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Abstract. In this paper we consider iterated norms of Nikol’skii-Besov type in the
spaces By (- -+ (By (Ly(€2))) - - - ) with generalized smoothness ¢ and study their proper-
ties.

1 Introduction

In the works of V.I. Burenkov [3], [4], the iterated norms of Nikol’skii-Besov type and
the spaces By (...BY (L,(Q))...), where | = (Iy,...;1,), I; > 0, 1 < 6 < oo and Q is
an open set in R"”, were introduced. Under certain assumptions, it was proved that
this space coincides with B]l;’; k(). Using this theorem and the lemma on fractional
differentiation of inequalities it was proved that if for some [ > 0 and for each § > 0
there exists ¢s such that for all classical solutions of a linear equation P(D)u = 0 in
with constant coefficients the inequality

lllst (o) < esllullzy

holds for every open parallelepiped G with faces parallel to the coordinate planes
satisfying G C Q, then every classical solution of the equation P(D)u = 0 is infinitely
differentiable in Q. (Here G5 = {z € G : dist(z,0G) > 0}.) To prove this, after (k—1)—
fold fractional differentiation of the given inequality it was established that for all ;> 0

B Bywaum = W sy (BY- - (Bhryicn-
—— —_——

k k—1

Then, using the theorem on iterated norms, it was deduced that

we (VB ByLGoN)-) =) BY oG € C¥(Co)

k
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In this paper we consider iterated norms of Nikol’skii-Besov type in the spaces
Bf (- (By(Ly(£2))) - -+ ) when the numerical index of smoothness [ is replaced by a
function ¢ belonging to a certain class of functions ®(o,#) and such that for any
integer k > 2,

B (- (B Loamyy = Wlsg (B2 (B (Lamn
——— ~—_————

k k—1

and study their properties.

2 Definition of Nikol’skii-Besov type spaces with generalized
smoothness

Let © C R"™ be open and V§ > 0 Z(Qs) be a semi-normed space of functions defined

in Q5. Further let 1 < 6 < o0, 0 = (01,...,0,) where 0; € N and let a function
© = (p1, -+ ,pn) belong to the class of functions ®(o,f) which means that for each
j=1..n

1. ¢;(h) > 0 for all h > 0,
2. p; increases monotonously,
3. pj(h) =0 as h— 0",

4. @j possesses Sy, property, i.e., Im; € (0, ;) such that o;(¢)t™™ is almost decreas-
ing, that is 3¢ > 1 such that ¢;(t)t™™ < cp;(s)s™™ forall 0<s <t < oo,

5 (h)he ™7

< Q0.

5. ‘
Lg(0,1)

Definition 4. We say that a function f € By (Z(Q)) = Bz””;H(Z(Q)) if fe L. ()
and

HfHB;’(Z(Q)) = HfHZ(Q) + Z ”f”@jﬂjﬂ(zm)) < 00, (2.1)
j=1

where

11l (2 = 5 W AT £ || 2,0

2.2
- (2.2)
AZ”]f is the difference of f of order o; with respect to x; with step h, and Lj(0, H) with
1 <60 < oo denotes the space of all functions g of one variable, measurable on (0, H)),

for which

H dh 1/0
oo = ([ 0P <00 (@0H) = (0.
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This definition is obtained from the well-known definition of the anisotropic

Nikol’skii-Besov space B} ,(Q) ( [6], [2], [5]) where the norm || - || Ly(Q,,,) Teplaced by
| - || 2@ 1) and numerical index of smoothness [ by a function ¢ € ®(0,6). Thus

B (L,(Q)) = BYy(9).

Following the procedures in [4] and substituting in (2.1) and (2.2) ¢ = gpg =

(@21,"‘ ,(an), g = 09 = (0'21,"' ,O'Qn), H = HQ and Z(Qg) = B;ile( )
B;ile(Qg) with the parameters o3 = (011, -+ ,01,) and H;, we obtain the norm of the
form

1 W2 (6 (1,0))

Continuing this process, we obtain the following norms which we naturally call iterated
norms for all integers k > 2,

HfHBZOk( . (Bﬂol(L Q) HfHB% (B‘pk 1( (B;pl(Lp(Q)))...)) (2'3)
—_—— b

k

o

—1

with the corresponding spaces B;;”“(---(Bgl (LP(Q))) ), which we call iterated
Nikol’skii-Besov spaces with generalized smoothness.

In particular, taking ¢ = .-+ = ¢, = @ for all integers k > 2, we obtain the
iterated norm

Hf”B;f( . (Bg(Lp(Q)))) = ||f”39¢ (Bg( .. (BC;(Lp(Q))))) (24)
———— N————

k k—1

and the corresponding spaces Bf,f)( e (Bf (LP(Q))) e )

3 Properties of iterated norms

Lemma 2. (On fractional differentiation of an inequality). Let pg > 0 and Q@ C R™
be an open set, and for each p € [0, j1o) let a set of functions T(€2,) and seminormed
function spaces X (€2,) and Y () be defined such that

T(0,) N X(9,) € T(©,) 1Y (2,) (31)
and

Ifllx@ < I fllve,y  VFeT( Q)N ( n) (3.2)
(if Q, =0 for some p, we assume that || f|lx@.) == | fllv. = 0).

Further let 1 <6 < oo, 0 = (01, ,04), 0; €N, and let
0<H<u0(max o). (3.3)
1<5<n

Then

1<j<n

Vi € |0, o — H max O'J)> (3.4)
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and Vf € T(Q,) NBy(Y(Q,)) such that Vj € {1,2,...,n}
AV F €T(Quion)  Yhe(0,H) (3.5)
the following inequality is satisfied

||f||B,f(X(QH)) < HfHB}f(Y(QH))- (3.6)

1<5<
for all j € {1,...,n} and all h € (0, H) we have that Azjjf € T(Qyui0,n). Moreover,
by the definition of the spaces By (Y (€,)) for almost all h € (0, H) we have that
AV €Y (Quso;n). Consequently, by (3.2), for almost all 2 € (0, H)

Proof. Let p € [O,Mo — H max aj} and f € T(Q,) N B (Y(Q,)). Then by (3.5),

AR X (@pio,m) < NARF Iy (@)

Multiplying both sides of this inequality by goj_l(h) and then applying the Lj;(0, H)
norm, we obtain that

”f”g:;ﬂjﬂ(x(gu)) = ngj_l(h)HAZZ‘]C”X(QM+%}L)HLé(O»H) <

< Ml (WAL FIv@ueaym g0 = 1525 v 0,))-
Combining these inequalities with (3.2), we obtain (3.6). O
Remark 10.1. We will use Lemma 2 in two cases:

1. T(8,) is the set of all measurable functions in Q. In this case condition (3.5)
is satisfied in an obvious way and the condition f € T(€,) can be omitted from
the statement of Lemma 2.

2. T(Q,) ={feC,): (Pf)(x) =0z € Q,}, where the operator P = P(D) :=
> aaD* is a linear differential operator of degree N with constant coefficients
lal<N
an € R, with a € N a multi-index, |o| = oy + ... + oy, and D* = D{*...Don .
In this case condition (3.5) is satisfied, because Agjjf € CN(Quyo,n) and

(P(AR (@) = (AR (Pf)) (@) =0 Yz € Quion,
since P is an operator with constant coefficients.

Corollary 2. Let conditions (3.2) and (3.3) be satisfied, let 1 <0 < oo, k€N, o, =
(Os1,--.,05n), 05; €N, j=1,...,n, s=1,...,k, and

k
Z H, max oy < lo- (3.7)

s=1

Then

k
i€ |00 = Y Hy max Usj> (3.8)
e
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and Vf € T(Q,)NBY (- (By'Y () - -+ ) which are such that Vj, € {1,...,n}
AT Uk ka c T( M+Z]fasjhs) Vh, € (O,Hs), (39)

hig1 hk WJk

the following inequality is satisfied

1 1lg2e s (x)) < I lsge s (v, (3.10)
Corollary 2 can be proved by induction. In particular, if ¢, = ... = ¢1 = ¢, then
<
||f||Bz)( .- (Bg(X(QM)))...) = HfHBe‘P( .. (B;D(Y(QM)))"')' (311)
k k

Remark 10.2. If iy = oo, then Lemma 2 and its corollaries become simpler: it is not
required to impose bounds on H (consequently on Hg), and inequalities (3.1), (3.2),
(3.6), (3.10) and (3.11) are satisfied for all pu > 0.

Remark 10.3. If, instead of (3.2), we consider the more general inequality

To
1£llxe, < D erllFllven (3.12)
r=1

where ¢, > 0 and Y,(§,) is a seminormed space (forr € {1,...,ro}), then the analogous
statements are valid. It is necessary to consider the semi-norm

70

If v =D ellf v

r=1

and to take into account that, by definition,

To
£l s v < ZCerHB;”(Y(QH))
r=1

In the following lemma we will introduce on the space By*(...(By" (Ly(£2)))...) an
equivalent norm which is more convenient for estimation.

We set

1 Flee e —r|f|erQ>+Z 3 Z Wl g oo,

r=1 i1, ir=1 ]
i <tg<--<ip

1111

(3.13)

Lemma 3. For all considered values of the parameters

HfH*B;"k(,_.(Bgl(LP(Q)))_“) ~ ||f||6;”“(...(66"’1(Lp(Q)))...), (3‘14)

where ~ denotes the equivalence of norms.
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Proof.
1 s e = I lsgrccyion +Z\% AT e e
Jj2=1
01,4
= | fllzuo +JIZ:1H90131 (UL Ny
+ > leas,(ha) (Aogs + D Mgy i) sy,
jo=1 j1=1
where
Nojo = A4 7 F L0y iy
and

01,51 AUQ \J2

Aj17j2 = ”goijll <h1>HAh1 ,J1 hg,ijHLp(Qaleh1+o'2’j2h2)

L; (O7H1)

Making use of the fact that for nonnegative functions

I n n
(n+1)s! Z sl s (0,212) < H Z 905‘
s=0 5=0

and taking into account that

n
< *
LE(O,HQ) - ; HSOSHLQ(O,HZ),

—1
||§02,j2(h’2)A0,j2||L§(07H2) - Hf”ﬁ;”?;? (Lp())’

and

~1
L (B A s = , :
"9027]2( 2)Aji s | L3(0,H2) ”ng:?zJ? (g‘”*“ (L,,(ﬂ)))’

0,31

we obtain that

£ty ~ Wl + 32 11 o S+ Il c2n 1,

Jji=1 Jo=1
+ Z Z ”f” ‘P212 (Pl Jl (Q)))
J1=1j2=1
which is (3.14) for k = 2. The case k > 2 follows by induction. 0J
We notice further that for all considered values of the parameters
-1 o o
g o = [l e OIAT AT o sz

= HHsoi(n)so;l(h)|1A22A;1fuL,,mgm)\

L3(0,Hy) L3(0,Ha) - Hf”ﬂ L(B52 (Lp(Q)) (315>
In the rest of this section, we shall mostly consider the one-dimensional case. Ev-

erywhere below, till Lemma 6 n := 1 and G := (a,b), where —oo < a <b < o0.
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Lemma 4. Let1 < p,0 < o00,01,00 €N, 1 € P(01,0), o3 € P(09,0) and0 < H < 0.
Then

I ggron: ovtozint g ) < eallf | goaoast vty (3.16)

and ¢; depends only on min{oy, o9}.

Proof. Taking into account (3.15), without loss of generality, let o7 < 0. We use the
inequality

h
1
188 sy < A@Y; [ 185 Iy, (317)
0

where A(c) > 0 depends only on o and is a monotonously increasing function
(see [4], |5] and the references therein).

From (3.17) it follows that

1/0
1ALl < Alo / I
N 1/0
o 10 dn
J 185 e 2| = AN iy zzon:
0
Furthermore,
AT FllLy G o) = IAT AT Py (G oo
< A(00) 187 A7 Sl Clommennd | 1. .1
< AN |67 OIS AT s Girssen |
from which we get
W llgprenoronny = ||or (e WIATHAT l1ai@rnponn
< Alon) e T 1A A Ty G Isit0m |
- A(“l)”f”agl’"NH(ﬁ;"?"’?;H(Lp(G)))'
We also note that ¢1py € ®(0y + 09,6). O

Corollary 3. For any natural k, 1 <p,0 < oo, 0 €N, p € &(0,0) and 0 < H < 0

||fHB<Pk ko; H(L (G)) < Cg 1||f‘|ﬁ%0¢7H( 5@‘7[{ (318)

(Lp(G))-w)]

~\~
k

where ¢y depends only on o.
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Proof. From (3.17) it follows that
gy < AW g0,

for all 4 > 0. By Lemma 2 with 7'(G,) being the set of all functions measurable on G/,
and pg = 00

1 Wl g g2 205 1 ) < ACOMEggoiot a5 575 (1, )
for all 4 > 0. Using (3.17), we get that

2
HfHﬁz’s"gmH(Lp(Gu)) < A(U) Hf”ﬁg””?H(ﬁg”mH(ﬁ;’”’”;H(LP(GM)))),
then (3.18) follows by induction. O

Corollary 4. Let Q C R! be an arbitrary open set. Then, under the conditions of
Lemma 4,

Hf||ﬂ‘;1‘f°2v"1+"2?H(Lp(Q))) < Cl“f||552,U2;H(ngayH(Lp(Q))). (3.19)
Proof. The proof follows by Lemma 4 as in [3], [4].

Lemma 5. Let 1 <p, 0 < oo, c €N, p € ®(0,0), k€N and 0 < H < co. Then

k

0300 ;00 < r—k . . .
||f||@§’ BT @) = 03;(’0(1{) Hf”ﬁ?f’“’H(... 20 @) (3.20)
k RS

where c3 is independent of f and H.
Proof. The proof follows by Corollary 3.10 and relation (33) of [4].

Lemma 6. Let 1 <p<oo, 1 <0<o00, 0 €N, ¢ € D(g,0). Then
[ £l sgoio 2o (£, mmy)) ~ ’|f||39¢2,20m(Lp(Rn)). (3.21)

Proof. Let us consider the expansion
=Y fxu (3.22)
k=0

where vg = F*(xp,) and for k € N v, = F 1 (xp\p,_,) (F denotes Fourier transform)
and

Po={¢eR":|g]| < V(251

Then, similarly to the appropriate argument argument in [3],

o0

1/0
0
1f 1[50 @y ~ [Z <2k||f * Uk||Lp(Rn)> ] : (3.23)

k=0
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We shall first show that

00 1/6
0
k
L Gl [Z (21 * vl e ] |

k=0
Put
1 g (0 ey = I g ey + Z I AT, Fllzgo= e 0.0 -
S1 ~~ -
So
0 0 1/6
Then, $ ~ [z (2k||f*vk|u,,<w>) } and
k=0
Sy = |Ahgf”8‘”°°(R") L(0,00)
- , 1/6
~ 2k Aaj. f X U n) ’
;( 1725 % 08 1, oy ] o
- 1/6
n B > . o| dh
=y /Sﬁje(h) [Z <2k||Ahfj(f*Uk)||Lp(Rn)> ] "
=1 % k=0
. . 0 1/6
~ Z[QkZH@ M)A (f % ve)ll e . ]
k=0 9(0.0)
Then
- , 1/6
Sy + Sy ~ [Z <2k||f*vk||Lp(Rn)> +
k=0
oy 1/0
A f * U n)
3 [ h )z, ® L;(Om)]

n

A2 1l + (3
k=0

j=1

@7 (AR (f * vl Ly

n

S22 1wl + (D0 ||or IATF * vz,
k=0

L J=1

. 17
~ [Z <2k||f*vk||3;f;g?°°(w)> ] :

k=0

(3.24)

(3.25)
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Since

Ok om =F (Flor *om)) = F (Fo.Fom) = F H(XP1\PX Py 1\ Pon)

it follows that
o *pm =0 for k#m, and ¢ * o = Py

Hence
o N\
|| f kaB;i,g;oo ~ (Z <2k||f * Uy ¥ Um”Lp(R“)) ) = 2k||f * Uk”Lp(R”)-
m=0
And finally,
- .1 - ,1°
Z <2k\|f * vkl\gﬁ%@(m)) ] ~ [Z (zk 2RI % U]g”Lp(R”)) ]
| k=0 k=0

o L
- 1= (2 Hf*vklle(Rn))] 1152

which proves equivalence (3.21). The last equivalence follows by an argument similar
to the one in [3], [4]. O

Corollary 5. Let 1 <p < o0, 1 <6< o0, p € D(0,0), k€ N. Then

HfH\Bz’a;oo(‘“Bg’a;oi(Lp(Rn))m) ~ HfHng,ko;oo(Lp(Rn))' (326>

-~

k

4 Main results

Theorem 12 (On iterated norms). Let 1 < p < o0, 1 < 0 < o0, 0 =
(0-17”' ,O'n>, gj € N7 Y = (9017"' 7@”) S (I)(U76)7 ke N7 (pk = ((plf7 79051)7 H =
(Hi,...,H,), 0 < Hj < o0, and let G C R"™ be an open parallelepiped with faces parallel
to the coordinate planes. Then

1. holds true the inclusion

By (B (Ly(G)) ) € BLY (G, )

(. 4

~
k

2. under the additional assumption that there exists bounded extension operator

k o k 000 n
S BEPTH(G) — BE P (R™) (4.2)
holds true the equality of spaces
By (- (BT (Ly(G)) - -) = By, 7 (@) (4.3)
k

with the equivalence of the norms.



30 T.G. Ayele, A.N. Abebe

Proof. 1. By Corollary 3 for any open parallelepiped with faces parallel to the
coordinate planes

o < o ol .
W0 it oy = & Wgpaesttgpimt .

~~
k

Summing up these inequalities and adding || f||z, () to both sides we obtain

||f||B§,’Z«kU;H(G) = ||f||Lp(G) + Zl ||f”ﬁgk’k0;H(Lp(G))
]:

S + Ck_l o H i,05H
[naivce ; 2 ||f||?,;"3, J (,,ﬂ;’i;. ! (Lp(@)--)

-~

k

S max 1,Ck_1 f . o; g5 ’
{1, ||£3eao, H (BT (L))

J/

-~

k

which implies inclusion (4.1).
2. Due to condition (4.2), the proof of the inverse inclusion to (4.1)

By " HG) € BYT( - (BT (Ly(G))) )

k

reduces to the proof for the case G = R™ which is considered in Lemma 6.
This completes the proof of the theorem. 0

5 Conclusions

1. If we set p;(h) = h% in this result, then we get the results obtained in the works of
V.I. Burenkov |3], [4].

2. If ¢ satisfies additional condition: ¢ > 0 such that ‘pjh—(sh) T on (0,H] (for
example ¢;(h) = h* In"(22) «; > 0, 7; € R), in which case the space Bf(L,(G))
possesses a power reserve of smoothness, then the theorem yields increment of smooth-
ness in the iterated norms, which after finite number of steps enables attaining any
order of smoothness in the power scale.

3. If the function ¢ has only logarithmic character (for example ¢;(h) = In” (21),
7; € R), then the iterated norms enable to increase smoothness only in the logarithmic

scale.
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