Eurasian Mathematical Journal

2014, Volume 5, Number 3

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), O.V. Besov (Russia), B. Bojarski (Poland), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), R.C. Brown (USA), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia) sia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliey (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), A.V. Mikhalev (Russia), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia) sia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), B. Viscolani (Italy), Masahiro Yamamoto (Japan), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Executive Editor

D.T. Matin

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 5, Number 3 (2014), 93 – 101

A SUZUKI TYPE FIXED POINT THEOREM FOR A HYBRID PAIR OF MAPS IN PARTIAL HAUSDORFF METRIC SPACES

K.P.R. Rao, K.R.K. Rao

Communicated by N.A. Bokayev

Key words: partial metric space, multi-valued map, partial Hausdorff metric, generalized weak contraction.

AMS Mathematics Subject Classification: 47H10, 54H25.

Abstract. In this paper, we introduce the notion of (θ, L) generalized weak contraction for a hybrid pair of mappings in a partial metric space by using partial Hausdorff metric. The main result of the paper generalizes the main theorem of H. Aydi et al [6].

1 Introduction and preliminaries

There are a lot of generalizations of the Banach fixed point principle in the literature. One of the most interesting generalizations is that given by T. Suzuki [33]. This interesting fixed point result is the following:

Theorem 1.1. ([33]) Let (X, d) be a complete metric space, let T be a mapping on X, and let a non-increasing function θ from [0,1) into $(\frac{1}{2},1]$ be defined by

$$\theta(r) = \begin{cases} 1, & 0 \le r \le \frac{\sqrt{5}-1}{2}, \\ \frac{1-r}{r^2}, & \frac{\sqrt{5}-1}{2} \le r \le \frac{1}{\sqrt{2}}, \\ \frac{1}{1+r}, & \frac{1}{\sqrt{2}} \le r < 1. \end{cases}$$

Assume that $r \in [0,1)$ is such that

$$\theta(r)d(x,Tx) \le d(x,y)$$
 implies $d(Tx,Ty) \le r \ d(x,y)$

for all $x, y \in X$.

Then there exists a unique fixed point z of T. Moreover, $\lim_{n\to\infty} T^n x = z$ for all $x\in X$.

This result has lead to some important contributions in the metric fixed point theory (see for instance [26, 31, 32, 33, 34]).

S.B. Nadler [24] proved the following multi-valued extension of the Banach contraction theorem.

Theorem 1.2. ([24]) Let (X, d) be a complete metric space and $T: X \to CB(X)$ be a mapping satisfying $H(Tx, Ty) \leq k \ d(x, y)$ for all $x, y \in X$, where $k \in [0, 1)$. Then there exists $x \in X$ such that $x \in Tx$.

Later an interesting and rich fixed point theory was developed and Theorem 1.2 was extended by using weak and generalized contraction mappings (see [13, 30, 22, 12]). The theory of multi-valued maps has application in control theory, convex optimization, differential equations and economics (see also [13]). The notion of a partial metric space was introduced by S.G. Mathews [23], as a part of the study of denotational semantics of data flow networks. Recently many authors proved some fixed point theorems for a one, two and four mappings for weak and generalized contractions in partial metric spaces, see, for example, [29, 9, 10, 25, 15, 16, 17, 18, 19, 20, 21, 7, 8, 4, 5, 27, 28, 11, 26, 1, 2, 3].

Very recently H. Aydi et al. [6] generalized the Hausdorff metric by introducing the partial Hausdorff metric in a partial metric space and extended Nadler's fixed point theorem as follows.

Theorem 1.3. ([6]) Let (X, p) be a complete partial metric spee and $T: X \to CB^p(X)$ be a multi-valued mapping such that for all $x, y \in X$, we have $H_p(Tx, Ty) \leq kp(x, y)$ where $k \in (0, 1)$, then T has a fixed point.

In this paper we consider the generalized (θ, L) weak contraction for a hybrid pair of maps to obtain a Suziki type fixed point theorem in partial metric spaces which generalizes the theorem of H. Aydi et al. [6].

Consistent with [14, 6, 4, 23], now we consider the following definitions and results which are needed in the sequel.

Definition 1.1. ([23]). A partial metric on a nonempty set X is a function $p: X \times X \to \mathbb{R}^+$ such that for all $x, y, z \in X$:

- $(p_1) x = y \Leftrightarrow p(x, x) = p(x, y) = p(y, y),$
- $(p_2) p(x,x) \le p(x,y)$
- $(p_3) p(x,y) = p(y,x),$
- $(p_4) p(x,y) \le p(x,z) + p(z,y) p(z,z).$

In this case (X, p) is called a partial metric space.

It is clear that $|p(x,y) - p(y,z)| \le p(x,z) \ \forall x,y,z \in X$. Also it is clear that p(x,y) = 0 implies x = y by (p_1) and (p_2) . But if x = y, p(x,y) may not be zero.

A basic example of a partial metric space is the pair (\mathbb{R}^+, p) , where $p(x, y) = \max\{x, y\}$ for all $x, y \in \mathbb{R}^+$.

Each partial metric p on X generates the topology τ_p on X which has as a base the family of open p - balls $\{B_p(x,\epsilon) \mid x \in X, \epsilon > 0\}$ for all $x \in X$ and $\epsilon > 0$, where $B_p(x,\epsilon) = \{y \in X \mid p(x,y) < p(x,x) + \epsilon\}$ for all $x \in X$ and $\epsilon > 0$.

If p is a partial metric on X, then the function $d_p: X \times X \to \mathbb{R}^+$ given by $d_p(x,y) = 2p(x,y) - p(x,x) - p(y,y)$ is a metric on X.

Definition 1.2. ([23]) Let (X, p) be a partial metric space.

- (i) A sequence $\{x_n\}$ in (X, p) is said to converge to a point $x \in X$ if and only if $p(x, x) = \lim_{n \to \infty} p(x, x_n)$.
- (ii) A sequence $\{x_n\}$ in (X, p) is said to be a Cauchy sequence if $\lim_{n\to\infty} p(x_n, x_m)$ exists and is finite.

(iii) (X, p) is said to be complete if every Cauchy sequence $\{x_n\}$ in Xconverges, with respect to τ_p , to a point $x \in X$ such that

$$p(x,x) = \lim_{m,n \to \infty} p(x_n, x_m).$$

Lemma 1.1. ([23]). Let (X, p) be a partial metric space.

- (a) $\{x_n\}$ is a Cauchy sequence in (X,p) if and only if it is a Cauchy sequence in the metric space (X, d_p) .
- (b) (X, p) is complete if and only if the metric space (X, d_p) is complete.

$$\lim_{n \to \infty} d_p(x_n, x) = 0 \text{ if and only if } p(x, x) = \lim_{n \to \infty} p(x_n, x) = \lim_{m, n \to \infty} p(x_n, x_m).$$

Lemma 1.2. ([4]). Let (X, p) be a partial metric space and A any nonempty set in (X,p), then $a \in A$ if and only if p(a,A) = p(a,a), where A denotes the closure of A with respect to the partial metric p.

Note that A is closed in (X, p) if and only if $A = \overline{A}$.

In [6], H. Aydi et al. introduced the following definitions.

Let (X, p) be a partial metric space. Let $CB^p(X)$ be the family of all nonempty, closed and bounded subsets of the partial metric space (X, p), induced by the partial metric p. For $A, B \in CB^p(X)$ and $x \in X$, define

$$p(x, A) = \inf \{ p(x, a) : a \in A \}, \quad \delta_p(A, B) = \sup \{ p(a, B) : a \in A \},$$

$$\delta_p(B, A) = \sup \{ p(b, A) : b \in B \}$$

and

$$H_p(A, B) = \max \{\delta_p(A, B), \delta_p(B, A)\}.$$

 H_p is called the partial Hausdorff metric induced by the partial metric p.

H. Aydi et al. proved that any Hausdorff metric is a partial Hausdorff metric. The converse is not true (see Remark 2.7 in [6]).

Lemma 1.3. ([6]). Let (X, p) be a partial metric space. For any

 $A, B, C \in CB^p(X)$, we have

- (i) $\delta_p(A, A) = \sup \{p(a, a) : a \in A\},\$
- (ii) $\delta_p(A, A) \leq \delta_p(A, B)$,
- (iii) $\delta_p(A, B) = 0$ implies that $A \subseteq B$,
- (iv) $\delta_p(A, B) \le \delta_p(A, C) + \delta_p(C, B) \inf_{c \in C} p(c, c)$.

Lemma 1.4. ([6]). Let (X, p) be a partial metric space. For, any $A, B, C \in CB^p(X)$, we have

- (i) $H_p(A, A) \leq H_p(A, B)$,
- (ii) $H_p(A, B) = H_p(B, A)$,
- (iii) $H_p(A, B) \le H_p(A, C) + H_p(C, B) \inf_{c \in C} p(c, c).$

Lemma 1.5. ([6]). Let (X, p) be a partial metric space. For, any $A, B \in CB^p(X)$, $H_p(A, B) = 0$ implies that A = B.

Remark 1.1. The converse of Lemma 1.5, in general, is not true as the following example shows.

Let X = [0,1] be endowed with the partial metric $p: X \times X \to R^+$ defined by $p(x,y) = \max\{x,y\}$. By (i) of Lemma 1.3, we have

$$H_p(X, X) = \delta_p(X, X) = \sup \{x : 0 \le x \le 1\} = 1 \ne 0.$$

Lemma 1.6. ([6]). Let (X, p) be a partial metric space, $A, B \in CB^p(X)$ and h > 1. For any $a \in A$, there exists $b \in B$ such that $p(a, b) \leq hH_p(A, B)$.

Definition 1.3. ([14]). Mappings $f: X \to X$ and $T: X \to CB(X)$ are said to be weakly compatible if they commute at their coincidence points, i.e., if f(Tx) = T(fx) whenever $fx \in Tx$.

2 Main results

We start with the following lemma.

Lemma 2.1. Let $x_n \to x$ as $n \to \infty$ in a partial metric space (X, p) such that p(x, x) = 0. Then $\lim_{n \to \infty} p(x_n, B) = p(x, B)$ for any $B \in CB^p(X)$.

Proof. Since $x_n \to x$ we have $\lim_{n \to \infty} p(x_n, x) = p(x, x) = 0$. By the triangle inequality for $x_n \in X$ and $y \in B$ we have

$$p(x_n, y) \le p(x_n, x) + p(x, y) - p(x, x) = p(x_n, x) + p(x, y)$$

which gives that $p(x_n, B) \leq p(x_n, x) + p(x, B)$.

Therefore

$$\lim_{n \to \infty} p(x_n, B) \le p(x, B). \tag{2.1}$$

Also

$$p(x,y) \le p(x,x_n) + p(x_n,y) - p(x_n,x_n) \le p(x,x_n) + p(x_n,y).$$

So $p(x, B) \le p(x, x_n) + p(x_n, B)$. Therefore

$$p(x,B) \le \lim_{n \to \infty} p(x_n, B). \tag{2.2}$$

From (2.1) and (2.2) we have
$$\lim_{n\to\infty} p(x_n, B) = p(x, B)$$
.

Now, we give our main result.

Theorem 2.1. Let (X, p) be a partial metric space and let $T: X \to CB^p(X)$ and $f: X \to X$ be mappings satisfying the $\eta(\theta)p(fx, Tx) \leq p(fx, fy)$ implies

$$H_p(Tx, Ty) \le \theta p(fx, fy) + L[p(fy, Tx) - p(fy, fy) - H_p(Tx, Tx)]$$

where $\theta \in [0,1), L \geq 0$ for all $x,y \in X$ and $\eta : [0,1) \rightarrow (\frac{1}{2+L},\frac{1}{1+L}]$ defined by $\eta(\theta) = \frac{1}{1+\theta+L}$ is strictly decreasing function. Also let $T(X) \subset f(X)$ and f(X) be complete. Then f and T have a coincidence point.

Furthermore, if T and f are weakly compatible and f(f(u)) = f(u), then f and T have a common fixed point.

Proof. Choose q > 1 be such that $h = q \theta < 1$. Let $x_0 \in X$ and $x_1 \in X$ such that $fx_1 \in Tx_0$. Then

$$\eta(\theta)p(fx_0, Tx_0) \le \eta(\theta)p(fx_0, fx_1) \le p(fx_0, fx_1).$$

Hence from given hypothesis we have

$$H_p(Tx_0, Tx_1) \leq \theta p(fx_0, fx_1) + L[p(fx_1, Tx_0) - p(fx_1, fx_1) - H_p(Tx_0, Tx_0)]$$

$$\leq \theta p(fx_0, fx_1) + L[p(fx_1, fx_1) - p(fx_1, fx_1)]$$

$$= \theta p(fx_0, fx_1).$$

But by Lemma 1.6, there exists $fx_2 \in Tx_1$ such that

$$p(fx_1, fx_2) \le qH_p(Tx_0, Tx_1).$$

So

$$p(fx_1, fx_2) \le q\theta \ p(fx_0, fx_1).$$

Thus

$$p(fx_1, fx_2) \le hp(fx_0, fx_1).$$

Now we have,

$$\eta(\theta)p(fx_1, Tx_1) \le \eta(\theta)p(fx_1, fx_2) \le p(fx_1, fx_2)$$

So by the assumptions of the theorem, we have

$$H_p(Tx_1, Tx_2) \leq \theta p(fx_1, fx_2) + L[p(fx_2, Tx_1) - p(fx_2, fx_2) - H_p(Tx_1, Tx_1)]$$

$$\leq \theta p(fx_1, fx_2) + L[p(fx_2, fx_2) - p(fx_2, fx_2)]$$

$$= \theta p(fx_1, fx_2)$$

Again by using Lemma 1.6, there exists $fx_3 \in Tx_2$ such that

$$p(fx_2, fx_3) \le qH_p(Tx_1, Tx_2) \le q\theta p(fx_1, fx_2).$$

Hence we have

$$p(fx_2, fx_3) \le hp(fx_1, fx_2) \le h^2p(fx_0, fx_1).$$

Proceeding in this way we can obtain a sequence $\{fx_n\}$ in X such that

$$p(fx_n, fx_{n+1}) \le h^n p(fx_0, fx_1).$$

If $fx_n = fx_{n+1}$ for some n, then $fx_n \in Tx_n$ hence x_n is a coincidence point of T and f. Assume that $fx_n \neq fx_{n+1}$ for all n. By Property (p_4) of a partial metric space for any n > m we have

$$p(fx_{n}, fx_{m}) \leq p(fx_{n}, fx_{n+1}) + p(fx_{n+1}, fx_{n+2}) + \dots + p(fx_{m-1}, fx_{m})$$

$$\leq h^{n}p(fx_{0}, fx_{1}) + h^{n+1}p(fx_{0}, fx_{1}) + \dots + h^{m-1}p(fx_{0}, fx_{1})$$

$$= (h^{n} + h^{n+1} + \dots + h^{m-1})p(fx_{0}, fx_{1})$$

$$\leq \frac{h^{n}}{1-h}p(fx_{0}, fx_{1}) \to 0$$

as $n \to \infty$ since h < 1.

Thus $\lim_{n, m \to \infty} p(fx_n, fx_m) = 0$ hence by (p_2) , we have

$$\lim_{n \to \infty} p(fx_n, fx_n) = 0. \tag{2.3}$$

By the definition of d_p , for any n > m we get

$$d_p(fx_n, fx_m) \le 2p(fx_n, fx_m) \to 0 \text{ as } n \to \infty.$$

This yields that $\{fx_n\}$ is a Cauchy sequence in $(f(X), d_p)$.

Since (f(X), p) is complete, by (b) of Lemma 1.1, we have $(f(X), d_p)$ that is a complete metric space. Therefore the sequence $\{fx_n\}$ converges to some $f(u) \in f(X)$ with respect to the metric d_p , that is, $\lim_{n\to\infty} d_p(fx_n, f(u)) = 0$.

Also by (b) of Lemma 1.1, we have

$$p(f(u), f(u)) = \lim_{n \to \infty} p(fx_n, f(u)) = \lim_{n \to \infty} p(fx_n, fx_m) = 0.$$
 (2.4)

Since $fx_n \to f(u)$, $fx_n \neq fx_{n+1}$ for all n, it follows that $fx_n \neq f(u)$ for sufficiently large n.

So by (2.4), there exists a positive integer n_0 such that

$$p(f(u), fx_n) \le \frac{1}{3}p(f(u), fx)$$

for all $n \ge n_0$ and for all $x \in X - \{u\}$.

Now we have

$$\eta(\theta)p(fx_n, Tx_n) \leq p(fx_n, Tx_n) \leq p(fx_n, fx_{n+1})
\leq p(fx_n, f(u)) + p(f(u), fx_{n+1}) - p(f(u), f(u)).$$

So

$$\eta(\theta)p(fx_n, Tx_n) \leq \frac{1}{3}p(f(u), fx) + \frac{1}{3}p(f(u), fx) = \frac{2}{3}p(f(u), fx)
= p(f(u), fx) - \frac{1}{3}p(f(u), fx)
\leq p(fx, f(u)) - p(fx_n, f(u))
\leq p(fx, fx_n) + p(fx_n, f(u)) - p(fx_n, fx_n) - p(fx_n, f(u))
\leq p(fx_n, fx)$$

which implies that

$$p(fx_{n+1}, Tx) \leq H_p(Tx_n, Tx)
\leq \theta p(fx_n, fx) + L[p(fx, Tx_n) - p(fx, fx) - H_p(Tx_n, Tx_n)]
\leq \theta p(fx_n, fx) + Lp(fx, Tx_n)
\leq \theta p(fx_n, fx) + Lp(fx, fx_{n+1}).$$

Letting $n \to \infty$ by Lemma 2.1, we get

$$p(fu,Tx) \le \theta p(fx,fu) + Lp(fx,fu) = (\theta + L)p(fx,fu) \tag{2.5}$$

Since $p(fu, Tx) = \inf_{y \in Tx} p(fu, y)$ we have for every $n \in N$, there exists $y_n \in Tx$ such that $p(fu, y_n) < p(fu, Tx) + \frac{1}{n}p(fx, fu)$.

Now consider,

$$p(fx,Tx) \leq p(fx,y_n) \leq p(fx,fu) + p(fu,y_n) - p(fu,fu) \leq p(fx,fu) + p(fu,Tx) + \frac{1}{n}p(fx,fu) \leq p(fx,fu) + (\theta + L)p(fx,fu) + \frac{1}{n}p(fx,fu) \text{ by (2.5)} = (1 + \theta + L + \frac{1}{n})p(fx,fu).$$

This implies

$$\frac{1}{1+\theta+L}p(fx,Tx) \le \left[1 + \frac{1}{n(1+\theta+L)}\right]p(fx,fu).$$

Letting $n \to \infty$ we get

$$\eta(\theta)p(fx,Tx) \le p(fx,fu).$$

Then by the assumptions of the theorem we have,

$$H_p(Tx, Tz) \le \theta p(fx, fu) + L[p(fu, Tx) - p(fu, fu) - H_p(Tx, Tx)]$$

Thus

$$H_p(Tx, Tz) \le \theta p(fx, fu) + Lp(fu, Tx) \tag{2.6}$$

Now by Lemma 2.1, we have

$$p(f(u), Tu) = \lim_{n \to \infty} p(fx_{n+1}, Tu) \le \lim_{n \to \infty} H_p(Tx_n, Tz)$$

$$\le \lim_{n \to \infty} \left[\theta p(fx_n, fu) + Lp(Tx_n, fu)\right], \quad \text{by (2.6)}$$

$$\le \lim_{n \to \infty} \left[\theta p(fx_n, fu) + Lp(fx_{n+1}, fu)\right]$$

$$= 0.$$

So we have p(fu, Tu) = p(fu, fu) = 0. By Lemma 1.2, we have $f(u) \in \overline{Tu} = Tu$, since Tu is closed. So u is a coincidence point of f and T.

Suppose f and T are weakly compatible then we have T(fu) = f(Tu).

Also by the assumptions of the theorem we have f(fu) = fu. So $f(fu) \in f(Tu) =$ T(fu) i.e., $fu \in T(fu)$. Hence fu is a common fixed point of f and T.

If f is an identity map in Theorem 2.1, we have the following corollary.

Corollary 2.1. Let (X, p) be a complete partial metric space and let $T: X \to CB^p(X)$ be a mapping satisfying

$$\eta(\theta)p(x,Tx) \leq p(x,y) \Rightarrow H_p(Tx,Ty) \leq \theta p(x,y) + L[p(y,Tx) - p(y,y) - H_p(Tx,Tx)],$$

where $\theta \in [0,1), L \geq 0$

for all $x, y \in X$, and $\eta : [0,1) \to (\frac{1}{2+L}, \frac{1}{1+L}]$ defined by $\eta(\theta) = \frac{1}{1+\theta+L}$ is a strictly decreasing function.

Then there exists a point $x \in X$ such that $x \in Tx$.

Corollary 2.2. Let (X, p) be a complete partial metric space and let $T: X \to CB(X)$ be a mapping such that for all $x, y \in X$,

$$H_p(Tx, Ty) \le k \ p(x, y),$$

where $k \in [0,1)$.

Then there exists a point $x \in X$ such that $x \in Tx$.

References

- [1] T. Abdeljawad, E. Karapinar, K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011), no. 11, 1894-1899.
- [2] T. Abdeljawad, E. Karapinar, K. Tas, A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl. 63 (2012), no. 3, 716-719.
- [3] T. Abdeljawad, H. Aydi, E. Karapinar, Coupled fixed points for Meir-Keeler contractions in ordered partial metric spaces, Math. Problems Eng. 2012 (2012), Article ID 327273, 20 pp.
- [4] I. Altun, H. Simsek, Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud. 1 (2008), 1-8.
- [5] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topology Appl. 157 (2010), 2778-2785.
- [6] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric space, Topology Appl. 159 (2012), no. 14, 3234-3242.
- [7] H. Aydi, E. Karapinar, Sh. Rezapour, A generalized Meir-Keeler contraction type on partial metric spaces, Abstr. Appl. Anal. 2012 (2012), Article ID 287127, 10 pp.
- [8] H. Aydi, S. Hadj-Amor, E. Karapinar, Berinde type generalized contractions on partial metric spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 312479, 10 pp.
- [9] C.Di Bari, P.Vetro, Fixed points for weak φ-contractions on partial metric spaces, Int. J. Eng. Contemp. Math. Sci. 1 (2011), no. 1, 5-13.
- [10] C.M. Chen, E. Karapinar, Fixed point results for the alpha-Meir-Keeler contraction on partial Hausdorff metric spaces, J. Inequalities Appl. 2013 (2013), 2013:410, 1 14.
- [11] Lj. Ciric, B. Samet, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218 (2011), 2398-2406.
- [12] P.Z. Daffer, H. Kaneko, Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl. 192 (1995), no. 2, 655-666.
- [13] B. Damjanovic, B. Samet, C. Vetro, Common fixed point theorems for multi-valued maps, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), 818-824.
- [14] G. Jungck, B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Applied Math. 29 (1998), 227-238.
- [15] E. Karapinar, Generalizations of Caristi Kirk's theorem on partial metric spaces, Fixed Point Theory Appl. 2011 (2011), no. 4, 7 pp.
- [16] E. Karapinar, A note on common fixed point theorems in partial metric spaces, Miskolc Math. Notes. 12 (2011), no. 2, 185-191.
- [17] E. Karapinar, I.M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24 (2011), no. 11, 1900-1904.
- [18] E. Karapinar, I.M. Erhan, Cyclic contractions and fixed point theorems, Filomat. 26 (2012), no. 4, 777-782.
- [19] E. Karapinar, N. Shobkolaei, S. Sedghi, S.M. Vaezpour, A common fixed point theorem for cyclic operators on partial metric spaces, Filomat. 26 (2012), no.2, 407-414.

- [20] E. Karapinar, U. Yuksel, Some common fixed point theorems in partial metric spaces, J. Appl. Math. Vol. 2011 (2011), Article ID 263621, 17 pp
- [21] E. Karapinar, V. Rakocevic, On cyclic generalized weakly C-contractions on partial metric spaces, J. Appl. Math. 2013 (2013), Article ID 831491, 7 pp.
- [22] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. 69 (2008), 2942-2949.
- [23] S.G. Matthews, *Partial metric topology*, Proc. 8th Summer conference on General Topology and Applications, Ann. New York Ac. Sci. 728 (1994), 183-197.
- [24] S.B. Nadler, Mutivalued contraction mappings, Pacific. J. Math. 30 (1969), 475-488.
- [25] D. Paesano, P. Vetro, Suzki's type Characterization of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl. 159 (2012), no. 3, 911-920.
- [26] O. Popescu, Two generalizations of some fixed point theorems, Comput. Math. Appl. 69 (2011), no. 10, 3912-3919.
- [27] K.P.R. Rao, G.N.V. Kishore, K.A.S.N.V. Prasad, A unique common fixed point theorem for two maps under(Ψ-Φ) contractive condition in partial metric spaces, Mathematical Sciences. (2012), 6:9, doi:10.1186/2251-7456-6-9.
- [28] K.P.R. Rao, G.N.V. Kishore, A unique common fixed point theorem for four maps under $(\Psi \Phi)$ contractive condition in partial metric spaces, Bulletin Math. Anal. Appl. 3 (2011), no. 3, 56-63.
- [29] A. Roldan, J. Martinez-Moreno, C. Roldan, E. Karapinar, Multidimensional fixed point theorems in partially ordered complete partial metric spaces under (Ψ Φ)-contractivity conditions, Abstract and Applied Analysis. 2013 (2013), Article ID 634371, 12 pp.
- [30] B.D. Rouhani, S. Moradi, Common fixed point of multivalued generalized φ-weak contractive mappings, Fixed Point Theory Appl. 2010 (2010), Article ID 708984, 13 pp.
- [31] S.L. Singh, S.N. Mishra, Coincidence theorems for certain classes of hybrid contractions, Fixed point Theory Appl. 2010 (2010), Article ID 898109, 14 pp.
- [32] T. Suzuki, M. Kikkawa, Some remarks on a recent generalization of the Banach contraction principle, Fixed Point Theory Appl., Yokohama Publ., Yokohama, Japan, 2008, 151-161.
- [33] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. American Math. Soc. 136 (2008), no. 5, 1861-1869.
- [34] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. 71 (2009), 5313-5317.

K.P.R. Rao
Department of Mathematics
Acharya Nagarjuna University
Nagarjuna Nagar-522 510, A.P., India
E-mail: kprrao2004@yahoo.com.

K.R.K. Rao
Department of Mathematics
GITAM University
Hyderabad-502 329, A.P., India
E-mail: krk08@gmail.com.

Received: 3.10.2013.