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Abstract. We develop and apply a decomposition theory for generic local Morrey
spaces. Our results are smooth and nonsmooth decompositions, which follows from
the fact that local Morrey spaces are isomorphic to local Hardy-Morrey spaces and
local Triebel-Lizorkin-Morrey spaces in the generic case. As an application of our
results, we consider a bilinear estimate for the fractional integral operators.

1 Introduction

In 1938, C. Morrey considered an estimate for the solutions of partial differential equa-
tions. His result grew up to an embedding result, which is nowadays called Morrey’s
lemma [18]. Later, in 1969, Peetre proposed to consider that lemma from the view-
point of functonal analysis. In fact, from Morrey’s lemma we are led to consider some
important normed spaces, which are called Morrey spaces [27].

In 1975, D. Adams established that Morrey spaces can describe the boundedness
property of Riesz potentials. Recently, the behaviour of Riesz potentials has been
studied by the use of the local Morrey spaces. The definition of local Morrey spaces is
as follows. Here and in the sequel we write B(r) = {|y| < r} for r > 0. Let 1 < p <∞
and 0 ≤ λ < n. For a measurable function f : Rn → C one defines the norm ‖f‖LMp,λ

by:

‖f‖LMp,λ
≡ sup

r>0

(
1

rλ

∫
B(r)

|f(y)|p dy
) 1

p

.

One defines the space LMp,λ(Rn) as the set of all measurable functions f for which the
norm ‖f‖LMp,λ

is finite. We also denote by Q = Q(Rn) the set of all cubes whose axes
are parallel to the coordinate axes. The indicator function of a set E is denoted by χE.

In this paper, we shall establish and apply the following three theorems. Two of
them are related to non-smooth synthesis and decomposition.

Theorem 1.1. Let 1 < p < q <∞ and λ, ρ ∈ [0, n) satisfy

n− λ

p
>
n− ρ

q
. (1.1)
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Assume that {Qj}∞j=1 ⊂ Q(Rn), {aj}∞j=1 ⊂ LMq,ρ(Rn), {λj}∞j=1 ⊂ [0,∞) and

‖aj‖LMq,ρ ≤ ‖χQj
‖LMq,ρ , supp(aj) ⊂ Qj,

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
LMp,λ

<∞. (1.2)

Then the series
∞∑
j=1

λjaj converges in the Schwartz space S ′(Rn) of tempered distribu-

tions and in L1
loc(Rn) and satisfies the estimate∥∥∥∥∥

∞∑
j=1

λjaj

∥∥∥∥∥
LMp,λ

≤ C

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
LMp,λ

, (1.3)

where C > 0 depends only on n, p, q, λ and ρ.

Theorem 1.2. Let L ∈ N0 = N ∪ {0}, 1 < p < ∞ and λ ≥ 0. Let f ∈ LMp,λ(Rn).
Then there exists a triplet {λj}∞j=1 ⊂ [0,∞), {Qj}∞j=1 ⊂ Q(Rn) and {aj}∞j=1 ⊂ L∞(Rn)
such that f =

∑∞
j=1 λjaj in S ′(Rn) and L1

loc(Rn),

|aj| ≤ χQj
,

∫
Rn

xαaj(x) dx = 0, (1.4)

for all multi-indices α = (α1, α2, . . . , αn) with |α| = α1 + α2 + · · · + αn ≤ L, where
xα = xα1

1 ...x
αn
n , and for all v > 0∥∥∥∥∥∥

(
∞∑
j=1

(λjχQj
)v

)1/v
∥∥∥∥∥∥
LMp,λ

≤ Cv‖f‖LMp,λ
. (1.5)

Here the constant Cv > 0 is independent of f .

To formulate the third decomposition result, we recall first the definition of atoms
and molecules.

Definition 1.1 (Dyadic cubes). For ν ∈ Z and m = (m1,m2, . . . ,mn) ∈ Zn, define
Qν,m =

∏n
j=1[2

−νmj, 2
−νmj + 2−ν). The cube Qν,m with ν ∈ Z and m ∈ Zn is called

a dyadic cube of generation m. The collection of all such dyadic cubes is denoted by
D. The collection Dν is defined as the set of all dyadic cubes of the form Qν,m with
m ∈ Zn.

Definition 1.2 (Atom). A CK-function a is called an (s, p)-atom, s ∈ R, 0 < p <∞,
if the following support, cancellation and smoothness conditions are satisfied for some
cube Q ∈ Q :

1. supp(a) ⊂ 3Q,

2.
∫

Rn

xαa(x) dx = 0 for |α| ≤ L,

3. ‖∂αa‖L∞ ≤ |Q|s−
n
p
−|α| if |α| ≤ K.
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Now we define a molecule. To this end we use the following notation:

〈x〉 ≡
√

1 + |x|2

for x ∈ Rn.

Definition 1.3 (Molecule). A CK-function m is called an (s, p)-molecule, s ∈ R,
0 < p ≤ ∞, if the following oscillation and decay conditions hold for some point
x0 ∈ Rn and ν ∈ Z, where M is a sufficiently large constant:

1.
∫

Rn

xαm(x) dx = 0 for |α| ≤ L,

2. |∂αm(x)| ≤ 2−ν(s−n/p)+ν|α|〈2ν(x− x0)〉−M−|α| if |α| ≤ K.
Here and below we call m a molecule centered at Qν,m, if x0 = 2−νm.

We call the set χ(p)
Q = |Q|−

1
pχQ a p-normalized indicator.

With these definitions in mind, let us formulate the third theorem. In (1.6), it is
understood that ∑

Q∈D

sQaQ =
∞∑

ν=−∞

(∑
m∈Zn

sQν,maQν,m

)
and the convergence takes place in S ′(Rn).

Theorem 1.3 (Smooth atomic decomposition). Suppose that 1 < p < ∞, λ ∈
[0, n), K ∈ N and L ∈ N.

(A) Any function f ∈ LMp,λ(Rn) admits the following decomposition: for each dyadic
cube Q there exists a (0, p)-molecule mQ centered at Q and a complex number sQ
such that

f =
∑
Q∈D

sQmQ (1.6)

in the topology of S ′(Rn) and that the coefficients {sQ} depend linearly on f .
Moreover, they can be chosen in such a way that

‖f‖LMp,λ
'

∥∥∥∥∥∥
(∑

Q

|sQχ(p)
Q |

2

) 1
2

∥∥∥∥∥∥
LMp,λ

, (1.7)

that is,

C−1‖f‖LMp,λ
≤

∥∥∥∥∥∥
(∑

Q

|sQχ(p)
Q |

2

) 1
2

∥∥∥∥∥∥
LMp,λ

≤ C‖f‖LMp,λ
,

where the constant C depends only on p and λ.

(B) Conversely, if the right-hand side of (1.7) is finite, then∑
Q∈D

sQaQ,
∑
Q∈D

sQmQ ∈ LMp,λ(Rn),

where the aQ are (0, p)-atoms and the mQ are (0, p)-molecules.
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Theorem 1.5. [9, Theorem 1.2] Suppose that the real parameters p, λ, L satisfy

1 < p <∞, 0 ≤ λ < n, L ∈ N0.

Let f ∈GMp,λ(Rn). Then there exists a triplet {λj}∞j=1⊂ [0,∞), {Qj}∞j=1⊂Q(Rn) and
{aj}∞j=1 ⊂ L∞(Rn) such that f =

∑∞
j=1 λjaj in S ′(Rn), for all multi-indices α with

|α| ≤ L condition (1.4) is satisfied∥∥∥∥∥∥
(

∞∑
j=1

(λjχQj
)v

) 1
v

∥∥∥∥∥∥
GMp,λ

≤ Cv‖f‖GMp,λ

and that for all v > 0. Here the constant Cv > 0 is independent of f.

We describe how we organize the remaining part of this paper. Theorems 1.1 and
1.2 are proved in Section 7. We prove Theorem 1.3 in Section 8. Section 2 is devoted to
preliminary facts. Section 3 is a virtual starting point, where we consider the maximal
inequality, and extend the result to the vector-valued version. In Section 4, we consider
the boundedness property of fundamental operators. In Section 5, we investigate the
structure of the local Morrey spaces from the viewpoint of functional analysis. We are
mainly interested in predual spaces; our method heavily depends on [52]. We shall
specify the predual space of the local Morrey space LMp,λ(Rn) for 1 < p < ∞ and
λ ≥ 0, and use this observation in Section 6. Section 6 is a characterization of the local
Morrey space LMp,λ(Rn) for 1 < p < ∞ and λ ≥ 0. We also consider an embedding
result in Section 7. Lemma 7.1 is a key estimate. Theorem 1.1 and Lemma 7.1, proofs
of which can be found in Section 7, require an approach different from [23, 24]. Smooth
decompositions are dealt in Section 8.

2 Preliminaries

2.1 Structure of local Morrey spaces

Since we will have to compare spaces LMp,λ(Rn) and S ′(Rn) in Section 6, we start
with the following observation. Let S(Rn) be the Schwartz space of test functions; see
Definition 2.1 below.

Lemma 2.1. Let 1 < p <∞ and λ ≥ 0. Then for all κ ∈ S(Rn) and f ∈ LMp,λ(Rn),∫
Rn

|κ(x)f(x)| dx ≤ C‖f‖LMp,λ
sup
x∈Rn

(1 + |x|)2n+λ+1|κ(x)|, (2.1)

where C does not depend on κ and f .
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Proof. We decompose the left-hand side as follows:∫
Rn

|κ(x)f(x)|dx ≤
∫
B(1)

|κ(x)f(x)|dx+
∞∑
j=1

∫
B(j+1)\B(j)

|κ(x)f(x)|dx

≤ ‖κ‖L∞(B(1))‖f‖L1(B(1))

+
∞∑
j=1

1

j2n+λ+1

∫
B(j+1)\B(j)

|x|2n+λ+1|κ(x)||f(x)|dx

≤ C‖f‖LMp,λ

(
sup
x∈Rn

(1 + |x|)2n+λ+1|κ(x)|
)
,

where C depends only on n, p and λ.

2.2 A convolution estimate

We shall need the following lemma for convolutions in Section 6.

Proposition 2.1. Suppose that ρ is a positive decreasing function on [0,∞) and that

τ(x) = ρ(|x|) for all x ∈ Rn. (2.2)

Then for all t > 0 and x ∈ Rn[
t−nτ(t−1·) ∗ |f |

]
(x) ≤ ‖τ‖L1Mf(x) (2.3)

for all f ∈ L1
loc(Rn).

2.3 Grand maximal estimate

Our idea is to convert the norm of LMp,λ(Rn) to one of Hardy type. To this end,
we recall the definition of the grand maximal function Mf as well as the topology of
S(Rn).

Definition 2.1. 1. The topology on S(Rn) is defined by the norms {ρN}N∈N where

ρN(ϕ) ≡
∑
|α|≤N

sup
x∈Rn

(1 + |x|)N |∂αϕ(x)| (ϕ ∈ S(Rn)).

Define FN ≡ {ϕ ∈ S(Rn) : ρN(ϕ) ≤ 1} for N ∈ N0.
2. The space S ′(Rn) is the topological dual of S(Rn).
3. Let f ∈ S ′(Rn). The grand maximal operator M is defined by

Mf(x) = MNf(x) ≡ sup{|t−nϕ(t−1·) ∗ f(x)| : t > 0, ϕ ∈ FN}

for all x ∈ Rn.

We recall the following lemma, which will be key to this paper. We refer to [39]
for the proof. By C∞

comp(Rn), we denote the set of all compactly supported infinitely
continously differentiable functions in Rn. The set of all polynomials of degree less
than or equal to d is denoted by Pd(Rn).
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Lemma 2.2. Let f ∈ S ′(Rn), d ∈ N0 and j ∈ Z. Then there exist an index set Kj,
collections of cubes {Qj,k}k∈Kj

and functions {ηj,k}k∈Kj
⊂ C∞

comp(Rn), which are all
indexed by Kj for every j, and a decomposition

f = gj + bj, bj =
∑
k∈Kj

bj,k,

such that the following properties hold.

1) gj, bj, bj,k ∈ S ′(Rn).

2) Define Oj ≡ {y ∈ Rn : Mf(y) > 2j} and consider its Whitney decomposition.
Then the cubes {200Qj,k}k∈Kj

have the bounded intersection property, and

Oj =
⋃
k∈Kj

Qj,k =
⋃
k∈Kj

200Qj,k. (2.4)

3) Consider the partition of unity {ηj,k}k∈Kj
with respect to {Qj,k}k∈Kj

. Then each
function ηj,k is supported in Qj,k and∑

k∈Kj

ηj,k = χ{y∈Rn :Mf(y)>2j}, 0 ≤ ηj,k ≤ 1.

4) The distribution gj satisfies the inequality:

Mgj(x) ≤ C1

Mf(x)χOj
c(x) + 2j

∑
k∈Kj

`j,k
n+d+1

(`j,k + |x− xj,k|)n+d+1

 (2.5)

for all x ∈ Rn.

5) Each distribution bj,k is given by bj,k = (f − cj,k)ηj,k with a certain polynomial
cj,k ∈ Pd(Rn) satisfying

〈f − cj,k, η · P 〉 = 0for all q ∈ Pd(Rn),

and

Mbj,k(x) ≤ C2

(
Mf(x)χQj,k

(x) + 2j · `j,k
n+d+1

|x− xj,k|n+d+1
χRn\Qj,k

(x)

)
(2.6)

for all x ∈ Rn.

In the above, xj,k and `j,k denote the center and the edge-length of Qj,k, respectively,
and C1 and C2 depend only on n.

Furthermore, if f ∈ L1
loc(Rn), then g is an L∞(Rn) function whose norm is less

than or equal to 2−j.
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2.4 Plancherel-Polya-Nikol’skii inequality

Recall that, for a measurable function f and r > 0, the maximal operator M (r) is
defined by

M (r)f(x) = sup
r>0

(
1

|B(x, r)|

∫
B(x,r)

|f(y)|r dy
) 1

r

.

Denote by (S ′(Rn))B(x0,1) the Schwartz distributions f whose Fourier transform Ff is
supported in B(x0, 1).

The following theorem will be used in Section 8; we refer to [43] for the proof.

Theorem 2.1. Let f ∈ (S ′(Rn))B(x0,1). Then

sup
y∈Rn

|∇f(x− y)|
1 + |y|nr

≤ C sup
y∈Rn

|f(x− y)|
1 + |y|nr

, (2.7)

sup
y∈Rn

|f(x− y)|
1 + |y|nr

≤ CM (r)f(x) (2.8)

for all x ∈ Rn.

2.5 Moment condition

We need the following estimate, whose proof can be found in [3, p. 466].

Lemma 2.3. Let ν, µ ∈ Z with ν ≥ µ, M > 0 and L ∈ N0, and N > M + L + n.
Suppose that a CL(Rn)-function ϕ and xϕ are such that

|∇Lϕ(x)| ≤ 2µ(n+L)

(1 + 2µ|x− xϕ|)M

for all x ∈ Rn. Assume, in addition, that ψ is a measurable function such that∫
Rn

xβψ(x) dx = 0, if |β| ≤ L− 1

and that, for some xψ ∈ Rn,

|ψ(x)| ≤ 2νn

(1 + 2ν |x− xψ|)N

for all x ∈ Rn. Then ∣∣∣∣∫
Rn

ϕ(x)ψ(x) dx

∣∣∣∣ ≤ C
2µn−(ν−µ)L

(1 + 2µ|xϕ − xψ|)M
.
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2.6 Rademacher functions

The next lemma is useful when we consider the `2(Z)-norm.

Lemma 2.4. Let 0 < p <∞. Define r̃k(t) ≡ (−1)[2kt] for k ∈ N, t ∈ [0, 1]. Rearrange
{r̃k}∞k=1 to have {rj}∞j=−∞. Then for any `2(Z)-complex sequences {aj}∞j=−∞, we have∥∥∥∥∥

∞∑
j=−∞

ajrj

∥∥∥∥∥
Lp[0,1]

'

(
∞∑

j=−∞

|aj|2
) 1

2

.

See [48] for the proof.

3 Maximal inequalities

In this section, we consider the Hardy-Littlewood maximal operator M . Recall that
M is defined for measurable functions f by the formula

Mf(x) = sup
B∈Bx

1

|B|

∫
B

|f(y)| dy (x ∈ Rn),

where Bx denotes the set of all balls containing the point x.
The aim of this section is to extend the well-known inequalities∫

Rn

Mf(x)p dx ≤ cp,n

∫
Rn

|f(x)|p dx (3.1)

and ∫
Rn

(
∞∑
j=1

Mfj(x)
q

) p
q

dx ≤ cp,q,n

∫
Rn

(
∞∑
j=1

|fj(x)|q
) p

q

dx, (3.2)

where cp,n and cp,q,n are independent of f and fj, j ∈ N, respectively. Here the param-
eters p and q satisfy 1 < p, q < ∞. When 1 < p < q = ∞, we have a counterpart to
(3.2); ∫

Rn

(
M

[
sup
j∈N

|fj|
]

(x)

)p
dx ≤ cp,n

∫
Rn

(
sup
j∈N

|fj(x)|
)p

dx. (3.3)

Note that (3.3) is a direct consequence of (3.1) and the pointwise estimate

M

[
sup
j∈N

|fj|
]

(x) ≤ sup
j∈N

|fj(x)|. (3.4)

Our main result in this section is as follows:

Theorem 3.1. Let 1 < p <∞, 1 < q <∞ and 0 ≤ λ < n. Then we have

‖Mf‖LMp,λ
≤ C‖f‖LMp,λ

(3.5)

and ∥∥∥∥∥∥
(

∞∑
j=1

(Mfj)
q

) 1
q

∥∥∥∥∥∥
LMp,λ

≤ C

∥∥∥∥∥∥
(

∞∑
j=1

|fj|q
) 1

q

∥∥∥∥∥∥
LMp,λ

. (3.6)
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Here, the constant C in (3.5) depends only on p, and n and the one in (3.6) depends
only on p, q and n. In particular,∥∥∥∥M [

sup
j∈N

|fj|
]∥∥∥∥

LMp,λ

≤ C

∥∥∥∥sup
j∈N

|fj|
∥∥∥∥
LMp,λ

. (3.7)

Proof. Analogous to (3.3), we can deduce (3.7) by using (3.4) and (3.5). By setting
f1 = f, f2 = f3 = · · · = 0 in (3.6), we can obtain (3.5). Hence, we concentrate on
proving (3.6).

Estimate (3.6) leads to the proof of the inequality; 1

rλ

∫
B(r)

(
∞∑
j=1

Mfj(y)
q

) p
q

dy

 1
p

≤ C

∥∥∥∥∥∥
(

∞∑
j=1

|fj|q
) 1

q

∥∥∥∥∥∥
LMp,λ

, (3.8)

where the constant C > 0 depends on p, q, λ and n, but not on r and fj.
We define fj,1 ≡ fjχB(5r) and fj,2 ≡ fj − fj,1. Then we can decompose estimate

(3.8) into two parts: 1

rλ

∫
B(r)

(
∞∑
j=1

Mfj,1(y)
q

) p
q

dy

 1
p

≤ C

∥∥∥∥(∑∞
j=1 |fj|q

) 1
q

∥∥∥∥
LMp,λ

, (3.9)

 1

rλ

∫
B(r)

(
∞∑
j=1

Mfj,2(y)
q

) p
q

dy

 1
p

≤ C

∥∥∥∥(∑∞
j=1 |fj|q

) 1
q

∥∥∥∥
LMp,λ

. (3.10)

Estimate (3.9) follows from (3.2). Indeed, by (3.2), we obtain 1

rλ

∫
B(r)

(
∞∑
j=1

Mfj,1(y)
q

) p
q

dy

 1
p

≤

 1

rλ

∫
Rn

(
∞∑
j=1

Mfj,1(y)
q

) p
q

dy

 1
p

≤ (cp,q,n)
1
p

 1

rλ

∫
Rn

(
∞∑
j=1

|fj,1(y)|q
) p

q

dy

 1
p

.

If we use the definition of fj,1, then we obtain

 1

rλ

∫
Rn

(
∞∑
j=1

|fj,1(y)|q
) p

q

dy

 1
p

=

 1

rλ

∫
B(5r)

(
∞∑
j=1

|fj,1(y)|q
) p

q

dy

 1
p

= 5
n
p

 1

(5r)λ

∫
B(5r)

(
∞∑
j=1

|fj,1(y)|q
) p

q

dy

 1
p

.
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In terms of the local Morrey norm, we conclude; 1

rλ

∫
B(r)

(
∞∑
j=1

Mfj,1(y)
q

) p
q

dy

 1
p

≤ (5ncp,q,n)
1
p

∥∥∥∥∥∥
(

∞∑
j=1

|fj|q
) 1

q

∥∥∥∥∥∥
LMp,λ

.

As for (3.10), we need the following pointwise estimate:

Mfj,2(x) = sup
B∈Bx

1

|B|

∫
B\B(5r)

|fj(y)| dy ≤ 3n sup
R>2r

1

|B(R)|

∫
B(R)

|fj(y)| dy.

Keeping this in mind, we choose R∗j ∈ (2r,∞) so that

Mfj,2(x) ≤
4n

|B(R∗j )|

∫
B(R∗j )

|fj(y)| dy.

Let us set
Rj ≡ 21+[log2R

∗
j /r]r.

Then we have
Mfj,2(x) ≤

8n

|B(Rj)|

∫
B(Rj)

|fj(y)| dy.

Thus, we obtain

Mfj,2(x) ≤ 8n
∞∑
k=1

1

|B(2kr)|

∫
B(2kr)

|fj(y)| dy.

Thus, it follows that 1

rλ

∫
B(r)

(
∞∑
j=1

Mfj,2(x)
q

) p
q

dy

 1
p

≤ Cr(n−λ)/p

(
∞∑
j=1

(
∞∑
k=1

1

|B(2kr)|

∫
B(2kr)

|fj(y)| dy

)q) 1
q

.

By the Minkowski inequality, 1

rλ

∫
B(r)

(
∞∑
j=1

Mfj,2(x)
q

) p
q

dy

 1
p

≤ Cr(n−λ)/p

∞∑
k=1

1

|B(2kr)|

∫
B(2kr)

(
∞∑
j=1

|fj(y)|q
) 1

q

dy.

Since λ < n, we obtain (3.10).
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4 Singular integral inequalities

We consider the boundedness of the singular integral operator needed in Section 8.

Definition 4.1. An L2(Rn)-bounded linear operator T is said to be a (generalized)
Calderón-Zygmund operator if it satisfies the following conditions.

(1) There is a measurable function K : Rn × Rn → C such that for all L∞(Rn)-
functions with compact supports,

Tf(x) =

∫
Rn

K(x, y)f(y) dy for all x /∈ supp(f). (4.1)

(2) The kernel function K satisfies the following estimates: for some C > 0

|K(x, y)| ≤ C
1

|x− y|n
, (4.2)

if x 6= y, and

|K(x, z)−K(y, z)|+ |K(z, x)−K(z, y)| ≤ C
|x− y|
|x− z|n+1

, (4.3)

if 0 < 2|x− y| < |z − x|.

In this paper, we use the following typical example of a (generalized) Calderón-
Zygmund operator. (See the proof in [17, p. 649–650])

Lemma 4.1. Let τ ∈ S(Rn) be a function supported away from the origin. Set τj ≡
τ(2−j·) for j ∈ Z. Let ε = {εj}j∈Z be a sequence taking its values in the set {−1, 0, 1}.

1. Define

Kε ≡
∞∑

j=−∞

εjF−1[τj].

(a) For all x ∈ Rn,

|Kε(x)| ≤
∞∑

j=−∞

|F−1[τj](x)| ≤ C|x|−n. (4.4)

(b) For all x ∈ Rn and k = 1, 2, . . . , n,

|∂kKε(x)| ≤
∞∑

j=−∞

|∂kF−1[τj](x)| =
∞∑

j=−∞

∣∣∣∣∂F−1[τj]

∂xk
(x)

∣∣∣∣ ≤ C|x|−n−1. (4.5)

In (4.4) and (4.5), the constant C does not depend on ε.

2. Define

Tεf ≡
∞∑

j=−∞

εjF−1[τj] ∗ f

for f ∈ L2(Rn).
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(a) The series defining Tεf converges in the topology of L2(Rn).

(b) Let f ∈ L2(Rn) have a compact support. If x /∈ supp(f), then

Tεf(x) =

∫
Rn

Kε(x− y)f(y) dy.

5 Predual space LHq,ρ(Rn)

In this section we consider the local predual Morrey space LHq,ρ(Rn) based on the
idea of Zorko [52].

Definition 5.1. Let 1 < q <∞ and 0 ≤ ρ < n.

1. A Lq(Rn) function b is said to be a centered (q, ρ)-block if it has support in B(r)
for some r > 0 and ‖b‖Lq ≤ r−ρ/q

′.

2. The local predual Morrey space LHq,ρ(Rn) is the set of all elements f in L1
loc(Rn)

such that

f =
∞∑
j=1

λjbj,

where {λj}∞j=1 ∈ `1(N) and each bj is a (q, ρ)-block.

Let 1 < a < q. By the Hölder inequality, we have(∫
B(r)

|H(x)|a dx
) 1

a

≤
(∫

B(r)

|H(x)|q dx
) 1

q

|B(r)|
1
a
− 1

q .

Thus, if a is defined by
n

a
− n

q
=
ρ

q′
,

then ‖b‖La ≤ vn
1
a
− 1

q for any (q, ρ)-block, where vn denotes the volume of the unit ball
in Rn. Thus, LHq,ρ(Rn) is embedded into La(Rn).

In this section, we aim to prove the following result:

Theorem 5.1. Let 1 < p <∞ and 0 ≤ λ < n.

1. Let f ∈ LMp,λ(Rn). Then, for any g ∈ LHp′,λ(Rn), we have f · g ∈ L1(Rn) and
the mapping

g ∈ LHp′,λ(Rn) 7→
∫

Rn

f(x)g(x) dx ∈ C

defines a continuous linear functional Lf on LHp′,λ(Rn). The operator norm of
Lf equals ‖f‖LMp,λ

.

2. Conversely, any continuous linear functional L on LHp′,λ(Rn) can be realized as
L = Lf with a certain f ∈ LMp,λ(Rn). In addition, if f1 and f2 ∈ LMp,λ(Rn)
define the same functional, then f1 = f2 almost everywhere.
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Recall that the following result is well known as the duality Lp(Rn)-Lp′(Rn), and
observe that Theorem 5.1 covers the duality Lp(Rn)-Lp′(Rn) as a special case when
λ = 0.

Proposition 5.1. Let 1 < p <∞.

1. Let f ∈ Lp(Rn). Then for any g ∈ Lp′(Rn), f · g ∈ L1(Rn) and the mapping

g ∈ Lp′(Rn) 7→
∫

Rn

f(x)g(x) dx ∈ C

defines a continuous linear functional Lf on Lp
′
(Rn). The operator norm of Lf

equals ‖f‖Lp.

2. Conversely, any continuous linear functional L on Lp
′
(Rn) can be realized as

L = Lf with a certain f ∈ Lp(Rn). In addition, if f1 and f2 ∈ Lp(Rn) define the
same functional, then f1 = f2 almost everywhere.

Proof of Theorem 5.1. The first statement is a corollary of the following inequality:∫
Rn

|f(x)b(x)| dx ≤ ‖f‖LMp,λ
,

whenever b is a (p′, λ)-block.
To prove the second statement, let L be a continuous linear functional on LHp,λ(Rn).

For any R ∈ (0,∞), the functional

g ∈ Lp′(Rn) 7→ L(gχB(R)) ∈ C

is a bounded linear mapping with norm less than or equal to R−λ/p, because
R−λ/p

‖g‖Lp′
gχB(R) is a (p′, λ)-block. Thus,

|L(gχB(R))| ≤ Rλ/p‖g‖Lp′

for all R > 0. Hence, for each R > 0, according to Proposition 5.1(1), we obtain a
measurable function fR such that

L(gχB(R)) =

∫
Rn

fR(x)g(x) dx, ‖fR‖Lp ≤ Rλ/p.

Observe that

L(gχB(R)) = L(gχB(R)χB([R+1])) =

∫
Rn

f[R+1](x)g(x)χB(R)(x) dx

and the uniqueness of fj (see Proposition 5.1(2)) implies that

fR(x) = χB(R)(x)f[R+1](x).

Thus, there exists a measurable function f such that fR(x) = χB(R)(x)f(x) for all
R > 0. Moreover, f ∈ LMp,λ(Rn).
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6 Characterization of local Hardy Morrey spaces in terms of
the grand maximal operator and the heat kernel

The next proposition characterizes the space LMp,λ(Rn) in terms of the heat kernel.
Let t > 0 and f ∈ S ′(Rn) and define

et∆f(x) ≡

〈
f,

1√
(4πt)n

exp

(
−|x− ·|

2

4t

)〉
(x ∈ Rn).

We say that f ∈ HLMp,λ(Rn) if and only if f ∈ S ′(Rn) and sup
t>0

|et∆f | ∈ LMp,λ(Rn).

We define
‖f‖HLMp,λ

≡
∥∥∥∥sup
t>0

|et∆f |
∥∥∥∥
LMp,λ

.

Let 1 < p < ∞ and 0 ≤ λ < n. Then one defines the local Hardy Morrey space
HLMp,λ(Rn) as the set of all f ∈ S ′(Rn) for which the norm

‖f‖HLMp,λ
≡
∥∥∥∥sup
t>0

|et∆f |
∥∥∥∥
LMp,λ

<∞.

Let us show that LMp,λ(Rn) and HLMp,λ(Rn) are isomorphic by proving the following
proposition.

Proposition 6.1. Let 1 < p <∞ and 0 ≤ λ < n.

1. If f ∈ LMp,λ(Rn), then f ∈ HLMp,λ(Rn) and

‖f‖LMp,λ
≤ ‖f‖HLMp,λ

≤ C‖f‖LMp,λ
, (6.1)

where C > 0 is independent of f .

2. If f ∈ HLMp,λ(Rn), then f is represented by a measurable function g which
belongs to LMp,λ(Rn).

Proof. 1. We can easily verify that LMp,λ(Rn) ↪→ S ′(Rn) by using Lemma 2.1. Also,
we have

sup
t>0

|et∆f | ≤Mf

by virtue of Proposition 2.1. Due to Theorem 3.1 on the LMp,λ(Rn)-boundedness of
the Hardy-Littlewood maximal operator f ∈ HLMp,λ(Rn) and that the right-hand-side
inequality in (6.1) follows.

2. Recall that the dual of LHp′,λ(Rn) is isomorphic to LMp,λ(Rn) as we have
established in Theorem 5.1. Let L : f ∈ LMp,λ(Rn) 7→ Lf ∈ (LHp′,λ(Rn))∗ be an
isomorphism in Theorem 5.1. We shall make use of the general result due to Banach
and Alaoglu: If X is a Banach space, then the unit ball of X∗ is weakly-* (sequentially)
compact. By the assumption, {et∆f}t>0 forms a bounded set in LMp,λ(Rn). Consider
a sequence {tj}∞j=1 in [0, 1] which decreases to 0. Then {Letj∆f}

∞
j=1 forms a bounded

set in (LHp′,λ(Rn))∗. Thus, by the Banach-Alaoglu theorem, there exists a positive
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sequence, which we denote again by {tj}∞j=1, such that Letj∆f converges to G = Lg ∈
(LHp′,λ(Rn))∗ for some g ∈ LMp,λ(Rn) in the weak-* sense. Observe that

‖f‖LMp,λ
= ‖Lf‖(LHp′,λ)∗ ≤ lim inf

j→∞
‖Letj∆f‖(LHp′,λ)∗ = lim inf

j→∞
‖etj∆f‖LMp,λ

. (6.2)

Moreover, since f ∈ S ′(Rn), etj∆f converges to f ∈ S ′(Rn). Thus, we conclude that
S ′(Rn) 3 f = g ∈ LMp,λ(Rn).

The left inequality in (6.1) follows since the space LMp,λ(Rn) is isomorphic to the
dual of LHp′,λ(Rn). Thus, from (6.2),

‖f‖LMp,λ
≤
∥∥∥∥sup
t>0

|et∆f |
∥∥∥∥
LMp,λ

= ‖f‖HLMp,λ
.

Proposition 6.2. Let 1 < p <∞ and 0 ≤ λ < n.

(1) If f ∈ LMp,λ(Rn), then Mf ∈ LMp,λ(Rn) and

C−1‖f‖LMp,λ
≤ ‖Mf‖LMp,λ

≤ C‖f‖LMp,λ
, (6.3)

where C > 0 is independent of f.

(2) Let f ∈ S ′(Rn). If Mf ∈ LMp,λ(Rn), then f is represented by a measurable
function g which belongs to LMp,λ(Rn).

Proof. The implication (1) =⇒ (2) follows from the pointwise inequality Mf(x) ≤
CMf(x). The converse implication (2) =⇒ (1) follows from the inequality |et∆f(x)| ≤
CMf(x). Indeed, from this pointwise estiamte, we conclude that supt>0 |et∆f(·)| ∈
LMp,λ(Rn). Thus, by applying Proposition 6.1 we have f ∈ LMp,λ(Rn).

7 Non-smooth decomposition

7.1 Norm estimate

We shall now prove Theorem 1.1. Let us write

f =
∞∑
j=1

λjaj.

Proof. To prove (1.3), we resort to the duality:

‖f‖LMp,λ
= sup

{∫
Rn

|f(x)g(x)| dx : ‖g‖LHp′,λ
= 1

}
.

For the time being, we assume that there exists N ∈ N such that λj = 0 whenever
j ≥ N . Let us assume in addition, without loss of generality, that all aj are non-
negative. Fix a positive (p′, λ)-block g with the associated ball B. We may suppose
that g ≥ 0 a.e., since f is non-negative.



Decompositions of local Morrey spaces 25

Assume first that each Qj contains B as a proper subset. If we group the j’s such
that Qj are identical, we can assume that Qj is centered at the origin and satisfies
|Qj| = 2jn|B| for each j ∈ N. Then we have∫

Rn

f(x)g(x) dx =
∞∑
j=1

λj

∫
B

aj(x)g(x) dx ≤ C

∞∑
j=1

λj‖aj‖Lp(B)‖g‖Lp′ .

By the size condition for aj and g, we obtain∫
Rn

f(x)g(x) dx ≤ C

∞∑
j=1

λj|B|
λ

np
+ 1

p
− 1

q ‖aj‖Lq(B)

≤ C
∞∑
j=1

λj|B|
λ

np
+ 1

p
− 1

q
− ρ

nq ‖aj‖LMq,ρ

≤ C
∞∑
j=1

λj|B|
λ

np
+ 1

p
− 1

q
− ρ

nq ‖χQj
‖LMq,ρ .

Since Qj is centered at the origin, we obtain∫
Rn

f(x)g(x) dx ≤ C

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
LMp,λ

∞∑
j=1

(
|B|
|Bj|

) λ
np

+ 1
p
− 1

q
− ρ

nq

= C

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
LMp,λ

by virtue of (1.1).
Conversely, assume that B contains each Qj. Then we have∫

Rn

f(x)g(x) dx =
∞∑
j=1

λj

∫
Qj

aj(x)g(x) dx ≤ C
∞∑
j=1

λj‖aj‖Lq‖g‖Lq′ (Qj)
.

Denote by Bj = B(rj) the ball which is centered at the origin and which contains Qj.
Then we have ∫

Rn

f(x)g(x) dx ≤ C
∞∑
j=1

λj‖aj‖Lq‖g‖Lq′ (Qj)

≤ C

∞∑
j=1

λjrj
−ρ/q‖aj‖LMq,λ

‖g‖Lq′ (Qj)

≤ C
∞∑
j=1

λjrj
−ρ/q‖χQj

‖LMq,λ
‖g‖Lq′ (Qj)

≤ C

∞∑
j=1

λj|Qj|1/q‖g‖Lq′ (Qj)
.

By using the Hardy-Littlewood maximal operator, we obtain∫
Rn

f(x)g(x) dx ≤ C

∫
Rn

∞∑
j=1

λjχQj
(x)χB(x)M [|g|q′ ](x)

1
q′ dx.
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Note that
‖(M [|g|q′ ])1/q′‖Hp′,λ

≤ C‖g‖Hp′,λ
≤ C,

assuming p < q. If we apply Theorem 5.1, then we have the desired result.

7.2 Nonsmooth decomposition of functions

The following lemma is the key to the decomposition of local Morrey spaces as is
mentioned in Section 1; the structure of local Morrey spaces comes into play here.

Lemma 7.1. Let ϕ ∈ S(Rn). With the same notation as in Lemma 2.2, we have

|〈bj, ϕ〉| ≤ Cϕ

{
∞∑
l=0

(
1

2ln
∥∥Mf · χOj

∥∥
L1(B(2l))

)θ}1/θ

(7.1)

and

|〈gj, ϕ〉| ≤ Cϕ

{
∞∑
l=0

(
1

2ln
∥∥Mf · χOj

∥∥
L1(B(2l))

)θ}1/θ

, (7.2)

where θ = n+d+1
n

and the constants Cϕ in (7.1) and (7.2) depends on ϕ but not on j or
k.

Proof. For sufficiently large constant M = Mϕ, we have ψx ≡ M−1ϕ(x − ·) ∈ FN for
all x ∈ B(1), so that

|〈bj, ϕ〉| = |bj ∗ ψx(z)|z=x ≤M inf
x∈B(1)

Mbj(x).

Thus, we have

|〈bj, ϕ〉| ≤ C inf
x∈B(1)

Mbj(x) ≤ C inf
x∈B(1)

∑
k∈Kj

Mbj,k(x).

Observe also that

CMχB(xB ,r)(x) ≥
rn

rn + |x− xB|n
≥ rn

|x− xB|n
χRn\B(xB ,r)(x) (x ∈ Rn).

It then follows from (2.6) that

∑
k∈Kj

Mbj,k(x) ≤ C
∑
k∈Kj

(
Mf(x)χQj,k

(x) + 2j · `j,k
n+d+1

|x− xj,k|n+d+1
χRn\Qj,k

(x)

)

≤ C

Mf(x)χOj
(x) + 2j

∑
k∈Kj

MχQj,k
(x)

n+d+1
n

 .
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Thus, from this pointwise estimate and (3.10), we deduce that

‖Mbj‖L1(B(1)) ≤ C

∥∥∥∥∥∥Mf · χOj
+ 2j

∑
k∈Kj

(MχQj,k
)

n+d+1
n

∥∥∥∥∥∥
L1(B(1))

≤ C
∥∥Mf · χOj

∥∥
L1(B(1))

+ C

∥∥∥∥∥∥2j
∑
k∈Kj

(MχQj,k
)

n+d+1
n

∥∥∥∥∥∥
L1(B(1))

≤ C
∥∥Mf · χOj

∥∥
L1(B(1))

+ C

{
∞∑
l=0

(
1

2ln
∥∥Mf · χOj

∥∥
L1(B(2l))

)θ}1/θ

.

In the same way, we can prove (7.2): indeed, we obtain

‖Mgj‖L1(B(1)) ≤ C
∥∥Mf · χOj

c

∥∥
L1(B(1))

+ C

∥∥∥∥∥∥
∑
k∈Kj

2j · `j,kn+d+1

(`j,k + | · −xj,k|)n+d+1

∥∥∥∥∥∥
L1(B(1))

≤ C
∥∥Mf · χOj

c

∥∥
L1(B(1))

+ C

∥∥∥∥∥∥
∑
k∈Kj

2j(MχQj,k
)

n+d+1
n

∥∥∥∥∥∥
L1(B(1))

≤ C
∥∥Mf · χOj

c

∥∥
L1(B(1))

+ C

{
∞∑
l=0

(
1

2ln
∥∥Mf · χOj

∥∥
L1(B(2l))

)θ}1/θ

.

Thus, (7.2) is proved.

Lemma 7.2. In the notation of Lemma 2.2, in the topology of S ′(Rn), we have gj → 0
as j → −∞ and bj → 0 as j →∞. In particular,

f =
∞∑

j=−∞

(gj+1 − gj)

in the topology of S ′(Rn).

Proof. Observe that

1

2ln
‖Mf · χOj

‖L1(B(2l)) ≤
C

2ln
‖Mf‖L1(B(2l)) ≤

C

2l(n−λ)/p
‖f‖HLMp,λ

.

Consequently, we may use the Lebesgue convergence theorem to conclude that bj → 0
as j →∞. Hence, it follows that f = limj→∞ gj in S ′(Rn).

Likewise, by using (7.2), we obtain gj → 0 as j → −∞ by the Lebesgue convergence
theorem. Consequently, it follows that f = limj→∞ gj = limj,k→∞

∑j
l=−k(gl+1 − gl) in

S ′(Rn).

We shall now prove Theorem 1.2.
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Proof. For each j ∈ Z, consider the level set

Oj ≡ {x ∈ Rn : Mf(x) > 2j}. (7.3)

Then it follows immediately from the definition that

Oj+1 ⊂ Oj. (7.4)

If we apply Lemma 2.2, then f can be decomposed as

f = gj + bj, bj =
∑
k

bj,k, bj,k = (f − cj,k)ηj,k

where each bj,k is supported in a cube Qj,k as described in Lemma 2.2.
We know that

f =
∞∑

j=−∞

(gj+1 − gj), (7.5)

with the series converging in the sense of distributions from Lemma 7.2. Here, going
through the same argument as the one in [39, p. 108–109], we have

f =
∑
j,k

Aj,k, gj+1 − gj =
∑
k

Aj,k (j ∈ Z) (7.6)

in the sense of distributions, where each Aj,k, supported in Qj,k, satisfies the pointwise
estimate |Aj,k(x)| ≤ C02

j for some universal constant C0 and the moment condition∫
Rn

Aj,k(x)q(x) dx = 0 for every q ∈ Pd(Rn). With these observations in mind, let us

set
aj,k ≡

Aj,k
C02j

, κj,k ≡ C02
j.

Then we shall obtain that each aj,k satisfies

|aj,k| ≤ χQj,k
,

∫
Rn

xαaj,k(x) dx = 0 (|α| ≤ L)

and that f =
∑
j,k

κj,kaj,k in the topology of HLMp,λ(Rn), once we prove the estimate

for the coefficients. Rearrange {aj,k} to obtain {aj}. Do the same thing to {λj,k}.
To establish (1.5), we need to estimate

α ≡

∥∥∥∥∥∥
(

∞∑
j=−∞

|λjχQj
|v
)1/v

∥∥∥∥∥∥
LMp,λ

.

Since
{(κj,k;Qj,k)}j,k = {(λj;Qj)}j,
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we have

α =

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∑
k∈Kj

|κj,kχQj,k
|v
1/v

∥∥∥∥∥∥∥
LMp,λ

.

By using the definition of κj, we then have

α = C0

∥∥∥∥∥∥∥
 ∞∑
j=−∞

∑
k∈Kj

|2jχQj,k
|v
1/v

∥∥∥∥∥∥∥
LMp,λ

= C0

∥∥∥∥∥∥∥
 ∞∑
j=−∞

2jv
∑
k∈Kj

χQj,k

1/v
∥∥∥∥∥∥∥
LMp,λ

.

Observe that (2.4), together with the bounded overlapping property, yields

χOj
(x) ≤

∑
k∈Kj

χQj,k
(x) ≤

∑
k∈Kj

χ200Qj,k
(x) ≤ CχOj

(x) (x ∈ Rn).

Thus, we have

α ≤ C

∥∥∥∥∥∥
(

∞∑
j=−∞

(
2jχOj

)v)1/v
∥∥∥∥∥∥
LMp,λ

.

Recalling that Oj ⊃ Oj+1 for each j ∈ Z, we have

∞∑
j=−∞

(
2jχOj

(x)
)v ' ( ∞∑

j=−∞

2jχOj
(x)

)v

'

(
∞∑

j=−∞

2jχOj\Oj+1
(x)

)v

(x ∈ Rn).

Thus, we obtain

α ≤ C

∥∥∥∥∥
∞∑

j=−∞

2jχOj\Oj+1

∥∥∥∥∥
LMp,λ

.

It follows by the definition of Oj that 2j <Mf(x) for all x ∈ Oj. Hence, we have

α ≤ C

∥∥∥∥∥
∞∑

j=−∞

χOj\Oj+1
Mf

∥∥∥∥∥
LMp,λ

≤ C‖Mf‖LMp,λ
,

which is the desired result.

7.3 Application – Olsen’s inequality for local Morrey spaces

In this section we consider the following Olsen inequality for the fractional integral
operator Iα, where Iα (0 < α < n) is defined by

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy (x ∈ Rn).
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Theorem 7.1. Suppose that we are given parameters p, λ, q, ρ, α satisfying conditions

1 < p < q <∞, α =
n− ρ

q
, 0 < α <

n

p

and condition (1.1). Then

‖g · Iαf‖LMp,λ
≤ C‖g‖GMq,ρ‖f‖LMp,λ

,

where C > 0 is independent of f and g.
In particular, when α = 1,

‖g · f‖LMp,λ
≤ C‖g‖GMq,ρ‖∇f‖LMp,λ

for all appropriate functions f and g.

To prove this we need the following statement.

Lemma 7.3. [9, Lemma 4.2] Let L ∈ N0. Suppose that A is an L∞(Rn)-function
supported on a cube Q. Assume, in addition, that

∫
Rn x

βa(x) dx = 0 for all multi-
indices β with |β| ≤ L. Then

|IαA(x)| ≤ Cα,L‖A‖L∞ `(Q)α
∞∑
k=1

1

2k(n+L+1−α)
χ2kQ(x) (x ∈ Rn). (7.7)

Proof of Theorem 7.1. We decompose f according to Theorem 1.2 with sufficiently
large L:

f =
∞∑
j=1

λjaj,

where {Qj}∞j=1 ⊂ D(Rn), {aj}∞j=1 ⊂ L∞(Rn) and {λj}∞j=1 ⊂ [0,∞) satisfy (1.4) and
(1.5). Then by Lemma 7.3, we obtain

|g(x)Iαf(x)| ≤
∑
j,k∈N

λj
2k(n+L+1−α)

(
`(Qj)

α|g(x)|χ2kQj
(x)
)
.

Therefore, we conclude

‖g · Iαf‖LMp,λ
≤ C‖g‖GMq,ρ

∥∥∥∥∥∑
j,k∈N

λj
2k(n+L+1)

· `(2
kQj)

α

‖g‖GMq,ρ

|g|χ2kQj

∥∥∥∥∥
LMp,λ

.

For each (j, k) ∈ N× N, write

κjk ≡
λj

2k(n+L+1)
, bjk ≡

`(2kQj)
α

‖g‖GMq,ρ

|g|χ2kQj
.
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Let us check that ‖bjk‖LMq,ρ ≤ C‖χ2kQj
‖LMq,ρ . If 2k+1Qj 3 0, then this is easy to check.

Otherwise

‖bjk‖LMq,ρ ≤ C
`(2kQj)

α

‖g‖GMq,ρ

sup
r>`(2kQj)

(
1

rρ

∫
B(r)∩2kQj

|g(y)|q dy

) 1
q

≤ C
`(2kQj)

α

‖g‖GMq,ρ

(
1

(|c(Qj)|+ 2k`(Qj))ρ

∫
2kQj

|g(y)|q dy

) 1
q

≤ C
`(2kQj)

ρ/q

(|c(Qj)|+ 2k`(Qj))ρ/q
· `(2kQj)

α

= C
`(2kQj)

n/q

(|c(Qj)|+ 2k`(Qj))ρ/q

≤ C‖χ2kQj
‖LMq,ρ .

Observe also that q0 > r0 and q > r. Thus, by Theorem 1.2, it follows that

‖g · Iαf‖LMp,λ
≤ C‖g‖GMq,ρ

∥∥∥∥∥∑
j,k∈N

κjkχ2kQj

∥∥∥∥∥
LMp,λ

= C‖g‖GMq,ρ

∥∥∥∥∥∑
j,k∈N

λjχ2kQj

2k(n+L+1)

∥∥∥∥∥
LMp,λ

.

A geometric observation shows that the pointwise estimate χ2kQj
≤ 2knMχQj

holds.
Thus, if we choose θ slightly larger than 1, then we have

‖g · Iαf‖LMp,λ
≤ C‖g‖GMq,ρ

∥∥∥∥∥∑
j,k∈N

λj(MχQj
)θ

2k(n(1−θ)+L+1)

∥∥∥∥∥
LMp,λ

≤ C‖g‖GMq,ρ

∥∥∥∥∥∑
j,k∈N

λjχQj

2k(n(1−θ)+L+1)

∥∥∥∥∥
LMp,λ

≤ C‖g‖GMq,ρ‖f‖LMp,λ
.

8 Smooth decompositions

8.1 A characterization of the Morrey space LMp,λ(Rn) in terms
of Littlewood-Paley characterization

The following is a key ingredient for the proof of Theorem 1.3.
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Theorem 8.1. Let 1 < p <∞ and 0 ≤ λ < n. Let ψ ∈ S(Rn) satisfy the inequalities
χB(2) ≤ ψ ≤ χB(4). Define ϕ ≡ ψ − ψ(2·) and ϕj ≡ ϕ(2−j·) for j ∈ Z.

1. For any f ∈ LMp,λ(Rn)

f =
∞∑

j=−∞

F−1[ϕjFf ]

in the weak-* topology of LMp,λ(Rn), and the estimate∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

' ‖f‖LMp,λ

holds.
2. Assume that f ∈ S ′(Rn) satisfies∥∥∥∥∥∥

(
∞∑

j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

<∞.

Then the limit

F ≡
∞∑

j=−∞

F−1[ϕjFf ]

exists in the weak-* topology of LMp,λ(Rn), and the estimate

‖F‖LMp,λ
'

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

holds.

In the lemma below, we consider the limit

lim
L1,L2→∞

L2∑
j=−L1

F−1[ϕjFg].

The limit as L2 →∞ does not cause any trouble, since it is a general fact for g ∈ S ′(Rn)
that

lim
L2→∞

L2∑
j=0

F−1[ϕjFg] =
∞∑
j=0

F−1[ϕjFg].

Thus, if g ∈ LMp,λ(Rn), we need to handle carefully the limit as L1 → ∞. The next
lemma shows that this is possible.
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Lemma 8.1. Let 1 < p < ∞ and 0 ≤ λ < n. Let ψ ∈ S(Rn) be a radial function
satisfying the inequalities χB(2) ≤ ψ ≤ χB(4). Define ϕ ≡ ψ − ψ(2·) and ϕj ≡ ϕ(2−j·)
for j ∈ Z. If g ∈ LHp′,λ(Rn), then

g =
∞∑

j=−∞

F−1[ϕjFg] (8.1)

in the topology of LHp′,λ(Rn).

Proof. Let

SJg ≡
J∑

j=−J

F−1[ϕjFg].

Since g ∈ LHp′,λ(Rn), we can take a complex `1-sequence λ = {λk}∞k=1 and a collection
{ak}∞k=1 of blocks such that g =

∑∞
k=−∞ λkak in L1

loc(Rn) and that
∑∞

k=−∞ |λk| ≤
2‖g‖LHp′,λ

. To prove that (8.1) takes place in the topology of LHp′,λ(Rn), we take
arbitrary ε > 0, and sufficiently large K ∈ N so that∑

|k|≥K+1

|λk| ≤ ε. (8.2)

Set gK ≡
∑K

k=−K λkak. Since SJ can be considered as a Calderón-Zygmund singular
integral operator in the sense of Definition 4.1 with the related constants independent
of J , it follows that

‖SJg − SJgK‖LHp′,λ
≤ C‖g − gK‖LHp′,λ

.

Therefore

‖SJg − g‖LHp′,λ
≤ ‖SJgK − gK‖LHp′,λ

+ ‖SJg − SJgK‖LHp′,λ
+ ‖g − gK‖LHp′,λ

≤ ‖SJgK − gK‖LHp′,λ
+ (C + 1)ε

≤
K∑

k=−K

|λk| · ‖SJak − ak‖LHp′,λ
+ (C + 1)ε.

Let Qj be a cube such that supp(ak) ⊂ Qk. We choose ε′ ∈ (0, 1] sufficiently close
to 0, say 0 < ε′ < n− n/p′. Denote by c(Qk) the center of the cube Qk. Let x /∈ 3Qk

and suppose that |x− c(Qk)| ≤ 2J+1. Since ϕ ∈ S(Rn), we then have

|SJak(x)− ak(x)| ≤ C
∞∑

j=J+1

|F−1ϕj ∗ ak(x)|+ C
−J−1∑
j=−∞

|F−1ϕj ∗ ak(x)|

≤ C

∫
Qk

∞∑
j=J+1

2jn|ak(y)|
(1 + 2j|x− y|)n+1

dy + C

∫
Qk

−J−1∑
j=−∞

2jn|ak(y)|
(1 + 2j|x− y|)n−ε′

dy

≤ C

(
∞∑

j=J+1

2jn

(2j|x− c(Qk)|)n+1
+

−J−1∑
j=−∞

2jn

(1 + 2j|x− c(Qk)|)n−ε′

)
‖ak‖L1

≤ C

(
1

2J |x− c(Qk)|n+1
+

1

2Jε′|x− c(Qk)|n−ε′
)
‖ak‖L1 .
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Hence,

|SJak(x)− ak(x)|
≤ |χ3Q(x)(SJak(x)− ak(x))|

+ C

(
1

2J(`(Qk) + |x− c(Qk)|)n+1
+

1

2Jε′(`(Qk) + |x− c(Qk)|)n−ε′
)
‖ak‖L1 .

For the first term in the right-hand side, we can invoke the Littlewood-Paley theorem
for Lq(Rn). Consequently, with k fixed, we have

lim
J→∞

‖SJak − ak‖LHp′,λ
= 0

and hence
lim sup
J→∞

‖SJg − g‖LHp′,λ
≤ 2ε.

Since ε > 0 is arbitrary, we have (8.1).

Lemma 8.2. Let 1 < p < ∞ and 0 ≤ λ < n. Let τ ∈ S(Rn) be a radial function
supported away from the origin, and for j ∈ Z denote τj ≡ τ(2−j·).

1. For all f ∈ LMp,λ(Rn),∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[τjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

≤ C‖f‖LMp,λ
. (8.3)

2. For all g ∈ LHp′,λ(Rn) such that supp(g) is a compact set in Rn \ {0},∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[τjFg]|2
) 1

2

∥∥∥∥∥∥
LHp′,λ

≤ C‖g‖LHp′,λ
. (8.4)

In (8.3), (8.4) C > 0 is independent of f , g respectively.

Proof. Let {rk}∞k=−∞ be as in Lemma 2.4.
We first prove (8.3). Note that∥∥∥∥∥∥

(
∞∑

j=−∞

|F−1[τjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

≤ C

∥∥∥∥∥
∫ 1

0

∣∣∣∣∣
∞∑

j=−∞

rj(t)F−1[τjFf ]

∣∣∣∣∣ dt
∥∥∥∥∥
LMp,λ

by virtue of Lemma 2.4. Thus, we have∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[τjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

≤ C

∫ 1

0

∥∥∥∥∥
∞∑

j=−∞

rj(t)F−1[τjFf ]

∥∥∥∥∥
LMp,λ

dt

≤ C

∫ 1

0

‖Tε(t)f‖LMp,λ
dt

≤ C‖f‖LMp,λ
.
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We now prove (8.4). Let J ∈ N be sufficiently large. Then∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[τjFg]|2
) 1

2

∥∥∥∥∥∥
LHp′,λ

=

∥∥∥∥∥∥
(

J∑
j=−J

|F−1[τjFg]|2
) 1

2

∥∥∥∥∥∥
LHp′,λ

≤ C

∥∥∥∥∥
∫ 1

0

∣∣∣∣∣
J∑

j=−J

rj(t)F−1[τjFg]

∣∣∣∣∣ dt
∥∥∥∥∥
LHp′,λ

by Lemma 2.4. By the triangle inequality, we have∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[τjFg]|2
) 1

2

∥∥∥∥∥∥
LHp′,λ

≤ C

∫ 1

0

∥∥∥∥∥
J∑

j=−J

rj(t)F−1[τjFg]

∥∥∥∥∥
LHp′,λ

dt

≤ C

∫ 1

0

‖T{χ[−J,J](j)εj(t)}j∈Zg‖LHp′,λ
dt

≤ C‖g‖LMp,λ
.

Thus, (8.4) follows and the proof is complete.

Before we prove the remaining assertions, we need the following lemma for local
Triebel-Lizorkin-Morrey spaces.

Lemma 8.3. Let 1 < p < ∞ and 0 ≤ λ < n. Let ψ, ϕ ∈ S(Rn) be radial functions
such that χB(1) ≤ ψ ≤ χB(2) and ϕ = ψ − ψ(2·).

1. Assume that f ∈ LMp,λ(Rn) satisfies

0 /∈ supp(Ff),

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

<∞.

Then

‖f‖LMp,λ
≤ C

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

. (8.5)

2. Assume that g ∈ LHp′,λ(Rn) satisfies

0 /∈ supp(Fg),

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFg]|2
) 1

2

∥∥∥∥∥∥
LHp′,λ

<∞.

Then

‖g‖LHp′,λ
≤ C

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFg]|2
) 1

2

∥∥∥∥∥∥
LHp′,λ

. (8.6)

In (8.5), (8.6) C > 0 is independent of f , g respectively.
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Proof. 1. Let f ∈ LMp,λ(Rn). By the duality, for all f ∈ LMp,λ(Rn), we can find
g ∈ C∞

comp(Rn) such that

‖f‖LMp,λ
≤ 2

∣∣∣∣∫
Rn

f(x)g(x) dx

∣∣∣∣ (8.7)

and that
‖g‖LHp′,λ

≤ 2. (8.8)

Indeed, by the duality, we can find g0 ∈ LHp′,λ(Rn), such that

‖f‖LMp,λ
< 2

∣∣∣∣∫
Rn

f(x)g0(x) dx

∣∣∣∣ (8.9)

and that
‖g0‖LHp′,λ

≤ 1. (8.10)

By choosing sufficiently large R > 0, we have

‖f‖LMp,λ
< 2

∣∣∣∣∫
Rn

f(x)χB(R)(x)g0(x) dx

∣∣∣∣ . (8.11)

A mollification of g allows us to assume that (8.7) and (8.8) hold. In view of 0 /∈
supp(Ff), by setting τ ≡ ψ(2−1·)− ψ(4·) and τj = τ(2−j·) for j ∈ Z, we obtain

τj(ξ)ϕj(ξ) ≡ ϕj(ξ) (ξ ∈ Rn, j ∈ Z)

and

f =
∞∑

j=−∞

F−1[ϕjF [F−1τjFf ]] in S ′(Rn).

Thus, by using the S(Rn)- S ′(Rn) duality, we have∫
Rn

f(x)g(x) dx = 〈f, g〉

= lim
J→∞

J∑
j=−J

〈F−1[ϕjFf ],F−1[τjFg]〉

= lim
J→∞

∫
Rn

J∑
j=−J

F−1[ϕjFf ](x)F−1[τjFg](x) dx.

By the Cauchy-Schwarz inequality, we have∣∣∣∣∫
Rn

f(x)g(x) dx

∣∣∣∣
≤ lim

J→∞

∫
Rn

(
J∑

j=−J

|F−1[ϕjFf ](x)|2
) 1

2
(

J∑
j=−J

|F−1[τjFg](x)|2
) 1

2

dx.
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By Theorem 5.1,∣∣∣∣∫
Rn

f(x)g(x) dx

∣∣∣∣
≤

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[τjFg]|2
) 1

2

∥∥∥∥∥∥
LHp′,λ

.

By virtue of (8.4) and (8.8), we have

∣∣∣∣∫
Rn

f(x)g(x) dx

∣∣∣∣ ≤ C

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

‖g‖LHp′,λ

= C

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

.

If we combine this with (8.7), we obtain that

‖f‖LMp,λ
≤ C

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

.

2. Let g ∈ LHp′,λ(Rn). By the Hahn-Banach theorem, we can find f0 ∈ LMp,λ(Rn)
such that

‖g‖LHp′,λ
=

∣∣∣∣∫
Rn

f0(x)g(x) dx

∣∣∣∣ (8.12)

and that
‖f0‖LMp,λ

= 1. (8.13)

Since functions in LHp′,λ(Rn) having compact supports form a dense subset, by molli-
fication, we can find f ∈ C∞

comp(Rn) such that

‖g‖LHp′,λ
≤ 2

∣∣∣∣∫
Rn

f(x)g(x) dx

∣∣∣∣ (8.14)

and that
‖f‖LMp,λ

≤ 2. (8.15)

In view 0 /∈ supp(Fg), we obtain∫
Rn

f(x)g(x) dx = 〈f, g〉 = lim
J→∞

J∑
j=−J

〈F−1[τjFf ],F−1[ϕjFg]〉

= lim
J→∞

∫
Rn

J∑
j=−J

F−1[τjFf ](x)F−1[ϕjFg](x) dx.
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By the Cauchy-Schwarz inequality, we have∣∣∣∣∫
Rn

f(x)g(x) dx

∣∣∣∣
≤
∫

Rn

(
∞∑

j=−∞

|F−1[τjFf ](x)|2
) 1

2
(

∞∑
j=−∞

|F−1[ϕjFg](x)|2
) 1

2

dx

By Theorem 5.1, we have∣∣∣∣∫
Rn

f(x)g(x) dx

∣∣∣∣
≤

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[τjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFg]|2
) 1

2

∥∥∥∥∥∥
LHp′,λ

.

By virtue of (8.3) and (8.15), we have∣∣∣∣∫
Rn

f(x)g(x) dx

∣∣∣∣ ≤ C‖f‖LMp,λ

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFg]|2
) 1

2

∥∥∥∥∥∥
LHp′,λ

= C

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFg]|2
) 1

2

∥∥∥∥∥∥
LHp′,λ

.

If we combine this with (8.14), then we have

‖g‖LHp′,λ
≤ C

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFg]|2
) 1

2

∥∥∥∥∥∥
LHp′,λ

.

Lemma 8.4. Let 1 < q ≤ p < ∞. Let ϕ ∈ S be a radial function and define
ϕj ≡ ϕ(2−j·) for j ∈ Z. Assume that for f ∈ S ′(Rn)∥∥∥∥∥∥

(
∞∑

j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

<∞.

Then the limit

F = lim
J→∞

J∑
j=−J

F−1[ϕjFf ]

exists in the weak topology of LMp,λ(Rn), and

‖F‖LMp,λ
≤ C

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

, (8.16)

where C > 0 is independent of f .
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Proof. 1. Let

fJ =
J∑

j=−J

F−1[ϕjFf ] ∈ LMp,λ(Rn).

We can apply Lemma 8.3 (1); recall that we are assuming that 0 /∈ supp(Ff). Thus,
by Lemma 8.3 (1), we have

‖fJ‖LMp,λ
≤ C

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFfJ ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

.

Note that F−1[ϕjFfJ ] = 0 as long as |J − j| > 1. Thus,

‖fJ‖LMp,λ
≤ C

∥∥∥∥∥∥
(

J+1∑
j=−J−1

|F−1[ϕjFfJ ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

.

Note that |F−1[ϕjFfJ ]| ≤ CM [F−1[ϕjFf ]]. Hence, by virtue of Theorem 3.1, the
Fefferman-Stein vector-valued inequality, we have

‖fJ‖LMp,λ
≤ C

∥∥∥∥∥∥
(

J+1∑
j=−J−1

M [F−1[ϕjFf ]]2

) 1
2

∥∥∥∥∥∥
LMp,λ

≤ C

∥∥∥∥∥∥
(

J+1∑
j=−J−1

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

≤ C

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

.

Since the constant C does not depend upon J , we can apply the Banach-Alaoglu theo-
rem, which asserts that the unit ball of the dual space of a Banach space X is weakly-
* compact. By virtue of the Banach-Alaoglu theorem, we can take a subsequence
{fJm}∞m=1 which converges in the weak-* topology to an element F in LMp,λ(Rn); that
is,

lim
m→∞

∫
Rn

fJm(x)g(x) dx =

∫
Rn

F (x)g(x) dx.

2. Let us prove fJ =
∑J

j=−J F−1[ϕjFf ] converges to F in the weak-* topology of
Mp

q(Rn). To this end, we choose g ∈ LHp′,λ(Rn), so we have∫
Rn

F (x)g(x) dx = lim
m→∞

∫
Rn

FJm(x)g(x) dx

since we know that FJm ,m ∈ N converges to a limit F in the weak-* topology of
Mp

q(Rn). If we use Lemma 8.1, then we obtain∫
Rn

F (x)g(x) dx = lim
J→∞

J∑
j=−J

∫
Rn

F (x)F−1[ϕjFg](x) dx.
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Since ϕ is radial, we deduce that F−1ϕ = Fϕ and∫
Rn

F (x)g(x) dx = lim
J→∞

∫
Rn

J∑
j=−J

F−1[ϕjFF ](x)g(x) dx.

By the properties of the Fourier transform, we have

J∑
j=−J

F−1[ϕjFF ](x) =
1

(2π)n/2

J∑
j=−J

F−1ϕj ∗ F (x) =
1

(2π)n/2

J∑
j=−J

〈F,F−1ϕj(x− ·)〉.

By the definition of FJm , it follows that

J∑
j=−J

F−1[ϕjFF ](x) =
1

(2π)n/2
lim
m→∞

J∑
j=−J

〈FJm ,F−1ϕj(x− ·)〉

=
1

(2π)n/2
lim
m→∞

J∑
j=−J

Jm∑
k=−Jm

〈F−1[ϕkFf ],F−1ϕj(x− ·)〉

=
1

(2π)n/2

J∑
j=−J

〈f,F−1ϕj(x− ·)〉

=
J∑

j=−J

F−1[ϕjFf ](x).

Thus, it follows that∫
Rn

F (x)g(x) dx = lim
J→∞

∫
Rn

J∑
j=−J

F−1[ϕjFf ]g(x) dx.

Since g ∈ LHp′,λ(Rn) is chosen arbitrarily, it follows that fJ converges to F in the
weak-* topology of Mp

q(Rn).
3. (8.16) is a consequence of Lemma 8.3(1). Indeed, since {fJ}∞J=1 converges in the

weak-* topology to F , we have

‖F‖LMp,λ
≤ lim inf

m→∞
‖fJm‖LMp,λ

≤ C

∥∥∥∥∥∥
(

∞∑
j=−∞

|F−1[ϕjFf ]|2
) 1

2

∥∥∥∥∥∥
LMp,λ

,

which proves (8.16).

The next lemma concerns the uniqueness of F in Lemma 8.4 when f ∈ LMp,λ(Rn).

Lemma 8.5. Let 1 < q ≤ p <∞. If f ∈ LMp,λ(Rn), then

f = lim
J→∞

J∑
j=−J

F−1[ϕjFf ] (8.17)

in the weak-* topology of LMp,λ(Rn).
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Proof. In view of Lemmas 8.2 and 8.4, we see that

h = lim
J→∞

J∑
j=−J

F−1[ϕjFf ] ∈ LMp,λ(Rn),

where the convergence takes place in the weak-* topology of LMp,λ(Rn). Since F(f−h)
is supported at the origin, f − h must be a polynomial. Since f and h both belong to
LMp,λ(Rn), we see that f = h. Consequently, we have (8.17).

8.2 Smooth decompositions of Morrey spaces

Proof of Theorem 1.3(A). Let f ∈ LMp,λ(Rn). Then we have

f = ψ(D)f +
∞∑
j=1

ϕj(D)f

in the weak-* topology of LMp,λ(Rn) according to Theorem 8.1.
Below we do not take the term ψ(D)f into account because this term can be

considered separately and then incorporated afterwards.
Let ρ be a function such that

χB(8)\B(1) ≤ ρ ≤ χB(16)\B(1/2).

Then

ϕj(D)f(x) = ρj(D)ϕj(D)f(x)

=
1

(2π)
n
2

∫
Rn

F−1[ρj](x− y)ϕj(D)f(y) dy

=
∑
m∈Zn

1

(2π)
n
2

∫
2−jm+[0,2−j ]n

F−1[ρj](x− y)ϕj(D)f(y) dy.

Let us set

µjm(x) ≡ 1

(2π)
n
2

∫
2−jm+[0,2−j ]n

F−1[ρj](x− y)ϕj(D)f(y) dy.

Then

∂αµjm(x) ≡ Cα,n2
−j|α|

∫
2−jm+[0,2−j ]n

F−1[(2−jξ)αρj](x− y)ϕj(D)f(y) dy

By Theorem 2.1, we have

|∂αµjm(x)|

≤ C inf
y∈Qjm

M [ϕj(D)f ](y)2−j|α|
∫

2−jm+[0,2−j ]n
|F−1[(2−jξ)αρj](x− y)|(1 + 2j|x− y|)n dy

≤ C
2−j|α|

(1 + 2j|x− 2−jm|)N
inf

y∈Qjm

M [ϕj(D)f ](y).
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Therefore, if we set

λjm ≡ 2−jn/p inf
y∈Qjm

M [ϕj(D)f ](y), mjm ≡
1

λjm
µjm,

then each mjm satisfies all requirements of the theorem and f =
∞∑
j=0

λjmmjm.

Proof of Theorem 1.3(B). We consider

∞∑
j=0

∑
m∈Z

λνmmνm.

Below we do not take into account the term with j = 0 because it can be easily
incorporated. By Lemma 2.3, we have

|λνmF−1[ϕj] ∗mνm(x)|
≤ 2νn/p|λνm|2min(j,ν)n−|ν−j|(1 + 2−min(j,ν)|x− 2−νm|)−n−1/2

≤ 2νn/p|λνm|2min(j,ν)n−(n+1/2)|ν−j|(1 + 2−ν |x− 2−νm|)−n−1/2

≤ 2νn/p−|ν−j|/2M [λνmχ
(p)
νm](x).

If we use Theorem 3.1, then we obtain the desired result.
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