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Abstract. Unique solvability of the Triсomi problem for an elliptic-hyperbolic equa-
tion of the second kind is proved with the help of the representation of the generalized
solution to a hyperbolic equation with strong degeneration.

1 Introduction

The line y = 0 is a line of the parabolic degeneration for the equations

ymUxx + Uyy + aUx + bUy + cU = 0, m > 0 (1.1)

Uxx + ymUyy + aUx + bUy + cU = 0, m > 0 (1.2)

where the coefficients are given continuous functions in the upper half-plane of the
variables x, y [1].

Let D be a domain bounded by the segment Γ0 of the axis y = 0 and the arc
Γ1 in the half-plane y > 0. In the domain D, both (1.1) and (1.2) are equations of
the elliptic type. For equation (1.2) in the domain D, the Dirichlet problem in usual
setting (i.e. when we look for a solution of equation (1.2), regular in D, continuous
in the closed domain D and taking given values on the boundary Γ = Γ0 + Γ1) is not
always well-posed. If one assumes c 6 0, this problem is well-posed in the following
cases: а) m < 1; b) m = 1 if b(x, 0) < 1; c) 1 < m < 2 if b(x, 0) 6 0; d) m > 2 if
b(x, 0) < 0.

If the condition c 6 0 is valid, and the following additional assumptions hold: а)
b(x, 0) > 1 for m = 1; b) b(x, 0) > 0 for 1 < m < 2; c) b(x, 0) > 0 for m > 2 the
following problem is uniquely solvable: find a solution of (1.2), regular in the domain
D, continuous in the closed domain D and taking given values only on the arc Γ1 (M.V.
Keldysh), see [2].

Also the problem on existence and uniqueness of a solution of (1.2) bounded in D
and satisfying on Γ1 the condition

∂U

∂N
+ AU = ϕ,
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where N is a given direction forming an acute angle with the interior normal to Γ1,
and , ϕ are given functions (О.А. Oleinik [12]).

If the Dirichlet problem is ill-posed for equation (1.2) in the domain D, it is natural
to replace the condition of boundedness of lim

y→0
U(x, y) by the condition of boundedness

of
lim
y→0

ϕ(x, y)U(x, y),

where ϕ(x, y) is a known function, satisfying lim
y→0

ϕ(x, y) = 0. For the equation

ymUxx − Uyy + aUx + bUy + cU = 0, m > 0, (1.3)

the coefficients of which are given continuous functions of variables x, y, the line of
parabolic degeneration is the line y = 0. the equation (1.3) is an equation of hyperbolic
type in the half-plane y > 0.

Let D1 denote the domain in the half-plane y > 0 bounded by the segment of the
degeneration line and by the characteristics and of equation (1.3). Many works are
devoted to study of the Cauchy problem for equation (1.3) in the domain D1 with the
initial data on

U(x, 0) = τ(x), Uy(x, 0) = ν(x), (1.4)

where τ(x) and ν(x) are given smooth functions (S. Gellerstedt [7], F.I. Frankl [5],
M.H. Protter [14], G. Helwig [8] and others.). For m > 2, the Cauchy problem for
equation (1.3) with initial data (1.4) is found, generally speaking, ill-posed (see [14]).
However, if some additional conditions are valid, for example if the condition

lim
y→0

y1−m
2 a(x, y) = 0, m > 0,

holds, this problem is well-posed (see [6]).
А.V. Bitsadze has established the ill-posedness of the Cauchy problem for equation

(1.3) and for the equation

Uxx − ymUyy + aUx + bUy + cU = 0, m > 0.

He proposed to investigate this problem under the following modified initial data

lim
y→0

ϕ(x, y)U(x, y) = τ(x), lim
y→0

ψ(x, y)Uy(x, y) = ν(x)

lim
y→0

ϕ(x, y) = 0, lim
y→0

ψ(x, y) = 0

and under incomplete initial data (i.e. under absence of one of conditions (1.4)).
In [4], it is proved that the Cauchy - Goursat problem for the equation (1.3) has a
unique solution. In [3], A.V. Bitsadze suggested to study the Cauchy problem with the
modified initial data for the equation

ymUyy − Uxx + a(x, y)Ux + b(x, y)Uy + c(x, y)U = 0, 0 < m < 2, y > 0 (1.5)

essentially different from (1.3).
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The Cauchy problem with modified initial data is studied in details for equation
(1.5) in works [9], [16]. In particular, in [16] the equation

LαU ≡ yUyy + Uxx + αUy = 0, (1.6)

is considered in the domain D2 in the half-plane y < 0 bounded by characteristics of
equation (1.6)

AC : x− 2
√
−y = 0, BC : x+ 2

√
−y = 1, AB : y = 0.

All negative values of α, except integers, are considered. In D2, the following modified
Cauchy problem with the initial data on the degeneration line is correct:

Uα(x, 0) = τ(x), (1.7)

lim
y→−0

(−y)α[Uα − A−n (τ)]′y = ν(x). (1.8)

Here τ, ν are given functions, A−n (τ)− is a given operator (it will be defined below),
moreover τ ∈ C(2(n+1))[0; 1], ν ∈ C(2)[0; 1]. The solution of this problem is defined in
the characteristic variables by the formula

Uα(ξ, η) = γ1

n∑
k=0

Nk(α, n, δ)(η − ξ)−2δ−14−2k

η∫
ξ

τ (2k)(λ)(λ− ξ)k+δ(η − λ)k+δdλ

−(−1)nγ24
2(α−1)

η∫
ξ

ν(λ)(λ− ξ)1/2−α(η − λ)1/2−αdλ

≡ A−n (τ)− (−1)nγ24
2(α−1)

η∫
ξ

ν(λ)(λ− ξ)1/2−α(η − λ)1/2−αdλ, (1.9)

where
γ1 =

Γ(2 + 2δ)

Γ2(1 + δ)
, γ2 =

Γ(1− 2α)

(1− α)Γ2(1/2− α)
,

Nk(α, n, δ) =
22kCk

nΓ(1 + δ)

Γ(1 + δ + k)
k−1∏
s=0

(α+ s)

,

δ = α+ n− 3

2
, α = −n+ α0, 0 < α0 < 1/2, 1/2 < α0 < 1, n = 0, 1, 2, ...,

Definition 1.1. [16]. A function Uα(ξ, η) is said to be a generalized solution of the
Cauchy problem for equation (6) of class R2 in the domain D2 if it can be represented
in form (9) and

τ(x) =

x∫
0

(x− t)−2βT (t)dt, (1.10)

where ν and T are functions continuous on [0; 1], −2β = 2n− 2δ − 2.
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It should be noted, that in the case of n = 0, 0 < α0 < 1/2 the representation of
the generalized solution of class R2 was introduced by М.М. Smirnov [16].

In the present work the Tricomi problem is solved with the help of a new represen-
tation of generalized solutions of class R2 obtained by the author [11].

2 Representation of a generalized solution of class R2

Consider equality (1.10). It follows immediately by it that

τ (2k)(x) =
2k−1∏
l=0

(2n− 2δ − 2− l)

x∫
0

T (t)(x− t)2n−2δ−2−2kdt. (2.1)

Substituting (2.1) in (1.9) we have

Uα(ξ, η) = γ1(η − ξ)−2δ−1J1 − J2, (2.2)

where

J1 =

ξ∫
0

I1(ξ; η; ζ)T (ζ)dζ +

η∫
ξ

I2(ξ; η; ζ)T (ζ)dζ,

J2 = (−1)nγ24
2(α−1)

η∫
ξ

ν(t)(t− ξ)1/2−α(η − t)1/2−αdt,

and also

I1(ξ; η; ζ) =
n∑
k=0

Nk(α;n; δ)4−2k

2k−1∏
l=0

(2n− 2δ − 2− l)

×
η∫
ξ

(t− ξ)k+δ(η − t)k+δ(t− ζ)2n−2δ−2−2kdt (2.3)

I2(ξ; η; ζ) =
n∑
k=0

Nk(α;n; δ)4−2k

2k−1∏
l=0

(2n− 2δ − 2− l)

×
η∫
ξ

(t− ξ)k+δ(η − t)k+δ(t− ζ)2n−2δ−2−2kdt. (2.4)

Integrals in (2.3) and (2.4) could be expressed via the hypergeometric functions,
namely

I1(ξ; η; ζ) = (η − ξ)2δ+1(η − ζ)2n−2δ−2

n∑
k=0

Nk(α;n; δ)4−2k(2n− 2δ − 2k − 1)2k

× Γ2(k + δ + 1)

Γ(2k + 2δ + 2)
Z2kF (k + δ + 1, 2δ + 2 + 2k − 2n, 2δ + 2k + 2;Z), Z =

η − ξ

η − ζ
,
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I2(ξ; η; ζ) = (η − ξ)n−δ−1(η − ζ)n+δ

n∑
k=0

Nk(α;n; δ)4−2k(2β)2k

×Γ(k + δ + 1)Γ(2n− 2δ − 1− 2k)

Γ(2n− δ − k)

×Z−k+n1 F (k + δ + 1,−k − δ, 2n− δ − k;Z1), Z1 =
η − ζ

η − ξ
,

where for γ > 0 and natural m, (γ)m = γ(γ + 1)...(γ +m− 1).

Lemma 2.1. The following identity holds:

[2(s− k) + 1][2(s− k) + 3]...[2(s− k) + (2l − 1)]

= P̂l(s) + P̂l−1(s)k + ...+ P̂0(s)k(k − 1)...(k − l + 1), (2.5)

where P̂i(s), i = 0, l, are certain polynomials of degree i.

This lemma is easily verified by induction.

Theorem 2.1. The following identities are valid:

n∑
k=0

Γ(2δ + 2)Γ2(k + δ + 1)

Γ2(δ + 1)Γ(2k + 2δ + 2)
Nk(α, n, δ)4

−2k(2β)2kZ
2k

×F (k + δ + 1, 2δ + 2 + 2k − 2n, 2δ + 2k + 2;Z) = (1− Z)−β, (2.6)
n∑
k=0

Γ(−δ)
Γ2(1 + δ)Γ(−2δ − 1)

Nk(α, n, δ)4
−2k(2β)2kZ

2k
1 ×

×Γ(k + δ + 1)Γ(2n− 2δ − 2k − 1)

Γ(−k − δ + 2n)
Z−k+n1 F (k + δ + 1,−k − δ,−k − δ + 2n;Z1)

= (−1)n(1− Z1)
−β, (2.7)

Proof. We shall prove (2.6) in full detail. We write down the hypergeometric functions
in the left-hand side of (2.6) in the form of series. First, we decompose the right-hand
side of (2.6) in power series:

n∑
k=0

Γ(2δ + 2)Γ2(k + δ + 1)

Γ2(δ + 1)Γ(2k + 2δ + 2)
Nk(α, n, δ)4

−2k(2β)2kZ
2k

×
∞∑
m=0

(k + δ + 1)m(2β + 2k)m
(2β + 2n+ 2k)mm!

Zm

= 1 + βZ +
β(β + 1)

2!
Z2 + ...+

β(β + 1)...(β + l − 1)

l!
Z l + ... (2.8)

It is not difficult to verify that the coefficients in the left and right members of
power series (2.8) at the same degrees Z l with [l/2] 6 n are calculated by the formula
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[l/2]∑
k=0

Γ(2δ + 2)Γ2(k + δ + 1)

Γ2(δ + 1)Γ(2k + 2δ + 2)
Nk(α, n, δ)4

−2k(2β)2k

×(k + δ + 1)l−2k(2β + 2k)l−2k

(2β + 2n+ 2k)l−2k(l − 2k)!
=

(β)l
l!

(2.9)

Let us show that (2.9) is the identity for any natural n.
For this, we need to consider the following cases.
Case A. l = 2s. After not complicated transformations (2.9) can be rewritten as

s∑
k=0

2−kCk
n

(β)s(δ + 1 + k + s+ 1)s−2k−1[2β + 2k]s−k
[2δ + 2]s(2s− 2k)!

=
(β)2s

(2s)!
(2.10)

where [a]k = (a+ 1)(a+ 3)...(a+ 2k − 1).
If, now, we transform (20) and substitute δ = β + n− 1, we obtain

P2s(β) ≡
s∑

k=0

2−kCk
n

(n+ β + s)s−k[2β + 2k + 1]s−k
(2s− 2k)!

=
(β + s)s[2n+ 2β]s

(2s)!
(2.11)

The left and right members of (2.11) are polynomials with respect to β. Two
polynomials of the same order are equal if the coefficients at the highest degree of β
are equal and the values of the polynomials coincide at various points, the number of
which is equal to the order of polynomials [15]. The polynomial in the right member
equals zero at those values of β for which one of the factors equals zero. Let us next
show that for these β the left-hand side of (2.11) also becomes zero. We need to show
that for β = −s

P2s(−s) ≡ 0. (2.12)

We shall use the following formula [16]
n∑
k=0

(−1)k
(
n
k

)(
a−m
k

)(
a
k

)−1

= 0, m < n. (2.13)

Rewrite (2.13) in the form
n∑
k=0

(−1)k
(
n
k

)
(a− k)!

(a−m− k)!
= 0, m < n. (2.14)

Set in (2.13) a = n+ s− 1,m = a− n. Since s− 1 < s, the condition m < n holds:
a− k = n+ s− 1− k, (a− k)! = (n+ s− k− 1)!, (a− k−m)! = (n− k)! (2.14) follows
from (2.12). We need to show that at β = −s− 1

P2s(−s− 1) ≡ 0. (2.15)

Let us show that
s∑

k=0

(−1)kCk
n

(n+ s− k − 2)!

(n− k)!
= 0 (2.16)
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and
s∑

k=0

(−1)kCk
n

(n+ s− k − 2)!

(s− k)!
k = 0 (2.17)

We obtain (2.15) from (2.18) and (2.19). Set in (2.14) a = n + s − 2, m = s − 2.
Then (a−k)! = (n+ s−k− 2)!, (a−m−k)! = (n−k)!. Since s− 2 < s, the condition
m < n holds and (2.14) implies (2.16). Substitute the summation variable in the left
member of (2.16) by the formula k′ = k− 1 and denote s− 1 = s′. Then (2.17) follows
from (2.14) where it suffices 0to set a = n+ s′ − 2, m = s′ − 1. It is necessary to show
that P2s(−s− 2) ≡ 0. Represent P2s(−s− 2) in the form

P2s(−s− 2) =
(−1)sn!

3(n− 3)!2s

s∑
k=0

(−1)k
(n+ s− k − 3)![2(s− k) + 1][2(s− k) + 3]

k!(n− k)!(s− k)!

We have on the base of Lemma 2.1

(−1)s
3(n− 3)!2s

n!
P2s(−s− 2) = P̂2(s)σ21 + P̂1(s)σ22 + P̂0(s)σ23

where
P̂2(s) = (2s+ 1)(2s+ 3), P̂1(s) = −8s− 4, P̂0(s) = 4,

σ21 =
s∑

k=0

(−1)k
(n+ s− k − 3)!

k!(n− k)!(s− k)!
, σ22 =

s∑
k=0

(−1)k
(n+ s− k − 3)!

k!(n− k)!(s− k)!
k,

σ23 =
s∑

k=0

(−1)k
(n+ s− k − 3)!

k!(n− k)!(s− k)!
k(k − 1)

It is not difficult to show that σ21 = σ22 = σ23 ≡ 0. This means that P2s(−s−2) ≡ 0.
Formula (2.6) can be analogously proved for β = −s− 3, β = −s− 4... The proof for
β = −2s+1 is reduced by application of Lemma 2.1 to the proof of identical vanishing
of all coefficients of the polynomials P̂2s−i(s), i = 3, 2s. We have

s∑
k=0

(−1)k
1

k!(s− k)!
=

1

s!

s∑
k=0

(−1)kCk
s = 0,

s∑
k=0

(−1)k
k

k!(s− k)!
= − 1

s′!

s′∑
k=0

(−1)k
′
Ck′

s′ = 0,
s∑

k=0

(−1)k
k(k − 1)

k!(s− k)!
= 0, ...,

s∑
k=0

(−1)k
k(k − 1)...(k − s+ 2)

k!(s− k)!
=

s∑
k=s−1

(−1)k
1

(k − s+ 1)!(s− k)!

= (−1)s−1 1

0!(s− s+ 1)!
+ (−1)s

1

1!0!
= 0.

Let us show that both the right member and the left one of (21) vanish if 2β+2n+
2s− 1 = 0. Vanishing of the right-hand side is obvious, and the left member takes the
form
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s∑
k=0

Ck
n2

−k
1
2

3
2
...2s−2k−1

2
(−2n)(−2n− 2)...(−2n− 2s+ 2k + 2)

(2s− 2k)!
≡ 2sP2s(−s) ≡ 0.

We can prove analogously that the left-hand and right-hand sides of (21) vanish
identically if 2n+ 2β + 2s− 3, ..., 2β + 2n+ 1 = 0.

Case B. Consider now the case of odd l = 2s + 1. Then it is necessary to prove
the following identity

s∑
k=0

Γ(2δ + 2)Γ2(k + δ + 1)

Γ2(δ + 1)Γ(2k + 2δ + 2)
Nk(α, n, δ)4

−2k

2k−1∏
l=0

(−2β − 2s− 1)

× (k + δ + 1)2s−2k+1(2β + 2k)2s−2k+1

(2β + 2n+ 2k)2s−2k+1(2s− 2k + 1)!
≡ β(β + 1)...(β + 2s)

(2s+ 1)!

or

n∑
k=0

Ck
n

2−k(n+ β + s+ 1)s−2k+1[2β + 2k + 1]2s−2k−2

(2s− 2k + 1)!

=
(β + s+ 1)s−1(2β + 2n+ 1)2s−2

(2s+ 1)!
(2.18)

Formula (2.18) can be proved analogously to (2.11). Investigation of coefficients at
the degrees of Z l with [l/2] > n in (2.3) is reduced to the proof of the identity

n∑
k=0

Γ(2δ + 2)Γ2(k + δ + 1)

Γ2(δ + 1)Γ(2k + 2δ + 1)
Nk(α, n, δ)4

−2k

2k−1∏
l=0

(−2β − l)

×(δ + k + 1)l−2k(2β + 2k)l−2k

(2β + 2k + 2n)l−2k(l − 2k)!
=

(β)l
l!
. (2.19)

Proof of (2.19) is divided into two cases: l even (l = 2s) and l odd (l = 2s + 1).
We use (35) for the proof. For choosing m, one should swap s and n, the further proof
does not differ from the case of [l/2] 6 n. Equality (2.7) is proved by the same method
as (2.6). The role of equality (2.14) is played now by the formula [15]

n∑
k=0

(−1)kCk
nC

m
a+bk = 0, 0 < m < n.

Some special cases of Theorem 2.1 were obtained in [11]. On the base of Theo-
rem 2.1, let us write the expressions I1(ξ, η, ζ) and I2(ξ, η, ζ) in the following forms:

I1(ξ, η, ζ) =
Γ2(δ + 1)

Γ(2δ + 1)
(η − ξ)2δ+1(η − ζ)−β(ξ − ζ)−β, (2.20)



88 N.K. Mamadaliev

I2(ξ, η, ζ) =
Γ(δ + 1)Γ(−2δ − 1)

Γ(−δ)
(−1)n(η − ξ)2δ+1(η − ζ)−β(ζ − ξ)−β. (2.21)

Substituting (2.20), (2.21) in (2.3),(2.4) we obtain the representation of a general-
ized solution of class R2 [10]:

U(ξ, η) =

ξ∫
0

(η − ζ)−β(ξ − ζ)−βT (ζ)dζ +

η∫
ξ

(η − ζ)−β(ζ − ξ)−βN(ζ)dζ, (2.22)

where
N(ζ) =

1

2 cos πβ
T (ζ)− (−1)n24β−2γ2ν(ζ).

3 The modified Tricomi problem for an elliptic-hyperbolic
equation of the second kind

Let Ω = D ∪D2 ∪ AB.
Problem Tn. To find in the domain Ω a function U(x, y) satisfying the following

conditions:
a) U(x, y) ∈ C(Ω).
b) U(x, y) is a generalized solution of class R2 defined below in D2, twice continu-

ously differentiable and satisfying the equation

L(U) ≡ yUyy + Uxx + αUy = 0 (3.1)

in the domain D;
c) on the degeneration line of equation (3.1), the following sewing condition holds:

(−1)n lim
y→−0

(−y)α[U − A−n (τ)]′y = lim
y→+0

yα[U ′
y + A+

n (U)] = ν(x),

where U(x,−0) = U(x,+0) = τ(x) follows from condition a),

A−n (τ) = γ1

n∑
k=0

Nk(n, α, δ)(−y)k
1∫

0

τ (2k)(λ)[t(1− t)]k+δdt,

λ = x− 2
√
−y(1− 2t), γ1 =

Γ(2 + 2δ)

Γ2(1 + δ)
,

δ =

{
α0 − 3/2 for 1/2 < α0 < 1,

α0 − 1/2 for 0 < α0 < 1/2

Nk(n, α, δ) =
22kCk

nΓ(1 + δ)

Γ(1 + δ + k)
k−1∏
s=0

(α+ s)

,
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A+
n (U) =

n∑
i=1

δiy
i−1∂

2iU

∂x2i
, δi − const;

d) U(x, y) satisfies the boundary conditions

U |σ= f(s), 0 ≤ s ≤ l, (3.2)

U |AC= ϕ(x), 0 ≤ x ≤ 1/2, (3.3)

where f and ϕ are given continuous functions.

Definition 3.1. A function Uα(x, y), defined by formula (1.9), is called a generalized
solution of equation (3.1) of class R2 in the domain D2, if ν ∈ C[0, 1] and the function
τ is represented as

τ(x) =

x∫
0

(x− t)−2βT (t)dt, (3.4)

where β =
[

3
2
− α

]
and T is some continuous function on [0, 1].

Theorem 3.1. Problem Tn has a unique solution

Proof. The uniqueness of the solution can be proved with the help of the maximum
principle analogously to work [10].

The existence of the solution will be proved by reducing problem Tn to a singular
integral equation.

The equation conjugate to equation (3.1) has the form

L∗(v) ≡ yvyy + vxx + (2− α)vy = 0. (3.5)

The following property of the Green function G(ξ, t;x, y) of Problem Tn were proved
in work [10]:

G(ξ, t;x, y) = q(ξ, t;x, y)− (4R2)−βq(ξ − 1/2, t;x, y), (3.6)

where
β = α− 1/2, 4R2 = (2x− 1)2 + 16y

q(ξ, t;x, y) = ktα−1r−2β
1 F

(
β, β, 2β;

16
√
yt

r2
1

)
r2
1 = (ξ − x)2 + 4(

√
t−√y)2 x =

x− 0.5

4R2
, y =

y

(4R2)2
.

Let σ0 : x(1− x) = 4y. We note also the following properties of the Green function
G(ξ, t;x, y):

1) L(x,y)(G) = 0 and L∗ξ,t(G) = 0 for (x, y) 6= (ξ, t);
2) G(ξ, t;x, y) = 0 if (x, y) ∈ σ0 or (ξ, t) ∈ σ0;

3) lim
t→+0

[
tGt + (1− α)G+

n∑
i=1

δit
i ∂2iG
∂ξ2i

]
= 0,

where
G(ξ, t;x) = G(ξ, t;x, 0).
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Let Dh denote the part of domain D for y ≥ h > 0 : Dh = D ∩ {y ≥ h > 0}.
The following identity is valid∫∫

Dh

[vL(U)− UL∗(v)]dξdt

=

∫
∂Dh

[vUξ − Uvξ]dt− [tvUt − tUvt − (1− α)Uv]dξ. (3.7)

Let us suppose that in (3.7) U is a solution of equation (3.1) in Dh. In the capacity
of v we take the Green function for y = 0, i. е.

v = G(ξ, t;x) = ktα−1
[
(ξ − x)2 + 4t

]−β
−k(2x− 1)−2βtα−1

[(
ξ − 1

2
− 1

2(2x− 1)2

)2

+ 4t

]−β
.

Then (3.7) can be rewritten as∫
A′B′

U

[
tGt + (1− α)G+

n∑
i=1

δit
i∂

2iG

∂ξ2i

]
dξ−

−
∫

A′B′

t1−αGtα[Ut + A+
n (U)]dξ−

−
n∑
i=1

δit
i

2i−1∑
k=0

(−1)k
∂kU

∂ξk
∂2i−1−kG

∂ξ2i−1−k

∣∣∣∣B′
A′

+

+

∫
σ0

U
{
[tGt + (1− α)G]dξ −Gξdt

}
= 0. (3.8)

Suppose that
∂kU

∂ξk
|(0,0)=

∂kU

∂ξk
|(1,0)= 0, k = 0, 2n− 1,

and
f(s) = f(ξ) = [ξ(1− ξ)]2n−1f1(ξ), f1 ∈ C[0, 1]. (41)

By passing to the limit as h → 0, we get the main relation between τ(x) and ν(x) on
D

τ(x) = k

1∫
0

ν(t)[|t− x|−2β − (x+ t− 2xt)−2β]dt+ F (x), (3.9)

where

F (x) = 41−αkβx(1− x)

1∫
0

f1(ξ)[ξ(1− ξ)]n+α0−2[x+ ξ − 2ξx]−β−1dξ.
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In the domain D2 we have to use representation (2.22) of the generalized solution
of class R2.

The generalized solution of equation (3.1) of class R2 in D2, as was proved above,
is represented in the form

U(ξ, η) =

ξ∫
0

(η − ζ)−β(ξ − ζ)−βT (ζ)dζ +

η∫
ξ

(η − ζ)−β(ζ − ξ)−βN(ζ)dζ, (3.10)

where
N(ζ) =

1

2 cos πβ
T (ζ)− (−1)n24β−2γ2ν(ζ).

Let U(x, y) ∈ R2(D2). Using boundary conditions (3.3), we find another relation
between τ(x) and ν(x) on D2

τ(x) = γ3

x∫
0

ν(t)(x− t)−2βdt+ Φ(x, ϕ), (3.11)

where
Φ(x, ϕ) =

2Γ (1 + β)

Γ (1 + 2β)
D2β−1

0x

[
xβϕ(x)

]
,

γ3 = (−1)n2 cos βπγ2.

Excluding the function τ from (3.10) and (3.12) we get for the function ν ∈ H(δ)
the following singular integral equation, which is equivalent to the problem under
consideration:

ν(x)− λ

1∫
0

(
t

x

)1−2β [
1

t− x
− 1

x+ t− 2xt

]
ν(t)dt = Ψ(x, f, ϕ), (3.12)

here λ is a constant and

Ψ(x, f, ϕ) =
1

γ3Γ (1− 2β)
D1−2β
x0 [F − Φ].

Taking into account conditions (3.9) for the function ϕ(x) = x2n+εϕ1(x), where
ε > 0, ϕ1 ∈ C[0, 1

2
], it can be shown that Ψ(x, f, ϕ) ∈ H(θ), with

θ =


1− 2α0, 0 < α0 <

1

2
,

2− 2α0,
1

2
< α < 1.

As was shown in [13], for the n = 0, singular integral equation (3.13) , has a unique
solution for ν ∈ H(θ).
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