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Abstract. In this paper, we introduce the notion of (θ, L) generalized weak contraction
for a hybrid pair of mappings in a partial metric space by using partial Hausdorff metric.
The main result of the paper generalizes the main theorem of H. Aydi et al [6] .

1 Introduction and preliminaries

There are a lot of generalizations of the Banach fixed point principle in the literature.
One of the most interesting generalizations is that given by T. Suzuki [33]. This
interesting fixed point result is the following:

Theorem 1.1. ([33]) Let (X, d) be a complete metric space, let T be a mapping on X,
and let a non-increasing function θ from [0,1) into (1

2
, 1] be defined by

θ(r) =


1 , 0 ≤ r ≤

√
5−1
2
,

1−r
r2

,
√

5−1
2

≤ r ≤ 1√
2
,

1
1+r

, 1√
2
≤ r < 1.

Assume that r ∈ [0, 1) is such that

θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ r d(x, y)

for all x, y ∈ X.
Then there exists a unique fixed point z of T . Moreover, lim

n→∞
T nx = z for all x ∈ X.

This result has lead to some important contributions in the metric fixed point theory
(see for instance [26, 31, 32, 33, 34] ).

S.B. Nadler [24] proved the following multi-valued extension of the Banach contrac-
tion theorem.

Theorem 1.2. ([24]) Let (X, d) be a complete metric space and T : X → CB(X) be
a mapping satisfying H(Tx, Ty) ≤ k d(x, y) for all x, y ∈ X, where k ∈ [0, 1). Then
there exists x ∈ X such that x ∈ Tx.
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Later an interesting and rich fixed point theory was developed and Theorem 1.2 was
extended by using weak and generalized contraction mappings (see [13, 30, 22, 12]).
The theory of multi-valued maps has application in control theory, convex optimization,
differential equations and economics (see also [13]). The notion of a partial metric space
was introduced by S.G. Mathews [23], as a part of the study of denotational semantics of
data flow networks. Recently many authors proved some fixed point theorems for a one,
two and four mappings for weak and generlized contractions in partial metric spaces,
see, for example, [29, 9, 10, 25, 15, 16, 17, 18, 19, 20, 21, 7, 8, 4, 5, 27, 28, 11, 26, 1, 2, 3].

Very recently H. Aydi et al. [6] generalized the Hausdorff metric by introducing the
partial Hausdorff metric in a partial metric space and extended Nadler’s fixed point
theorem as follows.

Theorem 1.3. ([6]) Let (X, p) be a complete partial metric spce and
T : X → CBp(X) be a multi-valued mapping such that for all x, y ∈ X, we have
Hp(Tx, Ty) ≤ kp(x, y) where k ∈ (0, 1), then T has a fixed point.

In this paper we consider the generalized (θ, L) weak contraction for a hybrid pair
of maps to obtain a Suziki type fixed point theorem in partial metric spaces which
generalizes the theorem of H. Aydi et al. [6].

Consistent with [14, 6, 4, 23], now we consider the following definitions and results
which are needed in the sequel.

Definition 1.1. ([23]). A partial metric on a nonempty setX is a function p : X×X →
R+ such that for all x, y, z ∈ X:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y)
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
In this case (X, p) is called a partial metric space.

It is clear that |p(x, y) − p(y, z)| ≤ p(x, z) ∀x, y, z ∈ X. Also it is clear that
p(x, y) = 0 implies x = y by (p1) and (p2). But if x = y, p(x, y) may not be zero.

A basic example of a partial metric space is the pair (R+, p), where p(x, y) =
max{x, y} for all x, y ∈ R+.

Each partial metric p on X generates the topology τp on X which has as a base
the family of open p - balls {Bp(x, ε) | x ∈ X, ε > 0} for all x ∈ X and ε > 0, where
Bp(x, ε) = {y ∈ X | p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

If p is a partial metric on X, then the function dp : X × X → R+ given by
dp(x, y) = 2p(x, y)− p(x, x)− p(y, y) is a metric on X.

Definition 1.2. ([23]) Let (X, p) be a partial metric space.

(i) A sequence {xn} in (X, p) is said to converge to a point x ∈ X if and only if
p(x, x) = lim

n→∞
p(x, xn).

(ii) A sequence {xn} in (X, p) is said to be a Cauchy sequence if lim
n→∞

p(xn, xm) exists
and is finite.
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(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X
converges, with respect to τp, to a point x ∈ X such that

p(x, x) = lim
m,n→∞

p(xn, xm).

Lemma 1.1. ([23]). Let (X, p) be a partial metric space.

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the
metric space (X, dp).

(b) (X, p) is complete if and only if the metric space (X, dp) is complete.
Furthermore,
lim
n→∞

dp(xn, x) = 0 if and only if p(x, x) = lim
n→∞

p(xn, x) = lim
m,n→∞

p(xn, xm).

Lemma 1.2. ([4]). Let (X, p) be a partial metric space and A any nonempty set in
(X, p), then a ∈ A if and only if p(a,A) = p(a, a), where A denotes the closure of A
with respect to the partial metric p.

Note that A is closed in (X, p) if and only if A = A.
In [6], H. Aydi et al. introduced the following definitions.
Let (X, p) be a partial metric space. Let CBp(X) be the family of all nonempty,

closed and bounded subsets of the partial metric space (X, p), induced by the partial
metric p. For A,B ∈ CBp(X) and x ∈ X, define

p(x,A) = inf {p(x, a) : a ∈ A} , δp(A,B) = sup {p(a,B) : a ∈ A} ,

δp(B,A) = sup {p(b, A) : b ∈ B}

and
Hp(A,B) = max {δp(A,B), δp(B,A)} .

Hp is called the partial Hausdorff metric induced by the partial metric p.
H. Aydi et al. proved that any Hausdorff metric is a partial Hausdorff metric. The

converse is not true (see Remark 2.7 in [6]).

Lemma 1.3. ([6]). Let (X, p) be a partial metric space. For any
A,B,C ∈ CBp(X), we have
(i) δp(A,A) = sup {p(a, a) : a ∈ A},
(ii) δp(A,A) ≤ δp(A,B),
(iii) δp(A,B) = 0 implies that A ⊆ B,
(iv) δp(A,B) ≤ δp(A,C) + δp(C,B) – inf

c∈C
p(c, c).

Lemma 1.4. ([6]). Let (X, p) be a partial metric space. For, any
A,B,C ∈ CBp(X), we have
(i) Hp(A,A) ≤ Hp(A,B),
(ii) Hp(A,B) = Hp(B,A),
(iii) Hp(A,B) ≤ Hp(A,C) +Hp(C,B) – inf

c∈C
p(c, c).
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Lemma 1.5. ([6]). Let (X, p) be a partial metric space. For, any A,B ∈ CBp(X),
Hp(A,B) = 0 implies that A = B .

Remark 1.1. The converse of Lemma 1.5, in general, is not true as the following
example shows.

Let X = [0, 1] be endowed with the partial metric p : X × X → R+ defined by
p(x, y) = max {x, y} . By (i) of Lemma 1.3, we have

Hp(X,X) = δp(X,X) = sup {x : 0 ≤ x ≤ 1} = 1 6= 0.

Lemma 1.6. ([6]). Let (X, p) be a partial metric space, A,B ∈ CBp(X) and h > 1.
For any a ∈ A, there exists b ∈ B such that p(a, b) ≤ hHp(A,B).

Definition 1.3. ([14]). Mappings f : X → X and T : X → CB(X) are said to be
weakly compatible if they commute at their coincidence points, i.e., if f(Tx) = T (fx)
whenever fx ∈ Tx.

2 Main results

We start with the following lemma.
Lemma 2.1. Let xn → x as n → ∞ in a partial metric space (X, p) such that
p(x, x) = 0. Then lim

n→∞
p(xn, B) = p(x,B) for any B ∈ CBp(X).

Proof. Since xn → x we have lim
n→∞

p(xn, x) = p(x, x) = 0. By the triangle inequality
for xn ∈ X and y ∈ B we have

p(xn, y) ≤ p(xn, x) + p(x, y)− p(x, x) = p(xn, x) + p(x, y)

which gives that p(xn, B) ≤ p(xn, x) + p(x,B).
Therefore

lim
n→∞

p(xn, B) ≤ p(x,B). (2.1)

Also
p(x, y) ≤ p(x, xn) + p(xn, y)− p(xn, xn) ≤ p(x, xn) + p(xn, y).

So p(x,B) ≤ p(x, xn) + p(xn, B). Therefore

p(x,B) ≤ lim
n→∞

p(xn, B). (2.2)

From (2.1) and (2.2) we have lim
n→∞

p(xn, B) = p(x,B).

Now, we give our main result.

Theorem 2.1. Let (X, p) be a partial metric space and let T : X → CBp(X) and
f : X → X be mappings satisfying the η(θ)p(fx, Tx) ≤ p(fx, fy) implies

Hp(Tx, Ty) ≤ θp(fx, fy) + L[p(fy, Tx)− p(fy, fy)−Hp(Tx, Tx)]



A Suzuki type fixed point theorem for a hybrid pair of maps in partial Hausdorff metric spaces 97

where θ ∈ [0, 1), L ≥ 0 for all x, y ∈ X and η : [0, 1) → ( 1
2+L

, 1
1+L

] defined by
η(θ) = 1

1+θ+L
is strictly decreasing function. Also let T (X) ⊂ f(X) and f(X) be

complete. Then f and T have a coincidence point.
Furthermore, if T and f are weakly compatible and f(f(u)) = f(u), then f and T

have a common fixed point.

Proof. Choose q > 1 be such that h = q θ < 1. Let x0 ∈ X and x1 ∈ X such that
fx1 ∈ Tx0. Then

η(θ)p(fx0, Tx0) ≤ η(θ)p(fx0, fx1) ≤ p(fx0, fx1).

Hence from given hypothesis we have

Hp(Tx0, Tx1) ≤ θp(fx0, fx1) + L[p(fx1, Tx0)− p(fx1, fx1)−Hp(Tx0, Tx0)]
≤ θp(fx0, fx1) + L[p(fx1, fx1)− p(fx1, fx1)]
= θp(fx0, fx1).

But by Lemma 1.6, there exists fx2 ∈ Tx1 such that

p(fx1, fx2) ≤ qHp(Tx0, Tx1).

So
p(fx1, fx2) ≤ qθ p(fx0, fx1).

Thus
p(fx1, fx2) ≤ hp(fx0, fx1).

Now we have,
η(θ)p(fx1, Tx1) ≤ η(θ)p(fx1, fx2) ≤ p(fx1, fx2)

So by the assumptions of the theorem, we have

Hp(Tx1, Tx2) ≤ θp(fx1, fx2) + L[p(fx2, Tx1)− p(fx2, fx2)−Hp(Tx1, Tx1)]
≤ θp(fx1, fx2) + L[p(fx2, fx2)− p(fx2, fx2)]
= θp(fx1, fx2)

Again by using Lemma 1.6, there exists fx3 ∈ Tx2 such that

p(fx2, fx3) ≤ qHp(Tx1, Tx2) ≤ qθp(fx1, fx2).

Hence we have
p(fx2, fx3) ≤ hp(fx1, fx2) ≤ h2p(fx0, fx1).

Proceeding in this way we can obtain a sequence {fxn} in X such that

p(fxn, fxn+1) ≤ hnp(fx0, fx1).

If fxn = fxn+1 for some n, then fxn ∈ Txn hence xn is a coincidence point of T and
f . Assume that fxn 6= fxn+1 for all n. By Property (p4) of a partial metric space for
any n > m we have

p(fxn, fxm) ≤ p(fxn, fxn+1) + p(fxn+1, fxn+2) + ...+ p(fxm−1, fxm)
≤ hnp(fx0, fx1) + hn+1p(fx0, fx1) + ...+ hm−1p(fx0, fx1)
= (hn + hn+1 + ...+ hm−1)p(fx0, fx1)
≤ hn

1−hp(fx0, fx1) → 0

as n→∞ since h < 1.
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Thus lim
n, m→∞

p(fxn, fxm) = 0 hence by (p2), we have

lim
n→∞

p(fxn, fxn) = 0. (2.3)

By the definition of dp, for any n > m we get

dp(fxn, fxm) ≤ 2p(fxn, fxm) → 0 as n→∞.

This yields that {fxn} is a Cauchy sequence in (f(X), dp).
Since (f(X), p) is complete, by (b) of Lemma 1.1, we have (f(X), dp) that is a

complete metric space. Therefore the sequence {fxn} converges to some f(u) ∈ f(X)
with respect to the metric dp, that is, lim

n→∞
dp(fxn, f(u)) = 0.

Also by (b) of Lemma 1.1, we have

p(f(u), f(u)) = lim
n→∞

p(fxn, f(u)) = lim
n,m→∞

p(fxn, fxm) = 0. (2.4)

Since fxn → f(u), fxn 6= fxn+1 for all n, it follows that fxn 6= f(u) for sufficiently
large n.

So by (2.4), there exists a positive integer n0 such that

p(f(u), fxn) ≤
1

3
p(f(u), fx)

for all n ≥ n0 and for all x ∈ X − {u}.
Now we have

η(θ)p(fxn, Txn) ≤ p(fxn, Txn) ≤ p(fxn, fxn+1)
≤ p(fxn, f(u)) + p(f(u), fxn+1)− p(f(u), f(u)).

So

η(θ)p(fxn, Txn) ≤ 1
3
p(f(u), fx) + 1

3
p(f(u), fx) = 2

3
p(f(u), fx)

= p(f(u), fx)− 1
3
p(f(u), fx)

≤ p(fx, f(u))− p(fxn, f(u))
≤ p(fx, fxn) + p(fxn, f(u))− p(fxn, fxn)− p(fxn, f(u))
≤ p(fxn, fx)

which implies that

p(fxn+1, Tx) ≤ Hp(Txn, Tx)
≤ θp(fxn, fx) + L[p(fx, Txn)− p(fx, fx)−Hp(Txn, Txn)]
≤ θp(fxn, fx) + Lp(fx, Txn)
≤ θp(fxn, fx) + Lp(fx, fxn+1).

Letting n→∞ by Lemma 2.1, we get

p(fu, Tx) ≤ θp(fx, fu) + Lp(fx, fu) = (θ + L)p(fx, fu) (2.5)

Since p(fu, Tx) = inf
y∈Tx

p(fu, y) we have for every n ∈ N , there exists

yn ∈ Tx such that p(fu, yn) < p(fu, Tx) + 1
n
p(fx, fu).



A Suzuki type fixed point theorem for a hybrid pair of maps in partial Hausdorff metric spaces 99

Now consider,

p(fx, Tx) ≤ p(fx, yn) ≤ p(fx, fu) + p(fu, yn)− p(fu, fu)
≤ p(fx, fu) + p(fu, Tx) + 1

n
p(fx, fu)

≤ p(fx, fu) + (θ + L)p(fx, fu) + 1
n
p(fx, fu) by (2.5)

= (1 + θ + L+ 1
n
)p(fx, fu).

This implies

1

1 + θ + L
p(fx, Tx) ≤

[
1 +

1

n(1 + θ + L)

]
p(fx, fu).

Letting n→∞ we get
η(θ)p(fx, Tx) ≤ p(fx, fu).

Then by the assumptions of the theorem we have,

Hp(Tx, Tz) ≤ θp(fx, fu) + L[p(fu, Tx)− p(fu, fu)−Hp(Tx, Tx)]

Thus
Hp(Tx, Tz) ≤ θp(fx, fu) + Lp(fu, Tx) (2.6)

Now by Lemma 2.1, we have

p(f(u), Tu) = lim
n→∞

p(fxn+1, Tu) ≤ lim
n→∞

Hp(Txn, T z)

≤ lim
n→∞

[θp(fxn, fu) + Lp(Txn, fu)] , by (2.6)
≤ lim

n→∞
[θp(fxn, fu) + Lp(fxn+1, fu)]

= 0.

So we have p(fu, Tu) = p(fu, fu) = 0 . By Lemma 1.2, we have
f(u) ∈ Tu = Tu, since Tu is closed. So u is a coincidence point of f and T .

Suppose f and T are weakly compatible then we have T (fu) = f(Tu).
Also by the assumptions of the theorem we have f(fu) = fu. So f(fu) ∈ f(Tu) =
T (fu) i.e., fu ∈ T (fu). Hence fu is a common fixed point of f and T .

If f is an identity map in Theorem 2.1, we have the following corollary.

Corollary 2.1. Let (X, p) be a complete partial metric space and let
T : X → CBp(X) be a mapping satisfying

η(θ)p(x, Tx) ≤ p(x, y) ⇒ Hp(Tx, Ty) ≤ θp(x, y) + L[p(y, Tx)− p(y, y)−Hp(Tx, Tx)],

where θ ∈ [0, 1), L ≥ 0
for all x, y ∈ X, and η : [0, 1) → ( 1

2+L
, 1

1+L
] defined by η(θ) = 1

1+θ+L
is a strictly

decreasing function.
Then there exists a point x ∈ X such that x ∈ Tx.

Corollary 2.2. Let (X, p) be a complete partial metric space and let T : X → CB(X)
be a mapping such that for all x, y ∈ X,

Hp(Tx, Ty) ≤ k p(x, y),

where k ∈ [0, 1).
Then there exists a point x ∈ X such that x ∈ Tx.
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