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Abstract. In this paper we consider iterated norms of Nikol’skii–Besov type in the
spaces Bϕθ (· · · (Bϕθ (Lp(Ω))) · · · ) with generalized smoothness ϕ and study their proper-
ties.

1 Introduction

In the works of V.I. Burenkov [3], [4], the iterated norms of Nikol’skii–Besov type and
the spaces Blkθ (...Bl1θ (Lp(Ω))...), where l = (l1, ..., ln), lj > 0, 1 ≤ θ ≤ ∞ and Ω is
an open set in Rn, were introduced. Under certain assumptions, it was proved that
this space coincides with Bl1+...+lk

p,θ (Ω). Using this theorem and the lemma on fractional
differentiation of inequalities it was proved that if for some l > 0 and for each δ > 0
there exists cδ such that for all classical solutions of a linear equation P(D)u = 0 in Ω
with constant coefficients the inequality

‖u‖Bl
p, θ(Gδ) ≤ cδ‖u‖Lp(G)

holds for every open parallelepiped G with faces parallel to the coordinate planes
satisfying G ⊂ Ω, then every classical solution of the equation P(D)u = 0 is infinitely
differentiable in Ω. (Here Gδ = {x ∈ G : dist(x, ∂G) > δ}.) To prove this, after (k−1)–
fold fractional differentiation of the given inequality it was established that for all µ ≥ 0

‖f‖Blθ(· · · (Blθ︸ ︷︷ ︸
k

(Lp(Gµ+δ)))··· )
= ‖f‖

Bl
θ (Blθ(· · · (Blθ︸ ︷︷ ︸

k−1

(Lp(Gµ)))··· ))
.

Then, using the theorem on iterated norms, it was deduced that

u ∈
∞⋂
k=1

Blθ(· · · (Blθ︸ ︷︷ ︸
k

(Lp(Gδ))) · · · ) =
∞⋂
k=1

Bkl
p, θ(Gδ) ⊂ C∞(Gδ).
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In this paper we consider iterated norms of Nikol’skii–Besov type in the spaces
Bϕθ (· · · (Bϕθ (Lp(Ω))) · · · ) when the numerical index of smoothness l is replaced by a
function ϕ belonging to a certain class of functions Φ(σ, θ) and such that for any
integer k ≥ 2,

‖f‖Bϕθ (· · · (Bϕθ (︸ ︷︷ ︸
k

Lp(Ω)))··· ) = ‖f‖Bϕ
θ (Bϕθ (· · · (Bϕθ (︸ ︷︷ ︸

k−1

Lp(Ω)))··· )),

and study their properties.

2 Definition of Nikol’skii-Besov type spaces with generalized
smoothness

Let Ω ⊂ Rn be open and ∀δ > 0 Z(Ωδ) be a semi-normed space of functions defined
in Ωδ. Further let 1 ≤ θ < ∞, σ = (σ1, . . . , σn) where σj ∈ N and let a function
ϕ = (ϕ1, · · · , ϕn) belong to the class of functions Φ(σ, θ) which means that for each
j = 1, ..., n

1. ϕj(h) > 0 for all h > 0,

2. ϕj increases monotonously,

3. ϕj(h) → 0 as h→ 0+,

4. ϕj possesses Sσj
property, i.e., ∃mj ∈ (0, σj) such that ϕj(t)t−mj is almost decreas-

ing, that is ∃c ≥ 1 such that ϕj(t)t−mj ≤ cϕj(s)s
−mj for all 0 < s ≤ t <∞,

5.
∥∥∥ϕ−1

j (h)hσ−
1
θ

∥∥∥
Lθ(0,1)

<∞.

Definition 4. We say that a function f ∈ Bϕ
θ

(
Z(Ω)

)
≡ Bϕ,σ;H

θ

(
Z(Ω)

)
if f ∈ L1

loc(Ω)
and ∥∥f∥∥Bϕ

θ (Z(Ω))
:=
∥∥f∥∥

Z(Ω)
+

n∑
j=1

∥∥f∥∥
β

ϕj
θ,j(Z(Ω))

<∞, (2.1)

where ∥∥f∥∥
β

ϕj
θ,j

(Z(Ω)) :=
∥∥ϕ−1

j (h)
∥∥∆

σj

h,jf
∥∥∥Z(Ωσjh)

∥∥∥
L∗θ(0,H)

, (2.2)

∆
σj

h,jf is the difference of f of order σj with respect to xj with step h, and L∗θ(0, H) with
1 ≤ θ <∞ denotes the space of all functions g of one variable, measurable on (0, H)),
for which

‖g‖L∗θ(0,H) :=

(∫ H

0

|g(h)|θ dh
h

)1/θ

<∞ (L∗∞(0, H) = L∞(0, H)) .
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This definition is obtained from the well-known definition of the anisotropic
Nikol’skii-Besov space Bl

p,θ(Ω) ( [6], [2], [5]) where the norm ‖ · ‖Lp(Ωσjh) replaced by∥∥ · ∥∥
Z(Ωσjh)

and numerical index of smoothness l by a function ϕ ∈ Φ(σ, θ). Thus

Bϕθ
(
Lp(Ω)

)
≡ Bϕ

p,θ(Ω).

Following the procedures in [4] and substituting in (2.1) and (2.2) ϕ := ϕ2 =
(ϕ21, · · · , ϕ2n), σ := σ2 = (σ21, · · · , σ2n), H := H2 and Z(Ωδ) := Bϕ1

p, θ

(
Lp(Ωδ)

)
≡

Bϕ1

p, θ(Ωδ) with the parameters σ1 = (σ11, · · · , σ1n) and H1, we obtain the norm of the
form

‖f‖
Bϕ2

θ

(
Bϕ1

θ

(
Lp(Ω)

)).
Continuing this process, we obtain the following norms which we naturally call iterated
norms for all integers k ≥ 2,

‖f‖Bϕk

θ (· · · (Bϕ1

θ (︸ ︷︷ ︸
k

Lp(Ω)))··· ) = ‖f‖
Bϕk

θ (Bϕk−1

θ (· · · (Bϕ1

θ (︸ ︷︷ ︸
k−1

Lp(Ω)))··· ))
(2.3)

with the corresponding spaces Bϕk

θ

(
· · ·
(
Bϕ1

θ

(
Lp(Ω)

))
· · ·
)
, which we call iterated

Nikol’skii–Besov spaces with generalized smoothness.
In particular, taking ϕ1 = · · · = ϕk = ϕ for all integers k ≥ 2, we obtain the

iterated norm

‖f‖Bϕθ (· · · (Bϕθ (︸ ︷︷ ︸
k

Lp(Ω)))··· ) = ‖f‖Bϕ
θ (Bϕθ (· · · (Bϕθ (︸ ︷︷ ︸

k−1

Lp(Ω)))··· )) (2.4)

and the corresponding spaces Bϕθ
(
· · ·
(
Bϕθ
(
Lp(Ω)

))
· · ·
)
.

3 Properties of iterated norms

Lemma 2. (On fractional differentiation of an inequality). Let µ0 > 0 and Ω ⊂ Rn

be an open set, and for each µ ∈ [0, µ0) let a set of functions T (Ωµ) and seminormed
function spaces X(Ωµ) and Y (Ωµ) be defined such that

T (Ωµ) ∩X(Ωµ) ⊂ T (Ωµ) ∩ Y (Ωµ) (3.1)

and
‖f‖X(Ωµ) ≤ ‖f‖Y (Ωµ) ∀f ∈ T (Ωµ) ∩ Y (Ωµ) (3.2)

( if Ωµ = ∅ for some µ, we assume that ‖f‖X(Ωµ) := ‖f‖Y (Ωµ) := 0).

Further let 1 ≤ θ ≤ ∞, σ = (σ1, · · · , σn), σj ∈ N, and let

0 < H < µ0( max
1≤j≤n

σj)
−1. (3.3)

Then
∀µ ∈

[
0, µ0 −H max

1≤j≤n
σj)

)
(3.4)
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and ∀f ∈ T (Ωµ) ∩ Bϕθ (Y (Ωµ)) such that ∀j ∈ {1, 2, ..., n}

∆
σj

h,jf ∈ T (Ωµ+σjh) ∀h ∈ (0, H) (3.5)

the following inequality is satisfied

‖f‖Bϕ
p (X(Ωµ)) ≤ ‖f‖Bϕ

p (Y (Ωµ)). (3.6)

Proof. Let µ ∈
[
0, µ0 −H max

1≤j≤n
σj

]
and f ∈ T (Ωµ) ∩ Bϕθ (Y (Ωµ)). Then by (3.5),

for all j ∈ {1, ..., n} and all h ∈ (0, H) we have that ∆
σj

h,jf ∈ T (Ωµ+σjh). Moreover,
by the definition of the spaces Bϕθ (Y (Ωµ)) for almost all h ∈ (0, H) we have that
∆
σj

h,jf ∈ Y (Ωµ+σjh). Consequently, by (3.2), for almost all h ∈ (0, H)

‖∆σj

h,jf‖X(Ωµ+σjh) ≤ ‖∆σj

h,jf‖Y (Ωµ+σjh).

Multiplying both sides of this inequality by ϕ−1
j (h) and then applying the L∗θ(0, H)

norm, we obtain that

‖f‖
β

ϕj
θ,j(X(Ωµ))

= ‖ϕ−1
j (h)‖∆σj

h,jf‖X(Ωµ+σjh)‖L∗θ(0,H) ≤

≤ ‖ϕ−1
j (h)‖∆σj

h,jf‖Y (Ωµ+σjh)‖L∗θ(0,H) = ‖f‖
β

ϕj
θ (Y (Ωµ))

.

Combining these inequalities with (3.2), we obtain (3.6). �

Remark 10.1. We will use Lemma 2 in two cases:

1. T (Ωµ) is the set of all measurable functions in Ωµ. In this case condition (3.5)
is satisfied in an obvious way and the condition f ∈ T (Ωµ) can be omitted from
the statement of Lemma 2.

2. T (Ωµ) = {f ∈ CN(Ωµ) : (Pf)(x) = 0 ∀x ∈ Ωµ}, where the operator P = P(D) :=∑
|α|≤N

aαD
α is a linear differential operator of degree N with constant coefficients

aα ∈ R, with α ∈ Nn
0 a multi-index, |α| = α1 + ... + αn, and Dα = Dα1

1 ...Dαn
n .

In this case condition (3.5) is satisfied, because ∆
σj

h,jf ∈ CN(Ωµ+σjh) and

(P(∆
σj

h,jf))(x) = (∆
σj

h,j(Pf))(x) = 0 ∀x ∈ Ωµ+σjh,

since P is an operator with constant coefficients.

Corollary 2. Let conditions (3.2) and (3.3) be satisfied, let 1 ≤ θ ≤ ∞, k ∈ N, σs =
(σs1, . . . , σsn), σsj ∈ N, j = 1, . . . , n, s = 1, . . . , k, and

k∑
s=1

Hs max
1≤j≤n

σsj < µ0. (3.7)

Then

∀µ ∈

[
0, µ0 −

k∑
1

Hs max
1≤j≤n

σsj

)
(3.8)
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and ∀f ∈ T (Ωµ) ∩ Bϕk

θ

(
· · ·
(
Bϕ1

θ Y (Ωµ

)
· · ·
)

which are such that ∀js ∈ {1, ..., n}

∆
σ1,j1
h1,j1

...∆
σk,jk
hk,jk

f ∈ T (Ωµ+
∑k

1 σsjhs
) ∀hs ∈ (0, Hs), (3.9)

the following inequality is satisfied

‖f‖Bϕk
θ (···(Bϕ1

θ (X(Ωµ)))··· ) ≤ ‖f‖Bϕk
θ (···(Bϕ1

θ (Y (Ωµ)))··· ). (3.10)

Corollary 2 can be proved by induction. In particular, if ϕk = ... = ϕ1 = ϕ, then

‖f‖Bϕθ (· · · (Bϕθ (︸ ︷︷ ︸
k

X(Ωµ)))··· ) ≤ ‖f‖Bϕθ (· · · (Bϕθ (︸ ︷︷ ︸
k

Y (Ωµ)))··· ). (3.11)

Remark 10.2. If µ0 = ∞, then Lemma 2 and its corollaries become simpler: it is not
required to impose bounds on H (consequently on Hs), and inequalities (3.1), (3.2),
(3.6), (3.10) and (3.11) are satisfied for all µ ≥ 0.

Remark 10.3. If, instead of (3.2), we consider the more general inequality

‖f‖X(Ωµ) ≤
r0∑
r=1

cr‖f‖Yr(Ωµ) (3.12)

where cr ≥ 0 and Yr(Ωµ) is a seminormed space (for r ∈ {1, ..., r0}), then the analogous
statements are valid. It is necessary to consider the semi-norm

‖f‖Y (Ωµ) :=

r0∑
r=1

cr‖f‖Yr(Ωµ)

and to take into account that, by definition,

‖f‖Bϕ
θ (Y (Ωµ)) ≤

r0∑
r=1

cr‖f‖Bϕ
θ (Y (Ωµ)).

In the following lemma we will introduce on the space Bϕk

θ (...(Bϕ1

θ (Lp(Ω)))...) an
equivalent norm which is more convenient for estimation.

We set

‖f‖∗Bϕk
θ (...(Bϕ1

θ (Lp(Ω)))...)
:= ‖f‖Lp(Ω) +

k∑
r=1

k∑
i1,...,ir=1

i1<i2<···<ir

n∑
j1,...,jr=1

‖f‖
β

ϕir,jr
θ,jr

(...(β
ϕi1,j1
θ,j1

(Lp(Ω))...).

(3.13)

Lemma 3. For all considered values of the parameters

‖f‖∗Bϕk
θ (...(Bϕ1

θ (Lp(Ω)))...)
∼ ‖f‖Bϕk

θ (...(Bϕ1
θ (Lp(Ω)))...), (3.14)

where ∼ denotes the equivalence of norms.
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Proof.

‖f‖Bϕ2
θ (Bϕ1

θ (Lp(Ω))) = ‖f‖Bϕ1
θ (Lp(Ω)) +

n∑
j2=1

∥∥∥ϕ−1
2,j2

(h2)‖∆
σ2,j2
h2,j2

f‖Bϕ1
θ (Lp(Ω))

∥∥∥
L∗θ(0,H2)

= ‖f‖Lp(Ω)) +
n∑

j1=1

∥∥∥ϕ−1
1,j1

(h1)‖∆
σ1,j1
h1,j1

f‖Lp(Ωσ1,j1h1
)

∥∥∥
L∗θ(0,H2)

+
n∑

j2=1

‖ϕ−1
2,j2

(h2)
(
Λ0,j2 +

n∑
j1=1

Λj1,j2

)
‖L∗θ(0,H),

where
Λ0,j2 := ‖∆σ2,j2

h2,j2
f‖Lp(Ωσ2,j2h2

)

and
Λj1, j2 :=

∥∥∥ϕ−1
1,j1

(h1)‖∆
σ1,j1
h1,j1

∆
σ2,j2
h2,j2

f‖Lp(Ωσ1,j1
h1+σ2,j2

h2
)

∥∥∥
L∗θ(0,H1)

.

Making use of the fact that for nonnegative functions ϕs

(n+ 1)
1
θ
−1

n∑
s=0

‖ϕs‖L∗θ(0,H2) ≤
∥∥∥ n∑
s=0

ϕs

∥∥∥
L∗θ(0,H2)

≤
n∑
s=0

‖ϕs‖L∗θ(0,H2),

and taking into account that

‖ϕ−1
2,j2

(h2)Λ0,j2‖L∗θ(0,H2) = ‖f‖
β

ϕ2,j2
θ,j2

(Lp(Ω))
,

and
‖ϕ−1

2,j2
(h2)Λj1,j2‖L∗θ(0,H2) = ‖f‖

β
ϕ2,j2
θ,j2

(
β

ϕ1,j1
θ,j1

(Lp(Ω))
),

we obtain that

‖f‖Bϕ2
θ (Bϕ1

θ (Lp(Ω))) ∼ ‖f‖Lp(Ω) +
n∑

j1=1

‖f‖
β

ϕ1,j1
θ,j1

(Lp(Ω))
+

n∑
j2=1

‖f‖
β

ϕ2,j2
θ,j2

(Lp(Ω))

+
n∑

j1=1

n∑
j2=1

‖f‖
β

ϕ2,j2
θ,j2

(
β

ϕ1,j1
θ,j1

(Lp(Ω))
),

which is (3.14) for k = 2. The case k > 2 follows by induction. �
We notice further that for all considered values of the parameters

‖f‖βϕ2
θ (β

ϕ1
θ (Lp(Ω)) =

∥∥∥∥∥ϕ−1
2 (h)ϕ−1

1 (η)‖∆σ1
η ∆σ2

h f‖Lp(Ωσ1η+σ2 )

∥∥
L∗θ(0,H1)

∥∥∥
L∗θ(0,H2)

=
∥∥∥∥∥ϕ−1

1 (η)ϕ−1
2 (h)‖∆σ2

h ∆σ1
η f‖Lp(Ωσ1η+σ2 )

∥∥
L∗θ(0,H1)

∥∥∥
L∗θ(0,H2)

= ‖f‖βϕ1
θ (β

ϕ2
θ (Lp(Ω)). (3.15)

In the rest of this section, we shall mostly consider the one-dimensional case. Ev-
erywhere below, till Lemma 6 n := 1 and G := (a, b), where −∞ ≤ a ≤ b ≤ ∞.
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Lemma 4. Let 1 ≤ p, θ ≤ ∞, σ1, σ2 ∈ N, ϕ1 ∈ Φ(σ1, θ), ϕ2 ∈ Φ(σ2, θ) and 0 < H ≤ ∞.
Then

‖f‖
β

ϕ1ϕ2, σ1+σ2;H
θ (Lp(G)))

≤ c1‖f‖βϕ2,σ2;H
θ (Bϕ1,σ1;H

θ (Lp(G)))
(3.16)

and c1 depends only on min{σ1, σ2}.

Proof. Taking into account (3.15), without loss of generality, let σ1 ≤ σ2. We use the
inequality

‖∆σ
hf‖Lp(Gσh) ≤ A(σ)

1

h

h∫
0

‖∆σ
ηf‖Lp(Gση)dη, (3.17)

where A(σ) > 0 depends only on σ and is a monotonously increasing function
(see [4], [5] and the references therein).

From (3.17) it follows that

‖∆σ
hf‖Lp(Gσh) ≤ A(σ)

1

h

h∫
0

‖∆σ
ηf‖θLp(Gση)dη

1/θ

≤ A(σ)

 h∫
0

‖∆σ
ηf‖θLp(Gση)

dη

η

1/θ

= A(σ)‖‖∆σ
hf‖Lp(Gσh)‖L∗θ(0,h).

Furthermore,

‖∆σ1+σ2
h f‖Lp(G(σ1+σ2)h) = ‖∆σ1

h (∆σ2
h f)‖Lp((G(σ2h)σ1h))

≤ A(σ1)
∥∥∥‖∆σ1

η ∆σ2
h f‖Lp((G(σ2h)σ1η))

∥∥∥
L∗θ(0,H)

≤ A(σ1)ϕ1(h)
∥∥∥ϕ−1

1 (η)‖∆σ1
η ∆σ2

h f‖Lp((G(σ1η+σ2h)))

∥∥∥
L∗θ(0,H)

,

from which we get

‖f‖
β

ϕ1ϕ2,σ1+σ2; H
θ (G)

=
∥∥∥ϕ−1

1 (h)ϕ−1
2 (h)‖∆σ1

η (∆σ2
h f)‖Lp(Gσ1η+σ2h)

∥∥∥
≤ A(σ1)

∥∥∥ϕ−1
2 (h)‖ϕ−1

1 (η)‖∆σ1
η ∆σ2

h f‖Lp(Gσ1η+σ2h)‖L∗θ(0,H)

∥∥∥
L∗θ(0,H)

= A(σ1)‖f‖βϕ1, σ1; H
θ (β

ϕ2, σ2; H
θ (Lp(G)))

.

We also note that ϕ1ϕ2 ∈ Φ(σ1 + σ2, θ). �

Corollary 3. For any natural k, 1 ≤ p, θ ≤ ∞, σ ∈ N, ϕ ∈ Φ(σ, θ) and 0 < H ≤ ∞

‖f‖
βϕk,kσ;H

θ (Lp(G))
≤ ck−1

2 ‖f‖
βϕ,σ;H
θ (...βϕ,σ;H

θ︸ ︷︷ ︸
k

(Lp(G))...)
, (3.18)

where c2 depends only on σ.
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Proof. From (3.17) it follows that

‖f‖
βϕ2, 2σ; H

θ (Lp(Gµ))
≤ A(σ)‖f‖βϕ, σ; H

θ (βϕ, σ; H
θ (Lp(Gµ))

for all µ ≥ 0. By Lemma 2 with T (Gµ) being the set of all functions measurable on Gµ

and µ0 = ∞

‖f‖
βϕ, σ; H

θ (βϕ2, 2σ; H
θ (Lp(Gµ)))

≤ A(σ)‖f‖βϕ, σ; H
θ (βϕ, σ; H

θ (βϕ, σ; H
θ (Lp(Gµ))))

for all µ ≥ 0. Using (3.17), we get that

‖f‖
βϕ3, 3σ; H

θ (Lp(Gµ))
≤ A(σ)2‖f‖βϕ, σ; H

θ (βϕ, σ; H
θ (βϕ, σ; H

θ (Lp(Gµ)))),

then (3.18) follows by induction. �

Corollary 4. Let Ω ⊂ R1 be an arbitrary open set. Then, under the conditions of
Lemma 4,

‖f‖
β

ϕ1ϕ2,σ1+σ2;H
θ (Lp(Ω)))

≤ c1‖f‖βϕ2,σ2;H
θ (Bϕ1,σ1;H

θ (Lp(Ω))).
(3.19)

Proof. The proof follows by Lemma 4 as in [3], [4].

Lemma 5. Let 1 ≤ p, θ ≤ ∞, σ ∈ N, ϕ ∈ Φ(σ, θ), k ∈ N and 0 < H <∞. Then

‖f‖βϕ,σ;∞
θ (...βϕ,σ;∞

θ︸ ︷︷ ︸
k

(Lp(G))...)
≤ c3

k∑
r=0

ϕ(H)r−k‖f‖
βϕ,σ;H
θ (...βϕ,σ;H

θ︸ ︷︷ ︸
r

(Lp(G))...)
, (3.20)

where c3 is independent of f and H.

Proof. The proof follows by Corollary 3.10 and relation (33) of [4].

Lemma 6. Let 1 < p <∞, 1 ≤ θ ≤ ∞, σ ∈ N, ϕ ∈ Φ(σ, θ). Then

‖f‖Bϕ,σ;∞
θ (Bϕ,σ;∞

θ (Lp(Rn))) ∼ ‖f‖Bϕ2,2σ;∞
θ (Lp(Rn))

. (3.21)

Proof. Let us consider the expansion

f =
∞∑
k=0

f ∗ vk (3.22)

where v0 = F−1(χP0) and for k ∈ N vk = F−1(χPk\Pk−1
) (F denotes Fourier transform)

and
Pk = {ξ ∈ Rn : |ξj| < ϕ

(−1)
j (2k)}.

Then, similarly to the appropriate argument argument in [3],

‖f‖Bϕ, σ;∞
p, θ (Rn) ∼

[
∞∑
k=0

(
2k‖f ∗ vk‖Lp(Rn)

)θ]1/θ

. (3.23)



28 T.G. Ayele, A.N. Abebe

We shall first show that

‖f‖Bϕ,σ;∞
p, θ (Bϕ,σ;∞

p, θ (Rn)) ∼

[
∞∑
k=0

(
2k‖f ∗ vk‖Bϕ, σ;∞

p, θ (Rn)

)θ]1/θ

. (3.24)

Put

‖f‖Bϕ,σ;∞
p, θ (Bϕ,σ;∞

p, θ (Rn)) := ‖f‖Bϕ,σ;∞
p, θ (Rn)︸ ︷︷ ︸
S1

+
n∑
j=1

‖ϕ−1
j (h)‖∆σj

h, jf‖Bϕ,σ;∞
p, θ (Rn)‖L∗θ(0,∞)︸ ︷︷ ︸

S2

. (3.25)

Then, S1 ∼
[
∞∑
k=0

(
2k‖f ∗ vk‖Lp(Rn)

)θ]1/θ

and

S2 =
n∑
j=1

∥∥∥ϕ−1
j (h)‖∆σj

h, jf‖Bϕ,σ;∞
p, θ (Rn)

∥∥∥
L∗θ(0,∞)

∼
n∑
j=1

∥∥∥ϕ−1
j (h)

[
∞∑
k=0

(
2k‖∆σj

h, j(f ∗ vk)‖Lp(Rn)

)θ]1/θ ∥∥∥
L∗θ(0,∞)

=
n∑
j=1


∞∫

0

ϕ−θj (h)

[
∞∑
k=0

(
2k‖∆σj

h, j(f ∗ vk)‖Lp(Rn)

)θ] dh
h


1/θ

∼


∞∑
k=0

[
2k

n∑
j=1

∥∥∥ϕ−1
j (h)‖∆σj

h, j(f ∗ vk)‖Lp(Rn)

∥∥∥
L∗θ(0,∞)

]θ
1/θ

.

Then

S1 + S2 ∼

[
∞∑
k=0

(
2k‖f ∗ vk‖Lp(Rn)

)θ]1/θ

+

+


∞∑
k=0

[
2k

n∑
j=1

∥∥∥ϕ−1
j (h)‖∆σj

h, j(f ∗ vk)‖Lp(Rn)

∥∥∥
L∗θ(0,∞)

]θ
1/θ

∼

{
∞∑
k=0

2kθ

[
‖f ∗ vk‖θLp(Rn) +

( n∑
j=1

∥∥∥ϕ−1
j (h)‖∆σj

h, j(f ∗ vk)‖Lp(Rn)

∥∥∥
L∗θ(0,∞)

)θ]}1/θ

∼


∞∑
k=0

2kθ

[
‖f ∗ vk‖Lp(Rn) +

( n∑
j=1

∥∥∥ϕ−1
j (h)‖∆σj

h, j(f ∗ vk)‖Lp(Rn)

∥∥∥
L∗θ(0,∞)

)]θ
1/θ

∼

[
∞∑
k=0

(
2k‖f ∗ vk‖Bϕ,σ;∞

p, θ (Rn)

)θ]1/θ

.
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Since

ϕk ∗ ϕm = F−1(F(ϕk ∗ ϕm)) = F−1(Fϕ.Fϕm) = F−1(χP+1\Pk
χPm+1\Pm)

it follows that
ϕk ∗ ϕm = 0 for k 6= m, and ϕk ∗ ϕk = ϕk.

Hence

‖f ∗ vk‖Bϕ,σ;∞
p, θ

∼

(
∞∑
m=0

(
2k‖f ∗ vk ∗ vm‖Lp(Rn)

)θ)1/θ

= 2k‖f ∗ vk‖Lp(Rn).

And finally,[
∞∑
k=0

(
2k‖f ∗ vk‖Bϕ,σ;∞

p, θ (Rn)

)θ]1/θ

∼

[
∞∑
k=0

(
2k · 2k‖f ∗ vk‖Lp(Rn)

)θ]1/θ

=

[
∞∑
k=0

(
22k‖f ∗ vk‖Lp(Rn)

)θ]1/θ

∼ ‖f‖Bϕ2,2σ;∞
p,θ (Rn)

which proves equivalence (3.21). The last equivalence follows by an argument similar
to the one in [3], [4]. �

Corollary 5. Let 1 < p <∞, 1 ≤ θ ≤ ∞, ϕ ∈ Φ(σ, θ), k ∈ N. Then

‖f‖Bϕ,σ;∞
θ (...Bϕ,σ;∞

θ︸ ︷︷ ︸
k

(Lp(Rn))...)
∼ ‖f‖

Bϕk,kσ;∞
θ (Lp(Rn))

. (3.26)

4 Main results

Theorem 12 (On iterated norms). Let 1 < p < ∞, 1 ≤ θ < ∞, σ =
(σ1, · · · , σn), σj ∈ N, ϕ = (ϕ1, · · · , ϕn) ∈ Φ(σ, θ), k ∈ N, ϕk =

(
ϕk1, · · · , ϕkn

)
, H =

(H1, . . . , Hn), 0 < Hj ≤ ∞, and let G ⊂ Rn be an open parallelepiped with faces parallel
to the coordinate planes. Then

1. holds true the inclusion

Bϕ,σ;H
θ (· · · (Bϕ,σ;H

θ︸ ︷︷ ︸
k

(Lp(G))) · · · ) ⊂ Bϕ
k,kσ;H

p, θ (G), (4.1)

2. under the additional assumption that there exists bounded extension operator

S : Bϕ
k,kσ;H

p,θ

(
G
)
→ Bϕ

k,kσ;∞
p,θ

(
Rn
)

(4.2)

holds true the equality of spaces

Bϕ,σ;H
θ (· · · (Bϕ,σ;H

θ︸ ︷︷ ︸
k

(Lp(G))) · · · ) = Bϕ
k,kσ;H

p, θ (G) (4.3)

with the equivalence of the norms.
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Proof. 1. By Corollary 3 for any open parallelepiped with faces parallel to the
coordinate planes

‖f‖
β

ϕk
j

,kσj ;Hj

θ,j (Lp(G))
≤ ck−1

2 ‖f‖
β
ϕj ,σj ;H
θ,j (...β

ϕj ,σj ;H
θ,j︸ ︷︷ ︸

k

(Lp(G))...)
.

Summing up these inequalities and adding ‖f‖Lp(G) to both sides we obtain

‖f‖
Bϕk,kσ;H

p,θ (G)
= ‖f‖Lp(G) +

n∑
j=1

‖f‖
βϕk,kσ;H

θ (Lp(G))

≤ ‖f‖Lp(G) +
n∑
j=1

ck−1
2 ‖f‖

β
ϕj ,σj ;H
θ,j (...β

ϕj ,σj ;H
θ,j︸ ︷︷ ︸

k

(Lp(G))...)

≤ max{1, ck−1
2 }‖f‖∗Bϕ,σ;H

θ (· · · (Bϕ,σ;H
θ︸ ︷︷ ︸

k

(Lp(G)))··· )
,

which implies inclusion (4.1).
2. Due to condition (4.2), the proof of the inverse inclusion to (4.1)

Bϕ
k,kσ;H

p, θ (G) ⊂ Bϕ,σ;H
θ (· · · (Bϕ,σ;H

θ︸ ︷︷ ︸
k

(Lp(G))) · · · )

reduces to the proof for the case G = Rn which is considered in Lemma 6.
This completes the proof of the theorem. �

5 Conclusions

1. If we set ϕj(h) = hlj in this result, then we get the results obtained in the works of
V.I. Burenkov [3], [4].
2. If ϕ satisfies additional condition: ∃ε > 0 such that ϕj(h)

hε ↑ on (0, H] (for
example ϕj(h) = hαj lnγj(2H

h
), αj > 0, γj ∈ R), in which case the space Bϕθ (Lp(G))

possesses a power reserve of smoothness, then the theorem yields increment of smooth-
ness in the iterated norms, which after finite number of steps enables attaining any
order of smoothness in the power scale.
3. If the function ϕ has only logarithmic character (for example ϕj(h) = lnγj

(
2H
h

)
,

γj ∈ R), then the iterated norms enable to increase smoothness only in the logarithmic
scale.
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