 1)| = 3.

• Case 2. G ∼= L2(2
m), where u ∈ {3, 5, 7, 17}.

– Let u = 3. Then m = 2 and so 5 = 3tb. But the equation has no solution in
N.

– Let u = 5, 17. Then 2m − 1 = u. But the equation has no solution in N.

– Let u = 7. Then m = 3 and so 23 + 1 = 3tb, which means that t = 3, b = 1,
a contradiction.

• Case 3. G ∼= L2(3
m).

We will consider the case by the following two subcases.
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– Subcase 3.1. 3m + 1 = 4t and 3m − 1 = 2uc.
We can suppose that t ∈ {3, 5, 7, 17}.
Let t = 3, 5, 17, the equation 3m + 1 = 4t has no solution.
Let t = 7, then m = 3. Therefore 33 − 1 = 2uc, we have u = 13 and c = 1.
It follows that 13 | |G|, a contradiction.

– Subcase 3.2. 3m + 1 = 4tb and 3m − 1 = 2u.
We can suppose that u ∈ {3, 5, 7, 17}
Let u = 3, 5, 7, 11, then the equation 3m − 1 = 2u has no solution in N, a
contradiction.

In review of Lemma 2.5(4), order consideration rules out this case.
Step 2. G is a simple K5-group.

By Lemma 2.6, we can assume that q = 2m, 3, 32, 33, 5, 52, 7, 72, 73 or 17.
Let G ∼= L2(q).

• If q = 2, 3, then |π(q2 − 1)| = 1, a contradiction.

• If q = 4, 8, 16, 9, 7, 17, then |π(q2 − 1)| = 2, a contradiction.

• If q = 11, 25, 125, 256, then |π(q2 − 1)| = 3, a contradiction.

• If q = 32, 128, 27, 49, then |π(q2 − 1)| = 3, a contradiction.

• If q = 64, 256, 512, then |π(q2 − 1)| = 4. Then G ∼= L2(64), but 13 | |L2(64)|, a
contradiction.

• If q = 256, then |π(q2 − 1)| = 4. Then G ∼= L2(256), but 257 | |L2(256)|, a
contradiction.

• If q = 512, then |π(q2 − 1)| = 4. Then G ∼= L2(512), but 59 | |L2(512)|, a
contradiction.

• If q = 1024, then |π(q2 − 1)| = 5, a contradiction.

Similarly as the proof of “G ∼= L2(q)", we can rule out the other cases except for
Lemma 2.6(7).

In view of Lemma 2.6(7), by using order consideration, G ∼= He.

3 Main theorem and its proof

Let G be a group and sn be the number of elements of order n. By Lemma 2.3 we have
that G is finite. We note that sn = kφ(n), where k is the number of cyclic subgroups
of order n. Also we note that if n > 2, then φ(n) is even. If m ∈ ω(G), then by Lemma
2.1 and the above discussion, we have{

φ(m) | sm
m |

∑
d |m sd

(3.1)

We divide the proof of Main theorem into the following two lemmas.
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Lemma 3.1. Let G be a group with nse(G)=nse(HS)={1, 21175, 123200, 877800,
2010624, 2956800, 3080000, 3696000, 4435200, 6336000, 8064000, 8316000}. Then
G∼=HS.

Proof. We prove the theorem by first proving that π(G) j {2, 3, 5, 7, 11}, second show-
ing that |G| = |HS|, and so G ∼= HS.

By (3.1), π(G) j {2, 3, 5, 7, 11, 17, 29, 3696001, 8316001}. If m > 2, then φ(m) is
even, then s2=21175, 2 ∈ π(G).

If 2.17 ∈ ω(G), then by Lemma 2.1, 2.17 | 1 + s2 + s17 + s2.17 and so s2.17 6∈nse(G),
a contradiction. Therefore 2.17 6∈ ω(G). It follows that the Sylow 17-subgroup of G
acts fixed point freely on the set of elements of order 2 and so 17 | s2, a contradiction.
Hence 17 6∈ π(G). Similarly we can prove that 2.29, 2.31, 2.3696001, 2.8316001 6∈ ω(G)
and 29, 31, 3696001, 8316001 6∈ π(G).

Hence π(G) j {2, 3, 5, 7, 11}. By (3.1), s3 = 123200 or 3080000, s5 = 2010624,
s7 = 6336000 and s11 = 8064000.

By (3.1), φ(2m) = 2m−1 | s2m and so 0 ≤ m ≤ 11. By Lemma 2.1, |P2| | 1 + s2 +
s22 + s2i with i = 2, 3, ...11, and so |P2| | 211.

If 3a ∈ ω(G), then 1 ≤ a ≤ 4.
Let s3 = 123200.

• Let exp(P3) = 3. Then by Lemma 2.1, |P3| | 1 + s3 and |P3| | 36.

• Let exp(P3) = 32. Then |P3| | 1 + s3 + s32 and |P3| | 33 (when s32 = 8316000).

• Let exp(P3) = 33. Then |P3| | 1 + s3 + s32 + s33 and |P3| | 33.

• Let exp(P3) = 34. Then |P3| | 1 + s3 + s32 + s33 + s34 and |P3| | 34.

Let s3 = 3080000.

• Let exp(P3) = 3. Then by Lemma 2.1, |P3| | 1 + s3 and |P3| | 3.

• Let exp(P3) = 32. Then |P3| | 1 + s3 + s32 and |P3| | 33 (when s32 = 3696000).

• Let exp(P3) = 33. Then |P3| | 1+s3 +s32 +s33 and |P3| | 35 (when s32 = 3696000,
s33 = 8316000).

• Let exp(P3) = 34. Then |P3| | 1 + s3 + s32 + s33 + s34 and |P3| | 34.

Therefore |P3| | 36.
If 2a.3b ∈ ω(G), then 1 ≤ a ≤ 10 and 1 ≤ b ≤ 4.
If 5a ∈ ω(G), then 1 ≤ a ≤ 5.

• Let exp(P5) = 5. Then by Lemma 2.1, |P5| | 1 + s5 and |P5| | 54.

• Let exp(P5) = 52. Then |P5| | 1 + s5 + s52 and |P5| | 55 (when s52 = 3080000).

• Let exp(P5) = 53. Then |P5| | 1 + s5 + s52 + s53 and |P5| | 55.

• Let exp(P5) = 54. Then |P5| | 1 + s5 + s52 + s53 + s54 and |P5| | 55.
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• Let exp(P5) = 55. Then 55 | 1 + s5 + s52 + s53 + s54 + s55 , a contradiction since
s55 ∈nse(G).

Therefore |P5| | 55.

• If 2a.5 ∈ ω(G), then 1 ≤ a ≤ 9.

• If 32.5 ∈ ω(G), then exp(P3) = 32 and exp(P5) = 5. Then |P3| | 33.

If |P3| = 32, then by Lemma 2.3 of [14], s32.5 = 4.s32 .t for some integer t. But
the equation has no solution.

If |P3| = 33, then s32 = 33.s for some s ∈nse(G). So we have s32 =
8316000, 3696000. On the other hand, there is an element of order 32.5 which
has a centralizer of order larger than or equal to 32.5, then 3 - s32.5 or 3|||s32.5,
and hence s32.5 = 123200, 877800, 2010624, 2956800, 3080000, 3696000. But by
Lemma 2.1, 32.5 | 1 + s3 + s32 + s5 + s3.5 + s32.5 by some computations, a contra-
diction.

Hence 32.5 6∈ ω(G).

• If 2a.3b.5c, then 1 ≤ a ≤ 8, 1 ≤ b ≤ 2 and 1 ≤ c ≤ 2.

If 7a ∈ ω(G), then 1 ≤ a ≤ 2. If 72 ∈ ω(G), then by Lemma 2.1, 72 | 1 + s7 + s72

and so s72 6∈nse(G). So a = 1. By Lemma 2.1, |P7| | 1 + s7 and so |P7| = 7.
If 5.7 ∈ ω(G), then by Lemma 2.3 of [14], s5.7 = φ(5).s7.t for some integer t. But

the equation has no solution since s5.7 ∈nse(G).
If 11a ∈ ω(G), then 1 ≤ a ≤ 3. If 113 ∈ ω(G), then by Lemma 2.1, 113 |

1 + s11 + s112 + s113 and so s113 6∈nse(G). So 1 ≤ a ≤ 2.

• Let exp(P11)=11. Then by Lemma 2.1, |P11| | 1 + s11 and so |P11|=11.

• Let exp(P11)=121. Then by Lemma 2.1, |P11| | 1 + s11 + s112 and so |P11| |
1 + s11 + s112 and so |P11| = 121.

If 7 ∈ π(G), then exp(P7) = 7. Since n7 = s7/φ(7), then 3, 5, 11 ∈ π(G).
If 3.7 ∈ ω(G), then by Lemma 2.3 of [14], s3.7 = 2.s7.t for some integer t. But

the equation has no solution since s3.7 ∈nse(G). Therefore 3.7 6∈ ω(G). Similarly
s2.7 = s7. But by Lemma 2.1, 2.7 | 1 + s2 + s7 + s2.7(=12693176), a contradiction.
Hence 2.7 6∈ ω(G).

If 11 ∈ π(G), then exp(P11)=11, 121.

• Let exp(P11)=11. Since n11 = s11/φ(11), then 3, 5, 7 ∈ π(G).

• Let exp(P11)=121. Since n11 = s112/φ(112), then 3, 5, 7 ∈ π(G).

If 2.11 ∈ ω(G), then s2.11 = s11. By Lemma 2.1, 2.11 | 1+s2+s11+s2.11(=16149176),
a contradiction. Hence 2.11 6∈ ω(G). Similarly, 3.11 6∈ ω(G), 5.11 6∈ ω(G) and 7.11 6∈
ω(G).

Therefore if 7 ∈ π(G), then 3, 5, 11 ∈ π(G); If 11 ∈ π(G), then 3, 5, 7 ∈ π(G).
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In what follows, we prove that π(G) could not be {2, }, {2, 3}, {2, 5} and {2, 3, 5},
and hence π(G) must be {2, 3, 5, 7, 11}.

Case a. π(G) = {2}.
Since |ω(G)| = 12 and |nse(G)| = 12, then this case can be ruled out.
Case b. π(G) = {2, 3}.
Let exp(P3)=3.
By Lemma 2.1, |P3| | 1 + s3.

• If s3 = 123200, then |P3| | 36.

– If |P3| = 3, then since n3 = s3/φ(3), 5, 7, 11, 19 ∈ π(G), a contradiction.

– If |P3| = 9, then Therefore 44352000 + 123200k1 + 877800k2 + 2010624k3 +
2956800k4 +3080000k5 +3696000k6 +4435200k7 +6336000k8 +8064000k9 +
8316000k10 = 2m.32 where k1, ..., k10 and m are non-negative integers and

0 ≤
10∑
i=1

si ≤ 10. Since 44352000 ≤ |G| = 2m.32 ≤ 44352000 + 10.8316000.

The equation has no solution.

– Similarly for |P3| = 27, 81, 243, 729, we also can rule out these.

• If s3 = 3080000, then |P3| | 3. Since n3 = s3/φ(3), then 5, 7, 11 ∈ π(G), a
contradiction.

Let exp(P3)=9.
By Lemma 2.1, |P3| | 1 + s3 + s9 and so |P3| | 33.

• Let s3 = 123200.

– If |P3| = 9, then since n3 = s9/φ(9), 5, 7, or 11∈ π(G), a contradiction.

– If |P3| = 27, then Therefore 44352000 + 123200k1 + 877800k2 + 2010624k3 +
2956800k4 +3080000k5 +3696000k6 +4435200k7 +6336000k8 +8064000k9 +
8316000k10 = 2m.33 where k1, ..., k10 and m are non-negative integers and

0 ≤
10∑
i=1

si ≤ 21. Since 44352000 ≤ |G| = 2m.33 ≤ 44352000 + 21.8316000.

The equation has no solution.

• Let s3 = 3080000.

– If |P3| = 9, then since n3 = s9/φ(9) = 3080000/6, 5, 7, or 11∈ π(G), a
contradiction.

– If |P3| = 27, then similarly as “s3 = 123200 and |P3| = 33", we can rule out
this case.

Let exp(P3)=27.

• Let s3 = 123200. Then |P3| | 33. Since n3 = s33/φ(33), 5, 7, 11 ∈ π(G), a
contradiction.

• Let s3 = 3080000. Then |P3| | 35.
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– If |P3| = 33, then since n3 = s33/φ(33) = 3080000/6, 5, 7, 11∈ π(G), a
contradiction.

– If |P3| = 34, then Therefore 44352000 + 123200k1 + 877800k2 + 2010624k3 +
2956800k4 +3080000k5 +3696000k6 +4435200k7 +6336000k8 +8064000k9 +
8316000k10 = 2m.34 where k1, ..., k10 and m are non-negative integers and

0 ≤
10∑
i=1

si ≤ 31. Since 44352000 ≤ |G| = 2m.33 ≤ 44352000 + 31.8316000.

The equation has no solution.
– Similarly we can rule out the case when |P3| = 35 as the case “s3 = 3080000

and |P3| = 34"

Let exp(P3) = 81.
We know that |P3| | 34. Since s34 = 8316000 and n3 = s34/φ(34), then 5, 7, 11 ∈

π(G), a contradiction.
Case c. π(G) = {2, 5}.
Let exp(P5)=5. Then |P5| | 54.

• If |P5| = 5, then since n5 = s5/φ(5), 3, 7, 11 ∈ π(G), a contradiction.

• If |P5| = 25, then 44352000 + 123200k1 + 877800k2 + 2010624k3 + 2956800k4 +
3080000k5+3696000k6+4435200k7+6336000k8+8064000k9+8316000k10 = 2m.52

where k1, ..., k10, m are non-negative integers and 0 ≤
10∑
i=1

si ≤ 12. The equation

has no solution in N.

• If |P5| > 25, similarly, we can rule out these cases as the case “exp(P5) = 5 and
|P5| = 52".

Let exp(P5)=25. Then |P5| | 55.

• If |P5| = 25, then since n5 = s25/φ(25), 3, 7 or 11∈ π(G), a contradiction.

• If |P5| = 125, then 44352000 + 123200k1 + 877800k2 + 2010624k3 + 2956800k4 +
3080000k5 + 3696000k6 + 4435200k7 + 6336000k8 + 8064000k9 + 8316000k10 =

2m.3n.53 where k1, ..., k10, m and n are non-negative integers and 0 ≤
10∑
i=1

si ≤ 21.

The equation has no solution in N.

Let exp(P5)=125. Then since n5 = s125/φ(125), 3, 7 or 11∈ π(G), a contradiction.
Case d. π(G) = {2, 3, 5}.
Similarly as the case “π(G) = {2, 5}", we also can rule out this case.
Case e. π(G) = {2, 3, 5, 7, 11}.
If 7.11 ∈ ω(G), then by Lemma 2.3 of [14], s7.11 = 6.s11.t for some integer t. But

the equation has no solution since s7.11 ∈nse(G). So 7.11 6∈ ω(G), it follows that the
Sylow 7-subgroup of G acts fixed point freely on the set of elements of order 11 and
so |P7| | s11. Hence |P7| = 7, and |P11| = 11. Similarly 2.7 6∈ ω(G) and |P2| | 29;
3.7 6∈ ω(G) and |P3| | 32; 5.7 6∈ ω(G) and |P5| | 53.

So we can assume that |G| = 2a.3b.5c.7.11. Since 29.32.53.7.11 ≤ |G| = 2a.3b.5c.7.11,
then we have that |G| = 29.32.53.7.11. By assumption nse(G)=nse(HS), then by [2],
G ∼= HS.
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Lemma 3.2. Let G be a group with nse(G)=nse(He)={1, 212415, 8529920, 13434624,
47980800, 93024000, 201519360, 223910400, 251899200, 268692480, 287884800,
474163200, 671731200, 719712000, 767692800}. Then G∼=He.

Proof. We prove the theorem by first showing that π(G) j {2, 3, 5, 7, 17}, then proving
that G ∼= He.

By (3.1), π(G) j {2, 3, 5, 7, 11, 13, 17, 19, 151, 257, 281, 251899201, 767692801}. If
2.13 ∈ ω(G), then by Lemma 2.1, 2.13 | 1+s2+s13+s2.13 and so we get a contradiction.
So 2.13 6∈ ω(G). It follows that the Sylow 13-subgroup of G acts fixed point freely on
the set of order 2 and so |P13| | s2, a contradiction. Thus 13 6∈ π(G). Similarly 257,
281, 251899201, 767692801 6∈ π(G).

If 2a ∈ ω(G), then by Lemma 2.1, φ(2a) = 2a−1 | s2a and so 0 ≤ a ≤ 13. By Lemma
2.1, |P2| | 1 + s2 + s22 + ...+ s2i with i = 2, 3, ..., 13, and |P2| | 213.

If 3a ∈ ω(G), then 1 ≤ a ≤ 4.

• Let exp(P3) = 3. Then by Lemma 2.1, |P3| | 1 + s3 and |P3| | 33.

• Let exp(P3) = 32. Then by Lemma 2.1, |P3| | 1 + s3 + s32 and |P3| | 34.

• Let exp(P3) = 33. Then by Lemma 2.1, |P3| | 1 + s3 + s32 + s33 and |P3| | 35

(when either s9 = 13434624, s27 = 671731200 or s9 = 93024000, s27 = 767692800
or s9 = s27 = 251899200).

• Let exp(P3) = 34. Then by Lemma 2.1, |P3| | 1 + s3 + s32 + s33 + s34 and |P3| | 37

(when s9 = 474163200, s27 = s81 = 719712000).

Therefore |P3| | 37.
If 2a.3b ∈ ω(G), then 1 ≤ a ≤ 12 and 1 ≤ b ≤ 4.
If 5a ∈ ω(G), then 1 ≤ a ≤ 4.

• Let exp(P5) = 5. Then by Lemma 2.1, |P5| | 1 + s5 and |P5| | 53.

• Let exp(P5) = 52. Then by Lemma 2.1, |P5| | 1 + s5 + s52 and |P5| | 53 (when
s52 = 93024000).

• Let exp(P5) = 53. Then by Lemma 2.1, |P5| | 1 + s5 + s52 + s53 and |P5| | 54

(when s52 = 93024000, s53 = 719712000, or s52 = 287884800, s53 = 671731200,
or s52 = 474163200 J¬ s53 = 767692800).

• Let exp(P5) = 54. Then by Lemma 2.1, |P5| | 1 + s5 + s52 + s53 + s54 and |P5| | 55

(when s52 =47980800, s53 =474163200, s54 =719712000).

Therefore |P5| | 55.
If 2a.5b, then 1 ≤ a ≤ 11 and 1 ≤ b ≤ 4. If 3a.5b ∈ ω(G), then 1 ≤ a ≤ 4 and

1 ≤ b ≤ 4. If 2a.3b.5c, then 1 ≤ a ≤ 10, 1 ≤ b ≤ 4 and 1 ≤ c ≤ 4.
If 7a ∈ ω(G), then 1 ≤ a ≤ 4.

• Let exp(P7) = 7. Then by Lemma 2.1, |P7| | 1 + s7 and |P7| | 73.

• Let exp(P7) = 72. Then by Lemma 2.1, |P7| | 1 + s7 + s72 and |P7| | 74 (when
s72 = 223910400).
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• Let exp(P7) = 73. Then by Lemma 2.1, |P7| | 1+s7 +s72 +s73 and |P7| | 74 (when
either s72 = 13434624, s73 = 474163200 or s72 = 201519360, s73 = 474163200 or
s72 = 474163200, s73 = 671731200).

• Let exp(P7) = 74. Then by Lemma 2.1, |P7| | 1 + s7 + s72 + s73 and |P7| | 75

(when s72 = s73 = 201519360, s74 = 251899200).

If 5.7 ∈ ω(G), then by Lemma 2.1, 5.7 | 1 + s5 + s7 + s5.7, a contradiction. So
5.7 6∈ ω(G). If 2a.7b ∈ ω(G), then 1 ≤ a ≤ 12 and 1 ≤ b ≤ 4. If 32.7 ∈ ω(G), then
by Lemma 2.1, 32.7 | 1 + s3 + s32 + s7 + s3.7 + s32.7(=1112088321), a contradiction.
Therefore 32.7 6∈ ω(G)

If 11a ∈ ω(G), then a = 1. By Lemma 2.1, |P11| | 1 + s11 and |P11| | 11.
If 17a ∈ ω(G), then 1 ≤ a ≤ 3. If a = 2, then by (3.1), 172 | 1 + s17 + s172 , a

contradiction. So a = 1, by Lemma 2.1, |P17| | 1 + s17 and |P17| | 17.
If 19a ∈ ω(G), then 1 ≤ a ≤ 2. If a = 2, then by (3.1), 192 | 1 + s19 + s192 , a

contradiction. So a = 1, by Lemma 2.1, |P19| | 1 + s19 and |P19| | 19.
If 151a ∈ ω(G), then a = 1. By Lemma 2.1, |P151| | 1 + s151 and |P151| | 151.
To remove the primes 11, 19 and 151, we prove that 17 ∈ π(G).
Suppose that 17 6∈ π(G).
If 3, 5, 7, 11, 17, 19, 151 6∈ π(G), then G is a 2-group. Since |ω(G)| = 14 and

|nse(G)| = 15, then the equation has no solution.
Let 151 ∈ π(G). Since n151 = s151/φ(151), then 17 ∈ π(G), a contradiction.
Let 19 ∈ π(G). Since n19 = s19/φ(19), then 17 ∈ π(G), a contradiction.
Let 11 ∈ π(G). Since n11 = s11/φ(11), then 17 ∈ π(G), a contradiction.
Let 7 ∈ π(G). Then we know that exp(P7) = 7, 72, 73, 74.
Let exp(P7) = 7. Then |P7| | 1 + s7 and so |P7| | 73.

• If |P7| = 7, then n7 = s7/φ(7), and so 17 ∈ π(G), a contradiction.

• If |P7| = 72, then from above 151, 19, 17, 11 6∈ π(G) and since π(G) j
{2, 3, 5, 7, 11, 17, 19, 151}, we can assume that π(G) j {2, 3, 5, 7}. So
4030387200+8529920k1+13434624k2+47980800k3+93024000k4+201519360k5+
223910400k6 + 251899200k7 + 268692480k8 + 287884800k9 + 474163200k10 +
671731200k11 + 719712000k12 + 767692800k13 = 2m.3n.5p.72, where k1, ..., k13,

m,n, p are non-negative integers and 0 ≤
13∑
i=1

ki ≤ 310. Since 4030387200 ≤

|G| ≤ 4030387200 + 310.767692800, then the equation has no solution in N.

• If |P7| = 73, then we similarly have rule out this case as “exp(P7) = 7 and
|P7| = 72".

Let exp(P7) = 72. Then |P7| | 74.

• If |P7| = 72 or 73, we can rule out these cases as “exp(P7) = 7 and |P7| = 72".

• If |P7 = 74|, then 4030387200 + 8529920k1 + 13434624k2 + 47980800k3 +
93024000k4 + 201519360k5 + 223910400k6 + 251899200k7 + 268692480k8 +
287884800k9 + 474163200k10 + 671731200k11 + 719712000k12 + 767692800k13 =
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2m.3n.5p.74, where k1, ..., k13, m,n, p are non-negative integers and 0 ≤
13∑
i=1

ki ≤

322. Since 4030387200 ≤ |G| ≤ 4030387200 + 322.767692800, then we have that
(m,n, p)=(9, 3, 3), (10, 3, 3), (11, 3, 3), (11, 3, 3), (12, 3, 3), (13, 3, 3), (12, 3,
2), (13, 3, 2), (11, 2, 3), (12, 2, 3), (13, 2, 3) or (13, 1, 3). We also can rule out
this case. For example. Let |G| = 29.33.53.74, then using the programme of [8],
we can rule out.

Let exp(P7) = 73. Then |P7| | 74.

• If |P7| = 73, then the equation “ 4030387200 + 8529920k1 + 13434624k2 +
47980800k3 + 93024000k4 + 201519360k5 + 223910400k6 + 251899200k7 +
268692480k8 + 287884800k9 + 474163200k10 + 671731200k11 + 719712000k12 +
767692800k13 = 2m.3n.5p.74 " has no solution from case “exp(P7) = 7 and
|P7| = 73".

• If |P7| = 74, then 4030387200 + 8529920k1 + 13434624k2 + 47980800k3 +
93024000k4 + 201519360k5 + 223910400k6 + 251899200k7 + 268692480k8 +
287884800k9 + 474163200k10 + 671731200k11 + 719712000k12 + 767692800k13 =

2m.3n.5p.74, where k1, ..., k13, m,n, p are non-negative integers and 0 ≤
13∑
i=1

ki ≤

334. Since 4030387200 ≤ |G| ≤ 4030387200 + 334.767692800, then we can rule
out this case as “exp(P7) = 72 and |P7| = 74".

Let exp(P7) = 74. Then |P7| | 75.

• If |P7| = 74, then 4030387200 + 8529920k1 + 13434624k2 + 47980800k3 +
93024000k4 + 201519360k5 + 223910400k6 + 251899200k7 + 268692480k8 +
287884800k9 + 474163200k10 + 671731200k11 + 719712000k12 + 767692800k13 =

2m.3n.5p.74, where k1, ..., k13, m,n, p are non-negative integers and 0 ≤
13∑
i=1

ki ≤

346. Since 4030387200 ≤ |G| ≤ 4030387200 + 346.767692800, then we can rule
out this case as “exp(P7) = 72 and |P7| = 74".

• If |P7| = 75, then by Lemma 2.2, s74 = 74.t for some integer t. But the equation
has no solution since s74 ∈nse(G).

Let 5 ∈ π(G). We know that exp(P5) = 5, 52, 53, 54.
Let exp(P5) = 5. Then |P5| | 53.

• If |P5| = 5, then since n5 = s5/φ(5), 17 ∈ π(G), a contradiction.

• If |P5| = 52, then 4030387200 + 8529920k1 + 13434624k2 + 47980800k3 +
93024000k4 + 201519360k5 + 223910400k6 + 251899200k7 + 268692480k8 +
287884800k9 + 474163200k10 + 671731200k11 + 719712000k12 + 767692800k13 =

2m.3n.5p.74, where k1, ..., k13, m,n, p are non-negative integers and 0 ≤
13∑
i=1

ki ≤

107. Since 4030387200 ≤ |G| ≤ 4030387200 + 107.767692800, then the equation
has no solution.
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• If |P5| = 53, then similarly as the case “exp(P5) = 5 and |P5| = 52", we can rule
out this case.

Let exp(P5) = 52. Then |P5| | 53.
Similarly we can rule out this case as the case “exp(P5) = 5 and |P5| = 52".
Let exp(P5) = 53. Then |P5| | 54.
Similarly we can rule out this case as the case “exp(P5) = 5 and |P5| = 52".
Let exp(P5) = 54. Then |P5| | 55.
If |P5| = 54, we can rule out this case as “exp(P7) = 72 and |P7| = 74".
If |P5| = 55, then Lemma 2.2, s54 = 54.t for some integer t, but the equation has no

solution since s54 ∈nse(G).
Let 3 ∈ π(G). We know that 2 ∈ π(G).
Therefore 4030387200 + 8529920k1 + 13434624k2 + 47980800k3 + 93024000k4 +

201519360k5 + 223910400k6 + 251899200k7 + 268692480k8 + 287884800k9 +
474163200k10 + 671731200k11 + 719712000k12 + 767692800k13 = 2m.3n, where

k1, ..., k13, m,n are non-negative integers and 0 ≤
13∑
i=1

ki ≤ 51. Since

4030387200 ≤ |G| ≤ 4030387200 + 51.767692800, then the equation has no
solution since m and n are at most 13 and 7 respectively.

Therefore 17 ∈ π(G).
If 11.17 ∈ ω(G), then by Lemma 2.3 of [14], s11.17 = 10.s17.t for some integer t. But

the equation has no solution since s11.17 ∈nse(G). Hence 11.17 6∈ ω(G). It following
that the Sylow 11-subgroup of G acts fixed point freely on the set of elements of order
17 and |P11| | s17, a contradiction. Similarly we can prove that 19.17, 151.17 6∈ ω(G)
and 19, 151 6∈ π(G).

Therefore {2, 17} ⊆ π(G) ⊆ {2, 3, 5, 7, 17}. So we consider the following cases.
Case a. π(G) = {2, 17}.
Since |P17| = 17, then n17 = s17/φ(17) = 27.33.52.73, 3, 5, 7 ∈ π(G), a contradiction.
Similarly we can rule out these cases: π(G) = {2, 3, 17}, {2, 5, 17}, {2, 7, 17}, {2,

3, 5, 17}, {2, 3, 7, 17}, {2, 5, 7, 17}.
Case b. π(G) = {2, 3, 5, 7, 17}.
If 2.17 ∈ ω(G), then by Lemma 2.3 of [14], s2.17 = s17.t for some integer t and

s2.17 = s17. By Lemma 2.1, 2.17 | 1 + s2 + s17 + s2.17(=948538816), a contradiction.
So 2.17 ∈ ω(G), it follows that the Sylow 2-subgroup of G acts fixed freely on the set
of elements of order 17 and |P2| | s17. Therefore |P2| | 211. Similarly 3.17 6∈ ω(G) and
|P3| | 33; 5.17 6∈ ω(G) and |P5| | 52; 7.17 6∈ ω(G) and |P7| | 73.

We can assume that |G| = 2m.3n.5p.7q.17. Since 210.33.52.73.17 ≤ |G| =
2m.3n.5p.7q.17, then |G| = 210.33.52.73.17 or |G| = 211.33.52.73.17.

In the following, we first prove that there is no group such that |G| = 210.33.52.73.17
and nse(G)=nse(He), then by [8], get the desired result.

G is insoluble. Assume that G is soluble. Since s17 = 474163200 and |P17| = 17,
then n17 = s17/φ(17) = 27.33.52.73. By Lemma 2.4, 52 ≡ 1 (mod 17), a contradiction.
Therefore G is insoluble.

Therefore there is a normal series 1EKELEG such that L/K is a simple Ki-group
with i = 3, 4, 5.
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If L/K is isomorphic to a simple K3-group, from [5], L/K ∼= A5, A6, A7, A8, L2(7),
L2(8), L2(49), U3(3), L3(4) or J2. We can prove L/K is not a simple K3-group. For
example, L/K ∼= L2(7). Then |G/L| | 28.32.52.72.17. Let A/K := CG/K(L/K). Then
A/K ∩ L/K = 1. It is easy to see that (G/K)/(A/K) .Aut(L/K) = SL(2, 7) and so
G/A . SL(2, 7). Since A/K,L/K C G/K, A/K × L/K ≤ G/K. Therefore |L/K| |
|G/A| and so G/K ∼= L2(7) or SL(2, 7). i.e., |A| = 28.32.52.72.17 or 27.32.52.72.17. By
Sylow’s theorem, n17(A)=1, 18, 35, 120, 256, 392, 630, 800, 1225, 1344, 4200, 7056,
8960, 14400, 22050, 47040, 313600. Since A C G, we have that n17(A) = n17(G), and
so s17(G) = 16.n17(A)=16, 288, 560, 1920, 4096, 6272, 10080, 12800, 19600, 21504,
67200, 112896, 143360, 230400, 352800, 752640, 5017600, but none of which belongs to
nse(G).

Hence G is isomorphic to a simple Ki-group with i = 4, 5, then by Lemma 2.7, So
G/A ≤Aut(He). Therefore G/A ∼= He, or G/A ∼= 2.He.

If G/A ∼= He, then order consideration |A| = 2 and A = Z(G). So there exists an
element of order 2.17, which is a contradiction.

If G/A ∼= 2.He, then A = 1. But nse(2.He) 6=nse(G), a contradiction.
Therefore |G| = 210.33.52.73.17 = |He|. By assumption, nse(G)=nse(He), so by [2],

G ∼= He.

Theorem 3.1. Let G be a group. Then G ∼= M if and only if nse(G)=nse(M) with
M = HS or He.

Proof. By Lemma 3.1 and Lemma 3.2, we have the desired result.

4 Some applications

We know that if the two groups G and H are of the same order type, then

nse(G)=nse(H) and |G| = |H|.

Whether can the conditions “nse(G)=nse(H) and |G| = |H|" characterize some finite
simple groups. Recently, some simple groups for instance, simple Kn-groups with n =
3, 4[16, 15], projective linear groups L3(4)[10] and L3(5)[9] and L2(2

m) with 2m+1 prime
or 2m − 1 prime[14], Projective special unitary group U3(5)[11], are characterizable by
nse and their orders. Hence we have the following corollary.

Corollary 4.1. Let G be a group. Then G ∼= M if and only if nse(G)=nse(M) and
nse(G)=nse(M) with M = HS or He.

Proof. See [15].
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