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Abstract. Connected with the function-theoretic approach, generalized potentials of
double layer are introduced for the Lamé system of plane anisotropic elasticity theory.
These potentials are constructed for the displacement vector — a solution of the Lamé
system, and as well for the conjugate vector—functions describing the stress tensor.
There are obtained integral representations of these solutions via potentials mentioned
above. As a corollary the first and the second boundary-value problems in different
classes (Holder, Hardy, the class of functions continuous in a closed domain) are reduced
to equivalent systems of the boundary Fredholm equations in corresponding spaces.

1 The Lamé system
Let us consider the Lamé system [15, 14]

0*u 0*u 0?*u
an@‘i‘(alz—i-am)ax—%‘i‘ama—w =0 (1.1)

with constant matrix coefficients
a1 Qg Qg Oy
ap = ) Q12 = )
Qg (3 Qa3 Qs
Qg (O3 a3 Q5
a1 = Qo2 = .
Qg Q5 ’ Q5 Q2

The elements «a; of the matrix coefficients, called modules of elasticity, satisfy the
requirement of positive definiteness of the following matrix

ap 04 Qg
o = Qg Qo QAp
Qg Q5 Q3
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Together with this matrix it is convenient to introduce the adjoint matrix f =
(det )a~! written in the same form:

Bi Bs B B = aoog — oz% Po = ayog — CY%,
B = Bs B2 Bs ) By = ajog — ai B = asag — i3y, (1~2)
Bs Bs Bs Bs = g — a0, 5 = Qu0is — Q0.

Then the Sylvester criterion of positive definiteness for the matrix a can be represented
by the inequalities detaw > 0 and o; > 0, §; > 0,1 <17 < 3.

The vector u = (uy, ug) characterizes the displacement vector, it is connected with
the columns o(yy = (01, 03), 0(2) = (03,02) of the stress tensor

01 O3
g =
03 02

ou ou
0@y = aﬂa—x + aiga—y, 1= 1,2, (13)

by the relations

which present Hook’s law content.
In the absence of body forces the matrix o satisfies the equilibrium equations

80‘(1) 4 80'(2) _

0
ox oy ’

which jointly with relation (1.3) reduce to the Lamé system.
Let us introduce the matrix trinomial p(2) = ay; + (a2 + a21)z + ag0z? of system
(1.1). It represents the symmetric matrix

_ ([ P1 P3
P (p3 p2)

with the corresponding quadratic trinomials p;. Besides them further an important
role is played by another pair of polynomials ¢» and g3 with the elements of adjoint
matrix (1.2) as coefficients. Explicitly

p1(2) = a1 + 2062 + a3z,
p2(2) = az + 2052 + a2?,  p3(2) = ag + (a3 + )z + asz? (1.4)
@(2) = o — Boz + 12°,  q3(2) = 2q2(2) = Buz — Ps2* + B12°.

The Lamé system is well known to be an elliptic one, i.e. its fourth order charac-
teristic polynomial has no real roots. Therefore in the upper half-plane we have two
roots vy, ve for which two cases occur: (i) vy # v and (ii) V| = vy = V.

We should pay special attention to the case of the Lamé system when the poly-
nomials ps and ps in (1.4) are linearly dependent: «9p3 — asps = 0, or, equiva-
lently, asag = azas and ag(az + a4) = 2a2. Hence also 2a00f = a(as + ay),
2a5006 = az(az + ay), so after elementary computing we obtain

2deta = (ayan — a3)(as — ay) > 0.
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Since the inequalities a9 — a§ < 0 and a3 < a4 contradict to the inequality ajag —
a? > 0, the special case is described by the relations

2 2
Q0 = azas, ao(as + ay) =20z,  aran > af, az > ay. (1.5)
If a3 + vy = 0 these relations turn into
2
as =00 =0, a3 = —ay; a1 > a3 (1.50)

and correspondingly the Lamé system can be diagonalized, i.e. it decomposes into two
equations

82U1 82u1 aZUQ 62U2
o' + a =0, « + a =0.
Y 902 s Oy? 5 D2 2 Oy?
The roots of the characteristic equation in the special case can be calculated explicitly.
Indeed, by virtue of the linear dependence asps3 — asps = 0 we have the equality
a3(pip2 — p3) = (3p1 — agpz)pa. Thus
ol = —as + 10, k=1,2, (1.6)
where 6, > 0 are defined by the equalities
a2(oag — a2
6 = apas — i + 210 3), 85 = apa3 — Q.

QoXy — Oég

In case (1.5¢) these equalities transform into

V= ’/%, V9 = 1/%. (160)
Q3 (6]

By virtue of (1.2) and (1.5) the quantities asaz — o and ajas — a3 are positive, so
01 > 0o. Therefore the roots 11 and v are different, i.e. the special case is a particular
case of (7).

Let us introduce the matrices

(i)J:(VOl 32) (ii)J:<g i) (1.7)

for two cases (i) and (i7) for the roots of the characteristic equation. As it was estab-
lished in [20] for the second order elliptic system of form (1.1) and particularly for the
Lamé system the following statement is valid.

Lemma 1.1. There exists a matriz b € C**? with non-vanishing columns such that
anb —+ (a12 + a21)bJ + a22bJ2 =0. (18)
For this matrix the mapping

n — (Rebn,RebJn) (1.9)

from C? to R? x R? is invertible. Any other matriz by with the same properties is
connected with b by the relation by = bd where d is some invertible matrix commuting

with J.
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It should be noted that in accordance with (1.7) all matrices d commuting with .J
have the following form

(i)d:<%1 i), (ii)d:(%l gj). (1.10)

Let us connect the matrix
C = —(aglb—f-aggbj). (111)

with the matrix b. It is obvious that under transfer from b to b; = bd where dJ = Jd
the similar relation ¢; = ¢d also holds for matrices of this type.

Further for investigation of the main boundary-value problems for the Lamé system
matrices b and c¢ play the key role. Therefore various modifications of their explicit
expressions through elasticity modules and roots of characteristic equation were given
in [20] — [23]. All these formulas are equivalent in the sense that they are obtained
from each other by multiplying by a suitable matrix of form (1.10). The most simple
and in some sense complete form for them was obtained in [23| with their expressions
being given for each case (i) and (i) separately.

Theorem 1.1. Apart from the special case the matrices b and ¢ are given by the

equalities
b— ( p2(1)  pa(re) ) = ( —g3(11) —gz(v2) ) 7 (1.124)

—p3(v1) —ps(1e) P22
_( p(v)  py(v) . —qg3(v) —¢4(v) y
"= ( —ps(v) —py(v) ) ’ < 6) @) )’ (1.12)

where the polynomials p; and q; are defined in (1.4).
In the special case for these matrices we have the expressions

b: < (0D)] ? ) ’ = é ( Oé5(52 —1'5162 —<52+i045) > : (113)

or

—Q5 (e Q209 —100

where §1, 9y are the numbers entering (1.6).
In all cases the matrices b and ¢ are invertible.

The matrices b and c satisfy relations (1.8) and (1.11) is verified directly. The
columns of the matrix b being non-vanishing in all cases the corresponding mapping
(1.9) is also invertible by virtue of Lemma 1.1. The invertibility property of matrices
(1.13) is obvious but direct verification of matrices invertibility is rather difficult .

Let us note several important properties of the matrix c.

Lemma 1.2. (a) The matriz ¢ can be written in the following form

¢ = cod, (1.14)

Woa=(7 ) @ oa-(7 )

with the invertible matriz d of form (1.10).
(b) Let the space X C C?, k = 0,1,2, (over the field R) consists of vectors n, for
which RecJ’n =0,0<s < k. Then dim X =2 — k.

where



82 A.P. Soldatov

Proof. (a) Comparing (1.12) and (1.13) one can see that excluding the special case the
following matrices

0 0w e-( 8)

satisfy equality (1.14). In special case (1.5), (1.6) in the capacity of d we have

(2 0
(% )

(b) The matrix ¢ being invertible, it is necessary to consider only the cases k = 1
and k£ = 2. It suffices to verify that the block matrices

_ c C

c ¢ =

C, = ( — ) , Co=| ¢ cJ (1.15)
cJ cJ 2 o

have ranks 3, 4 respectively. Let us consider each of the two cases for the matrix ¢ in
(1.12) and (1.13) separately. In view of Proposition (a) of the lemma the conversion
from ¢ to ¢y does not have an impact on the rank of the matrices Cj. So without loss
of generality we can replace ¢ by ¢y in the definition of these matrices. It is easy to see
that the first row of the matrix ¢q is opposite to the second row of the matrix c¢y.J and
the pair of the matrices ¢yJ and cy.JJ? has an analogous property.

So if one cuts the fourth row from C) and the fourth and sixth ones from Cy then
the ranks of the obtained matrices which are denoted by C}, Cy respectively do not
change. Up to row permutation and multiplication of some of them by —1 the matrix
(5 coincides with the matrix W of the form

(Z) W = [h(yl)a h(VQ)a h(y_1)7 h(V_Q)]y
(i) W = [h(v), I (v), h(©), K’ (7)),

where h(z) is the column vector with the elements 27, j =0,1,2,3. As for the matrix
C, it is equivalent (in the same sense) to the matrix which can be obtained from W
by cutting the last row. In the case (i) the matrix W is the classical Vandermonde
matrix and in the case (ii) it is the generalized Vandermonde matrix. In both cases
their determinants are non-zero [24]. Therefore the statement on the rank of matrices
(1.15) and the statement of the lemma are established completely. O

An elastic medium is said to be orthotropic if
a5 = Og = 0. (116)

For this medium the coordinate lines are symmetry axes. In the orthotropic case
polynomials (1.4) can be represented by simplified expressions, namely

p1(2) = a1 + a32?, po(2) = az + @e2?, p3(2) = (a3 + ay)z,
(1.17)

¢2(2) = ag(—oy + OZ222)7 q3(2) = ag(—ouz + 04223)-
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It should be mentioned that in the orthotropic medium the special case is defined by
relations (1.5¢).
The orthotropic medium is called isotropic if in addition to (1.16) the relations

o1 = g = 203 + Qu. (1.18)

are also carried out. Hence jointly with the inequality a3 < ajas it follows that a; > as.
It is easy to see that in the case under consideration the characteristic equation has
the multiple root v = i, so we can use formulas (1.12). In view of (1.17), (1.18) these
formulas give the following equalities

b_((ag—al 20011 )7 C_2a3((a1—a3)i 2041—'@3).

a3 —aq)i a3 — a3 — oy ol

According to Lemma 1.1 in the capacity of b and ¢ we can also take the matrices which
are obtained by multiplication of these equalities by the matrix

o)L
d=(a3—a1)_1<(1) 2a1<a11 as) Z).

By carrying out elementary calculations we arrive at the formulas

b= ( 1 _an > c:ag( _2% @'(2111) ) (1.19)

with the positive constant & = (g + ag) /(g — a3).

2 The first and the second boundary-value problems

Let us consider the Lamé system in a domain D bounded by a Lyapunov contour
'€ C', 0 < v < 1. The main boundary conditions for this system are known [17] to
consist of assigning either the displacement vector

ut = f, (2.1)

or the normal component c*n = Ua)nl + U(Jg)ng of the stress tensor ¢ on the boundary
contour, where n = (nj,ny) is the unit exterior normal to I' and the upper sign +
indicates the boundary values of functions. In accordance with (1.3) the last boundary
condition can be written in the form

n aa—u+a@+—l—n a%—i—a%Jr— (2.2)
1 Hax 128y 2 218:16 22(9y =Jg. .

Therefore (2.1) corresponds to the Dirichlet problem for the Lamé system and (2.2)
corresponds to the Neumann problem. These problems are also called the first and the
second boundary value problems.

The domain D can be both finite or infinite. In the last case the following condition
is imposed on the gradient of a solution w:

gradu(z) = O(|z|™?) as 2z — oo, (2.3)
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in particular, there exists the limit u(oco) = lim, .., u(z) at infinity. In the sequel
conditions of such type will arise frequently so it is convenient to say that a function
w € C(D) has order k at infinity where k is an integer if it behaves as O(]z|*) as
2z — o0. In the cases k = 0 and £ = —1 we also say that w is bounded, vanishes at
infinity respectively.

Let us highlight the class of first order polynomial vectors u(z,y) = & + & + yéo
for which a;1& + a;pé& = 0, ¢ = 1,2. It is obvious that the system rank is equal to
3 and any solution & = (£;,&) € R? x R? of the homogeneous system a¢ = 0 has the
form & = (0, ), & = (—A,0). The corresponding polynomials u = (uy, us) mentioned
above have

u(z,y) = A1 — Ay, ua(x,y) = Ao+ Az, Aj, A €R. (2.4)

as their components. Polynomials of such type are said to be trivial solutions of the
Lamé system. For them the left-hand side of (2.2) turns into zero. Clearly in the
infinite domain case in accordance with (2.3) trivial solutions are reduced to constant
vector valued functions. For general strongly elliptic systems solvability problems for
the Dirichlet and the Neumann problems in the Hoélder and Sobolev spaces are well-
studied [10]. In particular for the Lamé system the following classical result holds.

Theorem 2.1. Let a domain D be bounded by a contour ' € CY. Then the Dirichlet
problem is uniquly solvable in the class C¥*(D), 0 < u < v.

For the Neumann problem the homogeneous equation has only the trivial solution in
this class and the nonhomogeneous equation is solvable if and only if the orthogonality
condition to all trivial solutions

/F gDt = 0 (2.5)

is carried out. Hereinafter |dt| means the arc length element.

The second boundaryvalue problem (2.2) can be written in the form of the first one
with respect to the so-called conjugate function v, which is defined by the following

relations:
v (i ou, . ow) 0 ou, o 0
ar ~ \"az "5y )0 oy~ Mar T My '
Rewriting (1.1) in the form
0 ou ou 0 ou ou
- i g _ —_ — | = 2.
ox (an&c a1 8y) + dy (“21ax + oz ay) 0 (2.7)

we see that the necessary condition for the existence of the function v is carried out.
Therefore up to an additive constant ¢ € R! it is uniquely defined in each simply
connected domain Dy C D. In the whole domain this function can be multi-valued.
Further under multi-valued functions we will mean functions with one-valued partial
derivatives.

The unit tangent vector e = e; + ie2 in the direction keeping the domain D on
the left is connected with n by the equality e = in, so by virtue of (2.6) the tangent
derivative

v =e av~|—e Ov
¢ o 283/
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on I' coincides precisely with the left-hand side of (2.2). Therefore the boundary
condition of the Neumann problem can be written in the form

v )e=g9 (2.8)

It should be noted that the left-hand side here can be considered as the derivative of
the function v on I" with respect to the arc length parameter which is counted in the
direction keeping the domain D on the left. In the case of multiply-connected domain
D the function v as mentioned above can, in general, be multi-valued.
In the same way, defined by the condition f! = g, the antiderivative f of the function
g can be non-existent on whole contour. However subtracting from v a suitable multi-
valued function, which is conjugate to some solution in a neighborhood of D, we can
always achieve that the function v is one-valued and there exists the antiderivative
f € CHT) of the right-hand side. The possibility of such choice will be visible by
Lemma 4.1 below. As a result the previous boundary condition can be written in the
form
vt =+, (2.9)

where the function y is constant at connected components of the contour I' and it is
subject to definition together with w. If f = 0 the problem is said to be homogeneous.
It should be noted that for trivial solution (2.4) the conjugate function is constant in
the domain D and consequently the homogeneous boundary condition (2.9) is satisfied.
By virtue of (2.4) conditions (2.5) can be written in the form

/Fg(t)!dt\ =0, /F[(—Imt)gl(t) + (Ret)ga(1)]|dt| =0,

and in the infinite domain case the second equality should be omited. As for the tangent
derivative g = f of a function f € C(T), the first equality holds automatically and
the second one takes the form

/fn|dt| —0, (2.10)
r

after integration by parts. Here n = (ni,ns) is the unit exterior normal to I'. It is
necessary to take into account that the tangent vector e is connected with n by the
relation i(ny + ing) = e + ies.

It should be noted that the orthogonality condition holds always for f = x. Indeed
let the contour I'y bounding finite domain Dy be one of the connected components of
[". Then if the constant vector y = (x1, x2) is considered as a function in Dy we have

/ (x1m1 + x2n2)|dt] =0
To

on the basis of the Green formula.

There are two main directions in the investigations of the boundary value problems
of anisotropic plane elasticity. The first of them consists of using analytic functions
by analogy with the Kolosov—Muskhelishvili formulas [17] in the isotropic case. This
direction is represented in the works by S.G. Lekhnitskii, G.N. Savin, S.G. Mikhlin
and others (see for example [15, 17, 9]). The second one is based on application of the
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potential method. It was developed by V.D. Kupradze [14], M.O. Baskheleishvili [4]
and others.

The study of boundary-value problems for the second order plane elliptic systems of
form (1.1) with coefficients a;; € R is simplified considerably by using the so called
J—analytic functions, solutions of the first order elliptic system

9 . 0¢
— —J—=0, 2.11
Ay ox (2.11)
instead of analytic vector—functions. In this case all eigenvalues of the matrix J € C>!
lie in the upper half-plane. The set of these functions consists of the general solution
of equation (1.1) representable in the form [24, 25|

u = Rebo, (2.12)

where the matrices b, J € C™! are selected as in Lemma 1.1 (it remains valid in the
general case). Differentiating this relation and taking into account (2.11) we obtain:

ou ou ¢

— =Reb¢, — =Reb— = RebJ¢, 2.13
where hereinafter ¢’ means the partial derivative with respect to x. According to
Lemma 2.1 the mapping n — (Rebn, RebJn) is invertible. Its inverse can be written
in the form n = b'¢; + b%&, & € R! with some complex matrices b*. Relations (2.13)
are equivalent to

ou Ju
f=b— + 0 2.14
¢ Ox * dy (2.14)
respectively. The function ¢ can be multi-valued. It follows directly from (2.14) that
the equality u = 0 in (2.12) is possible if and only if ¢ =7 € C!, Rebn = 0. It is easy
to verify that in the notation of (1.11) the function

v = Reco, (2.15)

is conjugate to u, i.e. it satisfies relations (2.6). Indeed similarly to (2.13) we have:

% = Recd/, g—: =RecJ¢'. (2.16)
In the notation of (1.11) equation (1.8) can be written in the form ¢J = aq11b + a12bJ.
Substituting it in (2.16) with (2.13) we obtain relations (2.6).

In problems of elasticity theory the conjugate function plays a supporting role and
can be used for determining the stress tensor o. According to (1.3), (2.6) for the
columns of this matrix we have the following relations

ov ov
o = (9_y’ 02 = T or
or element-wise
a'Ul 81}2 . 8’02 8'01

- . (2.17)
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The conjugate function v = (vy, v9) satisfies the equation

c%g 81}1

oy o

which follows directly from definition (2.6) and from the form of the matrices a;; in
(1.1).

It should be noted that there are other function-theoretic approaches to investigat-
ing boundary value problems for the Lamé system (see e. g. [11, 5, 6]).

To illustrate this let us discuss the connection of representations (2.12), (2.15) for
an isotropic domain with the classical Kolosov — Muskhelishvili formulas expressing the
displacement vector u and the stress tensor ¢ in terms of analytic functions (see also
[25]). According to Section 1 in the case under consideration we have the multiple root
v = 1, the matrix J is a Jordan sell and the matrices b and c are given by equalities
(1.19). Therefore representation (2.12) takes the form

Uy = Re ¢1, Ug = Re (Z¢1 - %¢2) (218)

element-wise. Substituting equation (1.19) in (2.16) for the matrix ¢ we obtain repre-
sentations of the stress tensor components

o1 = Re 204 + (e — 3)),
03 = —Re [2¢) +i(ae + 1)@}, (2.19)

03 = Re [2i¢} — (& — 1)¢)]

for elements of matrix o in (2.17). It should be noted that the matrix ¢ has the property
(cJ)ox = —ci1x. According to it in component-wise form (2.18) the equality defining o3
occurs twice.

System (2.11) can be component-wise written in the form of the equations

Ot 061 06y _ . 06y 00 _

dy ox ox dy ox

For an arbitrary pair of analytic functions ¢(z), k = 1,2, the functions ¢;(z) =
U (2) +yh(z),  ¢o(z) = ¥a(2), satisty these equations and besides ¢ can be uniquely
reconstructed by the equalities 11 (2) = ¢1(2) — yh(2), ¥2(2) = ¢2(2). Substituting
these equations into (2.17), (2.19) we arrive at the following representation

up = Re[thy + yiby], us = Reli(y + yiy) — eers]
of the displacement vector components and
o1 = a3 Re[2(Y) + yiby) 4 i(ae — 3)¢5),

03 = —azRe[2(y) + yy) + e + 1)),
o3 = a3 Re[2i(y] + yv3) — (e — 1)0%)]
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of the stress tensor components from analytic functions pair 11, 15 of the same variable
z.
By using the linear substitution

x1(2) = —iha(2), x2(2) = —2¢1(2) + ieeya(z) + i295(2)

these representations can be written in the form of the equalities

2(u — iu)(2) = &x1(2) — 2X1(2) — x2(2),

(01 4+ 02)(2) = 4azRex](2), (02— 01+ 2i03)(2) = 2a3[2x7 (2) + X1 (2)],

which represent the classical Kolosov—Muskhelishvili formulas [17].

3 The Douglis analytic functions

System (2.11) has been investigated by A. Douglis [8] for the Hankel matrices J in the
framework of hypercomplex numbers and this system generalizes the Cauchy—Riemann
system. It is convenient to connect the matrix

zy =zl +ylJ, (3.1)

with the complex number z = x+1y. Here x = z1 is a scalar matrix and the eigenvalues
of J being in the upper half-plane, the matrix z; is invertible if z # 0.

Solutions ¢ of system (2.11) are said to be J— analytic functions because they
can be described as functions belonging to the class C''(D) which have the generalized
derivative

¢ (2) = lim(t — 2)5'[6(t) — &(2)],

t—z

coinciding with the partial derivative with respect to x in each point z € D.

If the domain D is infinite then similarly to (2.3) the condition for ¢’ is added to
this definition. In particular the function ¢ is bounded at infinity and has the limit
¢(00) = lim¢(2) as z — oo.

Let the contour I' be positively oriented with respect to D and let the function
¢ € C'(D) satisfy (2.11) in the domain D and has order —2 at infinity in the infinite
domain case. Then integrating equality (2.11) and using Green’s formula we obtain
the equality

/dtjw(t) =0, (3.2)

which plays the role of the Cauchy theorem. Here the matrix differential is defined
analogously to (2.17), acts on a vector ¢* in the usual way and therefore it stands in
front of this vector. Hence, as in the classical analytic functions case, it implies the

Cauchy formula
1
L[t = 2)5%at,07 ) = 6(2), 2 €D, (3.3)

2mi Jp
where it is supposed that in the unbounded domain case the function ¢ has order —1
at infinity. In particular, it follows from the last formula that the function ¢ € C*°(D).
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Denoting by ¢*) the successive partial derivatives with respect to z, in view of (2.11)
we have the equations
k¢

awk—says
for the rest of the partial derivatives. It also follows from the Cauchy formula that the
function, which is J—analytic all over the domain and vanishes at infinity, is identically
equal to zero. As for ordinary analytic functions, from formulas (3.2), (3.3) the next
proposition on analytic extension easily follows.

Let a slit L be a smooth arc with ends at points of the boundary contour I', which
lies inside D except for these ends. If a function ¢ is continuous in D and J—analytic
in D\ L, then this function is J—analytic all over the domain D.

All main results of the classical analytic functions theory which are based on the
Cauchy integral hold for J—analytic functions [25]. For convenience let us present the
basic ideas of this theory without proof. In a neighborhood of an isolated singular
point a for a J—analytic function we have the Laurent expansion

o(z) = Z(z —a)ken, ¢ eC

in integer powers of the matrix (z—a);. If ¢ is bounded in a neighborhood of this point
then it is removable and the expansion becomes the corresponding Taylor expansion
with the coefficients ¢, = ¢® /k!. The corresponding partial sums of this series are
J—analytic polynomials

=75, 0<s<k (3.4)

p(z) = sz}ck, e, € C.
k=0

We denote the class of all such polynomials by P7. Obviously, for n = 0 it coincides
with C'.

In the case of an unbounded domain D the infinitely remote point oo can be con-
sidered as an isolated one. We would remind that J—analyticity of a function ¢ in
this domain implies that for the derivative ¢’ the condition similar to (2.3) is satis-
fied. In this case the Laurent expansion in a neighborhood of co becomes a series in
positive powers of z;. Similarly if ¢ has order k at infinity i.e. ¢ can be estimated
as ¢(z) = O(|z|*), then its Laurent expansion in a neighborhood of oo is a series in
powers of 2%, i < k. In particular, the function zjkgb(z) is the Douglis analytic one in
a neighborhood of cc.

If a function ¢ is defined and is J—analytic in a simply connected domain D then
the integral i

o) = [ dtu 35)
20
does not depend on a path of integration and defines a J—analytic function with the
derivative ¢’ = 1. Generally speaking, in the case of multiply-connected domain D
the antiderivative ¢ of the function 1 is multi-valued and allows branching when going
over connected components of the domain boundary. It is obvious that formula (3.5)
leads to a single-valued function if an only if

/ dtyi(t) = 0 (3.6)
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for each simple contour IV C D. In the general case the integral here could be inter-
preted as the variation of the function ¢ over the contour I".

Let the domain D be bounded and its boundary consist of finite number m of
connected components. Let us consider in D simple contours I'}, 1 < j < m —1, which
keep inside the corresponding m — 1 of these components. Then in view of the Cauchy
theorem it is sufficient to verify condition (3.6) only for these contours. A similar
proposition is valid for an infinite domain under the condition that i has order —2
at infinity. In this case it is possible to integrate in (3.5) from z; = oo and boundary
components connected with I"; can be chosen arbitrarily.

Similarly to (3.3) we can introduce the generalized Cauchy integral

1
I =— [ (t—2); dtp(t
(19)(:) = 5 [ (0= )7 desote),
defining the J—analytic function ¢ = I¢ with order —1 at infinity outside of the
oriented contour and the corresponding singular Cauchy integral

(Se)(t) = - [ (t= )7 dtspl0). e,

which is undestood in the sense of the principal value. The operator [ defined by this
integral is bounded in the Hélder spaces C*(I') — C*(D), where D is any connected
component of the complement to I', and the Sokhotskii-Plejmel formulas [3]

20F = o+ Sp (3.7)

are valid for its boundary values ¢ (the signs are defined by the contour orientation).

Hence, taking into account the proposition on analytic continuation, it is easy
to solve the problem on the Cauchy integral representation of a function which is
J—analytic outside the contour I' and has finite order at infinity. If this function
belongs to C*(D) where D is an arbitrary connected component of the complement to
I'and ¢ = ¢T — ¢, then ¢ = I + p with some J—analytic polynomial p.

If the density ¢ of the Cauchy integral belongs to the Lebesgue space LP(T), 1 < p <
oo then function ¢ = I'¢ belongs to the Hardy space H?(D). This space of J—analytic
functions can be introduced by the following way. Let the contour I'" belong to class

C' and let a sequence of contours I',, C D, n = 1,2, ... converge to I in in the metric
of this class. Then H?(D) consists of all functions J—analytic in D for which the norm
6| = sup ] Lo (r,) (3.8)

is finite. As is shown in [3] the Cauchy integral is bounded LP(I') — HP?(D) as linear
operator ¢ — ¢ and the Sokhotskii-Plejmel formula is valid for the boundary values.
On the other hand any function ¢ € H? can be represented by the Cauchy integral
with the density ¢ € LP(I'). Indeed let the domain D,, C D be bounded by a contour
[',. Then for any fixed point z € D and sufficiently large n we can write the Cauchy

formula
1

b(z) = = / (t — 2)5 ().

2T
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It follows from (3.7) and the weak compactness [19] of the unit ball in a reflexive
Banach space LP, p > 1, that for any matrix—function k(t) € C'(D) there is a function
¢ € LP(T") and a subsequence ny such that

im [ E(t)dto(t) / k(D) yo(t).

k—o0 Fnk r

Therefore with k(t) = (t — 2);" and n = n; in the previous equality it is possible to
pass to the limit as k — oo and to present ¢ by the Cauchy integral as a result. In
particular it follows that a function ¢ € H?(D) if and only if there exist angular limits
almost everywhere on I" which belong to LP(I') and the Cauchy formula holds its form.
For these reasons the space H? can be defined as the closure of the class of J—analytic
functions being continuous in a close domain D in the norm

|¢\ = ’¢+’LP(F)a

which is equivalent to (3.8).

Results of [28] on J—analytic functions in the Holder classes can be easy extended to
the Hardy class. Without loss of generality matrix J can be considered as a triangular
one.

Lemma 3.1. Let a domain D (bounded or unbounded) be bounded by a simple Lya-
punov contour T' and the matriz J be triangular. Let a J— analytic function ¢ € HP(D)
be such that Reg™ is constant on I'. Then ¢ is constant in the domain D.

Proof. First we prove the lemma for the scalar case I =1 when J =v € C and ¢ is a
solution of the equation
op 09

8y or
Under the affine transformation z = = + 1y — 2, = = + vy this equation becomes the
Cauchy-Riemann equation defining analytic functions. Obviously the Hardy class is
invariant under these transformations, therefore without loss of generality the function
¢ can be considered to be analytic. In this case the statement of the lemma is well
known[12]. So in the scalar case the statement of the lemma has been established. In
the general case [ > 1 let us consider system of equations (2.11).

The matrix J, assumed for definiteness to be upper-triangular, can be coordinate-
wise rewritten in the form

0.

for the vector ¢ = (¢1,...,¢;). By virtue of the proved facts from the last equation
of this system it follows that the function ¢; is constant. Hence the equation number
(I — 1) becomes a scalar equation for ¢;_; discussed above and v = J;_1,_;. Therefore
for the same reasons the function ¢;_; is constant. Repeating these arguments we
conclude that all functions ¢, are constant. O
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Let us turn to the problem on representability of J—analytic functions ¢ € H? by
the Cauchy integrals with real density.

Theorem 3.1. Let a Lyapunov contour I' bound a domain D, have positive orientation

relative to D and consist of components I'y,...,I",,, m > 1, with the contour T,

enveloping all others in the case of a finite domain. Let the matriz J be triangular.
Then any J—analytic function ¢ € HP(D) can be represented in the form

¢p=1Ip+mn, neC, (3.9)

where real |—vector-valued function ¢ belongs to LP(I") and, in the case of a bounded
domain D, the vector n is purely imaginary.

Herewith in this representation ¢ = 0 if and only if n = 0 and the function ¢ s
constant on the contours I'; (vanishing on 'y, in the case of a bounded domain D).

Proof. is carried out in the same way as in the case of functions in the Holder classes
[28]. First we suppose that the domain D is finite and bounded by a simple contour
(i,e. m=1). Let D be the complement of D and let ]gp be the Cauchy operator in the
domain D. Then on the basis of (3.7)

(Io)" — ()" =¢. (3.10)

We claim that
Re (I)t =0 = ¢ =0, (3.11)
Re (Ip)" =¢eR = £¢=0, p € R. (3.12)

Indeed if Re (I¢)T = 0 then by Lemma 3.1 the function Iy is constant, and
taking into account (3.9) we obtain that the function Im (1)~ is constant too. Using
Lemma 3.1 once more we deduce that the function It © is also constant and the density
¢ = & € Rl is constant too. But then Ip = ¢ and because Re (Ip)* = 0 implication
(3.11) is valid. Reasoning for the integral I  is the same. As above we make certain
that the functions I © and ¢ are constant. Hence, because the first of them vanishes at
infinity, (3.12) follows.

Let us consider operators the My = Re (I¢)" and My = Re (I)~ acting in
LP(T"). According to (3.7) we have:

Mo =Re (¢+ Sp)/2, ]T/[/go =Re (—p+ Sp)/2.

The complex conjugation operation ¢ — % induces the corresponding involution oper-
ator N — N by the rule No = Np. With this notation

M=1+(S+95)/2, M=-1+(S+25)/2. (3.13)

If the dependence of the operator S on the matrix J is denoted by S = S then S = —S5
(the minus sign appears because of the multiplier 1/7i in front of the singular integral).
Let Sy be the classical Cauchy singular operator, corresponding to the scalar matrix
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J =i, and e = e; + iey be the unit tangent vector tothe contour I' selected to be
consistent with its orientation. Then in compliance with (3.1) we have

1 k(to,t;J

(59)t0) — (o)) = = [ FL D ipjar, (3.14)
) r t— to

where k(to, t; J) = (t —to)(t —to)ses(t) —e(t) and |dt| is the element of arc length. As

I' is a Lyapunov contour the matrix-function

k(to, t; J) = O([t — ") (3.15)

for some v > 0, it follows that the operator S — S is a compact operator in the space
LP. But then the operator S+ S = S; — S5 has this property too. Therefore by virtue
of the Riesz theorem [19] the operators M and M in (3.13) are Fredholm operators
with zero indices. In combination with (3.11), (3.12) we conclude that the operator M
is invertible and

ker M = {0}, R'nimM = {0}. (3.16)

Let further ¢ € HP(D) and f = Re¢™. Assuming that ¢ = M !¢ we obtain (¢ —
Ip)* = 0 and by Lemma 3.1 the function ¢ = Ip + i¢ with some ¢ € R'. If in this
equality ¢ = 0 then My = 0 and so ¢ = 0. Therefore the statement of the theorem is
established in the case under consideration. B

Let further ¢ € HP(D) and ¢o(z) = ¢(z) — ¢(c0). We remind that the operator
M is a Fredholm one with zero index. So taking into account (3.16) we obtain that
function f = Re (bo can be represented in the form M ¢ + & with some ¢ € LP and
€ € R Then Re(¢pg — I(p) = ¢ and by Lemma 3.1 the function gbo — Igo is constant.
As it vanishes at oo since ¢ = I, it implies expansion (3.9) for ¢ with n = qb(oo).
The fact, that ¢ = 0 in this expansion implies that n = 0 and ¢ € R/, is proved in the
same way. Therefore the statement of the theorem is also established for the case of
an infinite domain bounded by a simple contour.

Let us consider the general case of a contour I'. A domain D is for definiteness
assumed to be bounded. Let a domain D; be bounded by a contour I'; and unbounded
(bounded) for 1 < 5 < m — 1 (for j = m), so the domain D’ is the union of domains
Dy, ..., Dy, In accordance with the Cauchy formula the function ¢ € HP(D) can be
represented as the sum

¢(2) = 1(2) + ...+ dm(2), z€D, (3.17)
where ¢; € HP(D;) are defined by the Cauchy integral

0i2) = 5 [ 1=2) i), 2D,

21

The statement of the theorem is already applicable to the functions ¢; so

bi() = = / (t— =) dtsp (), 1<j<m—1,
Ly

21
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Om(z) = QL/ (t —2)7 dtjom(t) +1i€, € €RL
i Jr,,

Substituting these relations in (3.17) we conclude the required expansion (3.9). If in
this expansion ¢ = 0 and functions ¢; € HP(D,) are defined by the Cauchy integral
with the density ¢|r; then the equality —¢,, = ¢1 + ... + ¢n—1 allows us to continue
—o¢, to the Douglis analytic function all over the plane vanishing at oo. Therefore
®m = 0. In the same way it can be shown that ¢; = 0 for all j.

Applying the theorem to ¢; we make certain that o|r; € Rlas1<j<m~-—1,and
£=0, ¢|r, =0, i.e. the theorem is established completely. ]

As in the case of general analytic functions the Riemann—Hilbert problem
ReGo|, = , (3.18)

can be considered for the Douglis analytic functions. Here [ x [—matrix—function
G € C(I') is invertible all over I'. This problem is considered in the space H?(D), p > 1
with the right-hand side f € LP(I"'). The Fredholm property and the index of the
problem are understood with respect to the R— linear operator ¢ — Re G¢ of its
boundary condition.

Theorem 3.2. Let a Lyapunov contour I' consist of m connected components and the
determinant of the matriz—function G € C(I') be non-zero all over I'.
Then problem (3.18) is a Fredholm one and its index & is given by the formula

1
e = ——argdetG|F+(2—m)l, (3.19)
m

where the increment of continuous argument branch on T is selected in the direction
keeping the domain D on the left.

IfT' € CY and G € C¥(T) then any solution ¢ € HP(D) of this problem with the
right-hand side f € C*(T), 0 < u < v, belongs to the class C*(D). Under additional
assumption G € CY(T) the same statement is also valid for the classes C1+.

Proof. Without loss of generality the matrix J can be assumed to be Jordan and, in
particular, triangular. Indeed, let the matrix b € C™*! reducing J to the Jordan form
Jo, i.e. Jo = b~1Jb. Then the substitution ¢ = bgy transforms .J—analytic functions
into Jp—analytic. Let us note that under this substitution problem (3.18) turns to the
same problem for Jy—analytic function ¢ with the matrix Gy = Gb.

So we can use Theorem 3.1. It follows by this theorem that the integral operator I
acting from the space LP(I") of real [— vector-functions in H?(D) is a Fredholm one and
its index ind I = I(m —2). On the other hand in accordance with (3.7) for composition
N = 2RI of the operator R of problem (3.17) and I we have equality N = Re(p+Sp).
In terms of the involution operator of conjugation introduced when proving Theorem
3.1 we can write

N=G1+S)/2+G(1+S5)/2=G(1+8)/2+GCG(1—S)/2+K, (3.20)

with the integral operator 2K = G(S — Sp) + G(S + Sp). This operator is defined by
(3.14) with the matrix—function

k(to. t) = [G(to)k(to, t; J) — G(to)k(to, t; J)]/2,
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for which property (3.15) holds. Therefore by virtue of classical theory of singular
operators with Cauchy kernel |18, 13| the operator N is Fredholm in L” and its index
is defined by the first summand in the right-hand side of (3.19). Hence by the common
properties of Fredholm operators [19] the first statement of the theorem is obtained
directly.

As for the second part of the theorem related to smoothness, let I' € C* and
0 < 4 < v. Then the Cauchy operator I : C*(T') — C*(D) is bounded. Taking
into account the Cauchy integral derivation formula established in [2]| (see Lemma 5.2
below) we obtain that an analogous statement is valid for the classes C*. Therefore it
suffices to establish the statements of the theorem on smoothness only for the equation
Ny = f defined by operator (3.20). Let I' € C',G € C¥(T') and f € C*(T"). Then
the function k(tg,t;J) in (3.14), and with it k(to,t) belong to the class C(I" x T').
The integral operator K is shown in [29] be bounded C(I') — C¥(I") and particularly
compact in C*(T"). Therefore by virtue of the general theory [18, 13] the solution ¢ € LP
of this equation belongs to the class C*. A similar statement with respect to classes
Ob* requires more delicate reasoning connected with singular integral derivation and
it has been established in [2]. O

Let us make a special emphasis on the Riemann—Hilbert problem with the constant
matrix G. In this case index formula (3.19) turns into & = (2 — m). More precise
consideration of this problem allows to outline the following property of the Hardy
spaces.

Theorem 3.3. Let a domain D be bounded by a contour T of class C1** and let a
sequence I, € D, n = 1,2,... converge to I in the metric of this class. Let also a

matriz G € C>! be invertible and a function ¢ J—analytic in the domain D be such
that the real l—vector—function Re G¢ has finite norm (3.8). Then ¢ € HP(D).

Proof. Without loss of generality the matrix J can be assumed to be triangular. This
can be justified as in the case of Theorem 3.2. Since the statement of the theorem is
connected with the behavior of the function ¢ near connected components of contour,
the domain D can be assumed to be bounded with the contour I' consisting of two
components. In this case it is convenient to slightly modify the operator I of the
Cauchy integral setting

~ o

10 = g | [0 =5 et + [wla|, sep. @2

It follows by Theorem 3.1 that the operator I : LP(I') — HP(D) is invertible.
In our notation the next equality corresponds to formula (3.7)

™

1 -
2(I)" =@+ Sp,  (Sp)(te) = — /F[(t —to); es(t) + 1o(t)dt]. (3.22)
and for the operator Ny = Re G(Ip)* we have the expression similar to (3.20):

N=G(1+9)/2+G(1+89)/2. (3.23)
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Therefore problem (3.18) is equivalent to the equation Ny = 2f whose solution de-
fines the solution ¢ = Iy of the problem. According to Theorem 3.2 the problem
and, correspondingly, the operator N are Fredholm ones and have zero index. Let
®1,-.., 0, € HP(D) form a basis in the space of solutions of homogeneous problem
(3.18). Without loss of generality one can assume that some subdomain Dy with its
boundary is inside all contours I',. The real [— vector-functions Re ¢; as elements
C(Dy) are linearly independent. Indeed if Re¢ = 0 in the domain D, for some
J—analytic function ¢ then the fact that ¢ = 0 is proved similarly to Lemma 3.1.
Let us choose a system of real [—vector-functions 11, . .., ¥y biorthogonal to functions
Re ¢(z), z € Dy. In other words

/D (Re ¢);dzdy = 6,

where §;; is the Kronecker symbol. then homogeneous problem (3.18) supplemented
by conditions

Dy
has only zero solution. Let us consider the operator L : LP(I') — R* defined by the
formula

(Le)j = | Rey;Re(lp)dedy, 1<j<k.

Do

Taking into account (3.21) we can write it in a more explicit form of the inner product

Lo) = [ oi0ewlad. 1<5<k (3.24)

with the functions

1

g;(t) = o

/D Im [e;(t)(t — 2) ;' + 1];(2)dxdy.

In this notation the operator (N, L) : LP(I') — LP(T") x R* is a Fredholm one with
zero kernel. We denote the dependence of operators (3.22) - (3.24) and the functions
defining them on I' by notation Sr, Lr etc.

Let us turn to the sequence of contours I',, that is the matter of the theorem. By
the assumption of the theorem there are homomorphisms «,, : I' — I, of the class
C1(T') such that

lim |a,(t) — t|civ =0, (3.25)

n—oo

The operation of superposition ¢ — o, induces the involution operator M — Moa,,
by the rule (M o ay,)(p o ay,) = (M) o cv, which converts the Banach space L[LP(T,)]
of operators bounded in LP(T',) to L|L*(I")]. The denotation (M o «a,)(p o a,) = My
for the operator M : LP(T',) — R* has a similar meaning. It is claimed that in this
notation

|SFnOOZn—SF|£—>0, |Lrn0&n—LF|L—>O (326)



Generalized potentials of double layer in plane theory of elasticity 97

as n — oo by the operator norm of the corresponding spaces. Indeed let

an(to,t) = [on(t) — an(to)]; eslan(®)]e; ()t — to) .

Then by virtue of (3.25) the sequence of matrix-functions ¢, — 1 in the norm C*(I'xT").
It remains to note that in this notation

[wwmwmzL£M%ﬁ@4m%ﬂﬂﬂﬂWMMWL

™

wﬂo%wbzlﬁmmwm%wwmwy

Now let ¢ be a J— analytic function in D for which the real functions f,, = Re ¢|r,,
are uniformly bounded in the norm of the spaces LP(I',,). Let

& = YjRegpdzdy, 1<j<kEk.

Do

Let ¢, € LP(I',) be defined by the equality ¢ = I, ¢, in the domain D,, C D bounded
by the contour I';,. Then Ny, ¢, = 2f, and (Lr, ¢,); = & or equivalently

(NFn o O‘n)@n - ana [(LFn o an)&n]j = §j7

where ¢, = ¢, 0a,. According to (3.23) relation (3.26) is also valid for the operator N
therefore by virtue of Lemma 3.2 below, the sequence @, is bounded in L(T'). Taking
into account (3.26), (3.22) it follows that the sequence of functions (Sr, o a;,)@, and
¢ o ay, are bounded in LP(I'), that completes the proof of the theorem. O

Lemma 3.2. Let X,Y be Banach spaces and N € L(X,Y) be a Fredholm operator
with a non-zero kernel. Let a sequence N,, — N as n — oo in the norm of the space

L(X,Y). If a sequence of vectors Ny, is bounded in Y, then the sequence x, is
bounded in X.

Proof. First let us assume that the image im N of the operator coincides with Y i.e.
the operator N is invertible. Then the operators N, are also invertible for n sufficiently
large and the sequence N, ! converges to N~ in L(Y, X). So the sequence z,, = N, 'y,
is bounded. In the general case by the assumption of the theorem the image im N is
closed and Y = Yy @ im IV for some finite-dimensional subspace Y. Let us choose a
basis y1, . .., yr of the subspace and consider the operators N, N,, € L(X x R¥Y) by
the formula

k k

Then the operatorJV is bounded and the sequence Nn — N in the operator norm.
Hence, because of N, (x,,0) = y,, the boundedness of the sequence x,, follows. n

Let us note that an analogue of Theorem 3.3 is valid with respect to the Holder
classes C*(D), 0 < u < v. It was obtained in [30] by much simpler means.
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4 Solvability of boundary value problems in the Hardy class

Let us turn to matrix (1.7) of the plane elasticity theory. In this case for matrix (3.1)
we have the expressions

. [ z+uny 0 a1  (+uny)? 0
(@) ZJ_( 0 :c—l—y2y>’ = _( 0 (x+wy)™t )

(i) ZJ:<x+Vy y ) 251:<(fc+vy)‘1 y(x+vy)‘2)'

0 x+wvy 0 (z +vy)™!

and

The simplest multi-valued J—analytic function allowing branching while traversing
a fixed point z = 0 is the matrix—function L(z) = In z;, where In z; is the value from
matrix J of the function f({) = In(x + (y) which is analytic in the upper half-plane
Im¢ > 0. It is assumed that z varies in a simply connected zero-free domain and
a continuous branch of the logarithm is selected. It is easy to see that the matrix—
function L satisfies equation (2.11) and its values commute with matrix J. In the case
under consideration (1.7) we have the following expression for this matrix

(i) Inzy = ( In(z N V1) infa ! - ) . (i) Inzy = < ln(‘”O* vy) (@ ﬁn”gy)_ly ) |

While anticlockwise traversing a point z = 0 this matrix—function acquires an increment
equal to 2ms.

Matrices of this type may serve for describing multi-valuedness type in representa-
tions (2.12) of the solutions of the Lamé system and conjugate function (2.15) in the
domain D. Let the domain D be bounded by the contour I' which consists of con-
nected components I'y,...,I",, and in the case of the bounded domain D the contour
I',,, envelopes all other components. Let us choose apoint a; inside each contour I'; and
consider the multi-valued J—analytic matrix—functions L;(z), 1 < j < m — 1 by the
formula

omil;() = { In(z — aj), if the domain is bounded, (4.1)

In(z —a;j)y —In(z — an) s otherwise.

Obviously, while anticlockwise traversing the point ay, 1 < k < m — 1, the J—analytic
function L;(z)n, n € R?, acquires an increment equal to dy;7, where dy; is the Kronecker
symbol. In particular, the solution of the Lamé system

m—1
u = Re sz:1 H;(z)n;, (4.2)

becomes single-valued if and only if Rebn; = 0,1 < j < m — 1. We denote the class of
such single-valued solutions by Uy. Because the matrix b is invertible, the dimension of
the space {n € R?, | Rebn = 0} = 2 is equal to two and therefore dim Uy = 2(m — 1).
In the same way conjugate function

m—1
v = Recz:j:1 H;(z)n;, (4.3)
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becomes single-valued if and only if Recn; = 0,1 < 7 <m — 1. We denote the class of
such single-valued functions by Vj. For the same reasons dim Vy = 2(m — 1).

The following lemma demonstrates that the suitable solution ug of the Lamé system,
whereby the Neumann problem (2.2) is adduced to the definition (2.9), can be selected
in the class U,.

Lemma 4.1. Let a function g € C(T") satisfy the condition

/F g(t)|dt] = 0. (4.4)

Then there is a unique element ug € Uy such that for its conjugate function vy the
difference g — vd has a smooth antiderivative f € CY(T'). Moreover, the function
conjugate to u — ug is a single-valued one.

Proof. By virtue of (1.11) we have the matrix equality

b b\ 1 0 b b
c ¢ ) \ —ay —a22 bJ bJ )’

hence the matrix on its left-hand side is invertible. Thereby there are unique vectors
n; € C? for which

Re bn; =0, Re cnj:/ g®)|dt|, 1< j<m—1.

Ly

Let ug € Uy in representation (4.2) be defined by these vectors and the function vy
be conjugate to ug. Then the increment of vy along the contour I'; is equal to Re cn;
SO
[ ot =0, 1<j<m-1 (45)

Ty

In accordance with Theorem 2.1 the function (v ), satisfies the necessary orthogonality

condition (4.4), so the equality which is similar to (4.5) is also valid for j = m. Hence
the statement of the lemma follows directly. m

By means of the spaces Uy and Vj it is possible to specify the type of multi-
valuedness of J—analytic function in representations (2.12) and (2.15).

Theorem 4.1. Let a domain D be bounded by a contour I' which consists of connected
components 'y, ..., T',,, and in the case of bounded domain the contour I',, envelopes
all other components. Then in any single-valued solution uw of the Lamé system in the
domain D can be uniquely represented in the form

u = Rebp +ug, ug€ Uy, (4.6)

with some single-valued J—analytic function ¢. Herewith uw = 0 implies that uy = 0
and ¢ =n € R?, Rebn = 0.
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Similarly any single-valued function v conjugate to some (generally speaking multi-
valued) solution of the Lamé system can be uniquely represented in the form

v=Recp+ vy, g€V, (4.7)

with some single—valued J—analytic function ¢. Herewith v = 0 implies that vy = 0 and
¢ = ¢, where ¢y = n € R%, Recn = 0 if the domain D is unbounded and ¢o = no+2zm1,
Recng =0, Reeny = RecJn, = 0 otherwise.

Proof. Let us consider representation (2.12) with some multi-valued function ¢ which
will denoted here by ¢;. Let n; be its increment along the contour I'; and ¢ is
defined by the sum in the right-hand side of (4.2). Then the difference ¢ = ¢ — ¢y is
single-valued, so the function Reb¢p = u — Re bgy is also single-valued. Therefore the
single-valued function uy = Rebgy belongs to Uy, which implies representation (4.6).
If in this representation u = 0 and ¢y is the sum in the right-hand side of (4.2), then
Reb(¢+ ¢g) = 0 and therefore the function ¢ + ¢y = n € R?, Rebn = 0. In particular,
the function ¢g is single-valued. This is possible only under the condition n; = 0,
1 <75 <m—1. Thereby ¢y =0 and ¢ = n.

Representation (4.7) for the conjugate function is established similarly. One just
need to prove that the equality Rec¢ = 0 is possible only for the function ¢ = ¢q
specified in the lemma. Differentiating this equality according to (3.4) for the first and
the second partial derivatives we obtain that

Rec¢’ =RecJ¢' =0, Recd” =RecJ@” = RecJ?¢” = 0.

Hence, by virtue of Lemma 2.2 ¢" = 0 and therefore ¢ is the J—analytic polynomial
no + zym of the first order where Recny = 0 and Recn; = RecJn; = 0. It just
remains to notice that in the case of unbounded domain the function ¢ is bounded, so
m = 0. O

For the solutions of the Lamé system and for the functions conjugate to them the
Hardy class is introduced similarly to the case of J—analytic functions by the condi-
tion of finiteness of corresponding norm (3.8). As in the case of harmonic functions we
denote this class by h?(D). By Theorems 3.3 and 4.1 it follows directly that transfor-
mations (4.2) and (4.3) map H” to h?. Thereby if the solution u of the Lamé system
belongs to the class h” then the J—analytic function ¢ in representation (4.6) belongs
to H? and therefore the conjugate function v defined by corresponding equality (4.7),
also belongs to hAP. For harmonic functions this fact is known as the Riesz theorem
[12]. [12]|. Let us note that by virtue of remark to Theorem 3.3. a similar result is also
valid for the Holder classes C*, 0 < pu < v.

Another corollary of the result under discussion is that for elements of the class
h? there are almost everywhere angular limit values defining functions belonging to
LP(T"). In particular, Dirichlet problem (2.1) for the Lamé system can be formulated
in the Hardy class. In generalized formulation (2.9) the Neumann problem can be also
considered in the Hardy class. In other words we need to find such solution u € h? of
the Lamé system that its conjugate function v is single-valued and satisfies boundary
condition (2.9) with some function x constant on connected components of I'. For
these problems considered in the Hardy class the following analogue of Theorem 2.1
holds.
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Theorem 4.2. Let a domain D be bounded by a Lyapunov contour I'.

Then Dirichlet problem (2.1) is uniquely solvable in the class h?(D). As for Neu-
mann problem (2.9), the homogeneous problem has the trivial solution in this class
and the nonhomogeneous problem in the case of an unbounded domain is uncondition-
ally solvable. If the domain D is bounded then this problem is solvable if and only if
orthogonality condition (2.10) is satisfied.

IfT € CY and f € C*(T"), 0 < u < v, then any solution uw € hP(D) of these
problems belongs to the class C*(D). A similar statement is also valid for the classes
CLe,

Proof. By virtue of Theorem 4.1 solvability of the Dirichlet problem reduces to solv-
ability of the problem
Re bt +ug = f (4.8)

with respect to the pair (¢,ug) € HP(D) x Uy. Therefore for G = b the statements
of the theorem on the smoothness of solutions of the Dirichlet problem are corollares
of the similar statements of Theorem 3.2. In particular by virtue of Theorem 2.1 the
homogeneous Dirichlet problem has only zero solution in the class h”. For the same
reasons any solution ¢ € H? of the homogeneous Riemann—Hilbert problem Re bt = 0
belongs to the class C1#(D). Because it defines solution u = Re b¢ of the homogeneous
Dirichlet problem by virtue of Theorem 2.1 the function u = 0 and so ¢ = n € C2,
Re by = 0. Therefore the kernel dimension dim ker R of the operator R of Riemann-—
Hilbert problem (3.18) with G = b is equal to 2. Because the index ind R = 2(2 — m),
the codimension of the image im R is equal to 2(m — 1). The functions ug, uy € Uy
do not belong to this image, because J—analytic function ¢q corresponding to them
in representation (2.12) is multi-valued (it can be single-valued only if ¢y = 0). For
the same reasons the dimension of the space Uy = {uj ug € Up} is equal to 2(m — 1).
Therefore LP(I') = im R & U", that proves unconditional solvability of problem (4.8)
and hence solvability of the Dirichlet problem.

Let us turn to problem (2.9). In its formulation the solution w and the function
v conjugate to u must be single-valued. Therefore as above its solvability reduces to
solvability of the problem

Re co™ +x = f (4.9)
for the pair composed of ¢ € HP(D) and a real 2—vector—function y, which is constant
at connected components of the contour I'. Because function v in (2.9) is defined up
to an additive constant, without loss of generality one can assume that the function
x vanishes at the component I',,, of the contour I'. We denote this class of functions
by X, its dimension is obviously equal to 2(m — 1). In the case G = ¢ the statements
of the theorem on smoothness of the Neumann problem solutions is corollary of the
similar statements of Theorem 3.2. In particular taking into account Theorem 2.1 we
obtain that homogeneous problem (2.9) has only trivial solutions in the class h”. For
the same reasons any solution ¢ € H? of the homogeneous Riemann—Hilbert problem
Recgt = 0 belongs to the class C#(D). Because it defines solution u = Rec¢ of
the homogeneous Neumann problem by virtue Theorem 2.1 the function u is a trivial
solution. For these solutions the conjugate function v is constant, so Re c¢ = £ € R?
in the domain D.
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In accordance with Theorem 4.1 the kernel dimension dimker R of the operator
R of Riemann-Hilbert problem (3.18) with G = ¢ is equal to 2 if the domain D is
unbounded and it is equal to 3 otherwise.

Since index ind R = 2(2 — m), it follows that the codimension k of the image im R
of the operator R is equal to 2(m — 1) if the domain D is unbounded and it is equal to
2(m — 1) + 1 otherwise. Elements y € X do not belong to im R because otherwise the
function y should be constant at the contour I', but in accordance with the definition
of X it is possible only if x = 0. Therefore in the case of an unbounded domain D we
have the decomposition LP(I') = im R & X, which proves unconditional solvability of
problem (4.9) and hence the solvability of the Neumann problem too. Let the domain
D be bounded. Then condition (2.10) is necessary for solvability of the problem R.
Indeed for ¢ € C'#(D) it follows by Theorem 2.1 and the remark to formula (2.9).
In the general case the statement under consideration follows by density of the class
CY*(D) in H?(D). This can be easily verified by representing ¢ by the Cauchy integral
I and by approximating ¢ in the norm LP(T") by elements of C1#(T).

Let us denote the class of functions f € LP(I') satisfying the condition (2.10) by
LP(T). Then R can be considered as the operator R : H?(D) — LP(I') and in this
case the codimension of its image is equal to 2(m — 1). As was mentioned in Section 2
when discussing condition (2.10), the space X C LP(I') so LP(I') = im R® X. Thereby
condition (2.10) is necessary and sufficient for solvability of problem (4.9) and hence
for solvability of the Neumann problem which completes the proof of the theorem. [

Along with problems (2.1) u (2.9) one may consider the Dirichlet problem in the
class h?(D)
vt = f (4.10)

for conjugate functions. In this formulation v is assumed to be a single-valued function
conjugate to, generally speaking, multi-valued solution u of the Lamé system.

Theorem 4.3. Let a domain D be bounded by a Lyapunov contour I'.

Then in the case of a bounded domain case Dirichlet problem (4.10) is uniquely
solvable in the class h?(D).

If the domain D is unbounded then the homogeneous problem has only trivial solu-
tion in this class and nonhomogeneous problem is solvable if and only if orthogonality
condition (2.10) is satisfied.

IfT € CYY and f € CHT), 0 < u < v, then any solution v € h?(D) of this problem
belongs to the class C*(D). A similar statement is also valid for the classes C*.

Proof. First let us show that the homogeneous problem
vt =0 (4.11)

has only zero solution in the class C*(D). If the solution of the Lamé system u, to which
the function v is conjugate, is single-valued in the domain D then this fact is established
in the usual way by means of the Green formula as in the case of Theorem 2.1 for the
Neumann problem. In general case we need to make some changes in this argument
connected with multi-valuedness of the function u. Using the notation of Theorem 4.1
we join the connected components I'; by disjoint smooth arcs (slits) Ry, ..., R;, so that
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in complement of R = R; U...U R; the domain D can be splitted in disjoint domains
Dy, ..., D, each of which is bounded by a simple piecewise-smooth contour. In the
domain D, it is possible to choose a single-valued branch of the function u, in the
aggregate these branches define the function in open set D\ R which we denote by wu.
On the slits Ry, it is discontinuous. More precisely if we orient the arc R; and denote
the limit values of u at the corresponding slit sides by u* then difference ut — u~
maintains some constant value:

ut—um =&, €R* on Ry (4.12)

This follows by the fact that the partial derivatives of the function w are continuous
all over the domain D. ]

Now let us consider Lamé system (1.1) in the domain D,. Multiplying equality
(1.1) by u, integrating and applying by the Green formula in view of (2.6) we obtain

2
Ou \ Ou B ,
/T [Z (aijf)_xj) a—xz] dxidzy = /8DT uvl,|dt|, (4.13)

ij=1
where x1 = x, o = y and the unit tangent vector e is oriented at the contour so that
the domain D, remains on the left.

If the domain D, is unbounded then the existence of the double integral here is
provided by condition (2.3). By virtue of boundary condition (4.11) the integrals in
the right-hand side of (4.13) over I' N @D, vanish. Two domains D, border each slit
Ry, and the corresponding vectors e; are opposite at Ry. Summing equalities (4.13) by
1 <r <n and using (4.12) we deduce the equality

2 !
ou\ Ou ,
L5 (o) ] maes o f o s
k=1 k

i,j=1

where the tangent vector e at Ry is selected in accordance with slit orientation and
it is taken into account that by virtue of (4.11) the integrals over Ry vanish. It is
seen from the expressions for coefficients a;; in (1.1) that the block matrix a = (a;)
is symmetric and nonnegative defined. Therefore the expression under integral in the
left-hand side of (4.14) vanish. By virtue of the matrix a symmetry it follows that the
right-hand sides of relations (2.6) are identically equal to zero. Therefore the function
v is constant in the domain D, which with (4.11) is possible only if v = 0.

Further reasoning is absolutely similar to reasons used for proving Theorem 4.2 for
the Neumann problem. It is just necessary to take into account that in accordance
with Theorem 4.1 problem (4.10) is reduced to the problem

Re cot +vf = f

with respect to the pair (¢,v9) € HP(D) x V. Therefore here the role of X is played
by the space V" = {vg vy € Vy} of dimension 2(m — 1).

It should be noted that if problem (4.10) is considered in the class of single-valued
functions u and v then in addition there appear 2(m — 1) linear independent orthog-
onality conditions on the right-side f which are necessary and sufficient (jointly with
(2.10) in the case of bounded domain) for its solvability.
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In the case of orthotropic medium analogues of Theorems 4.1 and 4.2 in the Holder
class C*(D) were established earlier in papers [1] where the scheme of investigation
of these problems is also given for the anisotropic case. One can also obtain results
similar to Theorems 4.1 and 4.2 for solutions of general elliptic systems of the second
order with constant leading, and only leading, coefficients.

5 Potentials of double layer

Considering the unit exterior normal n = n; + iny to the Lyapunov contour I', we
establish linkage between the point ¢ € I' and the functions

n ()€1 + na(t)éo na(t)&1 — na(t)és
€2 7 €2 7

homogeneous of degree —1 relative to the variable & = & +i&;. They define the integrals

0(t,€) = (5.1)

p0<t, 5) =

(Fop)2) = = [ mlt.t = 2)e0ldtl, Qo)) = 1 [ttt = ptolarl (52

with the real density ¢ define, which are obviously harmonic functions in the domain
D. These integrals can be also considered for z = t; € I, in this case they are denoted
by Fie and Qfp correspondingly. The contour I' being a Lyapunov one, the kernel
po(t,t — to) has weak singularity, the second integral (Qfp)(to) is realized as a singular
one.

Since i€(po + iqo) coincides with the tangent vector e = (e1,e3) = i(ny + ing),
integrals (5.2) are the real and the imaginary parts of the Cauchy integral

(Pg)(2) + Qo) (2) = — / plt)dt (5.3)

T t—z
Therefore operators Py, Qo : LP(I') — h*(D) are bounded, p > 1, and the formulas

(Pop)™ =0+ Fye,  (Qup)™ = Qpe, (5.4)

are valid for their boundary values. For the same reason for I' € O these operators
are bounded as C*(T') — C*(D) and C**(T') — C**(D), 0 < p < v, are bounded.
The operator P, is well known to be bounded as C(I') — C(D).

The integral Pyp in (5.2) represents the classical potential of double layer. We
construct generalized potentials of double layer for the Lamé system solutions and
functions conjugate to them by similar scheme in terms of the Cauchy integral for
J—analytic functions. For this purpose in notation (3.1) we introduce homogeneous of
the degree —1 matrix—functions of the variable £ = &; + £, by the formula

H.r(€) = Tm [y (i€) 56501, Ky =1,2, (5.5)

T

where for uniformity we write by = b, by = c¢. They define the integral operators

(Pug)2) = 7 [ mlt.t = 2) (e = 2)o(O)ldt], = € D. (5.6)
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and

(Pio)to) = / polt, t — 1) Hin(t — to)p(8)|di], to € T. (5.7)

The next lemma describes the connection between the functions Py, and the Cauchy
integral /¢ introduced in Section 3. It is convenient to introduce the class h? of
functions w = Py, with ¢ for which the right-hand side of (3.8) is finite.

Lemma 5.1. The following equality
—[m (byb, )]Qow + Prrtp = 2Re[bpI (b, 0)],  kyr=1,2, (5.8)

holds. In particular, the operator Py, : LP(I') — hP(D) is bounded, p > 1, and the
following formula

(Pirp) " = [Re(brb, )]l + Pip, kr = 1,2, (5.9)
holds for the angular boundary values. The integral operators Py are compact in LP(T").

Proof. Taking n = —ie in (5.1) we obtain the equality i&(po+iqo)(t, )& = e(t). Because
the factors p and ¢ are real, it follows that

—qo(t,£)Er +po(t, €)(i€) s = es (1),

which due to (5.5) reduces to the relation

—qo(t, )[Im (b, '] + p(t, &) Hir (€) = Im [br&; e s (£)b,].

First, by virtue of (5.2), (5.6) and the definition of the Cauchy integral this implies
equality (5.8).

A similar equality is also valid for the integral operators with the asterisk in the
notation:

—[Im (beb; )] Q5 + Pie = Re[buS(b; ). (5.10)
On the other hand formulas (3.7) and (5.3), applied to (5.8), produce the relation

—[Im (b, )]Qw + (Pere)™ = [Re(bb, )] + Re[brS (b, .

Hence jointly with the previous equality, it implies (5.9).

As was mentioned above, the contour I' being a Lyapunov one, the function
po(t,t — to) and (jointly with it) the matrix—functions po(t,t — to)Hy,.(t — to) have
weak singularity. Therefore the integral operators Pj. are compact in LP(I").

In view of notation (5.5) by equality (5.8) and representations (2.12), (2.13) it
directly follows that the following pairs are solutions of the Lamé system and functions
conjugating to these solutions:

u=Pro, v=—[Im(cb™)|Qop + Por;
(5.11)

v=Pyp, u=—[Im(bc)|Qop + Piap.
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Furthermore four equalities (5.9) can be written in more explicit form:
(Pap)” = o+ Py, k=12,

(Prap)™ = [Re(be™ )] + Prp, (Pag)™ = [Re(cb™)]e + Pjiep.

In accordance with (5.11) it is natural to name the integrals Py and Py general-
ized potentials of double layer for solutions of the Lamé system and functions conjugate
to them respectively.

Lemma 5.1 can be also extended to the spaces of continuous functions. O

Lemma 5.2. Let I' € C*, 0 < p < v and C* mean any symbol from C, C*,C"*.
Then the operator Py, : C*(I') — C*(D) is bounded and the operator Py, is compact in
c*(I).

Proof. First let us consider the operators Pg.. The boundedness of these operators
C*T) — C*(D) follows by equality (5.8) and the similar properties of the operators
Q and I. With respect to the classes C** the proof is based on the derivation formula
of the Cauchy integral ¢ = Ip. Let ¢ € C'(T') and Dy mean the derivative of ¢ with
respect to arc length parameter of I' counted in the positive direction. Then

9 1 . 1
— t— dt| = —— D(t — dt
o) = 5 [l = 27esptolat = —5 [ Dl =27 o0l
whence after integration by parts we come to the differentiation formulas
d(lp) _ A(Ip) B
e I(e;'Dy), oy = I(Je;'Dyp). (5.12)

Taking into account (5.3) we also have the similar formulas for the operator Q:

m%m:mﬂi/umwww a%w:m%;/QﬂM@] (5.13)

ox i t—=z dy T t—z

Applying these formulas to (5.8) we obtain the boundedness of the operators Py, :
CHH(T) — CY(D).

The proof of the statement of the lemma for the spaces C' is based on the estimate

sup/ |po(t,t — 2) Hy(t — 2)||dt| < Msup/ Ipo(t,t — 2)|dt| < oo, (5.14)

zeD

where it is taken into account that matrix-functions homogeneous of degree 0 are
bounded. Therefore the statement under consideration will be established if we show
that for ¢ € C(I') the function (Pg.p)(2), z € D, has a limit at fixed boundary point
to € I'. In accordance with (5.8) the operator Py, transforms constant vector—functions
in constants. Therefore without loss of generality we can assume that ¢(ty) = 0. If
'y € T is some neighborhood of the point ¢, then, obviously,

/F\F po(t,t = 2)H(t — z)p(t)]dt] — o po(t,t —to) H(t —to)p(t)]dl]
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as t — to. On the other hand by virtue of (5.14) under the appropriate choice of Ty
the similar integral over ['y can be made sufficiently small uniformly over z.

Turning to the operators Py, we firstly note that under assumption I' € C''" the
function g(to,t) = |t—to|po(t, to—1t) belongs to the class C*(I'xI") and vanishes at t = ¢,
(we denote this class by C§). On the other hand Hy,(t — ty) belongs to C*(I' x I') as
a function of two variables. This fact is valid for any sufficiently smooth even function
H (&) homogeneous of degree zero. Therefore the functions

Pir(to, t) = |t — tolpo(t, to — t) Hyr (t — to)

also belong to the class C§. As was established in [29] in this case the operator

1
(Poto) =+ [ Polta 0t~ 1ol it
r

is bounded from C(I") to C¥(I') and, in particular, compact in the spaces C(I') and
omI).

As for the last case of the spaces C'* we establish preliminary differentiation for-
mula

DPg = P;,Do, @€ CHH (D), (5.15)

where the operator ﬁ,:,, is obtained by the substitution of po(to,t — to) for po(t,t — to)
in the integrand on the left-hand side of (5.7).
The proof is based on using differentiation formulas (5.12) and (5.13). Let the

operator Qf be obtained from @ in a similar way, i.e. by substitution of gy (to,t — to)
for qo(t,t — to) in the integrand. Besides we set S = e JSejl or in the explicit form

Be)to) == [ estta)t — )5 eOldt], to €T,

Then as in the proof of Lemma 5.1 we make sure that the equality similar to (5.10) is
also valid for the operators under discussion:

[l (byb; )@ + Piip = RelbiS(5; ). (5.16)
Let us fix a point ¢y € I' and substitute partial derivatives (5.12) in the expression

)
ox

10 52 2) + eafto) L2 (2)

Then passing to the limit as z — %, and taking into account Sokhotskii-Plejmel for-
mulas (3.7) we obtain 2D(I¢)T = Dy + SD¢. On the other hand differentiation of
the Sokhotskii—Plejmel formula implies the similar equality 2D (1)t = Dy + DSe.
Comparing it with the previous one we obtain the differentiation formula DS = SD
for the singular operator S. By absolute analogy using (5.13) we obtain the equality
DQy = QOD for the operator Q). Acting by the operator D on equality (5.10) and
applying these formulas we obtain

[Im (b, ")]Qo D + DPp = Re[biS (b, 0)].
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Hence, jointly with (5.16), it implies (5.15).

It is easy to verify that the function g(to,t) = po(to,t — to) belongs to the class C¥
together with g(to,t) = po(t,t — ty). Therefore the operator ﬁ,jr is also compact in the
space C*(I'). Hence on the basis of (5.15) follows the compactness of the operator Py,

in C+(T). O

If the conjugate function is represented by either of the formulas in (5.11) then
by formulas (2.17) we can identify the elements of the stress tensor o. Therefore
an important role is played by the explicit differentiation formulas for function v in
representations (5.11). They are obtained directly from relation (5.8) of Lemma 5.1
and the Cauchy integral differentiation formulas (5.12).

Lemma 5.3. Let o € CYT) and Dy be the derivative of ¢ with respect to the tangent
direction e = in at I'. Then

g_Z(z) — %/Flm [e(t = 2)5 e (D) (#)dt,

g_z@ -1 / Im e (t — 2); e Y)(Dy) (1) dr,
if v = Py and

D)= / I [e(t — 2);'07 (D) (1)t

Z_Z(Z) -1 /F I e (t — 2)7'07 (D) ()]t

if the function v is conjugate to u = Py .

6 Representations by potentials of double layer

Let us consider the problem of representation of solutions of the Lamé system by
potentials of double layer u = Pj;p. Preliminarily we describe the kernel ker P;; =

{p € LP(T) | Py = 0}.

Lemma 6.1. Let a domain D be bounded by a contour I' € OV consisting of con-
nected components I'y,...,I',,, and let in the case of a bounded domain the contour I,
envelope all other components.

Then the kernel of the operator Piy belongs to the class Y1(I') of functions constant
at the connected components of I' and vanishing at Ty, in the case of a bounded domain.

Proof. Let us write equality (5.8) for the operator under consideration:
Piip = 2Re[bI (b p)]. (6.1)

The relation Y; C ker Pi; follows directly by this equality and the Cauchy formula.
Conversly, let Pj; = 0. In the domain D we consider the Cauchy integral ¢ = I(b~1y)
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and the analoguous integral in the complement D=C \ D which we denote by ¢ =
I(b='p). By virtue of (3.7) for boundary values of these functions we can write:

¢ —vT =0""yp, (6.2)

where it is taken into account that I' is negatively oriented with respect to D.

By (6.1) the assumption Py = 0 means that Reb¢ = 0. Therefore the function ¢
is constant in the domain D, more precisely, bp = i€, € € R?. Hence on the basis of
(6.2) and by real-valuedness of ¢

Imip~ =&, @ =—Reby. (6.3)

Therefore the function uy = (Imb)) — £ is a solution of the homogeneous Dirichlet
problem for the Lamé system in connected components of the open set D and by
virtue of Theorem 4.2 it is identically equal to zero. Therefore Reb(iy) + b~1€) = 0 in
5, so ¢ is constant. If the domain D is bounded that function ¢ vanishes at infinity
therefore its restriction on infinite connected component of D is equal to zero. Hence
jointly with the second equation in (6.3) it follows that ¢ € Y.

Similarly to Theorem 3.1 the following main theorem solves the problem on repre-
sentations of solutions of the Lamé system by generalized potentials of double layer. In
the notation of Theorem 4.1 it is convenient to set Uy = Uy if the domain D is bounded
and Uy = {ug + &, ug € Uy, & € R?} otherwise. O

Theorem 6.1. Let a domain D be bounded by a contour T' € C*" consisting of con-
nected components I'y,...,I',,, and let in the case of a bounded domain the contour I',,
envelope all other components.
Then any solution u € h?(D), 1 < p < oo, of the Lamé system can be represented
i the form
u = P+ ug (6.4)

with some ¢ € LP(I") and ug € [70, and in this representation v = 0 if and only if
ug =0 and Py = 0.

If this function belongs to the class C*(D), where C* is any of the symbols
C, CH, CY, <, then p € C*(T).

Proof. The image im P;; of the operator P;; does not intersect [70. Indeed, according
to (6.1) the function u = Pj;¢ can be written in the form u = Re b¢, where J—analytic
function ¢ = I(b~'y) is single valued in the domain D. Therefore in expansion (4.6)
of the function u the summand wug is equal to 0. In the case of unbounded domain D
it is necessary to take into account that u(oco) = 0.

By virtue of Lemma 5.1 the composition of P;; and the operator of the Dirichlet
problem (2.1) is a Fredholm operator 1 + Pj| with zero index, therefore by virtue of
Theorem 4.2 the operator Pj; belongs to the same type. In particular, the image im Py
is closed and its codimension coincides with the dimension of the kernel Y; = ker Pi;.
It is easy to see that the dimensions of the spaces Y; and Uy are the same and equal to
2(m — 1) if the domain D is bounded and equal to 2m otherwise. Therefore h?(D) =

ﬁo @ im P;;, whence the first part of the theorem follows.
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As for the last part its statement concerning C* = C*, CY*, by virtue of Theorem
4.2 the operator of the Dirichlet problem is acting from C*(D) to C*(I"). In accordance
with Lemma 6.1 the kernel Y7 C C*(I), Uy C C*(D) and the relations ker P;; = Y7,
Uy N im P;; = 0 are also valid for the operator Py : C*(I') — C*(D). Therefore,
taking into account Lemma 5.2 the above is also completely valid for the space C*(D).

The proof of this statement for C* = C'is based on reducing the Dirichlet problem
in the space h? to the equivalent Fredholm equation in LP(T"). Let £ = dimY; = dim Uy
and consider in the spaces Uy and Y; bases Uy, ..., up and gy, ..., gi respectively. Then
by the first statement of the theorem which has already been proved the operator

Po=Pup+ Y, (.0, (00) = [ oottt

is acting from [P(T") to h*(D) and the Dirichlet problem u™ = f can be reduced to the
equivalent second order Fredholm equation

k
o+ Pho+ Y (g g)uf = f. (6.5)

If ¢ is a solution of this equation then the first pair in (5.11) defines a solution u of the
Dirichlet problem and the corresponding conjugate function. According to Lemma 5.2
the operator Py, is also compact in C(I"). It is well known that any solution ¢ € LP(T)
of equation of this type with the right-hand side f € C(T") belongs to C(I"). But then
by Lemma 5.2 function u = P;;¢ also belongs to space C'(D). This fact completes the
proof of the theorem. O

As we can see from the proofs of Theorems 3.2 and 4.2, solvability of the Dirichlet
problem for the Lamé system is reduced to a singular integral equation on I', which
does not allow to consider this problem in the class C(D) within the scope of this
approach. Classical potentials of double layer are known to be constructed in terms of
the fundamental matrix for the initial elliptic problem [16, 7|. For the Lamé system
variants of matrices of this type were suggested in [14], but potentials of double layer
constructed by means of them also reduce main boundary problems for the Lamé system
to singular integral equations on the boundary. The advantage of generalized potentials
of double layer u = Pj1¢p is that they give an opportunity to reduce the problem to
Fredholm equation (6.5) which is free from the drawback mentioned above. It should
be noted that potentials of double layer are connected with the the fundamental matrix
of the Lamé system in the form Re[(27i) " b1n z;].

Let us turn to the operator P, and first of all describe its kernel.

Lemma 6.2. Under assumptions of Lemma 6.1 the kernel Yy of the operator Psy is
finite-dimensional and satisfies the conditions

3m — 2, D is bounded,
3m otherwise.

Vi C Yo € CW ), dimY = { (6.6)

Proof. We use the same scheme as in the proof of Lemma 6.1. Let us write equality
(5.8) for operator under consideration:

Py = 2Relcl (¢ )] (6.7)



Generalized potentials of double layer in plane theory of elasticity 111

and let Py = 0. In the domain D we consider the Cauchy integral ¢ = I(c"'¢) and
the analogous integral in D which we denote by ¢ = I(c"'¢). For the boundary values
of these functions we have the relation similar to (6.3)

¢T =y =l (6.8)

Formula (6.7) and the assumption Py = 0 imply the equality Re c¢ = 0, therefore in
accordance with Theorem 4.1 the function ¢ is a polynomial p(z) of the form

0 (6.9)

0 1
+ zym, D bounded,
p(z) = { 7 7 :
n otherwise,

where 1/ € C? satisfy the conditions Recn® = 0, Recn! = RecJn! = 0. Hence on the
base of (6.8) and real-valuedness of ¢

Ime(yp —p)” =0 (6.10)

and

¢ =—Recy™. (6.11)

We emphasize that in the case of a bounded domain D the function ) vanishes
at infinity. Moreover by Theorem 3.2 this function belongs to the class C'*~" in the
closure of each connected component of the open set D. The opposite statement is
also true: if for some J—analytic function ¢ of this type there is such polynomial p of
the form (6.9) that boundary condition (6.10) is satisfied, then function (6.11) belongs
to Y,. In particular, on the base of Theorem 3.2 C'*~°(D) contains the kernel Y5 of
the operator P,,. We carry out describing its dimension for two types of the domain
D separately. B B

1) Let domain D be bounded and D; be a connected component of D having the
contour I'; as its boundary. Then all domains 15]- are bounded and by virtue of Theorem
4.1 the conjugate function v = Im ¢(¢) — p) is identically equal to zero in each of them.
Hence the restriction of i(¢) — p) to the domain ﬁj is a polynomial p; = 'r;? + z Jnjl-
satisfying conditions (6.9), i.e. Recn) = and Recnj = RecJn; = 0.

Thus ¢ € Y, if and only if g0|pj =Imep;, 1< j < m. Since the functions Im cp;,
form the space of dimension 3 for each j, the dimension of the space G is equal to 3m.

2) Let the domain D be unbounded, then the first m — 1 domains D; are bounded
and the domain D,, is unbounded. In accordance with (6.9) boundary condition (6.10)
in the last domain can be written in the form

Imc(y —n°) " |r, = Im (czynY)|r,,. (6.12)

Since the space {n', Recn! = RecJn! = 0} is one-dimensional, by Theorem 4.2 there
exists a unique conjugate function v which belongs to class CY=% in the closure of
domain D,, and which boundary value coincides with the right-hand side of (6.12).
There exists a unique vector ° € C? for which Recn® = 0, Imen® = —v(o0). Hence
the function v can be represented in the form v = Imec(¢) — n°), where J—analytic
function ¢ € C1*~0 vanishes at infinity. Therefore the space Y5 consists of functions ¢
for which

90|Fj = Imcpja 1 S] S m — 17 90|Fm = RCC’QZ)_,
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so its dimension is equal to 3(m — 1) + 1.
By (6.6) Y5 contains the class Y7, defined in Lemma 6.1. Thus relations (6.6) are
completely established. O

Let us turn to the problem of representation of conjugate functions by potentials
Pyp. Let for short C'*~% mean the class of functions belonging to C'# for all 1 < v.
As in Theorem 6.1 we set Vy = Vj, if the domain D is bounded and Vy = {vg + &, vy €
Vo, & € R?*} otherwise.

Theorem 6.2. Under the assumptions of Theorem 6.1 there exists a finite-dimensional
space V. C CY~O(D) of the dimension dim Yy — 1, containing the class Vy, such that
any function v € (D), conjugate to some (generally speaking multi-valued) solution
of the Lamé system, can be represented in the form

v = ng(p + Vo (613)

with some p € LP(T") and vy € V', and v = 0 in this representation if and only if vg = 0
and Py = 0.

If this function belongs to C*(D), where C* is any symbol of C, C*, CY*, < v,
then ¢ € C*(I).

Proof. is absolutely similar to the proof of Theorem 6.1. Since the composition of
Py, and the operator of Dirichlet problem (4.10) is a Fredholm operator 1 + Py, of
zero index, taking into account Theorem 4.3, we conclude that the operator Py, is a
Fredholm one and its index is equal to 1, if the domain D is bounded, and its index is
equal to zero otherwise. Therefore its image im Py is closed and has the codimension
equal to dim Y3 — 1. As in the proof of Theorem 6.1 Vy Nim Py = 0. Thus in A?(D)
there exists a subspace V 2 V; of dimension dim G, — 1, for which decomposition (6.13)
is valid.

As in the case of Theorem 6.1 analogous argument can be also made for the space
C*(D), where C* = C*, OV Tt just required to prove that the subspace V' can be
chosen independently of X (D) in C**~°(D). Previous arguments demonstrate that the
codimension s = dim Y5 — 1 of the subspace Py [CT#(T")] € C1#(D) does not depend on
the choice of u < v. Obviously, functions vy, ..., v, € C*~9(D) are linearly dependent
modulo Pay[CH~9(T)] if and only if they linearly dependent modulo C'#(D) for some
i < v. Therefore the codimension of the subspace Py[Ch*~%(T")] C C1*=(D) is also
equal to s and of the desired V is obvious.

As for the case X = (', analogously to the proof of Theorem 6.1 we set k = dim G,
and consider bases gi,...,gr and vy,...,v,_1 in the spaces Y5 u V respectively. Then
on the base of Lemma 6.2 and Theorem 4.3 any element f € LP(I") can be represented
in the form

k—1
F=(Pap)" +) A+,

with some ¢ € LP(I') and A\; € R, where we would remind that the function n =
(ny,n2) is the unit exterior normal. Herewith the equality f = 0 involves ¢ € Y; and
A1 = ... = A = 0. Therefore, the operator

N k—1 n
No=¢+Pho+ Y = (95,000 + (95 ¢) (6.14)
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is invertible in space LP(T'). Obviously, then it is also invertible in the space C(I').
Let now v € C(D), f = v" and ¢ = N-!f € C(T'). Then by Lemma 5.2 the
conjugate function

k-1
vy = Pop + Zl (95, 9)v; (6.15)

belongs to C(D) and, obviously, vt = vg 4 (gx, )n. By Theorem 4.3 both functions
vt and v are orthogonal to n, so indeed (gx, p) = 0, v = v and decomposition (6.15)
transforms into (6.6). Thereby Theorem 6.2 is established completely. ]

It follows by Theorem 6.2 that the statement of Theorem 4.2 for the Neumann
problem is also valid for the space C'(D). To reduce this problem to an integral equation
on I it is convenient to choose the space V' in Theorem 6.2 in another way. We denote
by Vi the class of conjugate functions v, whose boundary value y is constant on the
connected components I';, j = 1,...,m — 1, of the contour I and vanishes on I';,,. Since
the function x is orthogonal to n, by Theorem 4.3 the problem v* = y is solvable and
its solution v belongs to the class C**~9(D). It is clear that the solution u of the Lamé
system having v as its conjugate function, is multi-valued, and it can be single-valued
only if v = 0. Therefore in the second statement of Theorem 4.1 the space Vj can be
replaced by V;. Defining V; by Vi similarly to the previous arguments, the choice of the
space V' in Theorem 6.2 can be subjected to the condition V' 2O V;. Let vy,...,vp_1 be
a basis of the space V' defined by this way, and the first 2(m — 1) these elements form
a basis in V;. We denote solutions of the Lamé system corresponding to v;, by u;, so
there are only first 2(m — 1) of these functions, which are multi-valued. As above the
operator N, defined by formula (6.14), is invertible. If for a given function f, which
is orthogonal to n, we have ¢ = N~lp, then as above we make sure that conjugate
function (6.15) solves the Dirichlet problem v = f. Setting

_ . + oy ‘ .
X - ZjSQ(m—l)(g]’ SO)UJ ) v Zj>2(m—1) (9]7 SO)UJ7

we obtain the equality (Pap)™ + x + 07 = f. Hence in accordance with expression
(5.11) we conclude for the second pair that the function

u = [Re(bc™H)]Qyp + Prayp + Zj>2(m_1)(9j, P)u;

solves the Neumann problem vt + y = f.

7 The structure of matrix kernels of potentials

It is convenient to slightly modify the integrand in formula (5.6) for potentials. For
this purpose let us introduce the quadratic form

w(§) = (& +11&) (& +1262), (7.1)

which will be used in both cases (i) and (i7), in the last case it turns into w(§) =
(&1 + v&r)%. Setting

Re[n(t)€

- TR 6o -

w(€)
o Hir(©) (72)

o9 e
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the integrand poH in (5.6) can be written in the form pG. Obviously, the matrix—
function G(£) is homogeneous of degree 2 and it will be under investigation in the
sequel.

In our notation the first pair of relations in (5.11) for the potential u of the Lamé
system and for the function v conjugate to it has the form

u(z) = © / pltst — 2)Gr(t — 2)p(t)|dt], (7.3)

A

o2) = == [ aot.t = ) (b )p(Olat] + - [ 0, = 2)Garlt = 2Jle)el

™ T

and corresponding relation for the second pair can be written similarly:

v(z) = 1 /Fp(t,t — 2)Gaa(t — 2)p(t)|dt], (7.32)

™

u(z) = =3 [ anltst = 2)tm (e (ol + - [ . = 2)Gualt — 2)le)cel.

r

First let us find the explicit expressions for the matrices which are under the sign
of real part. Though the definition of the matrices b and ¢ in Theorem 1.1 depends on
cases (i) and (i7) of the characteristic equation in the upper half-plane, the elements of
the matrices cb~! and bc™! can be expressed in terms of their symmetric combinations

(1) s = vy + 1o, t =11y (i) s = 2u, t = 1V, (7.4)

and in this sense they do not depend on the mentioned cases. More precisely, these
matrices elements are rational functions of the variables s,t and the elastic modules «;
u [3; entering (1.2).

Lemma 7.1. Apart from the special case the numbers

ey = az(az + ay) — 2506 — (@20 — a3a5)s + [202 — o + au)lt,

7.5
e = 07 — Bafss + (65 — 26184)t + B1Pas® — 1 Bsst + (712, (7.5)
are not equal to zero and
b~ = L ( —€22 —€12 ) : be ! — L < —€11 —e€12 ) 7 (7.6)
€@) €21 €11 €(2) €21 €22
where
en = (205084 + azf) + (a2fs — aszbr)s — (aofls + 2as61)t,

e1o = —a3fs + azfss — azfi(s® —t) + (aafs + 2a506)t — 205315t — 3112,
ea1 = [(ag + au)Ba + 6] + (501 — asPr)s — [asF6 + (a3 + ) i,

€22 = —206654 + agBss — agBi(s® —t) + [asBs + (a3 + ay)Bs)t — (s + ay) By st
—as [t

—
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In the special case

) ( —i(6102 + a2)  —ag(d +ias) )

04% 062(52 — iOé5) —ZOé%
(7.7)
bl — 1 < i —a(0y + o) >
03(01 — 0g) \ @2(0a —ias) i(01024+a3) )’

where §; are the numbers entering formula (1.6).

Let us mention that according to (1.5) in the special case all coefficients of the
polynomial e( (s, t) vanish.

Proof. of the equalities (7.7) is carried out by direct verification in terms of formulas
(1.13) of Theorem 1.1, therefore below we exclude the special case. Simultaneously in
both cases (i) and (ii) we introduce the skew-symmetric bilinear form

() [g1, 92] = (g1(v1)g2(v2) — g1 (v2)g2(11))/ (11 — 1),
(7.8)
(17) [g1, 92] = 91 (V) g2 (V) — g1 (v)g5(v),
Obviously, by definition case (i) reduces to (ii) as v; — v, v, — v. As a numerical

function of the roots v this form is a polynomial in two variables (7.4). Let us introduce
the matrix W (g, g») for the polynomial pair ¢;(z), j = 1,2, by the rule

awione)= (50 ain ) @ = (50 40 ). 09

It is easy to see that we have the following expression for its determinant

(i) det W(g1,92) = (11 — 12)lg1, g2],  (ii) det W (g1, g2) = —[g1, 9o},

So this matrix invertibility is provided by the condition [gq,g2] # 0. If this condition
is satisfied then the direct verification demonstrates that in both cases (7) and (i7) the
following equality holds

L1 (el el
Wi, £2)IW (g1, 92) ‘[gl,gﬂ( (Far 5] —[fQ,gﬂ)'

In the sequel the role of gy is played by polynomials (1.4).
In notation (7.8) expressions (1.12) for the matrices b and ¢ of Theorem 1.1 can be
represented in the following form:

b=W(ps, —p3), c=W(—gs,q). (7.10)

Hence, since by Theorem 1.1 these matrices are invertible it follows that the numbers
[p2, p3] and [gs, go] are not equal to zero and

PR (—[ps,%] _[anQS])’

[p3, pa] (3, g2 (P2, g2

pet — L (—[pa,%] —[pz,%])_

[CI3, CIQ] [P37 Q2] [P3, 613]
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The values of the bilinear form figured here can be written in the explicit form. For
this purpose it should be noted that by virtue of skew-symmetry of the form we can

write . . o
[Zo a;z’, Zo bjzj} = Zi>j(aibj —a;b;)[2", 27].

At the basic elements g;(z) = 2, go(2) = 2’ form (7.8) takes the values

1, 1=1, t, 1=2,5=1,
(2%, 1] = s, =2, 28,2 =< st, i=3,7=1,
st i=3, 2, i=3,j=2

Thus

[Zg aizi, Zg bjzj} = (a1b0 — aobl) + (CLQbQ - aobg)s + (agbo - (lobg)(82 - t)+

+(a261 — albg)t + (agbl — albg)st + (a3b2 — agbg)tz.

Substituting here the coefficients of polynomials (1.4), in the notation (7.5), (7.6) we

obtain: [psapz] = €q), [93,612] = €po) U [p2,CI2] = €11, [p2,CI3} = €12, [p3792] = €21,
{ps, g3} = ea2, that completes the proof of the lemma. O

Let us begin describing matrices Gy, in (7.2) starting with Gy;. In addition to (7.1)
we introduce the quadratic form

2w1(§) = nil& + V252‘2 + 15|61 + V152|2- (7.11)

The coefficients of these forms are also expressed via the variables s, ¢:

w(€) =& + &€& + 162, 2wi(€) = sEF + 2t&,& + 563 (7.12)

Theorem 7.1. Apart from the special case the matriz Gy is given by the equality

Gnle) =t [% ( e(l)me(f c)d(_f)W( | €<1>w:(?)@m )1 -0

where

2e = 2305 + 4(az + ay)ast + 2a0a5t? + [2a506 + az(as + ay))s

+ (o + azas)(s? — 2t) + [ae(as + ay) + 202]st,

e1 = a3 + 4adt + a3t? + 2azass + agas(s? — 2t) + 2apasst,

er = a2 + (a3 + aq)?t + a2t® + asag(s® — 2t) + (a3 + ay)(asst + ags).

In the special case

_ L[ 0l +58) 0 )
)= 5 ( alehy - ot ey 1ot ) (T

where we use the notation 1y = asés — aséy, 0o = as(dy — 1)/ .
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Proof. Simultaneously to both cases (i) and (ii) we set

pasi(7 L0, wan (D))

and show that in this notation

G11(&) = Im [(wi () + w(&) (bADTH].

() Let
- =t
h&:v) = & +véy

then
(=& +&J) (& + &JT) 7 = diag[h(§, 1), h(E, 1))
Hence by the definition of the matrix A

_ h(fa Vl) + h(gv VQ) + h(€7yl) - h(&l/?)

(—a+&ad)(G+&J) =

2 vV — Uy

It is easy to see that

h§, ) + W&, va) _ wol§) (& m) — (& ve) €7

2 w(§)’ v — Vo w(&)’

where 2w0(§) = (—52 + I/lfl)<fl + V2§2) + (—52 + V2£1)(£1 + V1£2>'
Therefore,

(€172 w(E) (82 + &) (&1 + &) 1™ = [§] Pwo(€)w(€) + w (&) (bALT).

It can be easily verified that

21
tm (g, v) = |§|f - VT

so by definition (7.11)

m h(§7V1)+h(§7V2) _ |§|2w1<§>
2 w(&*

Hence jointly with equality (7.17) we come to the relation

I

Im [(wo(§)w(8)] = [¢]Im [w: (€)]

117

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

for the quadratic forms. Therefore in accordance with definitions (5.5), (7.2) the imag-

inary part of equality (7.18) coincides with (7.15).
(77) By the definition of the matrix A in this case

L &1 §o
(& + ET)(E + &) = hiE,v) (1 + mA) (1 .

SIREZS)

-1
A) ,
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S0
2
(& + 66+ &))" = hew) + oA,
Setting v = v in the first relation (7.17), we obtain the equality
wi(§)
h = A/
(57 V) W(g) 9

which similarly to the previous case (i) leads to (7.15).
To describe the matrix bAb~! entering (7.15), let us introduce the symmetric bilin-
ear form similarly to (7.8)

() {91, 92} = [91(11)g2(12) + 91(v2)g2(11)]/2,  (i1) {g1, 92} = 91 (v)g2(v).

It is obvious that case (i) turns into (i7) as v; — v, s — v. As a numeric function
of the roots v this form is a polynomials in two variables (7.4). The direct verification
demonstrates that in notation of (7.9) for both cases (i) and (i¢) the following equality

holds
el Gt it )

Hence taking into account (7.10)

a1 —{p2;p3} —{p2; 2}
bab = [p3,p2]( {ps,ps} {p2,p3} > (7.20)

The matrix elements can be calculated similarly to Lemma 7.1. By virtue of the form
symmetry we have:

{Z(Q) CLZ‘Zi, Z(Q) ijj} = Zg azbztl + Zi>j (aibj + ajbi){zi, Zj}.

Since
2{271} =S, 2{22,1} 252—2t7 2{2272} = St,

and {z',2'} =t', 1 <i < 2, the previous equality can be written in the form
2 {Zg aizi, Zg ijj} =2 Eg azbltl + (Cllbo + aobl)S + ((Igbo + aobg)(SQ — Qt)

Substituting here the coefficients of the polynomials p from (1.4), in notation of (7.13)
we obtain e = {po, p3}, e1 = {pa2, P2}, ea = {ps,p3}. Hence jointly with (7.15), (7.20)
and Lemma 7.1 the first part of the theorem follows.

Relations (7.14) are obtained by (7.15) by direct calculation of the matrix bAb~!
on base of equalities (1.6), (1.13) of Theorem 1.1. Herewith to simplify calculations it
should be taken into account that d2(&1 + v€2) = n) + 10k, whence

asw(§) = (§ay +101&) (§ay + 10282),

205Tmw, (&) = 51(5(21) +6765) + 52(5(21) +0763).
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Theorem 7.2. The following equalities hold

_ sE +t61& 87 + 5t&16s
au© =0 (o S8 e ) (72

G2 = Re(@)Im (cb™!) + Goa Re(ch™),

(7.22)
G1o = Im (bc™1) Re(w) + Re(be™!)Goy,
where
_(LEP(E = )& + 57 t?
e = ( -1 €721t — V&1 — 58 ) |

Proof. Equality (7.18) is also true for the matrix c¢. Since the matrix d entering (1.14),
commutes with A, the matrix cAc™! in the right-hand side of this equality can be
replaced by the matrix ¢ entering (1.14). Therefore,

€12 Pel(—& + &) (& + &) et = (€] Pwo(Ew(€) +w()(codcgh).  (7.23)

Direct verification demonstrates that in both cases (i) and (ii) the product

_ 1 s 2t
COAC°1_§<—2 —S)'

The definition of the quadratic form wy in (7.17) implies that similarly to (7.12) it can
be written in the form 2wy (§) = 2(t — 1)&1&, + s(&2 — €2). Hence

€17 [wo(€) + €Ay ™| = Q(8). (7.24)

Substituting this expression in (7.23) and taking the imaginary part of this equality,
we obtain Gy = Im (@) and this equality coincides with (7.21).
Similarly by definition (5.5), (7.2) we can be written as

G21(€) = €] |w(©)PIm [e( =& + & J) (& + &J) e Heb )]

Hence by (7.23), (7.24) L
G21(€) = Im [w(£)Q(E) (cd™)].

Therefore follows the first formula in (7.22). The second formula is proved similarly. [

Let us note that equalities (7.22) of Theorem 7.2 should be used in combination
with Lemma 7.1, herewith in the special case according to (1.6) variables (7.4) are
defined by the equalities

—2 010 — 0109 — 01 + 0
G — 0454‘@12’ t: 102 2055(1—’_ 2) (725)

Similarly to Theorem 7.2 it is also easy to obtain explicit expressions for the kernels
entering Lemma 5.3. Let

_ L& i L [ s&+t 6
(8 = ) (62 €t sy ) D(§) = ) ( et ) (7.26)

and for brevity x1 =z, x5 = .
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Lemma 7.2. Under assumptions of Lemma 5.3 the following equalities hold

G0 = [l - De 0. =12
if v = Py, and
5@ =+ [ Il - @Dl =12

if the function v is conjugate to u = Pyyp.

Proof. According to Lemma 5.2 it suffices to verify that

cfjlc_l = Q4(8), chjlc_l = (&).

As in the proof of Theorem 7.2 here the matrix ¢ can be replaced by the matrix ¢
entering Lemma 1.2(a) and these relations can be established by direct verification. [

8 Potentials of double layer in orthotropic medium

Let conditions (1.16) characterizing the orthotropic medium be satisfied. In this case
according to (1.17) the characteristic equation p;ps — p3 = 0 is biquadratic that allows
us to represent its roots v in the upper half-plane explicitly [1| via the modules of
elasticity. For this purpose let us introduce positive p and pg by the formulas

9 (0%} 2 109 — Oéi + 20(3( a1 — O[4)
P v . (8.1)
Qi Qo3

Positiveness of expression in the right-hand side of the second equality follows by the
condition &?1 < . For the same reasons the number

(AT80 — 0) (/A7 — s — 203) 52)

Qav3

po—40* =

has the same sign as /ajas — ay — 2as.
In this notation we have the following formulas for the roots v:

' 2 2 2
vig =ipe™™® 20 = arccos [M] , 1f po < 2p,
2p
2 _ 2 2
Vig = @'peiT, 27 = arcch [%2—20} , if po > 2p, (8.3)
p

vy = vy =1ip, if pg = 2p.
Indeed, let § be the expression in square brackets in (8.3), so p3 = 2(d +1)p*. Then
pr(2)p2(2) = P3(2) = asas(p* +20p°2% + 2%).

Therefore, v? = —p?(d++/0% — 1), that reduces to (8.3) after elementary manipulations.
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Let us note that case (1.50) of the diagonalizable Lamé system corresponds to the
first equality in (8.3) and in this case the expressions for the roots v; coincide with
(1.60). Case (iz) of multiple roots corresponds to the last equality in (8.3). It is easy to
see that independently of three possible cases in (8.3) we have a common expressions
for variables (7.4):

s =ipy, t = —p°. (8.4)
In particular, expressions (7.12) for the quadratic forms turn into
w(§) =& — p°& +ipohrla, 2wi(§) = —2p%41& +ipo(&F + p°83). (8.5)

In the orthotropic medium the special case is defined by relations (1.59). The
formulas for the elements ey, e(9), e;; and e, e;, entering relations (7.5), (7.6) and
(7.13), are significantly simplified for this medium. Respectively the matrices Gy,
allow quite foreseeable explicit expressions. First let us assume that as 4+ ay # 0. It is
seen from (1.2) that (1.16) implies the similar condition 35 = g = 0. Therefore

ey = as(az + ag) — ag(os + aa)t, €@y = B3 + B1Ba(s* — t) — B Bat + Bit?,

enn = (b — azfr)s, e = —(ag+ ay)Bist,
e12 = —a3fs — azfi(s® — t) + aafst — asit?,  ear = (a3 + o) By — (a3 + au) Bt

2e = ag(ag + ay)s + ag(ag + ay)st,
e1 = a2 + a3t? + apas(s® — 2t), ey = (a3 + ay)?t.

Since 51 = asag, (4 = —agay, taking into account (8.1), (8.4) after elementary ma-
nipulations we obtain:

eqy = (as + as)(as + /a1az), e@) = as(as + as) (s — o),

en1 = —ipoaaz(az + ),  ean = ippazaz(az + ag)p?, (8.6)
e12 = eg1 = az(as + ou)(aras — ay), '
2e = ipo(az + ay)(az — Jajaz), e = (az+as)?, e =—(az+ aq)?p*

In its turn the substitution of (8.2) and (8.5), (8.6) in (7.13) reduces (7.21), (7.22)
to the following formulas

Cu(e) = — 0 ( pP(af + 0583) (a3 + )i )
o g + /1 PPlaz +ag)éés asél+ anés

(8.7)
2
p&ie
G = :
w=m( af, ")
In the same way the substitution of (8.6) in (7.6) gives the expressions
1 a —ipop?as =0
az + /s ) —ipocy )’
(8.8)
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with positive constant 6 = /a3 — ay. Therefore by (8.4), (8.5) formulas (7.22) take
the following form:

= ot Ve \ Al 08 Gen

Q300 ,02515291 (5) —p4042§2 - 55%
(€) ’

G (€) = Po —&16291(€) PPlpPas€® — 0€3)
g — 04421 —0204252 + 55% —p2£1§2g2(§) 7

where for short &2 = £2 — p%¢2 and

9;(6) = aa(p® + DEIEI 2 + (—1) [aapf3le 2 = 0, j = 1,2,

Let us remind that the first equality in (8.7) and equalities (8.8), (8.9) are obtained
under the assumption asg + a4 # 0. These formulas also hold in the special case
as + a4 = 0. Indeed, according to (1.5¢), (1.6) in this case (7.14) reduces to

Grn(6) = 1 ( Vanag(awéd + asél) 0 )
ST anas 0 Varas(asél + aig3) )

Since ag + a4 = 0 the expression for py in (8.1) reduces to the form

o a3 + /010
\/ Qi3

and hence follows the first equality in (8.7). The validness of formulas (8.8) and (8.9)
is verified similarly.

Formulas (8.7) — (8.9) are further simplified in case (1.18) of the isotropic medium,
when a; = asy, ay = a3 — 2ag. In this case (8.2) turn into p =1, pg = 2 and § = 2as,
g;(&) = 2(=1)(aq — ag), €2 = ¢2 — ¢2. Therefore the formulas mentioned above take
the following explicit form:

cb—lzﬁ(—i(%Jrl) —(2—1) ) bc_1:%<i(ae+1) —.(ae—l))’

% e—1 —i(e+1) as e—1 d(e+1)

Po

where still & = (a1 + a3)/(aq — a3), and

B I T Ry
G“@_é(l %6, @—efaw>’

_ & & ) . < £ — &+ € 261&9 )
Gﬂ@‘z(a& g )77 e g-ayiep )

c 9_< —4&52 —%£@%—£@-—Gﬂ—1HGQ)
a{ & 2( 51 (22 — 1)’5|2 4616 ’
C ;L( %@ 2%&—@%%w—nm2>
w8 =7 + (2 — 1)I¢P —46,6 '
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It is curious to note that the matrix Goo and, therefore, the class of conjugate
functions in the isotropic case under consideration does not depend on the modules of
elasticity.

Setting

2 _ 2 2 ey -
ow0-(468 355) ovo-(458 355).-(2 )

we can write

Cu(e) = € + ~C1(O),  On(6) = |6 + Ca(o),

a 1
Gai(§) = ﬁ[(ae — DIEP 4+ 2G2(6)]E, Gia(€) = 473[(86 — DIE]* = 2G2(9)]E,
So we have 1
P11:P0+;P17 Py =Py + P,
1
Pglzﬁ[(%—l)Po—FQPg]E, Plgz—[<%—1)P0—2P2]E,
& 4o

where the operators P;, P5 act by the formulas

1

(Pjp)(z) = — /Fp(t,t — )Gt — 2)p(t)|dt], p(t, &) = 1 (£)8§1 + na(t)&

€l

We take into account that in the case under consideration we have one multiple root
v =1 and so |w(§)|* = |£]*. Thus equalities (7.31) and (7.35) take the form

1 e ~
w=Fop+ P, v="[+1)Qop+ (2~ )PP+ 2P,

and

1 -
v=FRp+ Pip, u= E[(ae + 1D)Qop + (e — 1) Pop — 2P,
3

respectively, where ¢ = (—p9, ¢1).

By means of Lemma 7.2 we can also write explicitly the expressions for partial
derivatives of the conjugate function. In the case under consideration matrices (7.26)
take the form

S S AN ST 3 _ 1 2%+ & &
Q&%W&+@V<&fﬁa@)’f“®‘@+%m< 3 &)'
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