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Abstract. The Rainwater–Simons weak convergence theorem is extended to the con-
vergence with respect to the associated norm (in the sense of Brown), the latter proved
useful, inter alia, in testing the membership of a point to the Banach–Mazur hull of
two points, which is the intersection of all closed balls containing these points.

1 Introduction

In recent years much attention has been paid to various extensions and applications of
the Rainwater–Simons convergence theorem (see, for example, Hardtke [9], Nygaard
[12], Kalenda [10]). In the present paper we study properties of the associated norm on
normed linear spaces and extend the Rainwater–Simons theorem on weak convergence
of sequences to the convergence with respect to the associated norm (in the sense of
Brown). Associated norms are defined (see (1.1) below) on a broad class of normed
linear spaces including all separable spaces.

In the 1980s, Aldric Brown [5], when working on the problem of connectedness of
suns in finite-dimensional spaces, had introduced the so-called associated norm | · | (or,
as we sometimes call it, the Brown associated norm). The importance of this norm in
geometrical theory of approximation and in convexity follows by the fact that a point
z lies in the Banach–Mazur hull m(x, y) of two points x, y (by definition, m(x, y) is
the intersection of all closed balls containing x and y) if and only if z is | · |-between x
and y in the sense of metrical convexity (that is, |x− y| = |x− z|+ |z− y| with respect
to the associated norm | · | to be defined later). Brown’s studies have been continued
by Franchetti and Roversi [8] and later by the author [1], [2], [3], who extended some
of Brown’s constructions and results to infinite-dimensional setting.
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Consider the following class of spaces introduced by Franchetti and Roversi [8]:

(Ex-w∗s) extS∗ is w∗separable.

In the definition of the class (Ex-w∗s) we will always assume that

F = (fi)i∈I ⊂ extS∗ is w∗-dense in extS∗, card I ≤ ℵ0, F = −F.

The abbreviation (Ex-w∗s) is taken from the German ‘Die Extrempunktmenge der
konjugierten Einheitskugel ist w∗-separabel’. According to a result of Lindenstrauss
and Phelps, the set of extreme points of the unit ball of a reflexive infinite-dimensional
Banach space is uncountable, but we shall see later that (Ex-w∗s) contains all separable
normed linear spaces.

Even though the question of massiveness of boundaries of normed linear spaces has
been studied by many mathematicians, of whom we mention, inter alia, M. I. Kadets,
V. P. Fonf, J. Lindenstrauss, R.R. Phelps, O. Nygaard, T.A. Abrahamsen, M. Pőldvere
(for a survey on thick and w∗-thick sets see, for example, [11]), the question of w∗-
separability of extS∗ is not that well studied.

That any space in (Ex-w∗s) has w∗-separable dual ball B∗ is an easy consequence
of the Krein–Milman theorem. Next, w∗-separability of B∗ is equivalent [6] to the fact
that X is isometrically isomorphic to a subspace of `∞. It is also worth noting that
there are examples of C(K)-spaces (K is a non-separable Hausdorff compact set) or
spaces of the form X = `1⊕ `2(Γ) (|Γ| = c) such that X∗ is w∗-separable, but the dual
unit ball B∗ is not [4].

Further, it is well known that if X is a separable normed linear space, then the
w∗-topology of B∗ is metrizable. As a result, the dual ball B∗ is w∗-separable ([7],
Corollary 3.104). Hence, any separable space lies the class (Ex-w∗s). The class (Ex-w∗s)
also contains the non-separable space `∞ (qua the space of continuous functions on
the Stone–Čech compactification βN of the natural numbers— such compact set is
separable but non-metrizable). Also note that C(Q) on a non-separable Q and c0(Γ)
on an uncountable Γ fail to lie in (Ex-w∗s).

It would be interesting to characterize the class (Ex-w∗s).
In summary,

the class (Ex-w∗s) contains all separable normed linear spaces (and in partic-
ular, C(Q) on a metrizable compact set Q) and the non-separable space `∞.

Let X ∈ (Ex-w∗s), let F = (fi)i∈I be the family of functionals in the definition of
the class (Ex-w∗s), let (αi) ⊂ R, αi > 0, i ∈ I, and let

∑
αi <∞. Given x ∈ X, we set

|x| =
∑
i∈I

αi|fi(x)|. (1.1)

It is easily seen that | · | defines a norm on X, which we shall call, following Brown [5],
the associated norm on X. Clearly, |x| ≤ ‖x‖

∑
i∈I αi.

The importance of the associated norm is seen by the following result, which is
a direct and straightforward generalization of Corollary 3.2 of [5], which was proved
by Brown for dimX < ∞. In particular (Franchetti and Roversi [8], Alimov [3]), on
a separable Banach space X the following conditions are equivalent, given x, y ∈ X:
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a) z ∈ m(x, y);
b) |fi(x)− fi(y)| = |fi(x)− fi(z)|+ |fi(z)− fi(y)| for all i ∈ I, where F = (fi)i∈I is

the family in the definition of (Ex-w∗s);
c) |x− y| = |x− z|+ |z − y| (that is, z is | · |-between x and y).

2 The main result

The following theorem is the main result of the present paper, in which we extend
the well-known Rainwater–Simons theorem (see, for example, § 3.11.8.5 in [7]) to the
convergence in the associated norm | · | on spaces in the class (Ex-w∗s) (in particular, on
separable spaces). According to the Rainwater–Simons theorem, a bounded sequence
(xn) in a Banach space X weakly converges to an x ∈ X if and only if the sequence
(f(xn)) converges to f(x) for any functional f in an arbitrary fixed James boundary
for X (for example, for all f ∈ extS∗). Even though the weak convergence is non-
metrizable in general, we shall see that there is a norm on X ∈ (Ex-w∗s) with respect
to which the convergence of sequences is equivalent to the weak convergence.

Here, we recall (see, for example, § 3.11.8 in [7]) that a subset A of the dual unit
sphere S∗ of X∗ is called a (James) boundary for the space X if, for any x ∈ X, there
exists an f ∈ A such that f(x) = ‖x‖. It is an easy consequence of Krein–Milman’s
theorem that the set extS∗ of extreme points of the dual unit ball is a boundary for X.

Theorem 2.1. Let X ∈ (Ex-w∗s) be a Banach space, F := (fi)i∈I ⊂ extS∗ be the
family of functionals in the definition of (Ex-w∗s). Also let (xn) be a | · |-bounded
sequence in X. Consider the following conditions :

a) xn
| · |−→ x;

b) fi(xn)→ fi(x) for any i ∈ I;
c) xn

w−→ x.
Then conditions a) and b) are equivalent, either of which follows by c). If X∗ is

separable, then all three conditions are equivalent.

Since |x| ≤ ‖x‖
∑

i∈I αi, a ‖ · ‖-bounded sequence is necessarily | · |-bounded.

Corollary 2.1. If dimX =∞ and X∗ is separable, then X is not | · |-complete.

Remark 1. That X∗ is separable in b)⇒c) is essential. Indeed, let X = `1. Consider
finite sequences in `∞ consisting of 0 and ±1. This set is countable and w∗-dense in
extS∗. However, the convergence of elements in `1 on these sequences does not imply
their weak convergence. This fact was noted by P.A. Borodin in disputing the results
of the paper.

Corollary 2.2. (X, | · |) is a Schur space.

3 Proofs

To prove Corollary 2.2 we recall that, by definition, a space X is a Schur space if weakly
convergent sequences in X are norm convergent; the space `1 is a classical example of
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a Schur space. Indeed, |x| > αi|fi(x)| for any i by the definition of the associated norm.
Consequently, any fi ∈ F lies in X∗

| · |. Now it follows by assertion b) of Theorem 2.1
that if (xn) w| · |-converges, then (xn) | · |-converges. Thus, for a | · |-bounded sequence
(xn)

xn

w| · |−→ x ⇐⇒ xn
| · |−→ x. (3.1)

As a result, in (X, | · |) w| · |-compactness coincides with the strong | · |-compact-
ness. Thus, a reflexive (X, | · |) is finite-dimensional. This observation arose during
conversations between the author and Prof. Olav Nygaard, to whom the author wishes
to express his thanks.

The implication a)⇒b) in of Theorem 2.1 is quite clear: if xn
| · |−→ x (in the norm

| · |), then the sum
∑

i∈I αi|fi(xn) − fi(x)| is small for all sufficiently large n. Conse-
quently, for each fixed j the difference |fj(xn)− fj(x)| is also small for such n.

Let us prove b)⇒a). For any n, we split the sum∑
i∈I

αi|fi(xn)− fi(x)|

into two sums: for i ≤ N and for i > N (N will be chosen later). By the hypothesis, the
sequence (xn) is uniformly | · |-bounded, and hence, in the second sum, |fi(xn)−fi(x)| ≤
C (where C is independent of i, n). So, the second sum is bounded from above by the
sum

∑
i>N Cαi <∞. Given ε > 0 we choose an N for which the second sum is smaller

than ε. The first sum is finite, and there we choose large n.
That c)⇒b) is clear. Assume that X∗ is separable and prove that b)⇒c). Note

that the following assertions are equivalent for a Banach space X:
- X has a separable boundary;
- the boundary extB∗ is separable;
- space X∗ is separable.

Here, the converse implication are straightforward (in a normed linear space, the
(strong) separability of a set is inherited by its arbitrary subsets), and the first as-
sertion implies the last one in view of the well-known Godefroy–Rodé theorem (see, for
example, [7], Theorem 3.122), which states that B∗ = conv ‖·‖A (here, A is a separable
boundary for X). As a corollary, the ball B∗ is separable and so is the space X∗.

Further, we shall need the concept of an (I)-generating set introduced by Fonf and
Lindenstrauss. By definition, a set C ⊂ B∗ (I)-generates the dual ball B∗ if

B∗ = conv
(⋃

i
conv w∗

Ci

)
(3.2)

for any representation C =
⋃
Ci as a countable union of sets Ci. In this definition, ‘I’

comes from the Latin intermedius and is explained by the fact that

B∗ = convC =⇒ C (I)-generates B∗ =⇒ B∗ = conv w∗
C.

Let Ci := {f1, . . . , fi}, i ∈ I (here, F := (fi)i∈I is the family of functionals in
the definition of the class (Ex-w∗s)). Clearly, F =

⋃
Ci. By Kadets–Fonf (Godefroy–

Rodé)’s theorem,
B∗ = conv ‖·‖ extB∗. (3.3)
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The space X∗ is separable, and hence so is extB∗. Next, extS∗ ⊂ Fw∗ by the definition
of the class (Ex-w∗s), and hence, extS∗ ⊂

(⋃
i conv w∗

Ci

)
. Finally, F (I)-generates the

ball B∗ by (3.3) and (3.2).
Now it remains to employ one result due to Nygaard [12] and Kalenda [10]. Ac-

cording to this result, if C (I)-generates the dual ball B∗, then C is a Rainwater set;
that is, a set with the property: if a bounded sequence (xn) ⊂ X converges pointwise
on B, then (xn) converges weakly. The proof of Theorem 2.1 is complete. �

The same arguments as in the proof of implications a)⇒b) and b)⇒a) in Theo-
rem 2.1 show that

(xn) is | · |-Cauchy⇔ (fi(xn)) is Cauchy in R for any i ∈ I. (3.4)

Hence, if X is | · |-complete, then by (3.4) X is | · |-weakly sequentially complete. It is
easily verified that a weakly sequentially complete space is Banach. Finally, a weakly
sequentially complete Banach space is either reflexive or contains a subspace, isomor-
phic to `1. This proves Corollary 2.1.
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