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Abstract. We develop and apply a decomposition theory for generic local Morrey
spaces. Our results are smooth and nonsmooth decompositions, which follows from
the fact that local Morrey spaces are isomorphic to local Hardy-Morrey spaces and
local Triebel-Lizorkin-Morrey spaces in the generic case. As an application of our
results, we consider a bilinear estimate for the fractional integral operators.

1 Introduction

In 1938, C. Morrey considered an estimate for the solutions of partial differential equa-
tions. His result grew up to an embedding result, which is nowadays called Morrey’s
lemma [18]. Later, in 1969, Peetre proposed to consider that lemma from the view-
point of functonal analysis. In fact, from Morrey’s lemma we are led to consider some
important normed spaces, which are called Morrey spaces [27].

In 1975, D. Adams established that Morrey spaces can describe the boundedness
property of Riesz potentials. Recently, the behaviour of Riesz potentials has been
studied by the use of the local Morrey spaces. The definition of local Morrey spaces is
as follows. Here and in the sequel we write B(r) = {|y| < r} for r > 0. Let 1 < p < 00
and 0 < A < n. For a measurable function f : R" — C one defines the norm || f{| L,

by:
1 Y
[ fllzas, , = sup | — |f(W)IP dy
r>0 \T B(r)

One defines the space LM, ,(R") as the set of all measurable functions f for which the
norm || f|[za, , is finite. We also denote by Q@ = Q(IR™) the set of all cubes whose axes
are parallel to the coordinate axes. The indicator function of a set E is denoted by xg.

In this paper, we shall establish and apply the following three theorems. Two of
them are related to non-smooth synthesis and decomposition.

Theorem 1.1. Let 1 < p < g < oo and A, p € [0,n) satisfy

> . (1.1)
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Assume that {Q;}32, C Q(R™), {a;}52, C LM, ,(R"), {)\;}32, C [0,00) and

< 00. (1.2)

LM

HajHLNQm < HXQjHLMme supp(a;) C Qj, iXQ;

Then the series Z Aja; converges in the Schwartz space S'(R™) of tempered distribu-
7=1
(R™) and satisfies the estimate

o0
E Aja;
=1

1
tions and in L,

iXQ;
LMP,A 7=1 LMP,A

where C' > 0 depends only on n,p,q, X and p.

Theorem 1.2. Let L € Ny = NU{0}, 1 <p <oo and A > 0. Let f € LM, (R").
Then there exists a triplet {\;}52, C [0,00), {Q;}32, C Q(R") and {a;}32, C LOO(R”)

such that f =372, Nja; in S'(R") and Ly, (R"),
laj] < xq;, / z%aj(x)dr =0, (1.4)
Rn
for all multi-indices o = (aq, g, ..., ap) with |a] = oy + as + -+ + a,, < L, where

C=zx{"..xd and for all v > 0

n

X

1/v
(Z iXe;) > < Colfll g, »- (1.5)

= LM,

Here the constant C, > 0 is independent of f.

To formulate the third decomposition result, we recall first the definition of atoms
and molecules.

Definition 1.1 (Dyadic cubes). For v € Z and m = (my,ma,...,my) € Z", define
Qum = H?:1[2_”mj, 27"m; +27%). The cube Q,,, with v € Z and m € Z" is called
a dyadic cube of generation m. The collection of all such dyadic cubes is denoted by
D. The collection D, is defined as the set of all dyadic cubes of the form @, with
m e Z".

Definition 1.2 (Atom). A C¥-function a is called an (s, p)-atom, s € R,0 < p < o0,
if the following support, cancellation and smoothness conditions are satisfied for some
cube Q) € Q :
1. supp(a) C 3Q,
2. / z%a(x)dz =0 for |a] < L,
R’ﬂ
3. [10%allz.. < 1QIT* 7 if o] < K.
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Now we define a molecule. To this end we use the following notation:

(r) = /1 + |z)?
for x € R".

Definition 1.3 (Molecule). A CE-function m is called an (s, p)-molecule, s € R,
0 < p < oo, if the following oscillation and decay conditions hold for some point
xg € R" and v € Z, where M is a sufficiently large constant:

L. / x*m(z)dx =0 for |a| < L,
Rn
2. |0%m(x)| < 2 vs/pHvlal (v (g — o))~ Mlel if |of < K.

Here and below we call m a molecule centered at Q. ,, if vo = 27"m.

We call the set Xg) = |Q|_% X¢ a p-normalized indicator.
With these definitions in mind, let us formulate the third theorem. In (1.6), it is

understood that .
> son = 3 (3 vanea)

QeD v=—00 \mezn"

and the convergence takes place in S'(R™).

Theorem 1.3 (Smooth atomic decomposition). Suppose that 1 < p < oo, A €
0,n), K € N and L € N.

(A) Any function f € LM, x(R"™) admits the following decomposition: for each dyadic
cube Q) there exists a (0, p)-molecule mq centered at Q and a complex number sq

such that
f=7 semq (1.6)
QeD

in the topology of S'(R™) and that the coefficients {sq} depend linearly on f.
Moreover, they can be chosen in such a way that

1 llzag, 5 = <Z |8QX$)|2> : (1.7)
Q

LMp x

N[

that s,

D=

CU fllear, , < (Z |st2§’>|2> <O flleas,
Q

LM,

where the constant C' depends only on p and .
(B) Conversely, if the right-hand side of (1.7) is finite, then

Z 5Q0Q, Z sgmg € LMpv)\(Rn),
QeD QED

where the ag are (0,p)-atoms and the mg are (0, p)-molecules.
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Theorem 1.5. |9, Theorem 1.2| Suppose that the real parameters p, \, L satisfy
l<p<oo, 0<A<n, LeN,

Let f € GM,\(R™). Then there exists a triplet {)\;}32, C[0,00), {Q;}52, C Q(R") and
{a;}352, € L®(R"™) such that f = 3772, Nja; in S'(R"), for all multi-indices a with
la| < L condition (1.4) is satisfied

<Z(>\jXQj)”> < Col|fllan,

—
J GM, 5

and that for all v > 0. Here the constant C, > 0 is independent of f.

We describe how we organize the remaining part of this paper. Theorems 1.1 and
1.2 are proved in Section 7. We prove Theorem 1.3 in Section 8. Section 2 is devoted to
preliminary facts. Section 3 is a virtual starting point, where we consider the maximal
inequality, and extend the result to the vector-valued version. In Section 4, we consider
the boundedness property of fundamental operators. In Section 5, we investigate the
structure of the local Morrey spaces from the viewpoint of functional analysis. We are
mainly interested in predual spaces; our method heavily depends on [52]. We shall
specify the predual space of the local Morrey space LM, ,(R™) for 1 < p < oo and
A > 0, and use this observation in Section 6. Section 6 is a characterization of the local
Morrey space LM, ,(R™) for 1 < p < oo and A > 0. We also consider an embedding
result in Section 7. Lemma 7.1 is a key estimate. Theorem 1.1 and Lemma 7.1, proofs
of which can be found in Section 7, require an approach different from [23, 24|. Smooth
decompositions are dealt in Section 8.

2 Preliminaries

2.1 Structure of local Morrey spaces

Since we will have to compare spaces LM, ,(R") and §’(R") in Section 6, we start
with the following observation. Let S(R™) be the Schwartz space of test functions; see
Definition 2.1 below.

Lemma 2.1. Let 1 < p < oo and A > 0. Then for all k € S(R™) and f € LM, \(R"),

/n (@) f @)l de < Cllfllear, » sup 1+ ] ) ()], (2.1)

where C' does not depend on k and f.
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Proof. We decompose the left-hand side as follows:

o0

/n k() f(2)|de < /Bm () f(2)|dz + )

J=1

/ () ()| da
B(j+1)\B(j)

< |6l syl fllzsay
(0.) 1 n
+ 2 T / [ ()£ ()| e
Jj=1 B(j+1)\B(j)

< CHfHLMp,/\ (Seuﬂgl(l + |w|>2n+>\+1|%($)|) :

where C' depends only on n, p and . n

2.2 A convolution estimate
We shall need the following lemma for convolutions in Section 6.
Proposition 2.1. Suppose that p is a positive decreasing function on [0,00) and that
7(z) = p(|z|) for all z € R™. (2.2)
Then for allt >0 and x € R"
L)« 1] (@) < el M f(a) (2.3
for all f € L (R™).

loc

2.3 Grand maximal estimate

Our idea is to convert the norm of LM, ,(R") to one of Hardy type. To this end,
we recall the definition of the grand maximal function M f as well as the topology of

S(R™).
Definition 2.1. 1. The topology on S(R™) is defined by the norms {pn}nen where

()= Y sup(1+ [z)V[0p(x)] (o € SR™).

la|<N Tz€eR™

Define Fy = {¢ € S(R") : pn(p) < 1} for N € Ny.
2. The space S'(R™) is the topological dual of S(R™).
3. Let f € S'(R™). The grand mazimal operator M is defined by

Mf(z) = My f(z) = sup{[t "p(t™") * f(z)| : t > 0, € Fn}
for all x € R™.

We recall the following lemma, which will be key to this paper. We refer to [39]
for the proof. By Cg,,,(R™), we denote the set of all compactly supported infinitely
continously differentiable functions in R™. The set of all polynomials of degree less

than or equal to d is denoted by P4(R™).
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Lemma 2.2. Let f € S'(R"), d € Ny and j € Z. Then there exist an index set K,
collections of cubes {Qjk}rer, and functions {njitrer; C Coomp(R™), which are all
indezed by K; for every j, and a decomposition

f=gi+bi b= b

kGKj
such that the following properties hold.
1) gja bj, bj’k/‘ € Sl(Rn)

2) Define O; = {y € R" : Mf(y) > 27} and consider its Whitney decomposition.
Then the cubes {200 Q;x trek,; have the bounded intersection property, and

O;=J Q= 200Q;u. (2.4)

kEKj kEKj

3) Consider the partition of unity {n;x}rex, with respect to {Qjx}trex,;. Then each
function n; is supported in Q); and

Z Nik = X{yeRr: Mf(y)>2}, 0 < mjp < 1
kEKj

4) The distribution g; satisfies the inequality:

n+d+1
ik

Myg;(z) < C1 | Mf(2)x0,0(x) +27 )

kEKj

2.5
G+ e~ | (2

for all x € R".

5) Each distribution b;j is given by bj, = (f — cjr)njk with a certain polynomial
cjk € Pa(R™) satisfying

(f — cjr,m - P) = Ofor all g € Py(R"),

and

. ntd+1

. l
Mbo(a) < O (M a,e) + 2 2 reng,@) (20

|z — x;

for all x € R".

In the above, ;) and {; denote the center and the edge-length of Q; i, respectively,
and Cy and Cy depend only on n.

Furthermore, if f € L (R"), then g is an L®(R") function whose norm is less
than or equal to 277,
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2.4 Plancherel-Polya-Nikol’skii inequality

Recall that, for a measurable function f and > 0, the maximal operator M) is

defined by

") flg) — 1 )
MO = (g L )

Denote by (S'(R"))B@0:1) the Schwartz distributions f whose Fourier transform Ff is
supported in B(zg,1).
The following theorem will be used in Section 8; we refer to [43] for the proof.

Theorem 2.1. Let f € (S'(R"))B@0D | Then

IVf(x—y) |f(z —y)|

s — < C sup ——F—, 2.7

yerr 1+ [y|r yerr 1+ [y|r (27)

p LT =9l o g oy 2.5)
yerr 1+ |y| r

for all x € R™.

2.5 Moment condition

We need the following estimate, whose proof can be found in [3, p. 466].

Lemma 2.3. Let v,u € Z with v > u, M > 0 and L € Ny, and N > M + L + n.
Suppose that a C*(R™)-function ¢ and x, are such that

ou(n+L)

(1420 —x,[)M

[VEp(a)| <
for all x € R™. Assume, in addition, that 1 is a measurable function such that
/ Pp(x)de =0, if |8 < L —1

and that, for some x, € R",

ovn
(1+ 27z — ay )V

[U(x)] <

for all x € R". Then

oun—(v—p)L

/n o(z)Y(z)dz| < C

T (U 20y — )M
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2.6 Rademacher functions
The next lemma is useful when we consider the £%(Z)-norm.

Lemma 2.4. Let 0 < p < co. Define 7(t) = (—1)2 for k € N, t € [0,1]. Rearrange
{7k}, to have {r;}32_ . Then for any (*(Z)-complex sequences {a;}5 we have

j=—00’
1
oo o0 2
2
> ar 2(5:%!)
LP[0,1] j=—00

j==o0

See [48] for the proof.

3 Maximal inequalities

In this section, we consider the Hardy-Littlewood maximal operator M. Recall that
M is defined for measurable functions f by the formula

Mf@) = s o [ 1@ldy (@ R,

where B, denotes the set of all balls containing the point z.
The aim of this section is to extend the well-known inequalities

Mf@Pde < cp [ 1@ da (3.1)
R R

and
D D

/R ) <§ ij<x)q) < Cpan / <Z|f] Q) dz, (3.2)

where ¢,,, and ¢, 4, are independent of f and f;,j € N, respectively. Here the param-
eters p and ¢ satisfy 1 < p,q < co. When 1 < p < ¢ = oo, we have a counterpart to

(3.2);
/n (M sup \fj!} (:c))p dz < ¢ / (sup |fj(x)|)p dx. (3.3)

jeN jeN
Note that (3.3) is a direct consequence of (3.1) and the pointwise estimate

M [sup 1] (0) < sup £l (3.4)

Our main result in this section is as follows:

Theorem 3.1. Let 1 <p< oo, 1 <g< oo and )<\ <n. Then we have

I M fllag, < CNflloa, (3.5)

and

Q=

(Z |fj|q>q | (3.6)

—
LM, 5 J LM,

(S

j=1
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Here, the constant C' in (3.5) depends only on p, and n and the one in (3.6) depends
only on p, q and n. In particular,

<C

LMp

sup | ;] (3.7)

JEN

D]

jeN

LMp

Proof. Analogous to (3.3), we can deduce (3.7) by using (3.4) and (3.5). By setting
fi=f,fo=fz=---=01n (3.6), we can obtain (3.5). Hence, we concentrate on
proving (3.6).

Estimate (3.6) leads to the proof of the inequality;

1 - . :
=y (; M fy(y) ) ay

where the constant C' > 0 depends on p, ¢, A and n, but not on r and f;.
We define f;1 = fjxBen and fj2 = f; — fj1. Then we can decompose estimate
(3.8) into two parts:

1
p

<c (erjrq>q . 38)

LMp

1 - Y o @
Y (Z Mf; 1(y)q) dy <C H (ZjZI |fj|q> ; (3.9)
B \ 5= LM,
» 1
1 S ) —_—
> (Z ij,2(y)q> dy <C H <2j=1 ‘fj|q> (3.10)
B('r‘) j=1 LMp,)\
Estimate (3.9) follows from (3.2). Indeed, by (3.2), we obtain
i/ iijl(y)q ady p< i/ iijl(y)q Edy
™ JB) e ’ — A\ e o ’
» 1
11 - s ’
< (Qu,q,n)p Y Z |fj,1(y)’ dy
r R =
If we use the definition of f;, then we obtain
P 1 P 1
LS or) w) = (5[ (Simer) w
™ Jrn = ” ™ JB(sr) sy !
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In terms of the local Morrey norm, we conclude;

1
P

1 = g 1
L (o) ) s et (Sisr)
" JB(r) j=1
LM, »
As for (3.10), we need the following pointwise estimate:
Mfa(a) = sup Wl <3 swp o [ () dy
2= 5 T8 oo N = R TBCR] S,

Keeping this in mind, we choose R} € (2r,00) so that

4n
Mfia(x) < m/}g@) | fi(y)| dy.

Let us set
Rj = 21+[10g2 R;f/r],r,'

Then we have

ij2 |B |/ |f] |dy

Thus, we obtain

Mfyaw) <830 e [ 1wl
k=1 B(2Fr)

Thus, it follows that

1
p LY

1 > AN
=Y /B . (; M fja() > dy
<C’r”/\ (;(ZlBQk |/(2k ‘f] |dy>> )

By the Minkowski inequality,

L, (Ssser) o
1.

1
P

1

(Eom) s

< Cyin- wz i ;

Since A < n, we obtain (3.10).
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4 Singular integral inequalities

We consider the boundedness of the singular integral operator needed in Section 8.

Definition 4.1. An L*(R")-bounded linear operator T is said to be a (generalized)
Calderon-Zygmund operator if it satisfies the following conditions.

(1) There is a measurable function K : R®™ x R" — C such that for all L>°(R")-
functions with compact supports,

Tf(w)= [ K(x,y)f(y)dy for all ¢ supp(f). (4.1)

Rn

(2) The kernel function K satisfies the following estimates: for some C > 0

1
|z —y|"

|K(z,y)| < C 7 (4.2)

if © # vy, and

K(e2) = Kl + K (o) - Kl <O, G

if 0 <2)x —vy| <|z—xl

In this paper, we use the following typical example of a (generalized) Calderén-
Zygmund operator. (See the proof in [17, p. 649-650])

Lemma 4.1. Let 7 € S(R™) be a function supported away from the origin. Set 7; =
7(279.) for j € Z. Let ¢ = {;};ez be a sequence taking its values in the set {—1,0,1}.

1. Define

€= Z e;F
(a) For all x € R™,
| K ()] < Z |7 ()] < Claf ™ (4.4)

(b) Forallx e R" and k=1,2,...,n,

ol < 3 10 i@l = X [P Pl < el 4s)

j=—00 j=—00
In (4.4) and (4.5), the constant C' does not depend on e.
2. Define

[e.o]

T.f = Z e;F ]+ f

j=—00

for f € L*(R").
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(a) The series defining T.f converges in the topology of L*(R™).
(b) Let f € L*(R™) have a compact support. If x ¢ supp(f), then

T.f(x) = | K —y)f(y)dy.

R"

5 Predual space LH, ,(R")

In this section we consider the local predual Morrey space LH, ,(R") based on the
idea of Zorko [52].

Definition 5.1. Let 1 < g < oo and 0 < p <n.

1. A LY(R"™) function b is said to be a centered (q, p)-block if it has support in B(r)
for some r >0 and ||b||p. < r=P/7.

2. The local predual Morrey space LH, ,(R™) is the set of all elements f in L} (R™)

loc
such that .
/=2 Nbi
j=1

where {)\;}32, € (1(N) and each b; is a (g, p)-block.

Let 1 < a < q. By the Hélder inequality, we have

(/Bm lH($)‘adx)i = (/B(r) lH(x)‘qdaj); |B(r)]=s.

Thus, if a is defined by

Q=

SIS
|3

_,7

q

then ||b]|z. < vn%_é for any (g, p)-block, where v,, denotes the volume of the unit ball
in R". Thus, LH, ,(R™) is embedded into L*(R").
In this section, we aim to prove the following result:

Theorem 5.1. Let 1 <p < oo and 0 < \ < n.

1. Let f € LM, (R™). Then, for any g € LHy \(R™), we have f - g € L*(R") and
the mapping

g € LHy z\(R") — f(z)g(z)dx € C
RT’L
defines a continuous linear functional Ly on LHy x(R™). The operator norm of
Ly equals ||z,

2. Conversely, any continuous linear functional L on LH,y \(R™) can be realized as
L = Ly with a certain f € LM, \(R™). In addition, if fi and fo € LM, (R")
define the same functional, then f1 = fy almost everywhere.
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Recall that the following result is well known as the duality LP(R™)-L* (R"), and
observe that Theorem 5.1 covers the duality LP(R")-L¥ (R") as a special case when
A=0.

Proposition 5.1. Let 1 < p < 0.

1. Let f € LP(R™). Then for any g € L* (R"), f - g € LY(R™) and the mapping

ge I"(R") [ f(z)g(z)dz e C

R

defines a continuous linear functional Ly on LP(R™). The operator norm of Ly
equals || f||ze-

2. Conversely, any continuous linear functional L on LP (R™) can be realized as
L = Ly with a certain f € LP(R™). In addition, if fi and fy € LP(R™) define the
same functional, then fi = fo almost everywhere.

Proof of Theorem 5.1. The first statement is a corollary of the following inequality:

- |f(@)b(x)] do < || fll Lo,

whenever b is a (p/, A)-block.
To prove the second statement, let L be a continuous linear functional on LH,, ,(R").
For any R € (0, 00), the functional

g € L”(R") — L(gxsm) € C
is a bounded linear mapping with norm less than or equal to R~*P, because
R—P

———9gXxB(r) is a (p/, A)-block. Thus,
gl o

\L(gxB(r)| < BM?||g| 1

for all R > 0. Hence, for each R > 0, according to Proposition 5.1(1), we obtain a
measurable function fz such that

L(gxB(r) = . fr(@)g(@)de, || falw < RV
Observe that
L(gxBr)) = L(9XB(R)XB(R+1]) = /Rn fire (%) g(2)xB(r)(7) dx
and the uniqueness of f; (see Proposition 5.1(2)) implies that

fr(z) = XBr) () i1 (2).

Thus, there exists a measurable function f such that fr(z) = xpmr)(z)f(z) for all
R > 0. Moreover, f € LM, \(R"). O



Decompositions of local Morrey spaces 23
6 Characterization of local Hardy Morrey spaces in terms of
the grand maximal operator and the heat kernel

The next proposition characterizes the space LM, y(R™) in terms of the heat kernel.
Let t > 0 and f € S'(R™) and define

t _ 1 |z —|? n
eAf(g;):<f,WeXp(— n )> (x € R").

We say that f € HLM,\(R") if and only if f € S'(R") and sup |[e® f| € LM, (R").
>0
We define

| fllaLa, , =

sup |¢" f|
t>0 LM, 5

Let 1 < p < ooand 0 < A < n. Then one defines the local Hardy Morrey space
HLM, »(R"™) as the set of all f € §’'(R") for which the norm

< Q.
LM, »

[/, = |[sup e ]
Ny

Let us show that LM, ,(R™) and H LM, »(R") are isomorphic by proving the following

proposition.

Proposition 6.1. Let 1 <p < oo and 0 < XA < n.

1. If f € LM, \(R"™), then f € HLM,(R") and

I flloae, s < N fllas, < Cllflla, .y (6.1)

where C' > 0 s independent of f.

2. If f € HLM,(R™), then f is represented by a measurable function g which
belongs to LM, »(R™).

Proof. 1. We can easily verify that LM, ,(R") < S’(R") by using Lemma 2.1. Also,
we have

sup e’ | < M f

Ny
by virtue of Proposition 2.1. Due to Theorem 3.1 on the LM, ,(R™)-boundedness of
the Hardy-Littlewood maximal operator f € H LM, ,(R") and that the right-hand-side
inequality in (6.1) follows.

2. Recall that the dual of LHy ,(R") is isomorphic to LM, \(R") as we have
established in Theorem 5.1. Let L : f € LM, (R") — Ly € (LHy(R"))* be an
isomorphism in Theorem 5.1. We shall make use of the general result due to Banach
and Alaoglu: If X is a Banach space, then the unit ball of X* is weakly-* (sequentially)
compact. By the assumption, {¢'® f};~o forms a bounded set in LM, (R"). Consider
a sequence {{;}72, in [0, 1] which decreases to 0. Then {L_a }32, forms a bounded
set in (LHy »(R™))*. Thus, by the Banach-Alaoglu theorem, there exists a positive
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sequence, which we denote again by {tj};?‘;l, such that L «;a s converges to G=1L,¢€
(LHy A(R™))* for some g € LM, ,(R") in the weak-* sense. Observe that

[ leaty = I sllewr, e < liminf Lo, i, - = Hminf e flliw,,. o (6:2)

Moreover, since f € S'(R"), €2 f converges to f € S'(R"). Thus, we conclude that
S'(R") > f=g€ LM, (R").

The left inequality in (6.1) follows since the space LM, y(R™) is isomorphic to the
dual of LH,y \(R™). Thus, from (6.2),

1|2z, » < = [[fll Lo, -

LMp

sup [e'> f|
>0

Proposition 6.2. Let 1 <p < oo and 0 < A < n.
(1) If f € LM, \(R™), then M f € LM, (R™) and
C U et < IMFllzas,y < Cllfllzas, s (6.3)
where C' > 0 is independent of f.

(2) Let f € S'(R"). If Mf € LM,(R™), then f is represented by a measurable
function g which belongs to LM, (R™).

Proof. The implication (1) = (2) follows from the pointwise inequality M f(z)
CM f(x). The converse implication (2) = (1) follows from the inequality |e® f(z)]
CMf(x). Indeed, from this pointwise estiamte, we conclude that sup,.,|e'®f(-)|
LM, »(R™). Thus, by applying Proposition 6.1 we have f € LM, ,(R").

L mIAIA

7 Non-smooth decomposition

7.1 Norm estimate

We shall now prove Theorem 1.1. Let us write

f = Z )\jaj.
j=1

Proof. To prove (1.3), we resort to the duality:

e =sup [ 17062 ol =1}

For the time being, we assume that there exists NV € N such that A\; = 0 whenever
j > N. Let us assume in addition, without loss of generality, that all a; are non-
negative. Fix a positive (p/, A)-block g with the associated ball B. We may suppose
that ¢ > 0 a.e., since f is non-negative.
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Assume first that each (); contains B as a proper subset. If we group the j’s such
that (), are identical, we can assume that (); is centered at the origin and satisfies
|Q;| = 27| B| for each j € N. Then we have

RC dx—ZA / o) de < 03N oyl 9l

7j=1

By the size condition for a; and g, we obtain

f(@)g(x )d$<CZA B0 lag | g

7=1

,_,_L
< CZ)\ |Bl7r =1yl a, ,

R”

Q=

Q

,_l_
< CZ)\ |B|"1’ anXQj”LMQ«P'

Since (), is centered at the origin, we obtain

Z AjXQ;

J=1

A4l e

()
= | Bj|

[ fglayde < X,

L LM, »

by virtue of (1.1).
Conversely, assume that B contains each ();. Then we have

RE () dr =3\, / o@)g@)do < O3 M laslusllgl o,
7j=1

7=1

Denote by B; = B(r;) the ball which is centered at the origin and which contains @);.
Then we have

F@)g(@)de < C Y- N llagllzallgll e,

Rn

j=1

<O A aylag, 9l oy
j=1

<O A xay i 190 o
j=1

<CY NIl v gy
j=1
By using the Hardy-Littlewood maximal operator, we obtain

[ ragta)in < /anQJ P)Xs(@)Mlgl?)(2)¥ da.
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Note that
I(M[lgl* DY N\, < Cligln,, , <C,

assuming p < q. If we apply Theorem 5.1, then we have the desired result. O

7.2 Nonsmooth decomposition of functions

The following lemma is the key to the decomposition of local Morrey spaces as is
mentioned in Section 1; the structure of local Morrey spaces comes into play here.

Lemma 7.1. Let ¢ € S(R"). With the same notation as in Lemma 2.2, we have

1/6
00 1 0
|<bja<:0>| < CAO {Z (QW HMf ’ XOJ'”Ll(B(Ql))) } (71)

=0

and
o . 0 1/6
‘<9j790>‘ < Cv {Z (2% HMf : XO]'HLl(B@z))) } ) (72)
=0

where 0 = "L and the constants Cy, in (7.1) and (7.2) depends on ¢ but not on j or
k.

Proof. For sufficiently large constant M = M,, we have ¢, = M 'p(xz — ) € Fy for
all z € B(1), so that

(b @) = 1bj * Y (2)]o=0 < M inf Mbj(z).

z€B(1)

Thus, we have

b, o)l < C inf Mb;(x) < C inf ().
by 9)| < € Inf  Mb;(w) < xelg(l)keKMa,k(w)

Observe also that

n n

r T

CMX By (T) 2 Xro\B(zp.r)(T)  (x € R™).

>
rm+ | —axg” T |z —xp|”

It then follows from (2.6) that

) /. n+d+1
5 Miu(a) £ C Y (MI0,00) + 2+ g, 0))

|z —
ke, ke,
n+d+1

< C | Mf(x)xo,(x) +27 Y Mxq,,(x)

kEK]‘
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Thus, from this pointwise estimate and (3.10), we deduce that

. n+d+1
| Mb;| LBy < C [|IMS - xo, + 27 Z(MXQj,k)
hek; LY(B(1)

<C HMf ’ XojHLl(B(l)) +C 2/ Z(MXQ]‘,IC)LM

hek; LY(B())

1/6
0o 1 0
<C HMf ' XojHLl(B(l)) +C {Z (27 ”Mf ' XojHLl(B(W))) } '

=0

In the same way, we can prove (7.2): indeed, we obtain

9 . gj}kn+d+1

IMgjllLisay < C||Mf - xo,

L1(B(1)) +C Z (U + | - —xjp| et

heky LY(B(1))

n+d+1

sway O D0 2 (Mxg,)

keK

< C|[Mf-xo,

LY(B(1)

J
1 oY 1/9
oy ¢ {X; <2W M- Xoj“Ll(B(Zl))) } :

=

Thus, (7.2) is proved. O

Lemma 7.2. In the notation of Lemma 2.2, in the topology of S'(R™), we have g; — 0
as j — —oo and b; — 0 as j — oo. In particular,

[e.o]

F=> (gs1—9)
j=—00
in the topology of S'(R™).
Proof. Observe that
1 C C

%HMJC X0l sy < %HMJCHU(B@Z)) < —Zl(n_A)/prHHLMp7x
Consequently, we may use the Lebesgue convergence theorem to conclude that b; — 0
as j — oo. Hence, it follows that f = lim; ., g; in S’(R").

Likewise, by using (7.2), we obtain g; — 0 as j — —oo by the Lebesgue convergence
theorem. Consequently, it follows that f = lim; .o g; = limj o 7 ,(g141 — @) In
S'(R™). O

We shall now prove Theorem 1.2.
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Proof. For each j € Z, consider the level set
O;={r eR": Mf(x) > 27} (7.3)
Then it follows immediately from the definition that
Oi41 C O;. (7.4)

If we apply Lemma 2.2, then f can be decomposed as
F=9i+bi b= bix bin=(—cix)n
k

where each b;;, is supported in a cube @)} as described in Lemma 2.2.
We know that

o0

F= 2 (g1 -9, (7.5)
Jj=—00
with the series converging in the sense of distributions from Lemma 7.2. Here, going
through the same argument as the one in [39, p. 108-109|, we have

F=) Ak gin—gi=) A (F€Z) (7.6)
k

Jk

in the sense of distributions, where each A;;, supported in @);, satisfies the pointwise
estimate |A;(z)] < Cp2’ for some universal constant Cy and the moment condition
A;(x)q(z) dz = 0 for every g € Py(R™). With these observations in mind, let us

Rn
set

A ,

— .77k — J

ik = ===, HKjr=Cp2.
/ Cp2i’ J

Then we shall obtain that each a; satisfies
6] < X0 | a"aa(@)de =0 (al £ 1)
Rn

and that f = Z K; kG in the topology of HLM, »(R"), once we prove the estimate
jk
for the coefficients. Rearrange {a;;} to obtain {a;}. Do the same thing to {);;}.
To establish (1.5), we need to estimate

00 1/v
o= (Z ’)\jXQj|U)

—
J LM,

Since

{(Ris Qi) bik = { (N5 @) 1,
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we have
1/v
o0
a=[1 > > lkuxoul’
jzfoo kGKj
LM, »
By using the definition of «;, we then have
1/v 1/v
o0 [e.e]
a=Goll| 2 2 12xaul =Co[| 2 2" 2 xau
j=—o0 kEK; j=—o00 keK;
LM, » LM, »

Observe that (2.4), together with the bounded overlapping property, yields
Xo; (.1’) < Z XQjk (l’) < Z X200 Q; & (x) < CXOj ({L’) (33 € Rn)'
keK; keK;

Thus, we have

e (i (ZjXO])U>1/U

—
J LM, »

Recalling that O; D O,y for each j € Z, we have

Z (QjXOj@j))v = (Z 2jXOj(£)> = (Z 2jX(9j\(9].+1(;17)> (z € R").

j=—00 j=—o00 j=—00

Thus, we obtain

a<C Z QjXOj\Ojﬂ

j=—o00

LM, 5

It follows by the definition of O; that 2/ < M f(z) for all z € O;. Hence, we have

Z X004 M f

j=—00

a<C < ClIM s,z

LMp,x

which is the desired result. O

7.3 Application — Olsen’s inequality for local Morrey spaces

In this section we consider the following Olsen inequality for the fractional integral
operator I,, where I, (0 < @ < n) is defined by

[af(a:):/R Ly)dy (x € R").

n o — gyl
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Theorem 7.1. Suppose that we are given parameters p, \, q, p, & satisfying conditions

n — n
l<p<g<oo, a= p, 0<a<—
q p

and condition (1.1). Then

g - Tafllenm, < Cllgllar,, |l fllLa, s

where C' > 0 s independent of f and g.
In particular, when o =1,

lg - flleas,, < Cligllane, IV fllza, .
for all appropriate functions f and g.
To prove this we need the following statement.

Lemma 7.3. |9, Lemma 4.2] Let L € Ny. Suppose that A is an L*(R")-function
supported on a cube Q. Assume, in addition, that fR" 2Pa(z)dx = 0 for all multi-
indices 3 with |8| < L. Then

o0

1 A()] < CarllAll> €Q)* )

k=1

1

WM’CQ(CB) (z €R"). (7.7)

Proof of Theorem 7.1. We decompose f according to Theorem 1.2 with sufficiently

large L:
f=2_Naj,
j=1

where {Q;}32, C D(R"), {a;}52, C L®(R") and {);}52, C [0, 00) satisfy (1.4) and

j=1
(1.5). Then by Lemma 7.3, we obtain

9@ f )] < Y S (@) 0() g, (1)

J,keN

Therefore, we conclude

N L(2RQ;)°
5 (2"Q;)

ok(n+L+1) HQHGMW |9|X2’“Qj

g - Lafllzar, » < Cllgllan,,

],kGN LMp,)x

For each (j,k) € N x N, write

L= Aj . :g(Zij)a, |
Rik = SknrL+1) ik = lgllcar, gIX2+qQ;-



Decompositions of local Morrey spaces 31

Let us check that [|bx |l Lar,, < Cllxarq, Ly, I 2¥7'Q; 3 0, then this is easy to check.
Otherwise

/¢ sz o 1 q
16kl 21, < Cu sup —p/ lg(y)|* dy
HgHGMq,p 7‘>£(2ij) r B('r‘)ﬂ2ij

0(25Q))” 1 )
=¢ lgllenm,, <(|C(Q])| +280(Q;)) /2ij 9(y)] dy)

0(2:Q,)7/ .
< @ 2 gy )
0(2kQ; )™/
(@) [+ 2@, )7

< Cllxaro, Iz, ,-

Q=

Observe also that ¢y > rg and ¢ > r. Thus, by Theorem 1.2, it follows that

g - Iaf i, < Cllgllen,, || D Kiexarq,
j,keN LM, »
)‘jXZkQ'
=Cligllers, || D grorresy
j,keN LM,

A geometric observation shows that the pointwise estimate xgrg, < 2kn N[ Xq, holds.
Thus, if we choose # slightly larger than 1, then we have

3 Aj(Mxq,)
ok(n(1—-0)+L+1)
_],]'CGN LM;D,A

)‘jXQ'
< Cligllens,, Z 2k(n(179)J:L+1)
7,keN LMIL)\

< Cllgllaar, N fllzaz, -

g - Lafllza,, < Cllgllan,,

8 Smooth decompositions

8.1 A characterization of the Morrey space LM, ,(R") in terms
of Littlewood-Paley characterization

The following is a key ingredient for the proof of Theorem 1.3.
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Theorem 8.1. Let 1 <p < oo and 0 < A <n. Let b € S(R™) satisfy the inequalities
XB2) < ¥ < Xp). Define p =¥ —(2) and p; = p(277) for j € Z.
1. For any f € LM, »(R")

F=>Y FleFf)
j=—00

in the weak-* topology of LM, »(R™), and the estimate

( > |'7:_1[S0j~7:f]|2) = || fllza, 5

—
J LM, »

holds.
2. Assume that f € S'(R™) satisfies

[SIES

( 5 rfl[sojffn?) <o,

j==e0 LM, 5
Then the limit
F= ) FleFs

j=—o00

ezists in the weak-* topology of LM, \(R™), and the estimate

1F | g, , = (Z \f1[¢jff]!2>

=
J LM, »

holds.

In the lemma below, we consider the limit

Lo

. —1 )
Ll,lLI?ioonZ_Ll FlpiFyl-

The limit as Ly — oo does not cause any trouble, since it is a general fact for g € S'(R™)
that
Lo

i > F ol = 3 F el
J= J=

Thus, if g € LM, »(R"), we need to handle carefully the limit as L; — oo. The next
lemma shows that this is possible.
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Lemma 8.1. Let 1 < p < o0 and 0 < X\ < n. Let p € S(R™) be a radial function
satisfying the inequalities X p) < 1 < xp). Define o =1 —1p(2-) and p; = ¢(277+)
forjeZ. If g € LHy \(R"), then

9= > F el (8.1)

in the topology of LH, (R™).
Proof. Let

J
Sig= Y F e Fgl.

j=—7

Since g € LH, »(R™), we can take a complex (*-sequence A = {\;,}32, and a collection
{ar}2, of blocks such that g = D02 Aay in Li (R") and that Y ;o |\ <
2|lgllzm,, ,- To prove that (8.1) takes place in the topology of LH, »(R"), we take
arbitrary € > 0, and sufficiently large K € N so that

> Il <e (8.2)

k|>K+1

Set gx = Zfzf K Akai. Since Sy can be considered as a Calderén-Zygmund singular
integral operator in the sense of Definition 4.1 with the related constants independent
of J, it follows that

1579 = Ssgxllem, , < Cllg —9xlim, -
Therefore

1559 = 9llen, , < ISs9x = 9xllen, , + 11579 = Ssgxllin, , +1lg = 9xllen,
< 1Ss9x — 9k llem, , + (C+1)e

K
< Z Akl - 1Ssax — axllzm, , + (C + 1)e.

k=—K

Let @; be a cube such that supp(ax) C Qr. We choose &’ € (0, 1] sufficiently close
to 0, say 0 < &’ <n —n/p’. Denote by ¢(Qy) the center of the cube Q. Let z ¢ 3Qy
and suppose that |z — c(Qy)] < 2771 Since p € S(R"), we then have

—J-1

|Syar(z) —ar(z)| < C Y |F gy xan(@)| +C D |F e * ar(x)]

j=J+1 Jj=—00
oo —J-1 J”|ak )|

27" |ax(y) /
SC/ dy+C - d
Qk ;_1 (1 +2]|JZ - y| n+1 Qx Z 1 +2]|J} —y|)" 2

—J-1

> an 2jn
C<§:(WW—dQMW“%yE;AL+ym—dQMWEJH%MI

j=J+1

IN

IN

c( ! ; ! )H ||
- - ) llag|| -
27|z — c(Qp) "t T 27 |z — c(Qp)|—= ) T
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Hence,

|Ssak(x) — ar(z)]
< [xsq(2)(Syar(z) — ax(x))]

1 1
+0 (paT T =@ TmaT T —a) e

For the first term in the right-hand side, we can invoke the Littlewood-Paley theorem
for L7(R™). Consequently, with k fixed, we have

Jim 1Ssar — arllm, , =0

and hence
lim sup 1879 = gllom, , < 2e.
Since € > 0 is arbitrary, we have (8.1). O

Lemma 8.2. Let 1 < p < oo and 0 < A <n. Let 7 € S(R") be a radial function
supported away from the origin, and for j € Z denote 7, = 7(277+).

1. For all f € LM, (R"),

N

( > !fl[Tij]V) < Cl[fllar, »- (8.3)

—
J LM, 5

2. For all g € LH,y \(R™) such that supp(g) is a compact set in R™\ {0},

( > Ifl[ijg]IZ) < Cligllen, - (8.4)

j=—o0
LHp/,A

In (8.3), (8.4) C > 0 is independent of f, g respectively.

Proof. Let {ri}22__ be as in Lemma 2.4.
We first prove (8.3). Note that

oo % 1 00
( > rf—l[fjffJP) <c| [\ noF ) @
j=—00 LM, P lime LMp.x
by virtue of Lemma 2.4. Thus, we have
00 % 1 00
(Z |f1[rjff]!2) <C || > nWFmEA| dt
J=—o0 LM, P e LMy,

1
< C/ | Teey fll Lo,y dt
0
< O\ fllza, s -



Decompositions of local Morrey spaces 35

We now prove (8.4). Let J € N be sufficiently large. Then

(Z |f‘1mfg]|2) = <Z |f‘1[nfg]|2>

j=—00 j=—J

LHP/V)\ LHp’,)\
1 J
<C / > i) F )| dt
0 lj=-7 LH,
by Lemma 2.4. By the triangle inequality, we have
1
00 2 1 J
( > |5':_1[ij9}|2> = C/ > rOF 5Tl dt
j=—c0 LH, o M= LHy
1
< C/O HT{X[—J,J](j)sj(t)}jeZgHLHp/’)\ dt
< Cllgllm,,-
Thus, (8.4) follows and the proof is complete. H

Before we prove the remaining assertions, we need the following lemma for local
Triebel-Lizorkin-Morrey spaces.

Lemma 8.3. Let 1 < p < oo and 0 < X\ < n. Let ¢¥,p € S(R™) be radial functions
such that xpay < ¥ < Xp) and ¢ =P — P(2-).

1. Assume that f € LM, \(R") satisfies

0 ¢ supp(Ff), (Z \fl[goj}"f]|2> < .

j=—00
Then

1flleag,, < C < > If_l[%ff]l2) : (8.5)

=
J LM, »

2. Assume that g € LHy A(R™) satisfies
00 3
0 ¢ supp(Fy), ( > !f_l[sojfg]P) < co.
j=—00 LHp/’)\
Then )
o0 2
l9llem, , <C < > |f1[90jfg]!2) : (8.6)
j==oo LH, ,

In (8.5), (8.6) C' > 0 is independent of f, g respectively.
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Proof 1. Let f € LM, (R™). By the duality, for all f € LM, ,(R"), we can find
e C (R™) such that

comp
[flleas,, <20 fla)g(x)de (8.7)
RTL
and that
lgllze, , <2. (8.8)
Indeed, by the duality, we can find gy € LH,y »(R™), such that
I llea,n <2] [ f(2)go(x) dx (8.9)
R?’L
and that
9ol , < 1. (8.10)
By choosing sufficiently large R > 0, we have
1fllzag,, <2 f( z)xs(r)(7)go(r) dz (8.11)

A mollification of g allows us to assume that (8.7) and (8.8) hold. In view of 0 ¢
supp(F f), by setting 7 = (27'+) — ¥(4-) and 7; = 7(277-) for j € Z, we obtain

7i(§)wi () = ;i(§) (E€R", jeZ)
and .
f= 2 F e IF ' uF ] in S'(RY).

Thus, by using the S(R")- §'(R™) duality, we have

. f(x)g(x)dr = (f, g)

— i S (F o, F A F )

J—o0
=7

~Jim [ > F e FAWF o) do

By the Cauchy-Schwarz inequality, we have
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By Theorem 5.1,

| @@ de
B (Z |f-1[sojff]|2) (Z !f‘l[nfgw)

LMp LH,

By virtue of (8.4) and (8.8), we have

[N

<C (Z |]-"_1[g0j5’:f]|2) gl

—
J LM, »

=

=C (Z |f-1[wjff]|2)

j=—o0

LM,
If we combine this with (8.7), we obtain that
00 3
s 0| ( 32 1= et
J=mee LM, 5

2. Let g € LHy A(R™). By the Hahn-Banach theorem, we can find f, € LM, ,(R")
such that
(8.12)

9llLm, , =

- fo(x)g(x) dx

and that
| follzas, , = 1. (8.13)

Since functions in LH,y ,(R") having compact supports form a dense subset, by molli-
fication, we can find f € Cg;,  (R") such that

lgllem, , <2| [ flx)g(x)dz (8.14)

R

and that
1l zag, 0 < 2. (8.15)
In view 0 ¢ supp(Fg), we obtain
J
f@)g(x)de = (f.g) = lim Y (F ' nFf], F e, Fo))
R™ e j=—J
J

= lim Z F i Ff(2)F i Fgl(z) da.

J—o00
R™ j=—J
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By the Cauchy-Schwarz inequality, we have

[ )i
<[ (fj \fl[rjff1<x>\2>2 (fj rfl[sojfg1<x>\2>2 s
By Theorem 5.1, wejl_l;z o
[ @)
< (i If‘l[fjff]l2)2 (fj |f-1[sojfgn2)2
j=—c0 Ly, || N=T0 LH,

By virtue of (8.3) and (8.15), we have

< Ol fllea, ( Z |~7:_1[<Pj~7:9]|2>

j=—00

f(@)g(x) dx

R’Il

LHPI’A

[NIES

e ( 3 |f-1[sojfgn2>

j=—00

LHp/!A
If we combine this with (8.14), then we have
o0 >
lgllea, , <C ( > |7:_1[S0j7:9]|2>
=0 LH,

]

Lemma 8.4. Let 1 < ¢ < p < o0. Let o € § be a radial function and define
©; = p(279-) for j € Z. Assume that for f € S'(R™)

( > |F‘1[wjff]l2> < oo.
J=mee LM, 5

Then the limit p

F=Jim > F g7/
j=—J

exists in the weak topology of LM, \(R"), and

1F N2, < € (Z Ifl[sojfsz) : (8.16)

LM x

where C' > 0 s independent of f.
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Proof. 1. Let

J
fJ = Z f_l[wjff] - LMP,)\GRH).
j=—J

We can apply Lemma 8.3 (1); recall that we are assuming that 0 ¢ supp(F f). Thus,
by Lemma 8.3 (1), we have

1fsllens,, < C ( > !7:_1[9017:fJH2>

j=—ee LM, »
Note that F~¢,;F f;] = 0 as long as |J — j| > 1. Thus,
J+1 3
1fslleas,, <C ( > |f_1[90jffJ]|2>
j==J-1 LM, »

Note that |F~p,;Ffs]] < CM[F e, Ff]]. Hence, by virtue of Theorem 3.1, the
Fefferman-Stein vector-valued inequality, we have

J+1 2
1fillzas, , < € ( Y MF e F AP

j=—J—1
J LM,

<C (Z |f—1[wjff]!2)

j=—J—1
J LM, »

NI

<C (Z \fl[%ffHQ)

—
J LM, 5

Since the constant C' does not depend upon J, we can apply the Banach-Alaoglu theo-
rem, which asserts that the unit ball of the dual space of a Banach space X is weakly-
* compact. By virtue of the Banach-Alaoglu theorem, we can take a subsequence
{f1.}oo_, which converges in the weak-* topology to an element F'in LM, ,(R"); that
is,

lim fr.(@)g(x)dx = / F(z)g(z) dx.

m—oo Jpn n

2. Let us prove f; = Z;.]:_J F e, Ff] converges to F in the weak-* topology of
ME(R™). To this end, we choose g € LHy \(R"), so we have

/n F(z)g(z)dr = lim Fj (z)g(z)dx

m—0o0 fpn

since we know that F; ,m € N converges to a limit F' in the weak-* topology of
ME(R™). If we use Lemma 8.1, then we obtain

[ Fgta) s = Jim Z/n iy Fo)(x) de.
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Since ¢ is radial, we deduce that F ¢ = Fp and

/n F(z)g(z)dx = lim /n Z Fp; FF)(z)g(x) dx.

By the properties of the Fourier transform, we have

> F g FFl(@) = W 2 T le e Fla) = —(2;)” 7 > (RF pila =),

j=—1

By the definition of F);_, it follows that

S° F g FF() = WW}@% S (Fu Flila— )
j=—J j:—J
n/z,ggr;oz Z onFfl, F s — )
1 ; j=—J k=—Jm
= @ 2 AL F (e =)
=Y F e Ff(x)

Thus, it follows that

/nF(:c) dx—‘]lingo/n'Z]: [0; F flg(x) dx

Since g € LHy x(R") is chosen arbitrarily, it follows that f; converges to F' in the
weak-* topology of MP(R™).

3. (8.16) is a consequence of Lemma 8.3(1). Indeed, since {f;}3>, converges in the
weak-* topology to F, we have

1
|Fllzas,, < liminf || £, ]z, < C ( > If‘l[sajffW) ,

j=—o0

which proves (8.16). O
The next lemma concerns the uniqueness of F' in Lemma 8.4 when f € LM, \(R").

Lemma 8.5. Let 1 < ¢ <p<oo. If f € LM, ,(R"), then

J
f=tim 3 F g, (8.17)
j=—J

in the weak-* topology of LM, \(R™).
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Proof. In view of Lemmas 8.2 and 8.4, we see that

J
h = lim F e, Ff] € LM, A\(R™),

J—o00
j=—J

where the convergence takes place in the weak-* topology of LM, y(R™). Since F(f—h)
is supported at the origin, f — h must be a polynomial. Since f and h both belong to
LM, \(R™), we see that f = h. Consequently, we have (8.17). O

8.2 Smooth decompositions of Morrey spaces

Proof of Theorem 1.3(A). Let f € LM, (R™). Then we have

D)f + Z @;(D

in the weak-* topology of LM, »(R™) according to Theorem 8.1.

Below we do not take the term ¢(D)f into account because this term can be
considered separately and then incorporated afterwards.

Let p be a function such that

XBEN\B(1) < P < XB(16)\B(1/2)-

Then
2i(D)f(2) = s D)i (D) ()
- Rf pille = 1)es(D) 1) dy
ST Lo B e e D) Sy

Let us set

_ 1 1z — )0

@) = g [ F el D))y

Then

O tjm () EC‘a,nTj‘“'/2 S F 278 p;)(x — y)e;(D) f(y) dy

By Theorem 2.1, we have

0 ()
<C it Mg O™ [ F e e - I+ 2o -yl dy
YEQ)m 2-im4[0,2-9]
9—ilal

(14 27z — 2=im|)N yelgfm Mlp;(D)f1(y)-
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Therefore, if we set

" 1
Aj jm — =27 in/p inf M[@](D)f](y>a Mim = T Mjms
yeQJm )\]m
then each mj,, satisfies all requirements of the theorem and f = Z A jrm M - O
=0
Proof of Theorem 1.3(B). We consider
2 > Avmtum:
7=0 meZ
Below we do not take into account the term with 5 = 0 because it can be easily

incorporated. By Lemma 2.3, we have

P‘meﬁl[goj] * mum(x)|

21/n/p’)\ |2m1n j,v)n— \ufj\(l + 2 min(j,zz)lx . 27Vm|>7n71/2
< 21/n/p|)\ |2m1n(j,1/)n—(n+1/2)|l/—j|(1 + 2_V|(L’ . 2—Vm|>—n—1/2
< gvn/p=lv= J|/2M[)\ X(ZQL]( ).

If we use Theorem 3.1, then we obtain the desired result. O
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