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Abstract. The work is aimed to survey recent results on injective Banach lattices,
outline the Boolean-valued approach, and pose some open problems. The central idea
of the investigation is the Boolean-valued transfer principle from AL-spaces to injec-
tive Banach lattices: Every injective Banach lattice is embedded into an appropriate
Boolean-valued model, becoming an AL-space. To illustrate the method, a concrete
description of injective Banach lattices similar to that of AL-spaces is presented and
the isometric classification of injective Banach lattices is accomplished.

1 Introduction

The aim of this work is to survey recent results on injective Banach lattices obtained
in [38, 39, 40, 41, 42], outline a Boolean-valued approach, and pose some open prob-
lems. The central idea of the investigation is a Boolean-valued transfer principle from
AL-spaces to injective Banach lattices: It was announced in [40] and proved in [38]
that every injective Banach lattice is embedded into an appropriate Boolean-valued
model, becoming an AL-space. According to this fact and fundamental principles of
Boolean-valued models, each theorem about the AL-space within Zermelo—Fraenkel
set theory has its counterpart for the original injective Banach lattice interpreted as a
Boolean-valued AL-space. To illustrate the method we present a concrete description
of injective Banach lattices similar to that of AL-spaces which relays upon Maharam’s
representation of measure algebras [18, 66| and accomplish the isometric classification
of injective Banach lattices.

The first four sections contain preliminary background of Banach lattice theory
including the definition and geometric characterizations of injective Banach lattices.
In Sections 5-7 we collect some Boolean-valued concepts: Boolean-valued universe,
Boolean-valued truth values, principles and functors of Boolean-valued analysis. In
Section 8 Gordon’s theorem stating that the Boolean-valued interpretation of the reals
is a universally complete vector lattice is presented. It is demonstrated in Sections 9
and 10 that an injective Banach lattice admits a Boolean-valued representation which
is an AL-space. In Sections 11 and 12 two ways of constructing new injectives are
presented: formation of direct sums and tensor products of injective Banach lattices.
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Section 13 is dedicated to a well known concrete description of AL-spaces based on
Maharam’s representation of measure algebras and Kakutani’s representation of AL-
spaces. Boolean-valued interpretation of such description leads to main representation
and classification results presented in Sections 14-16. In Section 17 some open problems
are stated.

We let:= denote the assignment by definition, while N, R, and C symbolize the nat-
urals, the reals, and the complexes.

2 Banach lattices

A Banach lattice is a Banach space over the reals that is equipped with a partial order
< for which the supremum x V y and the infimum x A y exist for all vectors z,y € X,
and such that the positive cone X, := {z € X : 0 < z} is closed under addition and
multiplication by non-negative real numbers and the order is connected with the norm
by the condition that |z| < |y| = ||z|| < ||y||, where the absolute value is defined by
|z|:= 2V (—z). A subset U C X is called order bounded if U is contained in an order
interval [a,b]:={z € X : a <z < b} for some a,b € X. A Banach lattice X is said to
be Dedekind complete if every non-empty order bounded set in X has the least upper
bound sup(U) € X and the greatest lower bound inf(U) € X.

Most of the Banach spaces that appear naturally in analysis (L?, [P, C(K), ¢, ¢
etc.) are Banach lattices. Banach spaces of continuously differentiable functions are
not Banach lattices. The Banach lattice C([0, 1]) is not Dedekind complete.

Assume that a measure space (€2, X, u1) is semi-finite, that is, if A € ¥ and u(A) = oo
then there exists B € ¥ with B C A and 0 < u(A) < co. The vector lattice L°(Q, 3, p)
(of p-equivalence classes) of p-measurable functions on € is Dedekind complete if and
only if (2,3, u) is localizable. In this event LP(Q, %, u) is also Dedekind complete.
(A measure space (€2, %, 1) is localizable or Maharam if it is semi-finite and, for every
A C ¥, there exists a B € ¥ such that (i) A\ B is negligible for every A € A; (i) if
C € ¥ and A\ C is negligible for every A € A, then B\ C is negligible, see [17, 241G].)

A band in a Banach lattice X is a subset of the form B:= At:={r € X : (Va €
A) |z| Ala|] = 0} for a nonempty A C X. Clearly, BN B+ = {0}. A band B in X whith
satisfies X = B@ B* is referred to as a projection band, while the associated projection
(onto B parallel to Bt) is called a band projection. Let P(X) stand for the complete
Boolean algebra of all band projections in X. Observe that P(L%(Q, %, i) ~ X/u=1(0).

A linear mapping 7T from a Banach lattice X to a Banach lattice Y is called positive
if it sends positive vectors to positive vectors, i.e., T(X,) C Y,. If a linear operator
preserves lattice operations, it is called a lattice homomorphism. A lattice homo-
morphism is positive. A one-to-one surjective lattice homomorphism is called a lattice
isomorphism. A lattice isometry is a lattice isomorphism which is also an isometry.

Two classes of Banach lattices play a significant role in the Banach lattice theory.

Definition 2.1. A Banach lattice X is said to be an AL-space (respectively, AM -space)
if llz+yll = [l + Nyl (respectively, [lzV y|| = max{[|z, [y[[}) whenever || Aly| = 0.
An AM -space has a (strong order) unit w > 0 if the order interval [—u,u] is the unit

ball of X.
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Kakutani Representation Theorem. An arbitrary AL-space is lattice isometric to
LY, %, 1) for some localizable measure space (0, %, ).

Kakutani—Kreins Representation Theorem. An AM -space is lattice isometric to
a sublattice of C(K) for some compact Hausdorff space K. Moreover, if the AM -space
has a strong order unit then it is lattice isometric to C(K) itself.

Nakano—Stone Completeness Theorem. Let K be a compact Hausdorff topological
space. The vector lattice C(K) is Dedekind complete if and only if K is extremally
disconnected (= the closure of any open set in K is open).

Remark 3. Banach lattices were first considered by Kantorovich in [30]. For an
extensive treatment of Banach lattices see [5, 51, 53, 61, 77, 81]. More information can
be found in [2, 18, 31, 36, 47, 63]. Complex Banach lattice is defined by complexification,
see [61]. The above three theorems see in 28], [29, 35|, and |54, 68|, respectively.

3 Injective Banach lattices

Definition 3.1. A real Banach lattice X is said to be injective if, for every Banach
lattice Y, every closed vector sublattice Yo C Y, and every positive linear operator
To : Yo — X there exists a positive linear extension T 1Y — X with ||To|| = ||T|-

This definition is illustrated by the commutative (7 = T o ¢) diagram:

Equivalently, X is an injective Banach lattice if, whenever X is lattice isometrically
imbedded into a Banach lattice Y, there exists a positive contractive projection from Y
onto X. One more equivalence definition states that every positive operator from X to
any Banach lattice admits a norm preserving positive extension to any Banach lattice
containing X as a vector sublattice.

Remark 4. Thus, the injective Banach lattices are the injective objects in the ca-
tegory of Banach lattices with the positive contractions as morphisms. Arendt [6,
Theorem 2.2| proved that the injective objects are the same if the regular operators
with contractive modulus are taken as morphisms.

Lotz [50] was the first who introduced this concept and proved among other things
the following two results. But the first example of injective Banach lattice was indicated
by Abramovich [1].

Theorem 3.1. (Abramovich, [1]; Lotz, [50]) A Dedekind complete AM -space with unit
s an injective Banach lattice.
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Taking into account the Kakutani-Kreins Representation Theorem one can state
Theorem 3.1 equivalently: The Banach lattice of continuous function C'(K) is injective,
whenever K is an extremally disconnected Hausdorff compact topological space.

Theorem 3.2. (Lotz, [50]) Every AL-space is an injective Banach lattice.

Remark 5. Theorem 3.2 shows that there is an essential difference between injective
Banach lattices and injective Banach spaces, since C'(K') with extremally disconnected
compactum K is the only (up to isomorphism) injective object in the category of
Banach spaces and linear contractions (see Goodner [20], Kelley [33], Nachbin [55]).

Remark 6. A separable Banach lattice X is said to be separably-injective if for ev-
ery pair of separable Banach lattices Y C Z and every positive (continuous) linear
map from Y to X, there exists a norm preserving positive linear extension from Z
to Y. In [11, Theorem 3| Buskes made the observation that every separably-injective
Banach lattice is injective. More details concerning injective Banach lattices see in
Cartwright [12], Gierz [19], Haydon [26], Lotz [50|, Schaefer [62], Wickstead [79].

Remark 7. A Banach lattice X is called A-injective if | T|| < A||Ty|| in Definition 2.
In what follows injective means 1l-injective; A-injective Banach lattices (A > 1) are not
considered. For A-injective Banach lattices (A > 1) see [48, 49, 52].

4 Characterization of injective Banach lattices

A geometric property which enables us to characterize injective Banach lattices was
discovered by Cartwright [12].

Definition 4.1. (1) A Banach lattice X has the splitting property if, given xq1,x2,y €
Xy with ||z1|| < 1, ||xo]| <1, and ||x1 + 22 + y|| < 2, there exist yy,y2 € X such that
ytye =y, ler+ ol <1, and o2+l < 1.

(2) A Banach lattice X has the Cartwright property if, given x1,x9,y € X, and
0 < ry,rg € R with [[z1]] < rq, ||| < re, and ||z + 22 + y|| < 71 + 79, there exist
Y1, Y2 € X4 such that vy +yo = v, ||z1 + 1| < 71, and ||ze + ya| < 7.

(3) A Banach lattice X has the finite order intersection property if, given z €

X, finite collections z1,...,z, € X, y1,...,ym € X, and strictly positive reals
T,...,Tn € Ry, 81,000, 8, € Ry such that ||z < 7, [Jy;| < sj, and ||z; + y; + 2| <
ri+s;foralli:=1,...,n and j:=1,...,m, there exist u,v € X with z = v + v,
llz: +ul| <7, and ||y; + o] <sj forali:=1,...,nand j:=1,...,m.

Theorem 4.1. (Cartwright, [12|) For a Banach lattice the splitting property, the
Cartwright property, and the finite order intersection property are equivalent.

Theorem 4.2. (Cartwright, [12]) A Banach lattice has the splitting property if and
only if its second dual is injective.

Remark 8. Gierz in [19, Corollaries 3.3 and 3.4| proved that every Banach lattice with
the splitting property (and hence every injective Banach lattice) has the approximation

property.
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Definition 4.2. A Banach lattice X is said to have: the property (P) if there exists
a positive contractive projection in X" onto X [53, p. 47|; the Levi property if 0 <
To T and ||zo| < 1 imply that sup, x, exists in X |3, Definition 7(2)|; the Fatou
property if 0 < x, T x implies ||z.|| T ||| [3, Definition 7 (3)|. A Banach lattice with
the Levi (Fatou) property is also called order semicontinuous (resp. monotonically
complete) [53].

A Dedekind complete Banach lattice X with a separating order continuous dual has
property (P) if and only if it has the Levi and Fatou properties |63, Propositions 7.6
and 7.10]. Cartwright [12, Corollary 3.8] proved that a Banach lattice is injective if and
only if it has the Cartwright property and the property (P). Haydon demonstrated
that the property (P) may be replaced with the intrinsic ‘completeness’ property.

Theorem 4.3. (Haydon, [26]) A Banach lattice is injective if and only if it has the
Cartwright, Fatou, and Levi properties.

Definition 4.3. A band projection 7 in a Banach lattice X is called an M -projection
if ||| = max{||7z|,||r x|} for all x € X, where 7+ := Ix — . The set M(X) of
all M-projections in X forms a Boolean subalgebra of P(X). The f-subalgebra of the
center Z(X) generated by M(X) is called the M-center of X and denoted by Z,,(X).

Observe that M(X) is an order closed subalgebra of P(X) whenever X has the
Fatou and Levi properties. In this event the relations B ~ M(X) and A(B) ~ Z,,(X)
are equivalent. Note also that if X is an AL-space and Y is an AM-space then M(X) =
{0, Ix} and M(Y) =P(Y).

Remark 9. Haydon proved three representation theorems for injective Banach lat-
tices, see |26, Theorems 5C, 6H, and 7B|. These results may be also deduced from our
representation theorem (see Theorems 10 and 11 below and [38, Corollary 6.10]).

Remark 10. The notion of an M-projection goes back to [4] and plays a crucial role
in the theory of injective Banach lattices. In a wider context of a general Banach space
theory the concept is presented in [7| and [25].

5 Boolean-valued analysis

In 1963 P. Cohen discovered his method of ‘forcing’ and also proved the independence of
the Continuum Hypothesis. A comprehensive presentation of the Cohen forcing method
gave rise to the Boolean-valued models of set theory, which were first introduced by
D. Scott and R. Solovay (see D. Scott [65]) and P. Vopénka [76]. A systematic account
of the theory of Boolean-valued models and its applications to independence proofs can
be found in [8, 67, 73]. A brief and nice overview see in [45].

D. Scott [65] forecasted in 1969: “We must ask whether there is any interest in
these nonstandard models aside from the independence proof; that is do they have any
mathematical interest? The answer must be yes, but we cannot yet give a really good
arguments.”
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The development of Boolean-valued analysis started at the end of the seventies have
shown that D. Scott was perfectly right (see, for example, [43, 44]). The term Boolean-
valued analysis, coined by G. Takeuti (see [70]), signifies the technique of studying
properties of an arbitrary mathematical object by means of comparison between its
representations in two different set-theoretic models whose construction utilizes prin-
cipally distinct Boolean algebras.

As these models, the classical Cantorian paradise in the shape of the von Neumann
universe V and a specially-trimmed Boolean-valued universe V® are usually taken.
Comparative analysis is carried out by means of some interplay between V and V(®.

Boolean-valued analysis starts with the fact that each internal field of reals of
a Boolean-valued model descends into a universally complete vector lattice. This re-
markable fact was discovered by E. Gordon in [7], see also [22, 23]. In the same period,
two important particular cases were independently studied by G. Takeuti, who observed
that the vector lattice of (equivalence classes of) measurable function and a commuta-
tive algebra of (unbounded) self-adjoint operators in Hilbert space can be considered
as instances of Boolean-valued reals |69, 70, 71].

It should be also mentioned that Boolean-valued models are related to quantum
mathematics stemmed from J. von Neumann’s book on the mathematical foundations
of quantum mechanics [56] and fuzzy mathematics emerged in the development of the
theory of fuzzy sets after the Zadeh’s work [82]. The birth of quantum logic was
marked by the seminal joint paper of G. Birkhoff and J. von Neumann [9] in which a
systematic attempt to propose a propositional calculus for quantum logic was made.
The mathematical and logical investigation of various aspects of quantum mechanics is
the topic of the “Handbook of Quantum Logic and Quantum Structures” [14]. Quantum
set theory was introduced by G. Takeuti in [72] as the quantum counterpart of the
Boolean valued set theory. Zhang [83, 84| and Weidner [78] gave models for a unified
treatment of fuzzy set theory and Boolean-valued set theory. Takuti and Titani [74, 75|
have introduced and investigated intuitionistic fuzzy logic and used similar models for
studying intuitionistic fuzzy set theory. Significant attention has been paid to fuzzy
algebraic structures, see, for example, [60].

In the next two section we sketch the machinery of Boolean-valued analysis. A
detailed presentation can be found in [43, 44], see also [36].

6 The universe of Boolean-valued sets

Throughout the sequel B is a complete Boolean algebra with the operations meet A,
join V, and complementation (-)*, with distinguished elements unit 1 and zero Q. Given
an ordinal «, put

VE®.— {z : xis afunction, (38)(8 < a, dom(z) C v, Im(z) C B) }.

After this recursive definition the Boolean-valued universe V® or, in other words,
the class of B-sets is introduced as (with On standing for the class of all ordinals):

V® .= U VE,

a€O0n
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In case of the two element Boolean algebra 2 := {Q, 1} this procedure yields a
version of the classical von Neumann universe V (cp. |44, Theorem 4.2.8]).

Let ¢ be an arbitrary formula of ZFC, Zermelo—Fraenkel set theory with choice.
The Boolean truth value [p] € B is introduced by induction on the complexity of ¢
by naturally interpreting the propositional connectives and quantifiers in the Boolean
algebra B (for instance, [p1V pa]:= [p1] V [¢2] and [Vzp(z)] = A{[e(w)] : u € VI®})
and taking into consideration the way in which a formula is built up from atomic
formulas. The Boolean truth values of the atomic formulas * € y and x = y (with
T,y € V(B)) are defined by means of the following recursion schema:

[zeyl= \/ (&) ATt=2]),

tedom(y)

[e=yl= "\ @& =[tecyl)r \ ()= I[tex]).

tedom(x) tedom(y)

The sign = symbolizes the implication in B; i.e., (a = b):= (a* V b).
We say that the statement o(x1,...,x,) is valid or the elements x1, ..., x, possess
the property o within (inside) V® if [o(z1,...,2,)] = 1. In this event, we write also

VB = oz, .., 2,).

The universe V® with the Boolean truth value of a formula is a model of set theory
in the sense that the following statement is fulfilled:

Transfer Principle. For every theorem ¢ of ZFC, we have [¢] = 1 (also in ZFC);
i. e., @ is true inside the Boolean-valued universe V®).

Maximum Principle. Let o(x) be a formula of ZFC. Then (in ZFC) there is a
B-valued set xq satisfying [(Fz)p(x)] = [e(zo)].

Corollary 6.1. If V® & (3z)p(x), then V® = o(xq) for some zo € VP,

7 Ascending and descending

As was mentioned above, a smooth mathematical toolkit for revealing interplay between
the interpretations of one and the same fact in the two models V and V® is needed.
The relevant ascending-and-descending technique rests on the functors of canonical
embedding (or standard name), descent, and ascent, see |43, 44| for details.

The standard name functor. Given X € V, we denote by X" € V® the standard
name of X. The standard name is an embedding of V into V®. Moreover, the standard
name sends V onto V@ i.e., V~V® c VB where 2:= {O,1} C B.

A formula is restricted provided that each bound variable in it is restricted by
a bounded quantifier (i.e., each of its quantifier occurs in the form (Vx € y) or (Fz €
y)) or if it can be proved equialent in ZFC to a formula of this kind.

Restricted Transfer Principle. Let p(z1,...,x,) be a restricted formula of ZFC.
Then (in ZFC) for every collection x1,...,x, € V we have

(@1, n) = VO af,...,2)).

n
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The descent functor. Given an arbitrary element X of the Boolean-valued uni-
verse V®) | we define the descent X | of X as X|:= {y € V® : [y € 2] = 1}. The
class X | is a set,i.e., X| € Vforall X € VB If [X # @] = 1 then X| is nonempty.

Suppose that X,Y, f € V® are such that [f : X — Y] =1, i.e., f is a mapping
from X into Y inside V®. Then f] is a unique mapping from X | into Y| satisfying
[fl(z) = f(x)] =1 for all x € X |. The descent of a mapping is extensional:

[1 = z2] < [f(21) = fa2)] (21,22 € X]).

Assume that P is an n-ary relation on X inside V®: ie., X, P € V® and
[P X""] =1 (n € N). Then there exists an n-ary relation P’ on X| such that

(z1,...,1,) € P <= [(21,...,7,)? € P] = 1.

We denote the relation P’ by the same symbol P| and call it the descent of P.

The ascent functor. Let X € V and X ¢ V®: i e, let X be some set composed
of B-valued sets or, in other words, X € Z2(V®). There exists a unique X1 € V&)
such that [y € X1] = \/{[r =y] : = € X} for all y € VB The element X7 is called
the ascent of X. Observe that the ascent extend the standard name in the sense that
Y" is the ascent of {y" : y € Y} whenever Y € V.

Let X, Y € Z2(V®) and f: X — Y. There exists a unique function f1 from X1
to Y1 inside V® such that f1(A7) = f(A)7 is valid for every subset A C X if and
only if f is extensional.

8 Boolean-valued reals

Recall the well-known assertion of ZFC: There exists a field of reals that is unique
up to isomorphism. Denote by R the field of reals (in the sense of V). Successively
applying the transfer and maximum principles, we find an element Z € V® for which
[Z is a field of reals] = 1. Moreover, if an arbitrary %’ € V® satisfies the condition
[%' is a field of reals] =1 then [the ordered fields #Z and #Z' are isomorphic] = 1.
In other words, there exists an internal field of reals Z € V® which is unique up to
isomorphism. We call Z the internal reals in V),

Consider another well-known assertion of ZFC: If P is an Archimedean ordered field
then there is an isomorphic embedding h of the field P into R such that the image h(PP)
is a subfield of R containing the subfield of rational numbers. In particular, h(P) is
dense in R.

Note also that ¢(-), presenting the conjunction of the axioms of an Archimedean
ordered field, is restricted; therefore, [ o(R")] = 1 by the Restricted Transfer Principle,
i.e., [R" is an Archimedean ordered field ] = 1. ‘Pulling’ the above assertion through
the transfer principle, we conclude that [ R" is isomorphic to a dense subfield of Z | = 1.
We further assume that R” is a dense subfield of Z. It is easy to see that the elements 0"
and 1" are the zero and unity of Z.

Look now at the descent R:= Z| of the algebraic structure Z:= (R, ®,®, <,0,1)
within V® . In other words, R:= (R],®],®],< |,0,1) is considered as the descent
R| of the underlying set R together with the descended operations ¢| and ©®| and
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order £ | of the structure #. For simplicity, we will denote the operations and order
relation in Z and #| by the conventional symbols +, -, and <.

The fundamental result of Boolean-valued analysis is the Gordon Theorem which
describes an interplay between R, %, and R: Fach universally complete vector lattice
is an interpretation of the reals in an appropriate Boolean-valued model.

Theorem 8.1. (Gordon, [7]) Let B be a complete Boolean algebra, Z be a field of reals
in VB and R = #|. Then the following assertions hold:

(1) The algebraic structure R (with the descended operations and order) is an uni-
versally complete vector lattice.

(2) The internal field # € V® can be chosen so that

[R" is a dense subfield of the field Z] = 1.
(8) There is a Boolean isomorphism x from B onto P(R) such that
x(0)z = x(b)y <= b <[z =y],
x(b)x < x(b)y == b <[z <y]
(r,y € R; beB).

Let A C R = Z#| be the order ideal in R generated by 1" equipped with the
order-unit norm || - ||so:

A={zeR: (3CER) - C1" <z < CO1'};
|Z]|oo:=1nf{C > 0: —C1" <2 < C1"} (x€A).
Write A = A(B), since A is uniquely defined by B. Clearly, A is a Dedekind complete

AM-space with unit 1*. By Kakutani-Kreins Representation Theorem A ~ C(K)
with K being an extremally disconnected compact Hausdorff space.

Remark 11. The version of the Gordon Theorem for complexes is also true: Fach
complex universally complete vector lattice is an interpretation of the complexes in a
Boolean-valued model. 1f € denotes the complexes within V® | then C:= | and
C =R @ iR, i. e., the complex vector lattice C is the complexification of R.

9 Boolean-valued Banach lattices

What kind of category is produced by applying the descending procedure to the cate-
gory of Banach lattices in V®? The answer is given in terms of B-cyclicity.

Let (27, - ||) be a Banach lattice in V®. Define the map N : 2| — R:= %] as
the descent N(-):= (]| -||)] of the norm || -||. Then 2| (with the descended operations
and order) is a vector lattice and N is an R-valued norm on 2" |.

Definition 9.1. The bounded descent Z'\ of Z is defined as the set
Zl={re | N()eA}
equipped with the descended operations and order equipped with the mized norm:

el = [N (@)oo (z € Z74).
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Definition 9.2. Say that X s a Banach lattice with a Boolean algebra of band pro-
jections B if there is a Boolean isomorphism ¢ : B — P(X) and ¢(B) is a complete
subalgebra in P(X). In this event B is identified with ©(B) and one write B C P(X).
Let B C P(X) and B C P(Y). Say that X and Y are lattice B-isometric and write
X ~g Y if there is a lattice isometry T from X onto Y with an additional property
boT =Tob for all b € B.

Definition 9.3. A partition of unity in B is a family (b¢)¢ez C B such that \/ ;.2 be = 1
and be A\ b, = O whenever £ # 1. The set of all partitions of unity in B is denoted by
Prt(B). Let (be)eez € B and (x¢)eez C X. The element x € X is called a mizture of
(x¢) by (be) and is denoted by x:= mixeez(bexe), whenever bexe = bex for all € € =.

Definition 9.4. The Banach lattice X is said to be B-cyclic if B C P(X) and the
closed unit ball Bx of X is mix-complete, 1. e., has the property:

(xe) C Bx, (be) € Prt(B) = 3 mix¢(bex¢) € Byx.

Theorem 9.1. ([38, Theorem 4.1|) A bounded descent 2|} of a Banach lattice 2
from the model V® is a B-cyclic Banach lattice. Conversely, if X is a B-cyclic Banach
lattice, then in the model V® there exists up to lattice isometry a unique Banach lattice
2 whose bounded descent 2"\ is lattice B-isometric to X. Moreover, B ~ M(X) if
and only if [there is no M-projection in Z other than 0 and Iy =1, i.e.,

B~ M(X) < [M(2)=1{0,I,}]=1.

Definition 9.5. The internal Banach lattice 2 in Theorem 9.1 is called the Boolean-
valued representation of X.

Remark 12. It follows from Theorem 9.1 that the descent of a category of Banach
lattices and positive operators inside V® is the category of B-cyclic Banach lattices
and positive B-linear operators, see [38]. A detailed presentation of the descent of the
category of Banach spaces and bounded linear operators see in [43| and [36].

10 Boolean-valued AL-spaces

Now, we describe a Boolean valued analysis approach to the theory of injective Ba-
nach lattices developed in [38, 39, 40, 41|. First we clarify what the Boolean-valued
representation of injective Banach lattice is, see [38, Theorem 4.7].

Theorem 10.1. Suppose that X is a B-cyclic Banach lattice and X € V® is its
Boolean-valued representation. Then the following assertions hold:

(1) X is injective if and only if [Z" is injective] = 1.
(2) X is injective and B ~ M(X) if and only if [Z is injective and M(Z") =
{0,I9°}] = 1.

Theorem 10.2. (Haydon, [26]) Let X is an injective Banach space. Then X is an
AL-space if and only if M(X) = {0, Ix}.
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Now, putting together Theorems 9.1, 10.1, and 10.2 we arrive at our main represen-
tation theorem for injective Banach lattice, see [38, Theorem 5.1] and [40, Theorem 1].

Theorem 10.3. A bounded descent 2|} of an AL-space 2~ from V®) is an injective
Banach lattice with B ~ M(Z|}). Conversely, if X is an injective Banach lattice and
B ~ M(X), then there exist an AL-space 2 in V® whose bounded descent is lattice
B-isometric to X ; in symbols, X ~5 Z'|.

Remark 13. Theorem 10.3 implies the transfer principles from AL-spaces to injective
Banach spaces which can be stated as follows:

(1) Every injective Banach lattice embeds into an appropriate Boolean-valued
model, becoming an AL-space (Theorem 10.3).

(2) Each theorem about the AL-space within Zermelo-Fraenkel set theory with
choice has its counterpart for the original injective Banach lattice interpreted as a
Boolean-valued AL-space (Boolean-valued Transfer Principe, Section 5).

(3) Translation of theorems from AL-spaces to injective Banach lattices is car-
ried out by general operations and principles of Boolean-valued analysis (outlined in
Sections 6 and 7).

The following important representation result (see [38, Corollary 5.2] and [40, The-
orem 2|) which do not involve the concept of Boolean-valued model can deduce immedi-
ately from Theorem 10.3. Before stating this result, recall some definitions. A positive
operator T' : X — Y between vector lattices is said to: 1) be a Maharam operator when-
ever it is an order continuous and order interval preserving, i. e., T([0,z]) C [0, Tx]
for all z € X, ; 2) have the Levi property if sup x,, exists in Y for every increasing net
(o) C X4, provided that the net (T'z,) is order bounded in Y’ 3) be strictly positive
if Tx =0 implies . = 0 for all z € X,. If Y = A and T is strictly positive then L'(T)
denotes the domain of T endowed with the norm ||z|| = ||T(|z|)||ee (z € LY(T)), see
Definition 9.1.

Theorem 10.4. If T is a strictly positive Maharam operator with the Levi property
taking values in a Dedekind complete AM-space A with unit, then (L'(®), ||-]|) is an
injective Banach lattice with M(L'(®)) = P(A).

Conversely, any injective Banach lattice X is lattice B-isometric to (L'(T), |||l

for some strictly positive Maharam operator T with the Levi property taking values in
a Dedekind complete AM -space A with unit, where B = M(LY(T)) ~ P(A).

11 Direct sums of injective Banach lattices

Every injective Banach lattice is lattice isometric to a direct sum of concrete injective
Banach lattices. To see that we have first to study an appropriate notion of direct sum
decomposition.

Denote by Prt:= Prt(B) and Pg,(X) the set of all partitions of unity in B and the
collection of all finite subsets of X, respectively. Let Prt, := Prt,(B) stands for the
part of Prt(IB) consisting of countable families. Define B(Xy) by

B(Xo):={z € X : x=mixe(bewe), (z¢) C Xo, (be) € Prt(B)}.
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The following result see in [39, Theorem 7.2] and [41, Theorem 2]).

Theorem 11.1. Let (X, )aea be a family of injective Banach lattices. Assume that
there is a complete Boolean algebra B and a family (by)aca i B with \/ oo ba = 1
and M(X,) ~ B, = [0,b,] for all « € A. Then there exists a unique up to a lattice
B-isometry injective Banach lattice X such that the following hold:

(1) B~ M(X).

(2) For any a € A there is a lattice B, -isometry vy : Xo — X.
(3) (La(Xa))aeA is a family of pair-wise disjoint bands in X.
(4) B(B,ca ta(Xa)) is norm dense in X.

(5) For any x = (4)aca € X we have

Ixlls = sup _inf sup Zumau
0 Pan(A) (Tk)EPTt:  LeN

Definition 11.1. The Banach lattice (X, || - |lins) defined in Theorem 11.1 is called the

injective sum of injective Banach lattices. Denote EaeA Xoi=X.

Remark 14. Theorem 11.1 may be proved by using the above representation result
(Theorem 10.3): if 2, and 2" are Boolean-valued representations of X, and X, re-
spectively, and an internal function g : A* — {O 1} is defined by B(a") = x(b,) for
all € A (see Theorem 8.1(3)), then 2~ ~ >°0_, . B(a)Z,. Alternatively, it can be
deduced from Theorem 10.4.

12 Tensor products of injective Banach lattices

If one of the Banach lattices X or Y is an AL-space then the projective tensor product
X®,Y is a Banach lattice. If one of the Banach lattices X or Y is a Dedekind complete
AM-spaces with unit then the injective tensor product X®.Y is a Banach lattice.
However, both X®,Y and X®.Y need not be Banach lattices, see [10, §9].

In [15] Fremlin introduced for every two Archimedean vector lattices X and Y a new
Archimedean vector lattice X ® Y. The Fremlin projective tensor product X ®‘K|Y of

Banach lattices X and Y is the completion of X ® Y with respect to the positive
projective norm || - |||, see [16].

The Wittstock injective tensor product X®.|Y of Banach lattices X and Y is the
completion of X ® Y with respect to the positive injective norm || - ||, [80].

Let X and Y be injective Banach lattices. No one of the four tensor products
X® Y, X®,Y, X®|E|Y, X®|W|Y is in general an injective Banach lattice. But there
exists a ‘mixed’ positive injective-projective tensor product X ®.r Y which is always
injective. Denote by B:= B; ® B, the Dedekind completion of the free product B; ® B,
of Boolean algebras By and By, see [34, §11]. Details concerning the following result
can be found in [42, Theorem 4.4, Corollary 5.3] (see also [41, Theorem 2]).

Theorem 12.1. Let Xy and X5 be arbitrary injective Banach lattices. Then there
exist a unique up to isomorphism injective Banach lattice X, ®€‘ﬂ| X5 and a lattice

bimorphism ® : X7 x Xy — X ®€‘ﬂ| Xy such that the following hold:
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(Al) ® induces an embedding ¢ of the Fremlin tensor product X; ® Xy into
X1 Qejrr| X2

(2) There is a Boolean isomorphism j of M(X1) @ M(Xa) onto M(X ®jx X2) with
J(m @ mo) (21 ® x3) = My ® moxe for all m;p € M(X;) and x; € X; (1 =1,2).

(3) |lz1 @ @2||ejr| = [|lz1] - [|22]| for all 1 € Xy and x4 € Xo.

(4) B<X1 ® X2> is norm dense in X ®€‘ﬂ| Xo with B:= M(X; ®e|ﬂ Xs) .

(5) X ®€\W| X, = X&T, where X, comprises all finite sums y ,_, mrd(ug) with m, €
Bandu, € X3 ® Xy (k=1,...,n €N).

(6) For any x € X; ® Xy we have the representation

g
iy = inf { S;;EZ [meuiel - ||,0§Uz‘,s||}

=1

]

where infimum is taken over all (m¢) € Prt(By), (pe) € Prt(Bs), and 0 < w; ¢ € Xy,
0< Vie € X (Z < ne € N) with

3
2] <D wie@vie (EE€E).
i=1

Remark 15. In the particular case of B = B; = By = {O, 1} we obtain from Theo-
rem 12.1 relationship between the L; space of a product measure and the L; spaces of
its factors, see [17, Theorems 253F and 253G|. Thus, Theorem 12.1 can be deducsed
either from Theorem 12.1 by interpreting the mentioned relationship within VB, or
from Theorem 10.4 by using standart tools.

13 Representation of AL-spaces

For every cardinal 7, there exists a canonical measure on the unit cube [0, 1]7 that is
the «th power of Lebesgue’s measure on [0, 1]. The associated measure algebra and
the corresponding Banach lattice of integrable functions will be denoted by 17 and
L1 ([0, 1]7), respectively.

The famous Maharam theorem tells us that the measure algebras I7 are the ‘building
blocks’ for every Maharam algebra (= the measure algebra of a localizable measure
space). More precisely, every atomless nonzero (finite) Maharam algebra is isomorphic
to a direct sum of concrete measure algebras 17, and it is uniquely determined by
a family of cardinals =, see [18, 321A] and [66, 17.5.3]. Transferring the structure
theory of Maharam algebras, yields an important representation theorem for AL-spaces
(Theorem 13.1 below, see (66, 26.4.7]).

Definition 13.1. The density character of a subset S of a topological space is the
smallest cardinal v such that S contains a dense subset of cardinality .

Definition 13.2. A Banach lattice X is said to be v-homogeneous if X is non-atomic
and whenever x,y € X with x <y and x # y the density character of [z,y| is .
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The Banach lattice L'(]0, 1]7) is y-homogeneous for every cardinal . If « is finite or
countable then L'([0,1]7) is lattice isometric to L'([0, 1]), but L([0, 1]°) and L([0, 1]7)
are not lattice isometric whenever 3 and ~ are infinite cardinals with 3 < . Moreover,
every y-homogeneous AL-space is lattice isometric to 6L;([0, 1]7) for some cardinal 9,
where 0Y denotes the [;-direct sum of 6 many copies of Y.

Every non-atomic Banach lattice can be decomposed into a direct sum of homoge-
neous Banach lattices. Thus, the Banach lattices Ly([0,1]”) are the ‘building blocks’
for non-atomic AL-spaces. More precisely, for any nonatomic AL-space X there exist a
family of cardinals (0,),er with I" being a set of cardinals such that the lattice isometry

holds: X =~ ( ?el“ 3, LA ([0, 1]7))11. Recall also that an atomic AL-space is of the form

I'(v) for some cardinal . Gathering all this yields the following Kakutani-Maharam
representation result, see [46, 66].

Theorem 13.1. Let X be an AL-space. Then there exists a unique family of cardinals
(04)~erugoy with T' being a set of infinite cardinals such that &, is either equal to 1 or
15 uncountable for each v € ' and

X~ (8) &> 70, L ([0,1]),

yerl’

where ~ denotes lattice isometry, ® and >.° denote l,-joins, and §Y stands for the
ly-join of & copies of Y.

14 Representation of injective Banach lattices

Let A, be a Dedekind complete AM-space with unit and L., be an AL-space. Then
M, ®e\ﬂ| L. is an injective Banach lattice by Theorem 12.1. Moreover, in view of Theo-
rem 11.1, Zfer M, ®€|ﬂ L, is also an injective Banach lattice. Actually, every injective
Banach lattice have a similar representation, so that Dedekind complete AM-spaces
with unit and AL-spaces are the ‘building blocks’ for any injective Banach lattice. This
follows from Theorems 10.3 and 13.1. More precisely, using Theorem 10.3 and inter-
preting Theorem 13.1 in the appropriate Boolean-valued model leads to the following
result.
Denote 8o X := 2 _, X,, where X, = X for all a € A.

acA

Definition 14.1. Let v is a cardinal. A complete Boolean algebra B is said to be -
stable whenever VB = 4 = |4, i.e. [y = |7"]] = 1. An element b € B is called
v-stable if the relative Boolean algebra [O, b] is y-stable, see [44, Definition 12.3.7 and
Theorem 12.3.8].

Theorem 14.1. Let X be an injective Banach lattice, A = Z,,(X) and B = M(X).
Then there exists a unique pair of families (ba)aca and (bgy)seB(y)yer in the Boolean
algebra B such that the following assertions hold:

(1) A is a set of cardinals and (by)aca 18 pair-wise disjoint;
(2) T is a set of infinite cardinals, each element of B(~) is either equal to 1 or
is uncountable for all v € T, the family (bsy)sen(y) 15 pair-wise disjoint, and 1 =

Vaea ba V \/76F 17)7, where lf)7 = vﬁeB(v) bsy;
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(3) by is a-stable for all « € A, bg, is (B-stable for all 3 € B(y), v € T, and b, is
v-stable for all v € T,
(4) the representation holds with A, = by(A) and Agy = bg,(A):

X o (Z Aq ®eln| ll(f)é))@o |y ( > Bo(Apy @am L0, 1]”))) N

acA yel BEB(y)

Remark 16. As was mentioned above, according to Theorem 10.3, our representation
theorem 14.1 is just an interpretation of Theorem 13.1 in the Boolean-valued model V(®)
with B ~ M(X): there exist a family (27 ),errufoy and a function o : I'""U{0} — {0,1}
within V®) such that 2" ~ 0(0)%@Zfem o(v) %, where 2 is an atomic AL-space
and 2, is a |y|-homogeneous AL-space with |y| being the cardinality of v. Details can
be found in [41].

15 Classification of injective Banach lattices

Theorem 14.1 enables us to give a complete isometric classification of injective Banach
lattices, see [41]. This should be compared with the representation and classification
of of Kaplansky-Hilbert modules and AW *-algebras of [57, 58, 59|, see also [36].

Definition 15.1. A passport of an injective Banach lattice X is the pair of families a:=
((Ta)aca, (T5y) penmer) in B = M(X) satisfying (1—4) from Theorem 14.1. This pair
is called a cardinal series whenever only (1) and (2) are fulfilled and a decomposition
series if, in addition, (4) is also satisfied.

Definition 15.2. Two cardinal series a and b of injective Banach lattices X and 'Y
respectively are congruent, if there exists a Boolean isomorphism h from B onto B’ such
that b and h(a) are B-equivalent, where h(a):= ((h(aa))aca, (M(asgy))sen)rer). It can
be easily seen that the passports II(X):=a and II(Y):= b are congruent if and only if
A=AT=A,B(y) =0(y) for ally € ' and by, = h(as), bg, = h(ag,) for all o € A,
g€ B(v), and vy €T.

Theorem 15.1. (|41, Theorem 5|) Injective Banach lattices X and Y are lattice iso-
metric if and only if M(X) and M(Y') are isomorphic and 11(X) and TI(Y') are con-
gruent.

Theorem 15.2. ([41, Theorem 6]) A cardinal series in a Boolean algebra M(X) is a
decomposition series of Banach lattice X if and only if it is congruent to the passport
II(X). In particular, any two decomposition series of an injective Banach lattice are
congruent.

Remark 17. The representation of an injective Banach lattice in Theorem 14.1 is not
unique in general, without assumption (3) of Theorem 14.1, cf. [36, Ch. 8]. The reason
for this is the so-called cardinal collapsing phenomena in V®: it is possible for two
infinite cardinals s < A to satisfy V® |= [5"| = |A\*|. In this event we say that A has
been collapsed to » in VB see [8, Ch. 5]. The following result specifies Theorem 15.2
which answers the question of how much the non-uniqueness in Theorem 14.1 may be.
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Definition 15.3. A subset Xy C X is said to be B-dense in X whenever B(Xy) is
norm dense in X. The B-density character of a subset S of a B-cyclic Banach lattice
is the smallest cardinal v such that S contains a B-dense subset of cardinality .

Definition 15.4. A B-cyclic Banach lattice X is said to be (B,~y)-homogeneous if X
has no B-atom (see [38, Definition 8.1]) and whenever x,y € X with x <y and x #y
the B-density character of the order interval [x,y] is v, while X is B-homogeneous,
whenever X is (B, ~y)-homogeneous for some 7.

Theorem 15.3. Given two infinite cardinals ¢ and A\ with s < X\, there exist a com-
plete Boolean algebra B and injective Banach lattices X and Y such that M(X) and
M(Y') are isomorphic to B, X andY are lattice B-isometric, X is (B, »)-homogeneous,
and Y is (B, \)-homogeneous.

16 Functional representation of injective Banach lattices

Let K be an extremally disconnected compactum, while X be an arbitrary Banach
space. Denote by C (K, X) the set of equivalence classes of norm bounded continuous
vector-functions u acting from dom(u) C K to X with K \ dom(u) meager. (Vector-
functions u and v are equivalent if they coincide on the intersection of their domains
dom(u) and dom(v).)

The set C (K, X) may be naturally endowed with the structure of a C'(K’)-module.
The continuous extension N(u) of the point-wise norm k — ||u(k)| (k € dom(u)) to
K determines a decomposable norm u +— N(u) on Cyx(K,X) with values in C(K).
Moreover, Cx (K, X) is a Banach space with respect to the mixed norm defined as
u+— ||N(u)||s and even a Banach lattice if so is X. (Details can be found in [36, 2.3.3,
7.1.1, 7.1.2].) If X is an AL-space then Cx (K, X) is an injective Banach lattice such
that M(Cx (K, X)) is isomorphic to the Boolean algebra of clopen subsets of K and
Zn(Cu(K, X)) ~ C(K), see [40].

Theorem 16.1. (|41, Theorem 7|) Let X be an injective Banach lattice and K be the
Stone space of the Boolean algebra M(X). Denote by K, and Kz, the clopen sets in
K corresponding to b, and bg, in Theorem 14.1. Then the representation holds:

¥ (S eumnt@) B (5 secu(r B0.1))

a€cA ~el' N BeB(v)

If M(X) is isomorphic the complete Boolean algebra associated with a localizable
measure space (Q, Y, p), then Cy (K,,!'(a)) and Cy(Kgs,, L'([0,1]7)) in Theorem 16.1
can be replaced respectively by L>(Qq, () and L*(Qg,, L*([0,1])) with disjoint
4,83, € ¥. This yields one more representation result.

Theorem 16.2. (|41, Corollary 2|) Let X be an injective Banach lattice and M(X) ~
B:= B(Q, X, 1) for some measure space (Q, 3, ). Then there exist two M-bands X
and Xy of X, two families of measurable subsets (Qa)aca and (£2gy)geB(y)yer uniquely
determined up to a null set such that @ =J,cp UU,er Usen(,) and

X =X, BX,,
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Xz (L2 0n 1@))

a€cA

Xaze Y0 5 0 (1400 20.11))

vel BEB(y)

where I' and B(~y) are the sets of infinite cardinals.

Remark 18. If B satisfy the countable chain condition then V®) |= |x"| = |\"| implies
k = A for any pair of cardinals k and A\. The Boolean algebra B:= ¥ /171 (0) associated
with the measure algebra (€2, 3, i), u(2) < oo, satisfies the countable chain condition.
It follows from these comments that the representation in Theorem 16.2 is essentially
unique, contrary to the general case, see Remark 15.

17 Open Problems

A real Banach lattice X is said to be A-injective, if for every Banach lattice Y, closed
sublattice Yy C Y, and positive Ty : Yy — X there exists a positive extension T : Y —
X with ||T|| < A||To||- It was proved in [48] that every finite-dimensional A-injective
Banach lattice is lattice isomorphic to (Zik li(ny)) ,_» While it was shown in [52] that
every order continuous A-injective Banach lattice is lattice isomorphic to L, (1) space.
But the general question, as far as I know, is still open:

Problem 1. Is every A-injective Banach lattice order isomorphic to 1-injective Banach
lattice?

One of the intriguing problems, dating from the work [24], is the classification of
the Banach space whose duals are isometric to an AL-space, see also [49]. I believe
that the injective version of this problem deserves an independent study.

Problem 2. Classify and characterize the Banach spaces whose duals are injective
Banach lattices.

As is seen from Theorem 10.3 an injective Banach lattice X has a mixed LM-struc-
ture. Thus, the dual X’ should have, in a sense, an ML-structure. Hence a natural
question arises:

Problem 3. What kind of duality theory is there for injectives?

Every Banach space has an injective envelope, see [13, 32|. What is the injective
envelope in the category of Banach lattices and lattice isometries? Following [13] we
can give the definition: An injective envelope of a Banach lattice X is a pair (°X,¢)
with <X an injective Banach lattice and « : X — X a lattice M[(X)-isometry such that
the only injective sublattice of <X containing «(X)) is °X itself, cf. [13| and [38§].

Problem 4. Find a suitable concept of injective envelope of a Banach lattice and clarify
whether or not every Banach lattice admits an injective envelope.
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An orthogonally additive convex modular |27, §3.3] on a vector lattice X is an
operator © : X — A satistying (for all z,y € X and a € [0, 1]):

(1) ©(x) =0 <=z = 0;

(2) |z| < |yl = O(z) < B(y);

(3) O(ax + (L —a)y) < aO(z) + (ax + (1 — a)O(y);

(4) [z[ Ayl =0=O(z +y) = O(z) + O(y).

Say that an orthogonally additive convex modular © : X — A admits factorization
through injective Banach lattice L, whenever © = ® o6 for a strictly positive Maharam
operator ¢ : L — A with the Levi property and an orthogonally additive (nonlinear)
embedding 6 : X — L.

Problem 5. Find conditions under which an orthogonally additive convexr modular
admits factorization through injective Banach lattice.

An Orlicz B-lattice is a B-cyclic Banach lattice X (cf. [27, §3.3] if there is an
orthogonally additive convex modular © : X — A = A(B) with |z|| = inf{a > 0 :
O(zx/a) <1} (z € X).

Problem 6. Prove a representation theorem for Orlicz B-lattices making use of the
above representation of injective Banach lattices.

Say that a downward directed set A C X is B-convergent to zero if for every
0 < € € R there exists a partition of unity (7,)sca in B such that ||mal < e for
all @ € A. The norm in X is said to be order B-continuous (or X is called order
B-continuous) if every downward directed set A C X with inf A = 0 is B-convergent
to zero. If X is a B-cyclic Banach lattice and 2 is its Boolean-valued representation
then X is order B-continuous if and only if 2 is order continuous within V® [38,
Theorem 4.5].

Problem 7. Develop a theory of order B-continuous B-cyclic Banach lattices.
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