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Abstract. In the present paper a 2 × 2 block operator matrix H is considered as a
bounded self-adjoint operator in the direct sum of two Hilbert spaces. The structure of
the essential spectrum of H is studied. Under some natural conditions the infiniteness
of the number of eigenvalues is proved, located inside, in the gap or below the bottom
of the essential spectrum of H.

1 Introduction

Perturbation problems for operators with embedded eigenvalues are generally challeng-
ing since the embedded eigenvalues cannot be separated from the rest of the spectrum.
Embedded eigenvalues occur in many applications arising in physics. In quantum me-
chanics, for instance, eigenvalues of the energy operator correspond to energy bound
states that can be attained by the underlying physical system. If such an eigenvalue is
embedded in the continuous spectrum, it is of fundamental importance to determine
whether it, and therefore corresponding bound state, persists upon perturbing the po-
tential. Alternatively, embedded eigenvalues in inverse scattering problems correspond
to soliton-type structures for the original integrable problems whose robustness under
perturbations is therefore again determined by the fate of the embedded eigenvalues.

It is well known [5, 17] that the Schrödinger operator −4 + V (x) does not have
eigenvalues embedded in its continuous spectrum if V (x) is integrable. However, the
Wigner-von Neumann example [17] shows that the Schrödinger operator with the po-
tential

V (x) := q(x) coswx, w > 0,

where for some α > 0

q(j)(x) = O(x−α−j) as x→∞, j = 1, 2, 3,

has eigenvalues embedded in the continuous spectrum.
In [2], S. Albeverio describes how one can construct potentials that lead to any

finite number of bound states having preassigned energies. In [18], M.M. Skriganov
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constructed potentials that have a countable number of positive eigenvalues for the one-
dimensional Schrödinger operator. In this constructions, the methods of the inverse
scattering problem play an important role. The existence of a potential with infinite
number of eigenvalues in the continuous spectrum for a discrete Schrödinger operator
is demonstrated in [12]. The existence of a multi-dimensional generalized Friedrichs
model with a given number of eigenvalues located within the continuous spectrum is
proved in [1]. The infiniteness of the number of eigenvalues in the gap of the essential
spectrum for the three-particle discrete Schrödinger operator was proven in [8], and a
formula for the number of its eigenvalues in an arbitrary interval outside of the essential
spectrum was obtained in [9]. In the paper [10], it is shown that the discrete spectrum
of the three-particle Schrödinger operator on a one-dimensional lattice is infinite in the
case in which the masses mα and mβ of two particles are infinite.

It is remarkable that the above mentioned operators describe systems with a con-
served finite number of particles in continuous space and on a lattice. However, in both
cases, there exist problems with a non-conserved number of particles that are more in-
teresting in a certain sense. Such problems occur in solid state physics, quantum field
theory and statistical physics. Systems with a non-conserved finite number of particles
in continuous space were considered in [7, 21]. Usually the Hamiltonians describing
such type of systems in both cases can be expressed as block operator matrices.

In the present paper we consider the 2 × 2 block operator matrix H in the direct
sum of Hilbert spaces. We describe the structure of the essential spectrum of H. We
find conditions for the infiniteness of the number of eigenvalues located inside, in the
gap and below of the bottom of the essential spectrum of H, respectively.

We note that such type of operator matrices were considered in [11, 13, 20] and only
its essential spectrum was investigated. This paper is a continuation of those papers.

The plan of the paper is as follows. Section 1 is a general introduction. In Section 2,
the operator matrix H is introduced and the main results of the present paper are
formulated. In Section 3, we recall some spectral properties of the corresponding
Friedrichs models. In Section 4, we study the structure of the essential spectrum of
H. In Section 5, an asymptotic formula for the number of negative eigenvalues of
H22 (diagonal entry of H) is obtained. In Section 6, we prove the infiniteness of the
number of eigenvalues of H lying inside, in the gap or below the bottom of its essential
spectrum.

We adopt the following conventions throughout the present paper. Let N, Z, R and
C be the set of all positive integers, integers, real, and complex numbers respectively.
We denote by T3 the three-dimensional torus (the first Brillouin zone, i.e., dual group
of Z3), the cube (−π, π]3 with appropriately identified sides equipped with its Haar
measure. The torus T3 will always be considered as an abelian group with respect to
the addition and multiplication by real numbers regarded as operations on the three-
dimensional space R3 modulo (2πZ)3.

Denote by σ(·), σess(·) and σdisc(·), respectively, the spectrum, the essential spec-
trum, and the discrete spectrum of a bounded self-adjoint operator. In what follows
we deal with the operators in various spaces of vector-valued functions. They will be
denoted by bold letters and will be written in the matrix form.
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For each δ > 0, the notation Uδ(p0) is used for the δ−neighborhood

{p ∈ T3 : |p− p0| < δ}

of the point p0 ∈ T3.

2 Block operator matrix and main results

Let L2(T3) be the Hilbert space of square integrable (complex) functions defined on T3

and Ls
2((T3)2) be the Hilbert space of square integrable (complex) symmetric functions

defined on (T3)2. Denote by H the direct sum of spaces H1 := L2(T3) and H2 :=
Ls

2((T3)2), that is, H := H1 ⊕H2. The Hilbert spaces H1 and H2 are one-particle and
two-particle subspaces of a bosonic Fock space Fs(L2(T3)) over L2(T3), respectively.

We consider the block operator matrix H acting in the Hilbert space H given by

H :=

(
H11 H12

H∗
12 H22

)
with the entries Hij : Hj → Hi, i, j = 1, 2 :

(H11f1)(p) = u(p)f1(p), (H12f2)(p) =
√
λ

∫
T3

v(s)f2(p, s)ds,

(H22f2)(p, q) = w(p, q)f2(p, q)− µ
∫

T3

f2(p, s)ds− µ
∫

T3

f2(s, q)ds,

where fi ∈ Hi, i = 1, 2; µ, λ > 0; u(·) is a positive valued continuous function on T3,
the function v(·) is real-valued analytic on T3 and the function w(·, ·) is defined by

w(p, q) := l1ε(p) + l2ε(p+ q) + l1ε(q),

with l1, l2 > 0 and

ε(q) :=
3∑

i=1

(1− cos(2q(i))), q = (q(1), q(2), q(3)) ∈ T3.

Here H∗
12 denotes the adjoint operator to H12 and

(H∗
12f1)(p, q) =

√
λ

2
(v(p)f1(q) + v(q)f1(p)), f1 ∈ H1.

Under these assumptions the operator H is bounded and self-adjoint in H.
We note that the operators H12 and H∗

12 are called annihilation, creation operators
respectively.

Set H0 := C. To formulate the main results of the paper we introduce a family of
bounded self-adjoint operators (Friedrichs models operators) ĥµλ(p), p ∈ T3 which act
in H0 ⊕H1 as

ĥµλ(p) :=

(
h00(p) h01

h∗01 h11(p)

)
,
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where the operators hii(p) : Hi → Hi, i = 0, 1 and h01 : H1 → H0 are defined as

h00(p)f0 = u(p)f0, h01f1 =

√
λ

2

∫
T3

v(s)f1(s)ds,

h11(p) = h0
11(p)− v, (h0

11(p)f1)(q) = w(p, q)f1(q), (vf1)(q) = µ

∫
T3

f1(s)ds.

The following theorem [14] describes the location of the essential spectrum of H.

Theorem 2.1. The essential spectrum of H satisfies the equality

σess(H) =
⋃

p∈T3

σdisc(ĥµλ(p)) ∪ [0;M ], M :=
9

2
(2l1 + l2). (2.1)

Moreover, the set σess(H) is a union of at most four intervals.

Throughout this paper we assume the following additional assumption that the
real-valued analytic function v(·) satisfies the condition∫

T3

v(s)g(p, s)ds = 0 (2.2)

for any function g ∈ Ls
2((T3)2), which is periodical on each variable with period π.

Note that the functions v(p) =
3∑

i=1

ci cos p(i) and v(p) =
3∑

i=1

ci cos p(i) cos(2p(i)), where

ci, i = 1, 2, 3 are arbitrary real numbers, satisfies condition (2.2). Indeed, for v(p) =
3∑

i=1

ci cos p(i), we have∫
T3

v(s)g(p, s)ds =

∫
T3

v(s+ π̄)g(p, s+ π̄)ds = −
∫

T3

v(s)g(p, s)ds, π̄ = (π, π, π),

which yields equality (2.2).
Under condition (2.2) the discrete spectrum of ĥµλ(p) coincides (see Lemma 3.1

below) with the union of discrete spectra of the operators

hµ(p) := h11(p), p ∈ T3 and hλ(p) :=

(
h00(p) h01

h∗01 h0
11(p)

)
, p ∈ T3.

It follows by the definition of the operators hµ(p) and hλ(p) that their structure is
simpler than that of ĥµλ(p).

We introduce the following points of T3 :

p1 := (0, 0, 0), p2 := (π, 0, 0), p3 := (0, π, 0), p4 := (0, 0, π),

p5 := (π, π, 0), p6 := (π, 0, π), p7 := (0, π, π), p8 := (π, π, π).

It is easy to verify that the function w(·, ·) has non-degenerate minimum at the
points (pi, pj) ∈ (T3)2, i, j = 1, 8; where 1, n = 1, . . . , n. Therefore, for any p ∈ T3 the
integral

I(p) :=

∫
T3

v2(s)ds

w(p, s)
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is finite.
The Lebesgue dominated convergence theorem and the equality I(p1) = I(pi), i =

2, 8 yield
I(p1) = lim

p→pi

I(pi), i = 1, 8,

and hence the function I(·) is continuous on T3. Therefore there exist points θ0, θ1 ∈ T3

such that
min
p∈T3

I(p) = I(θ1) and max
p∈T3

I(p) = I(θ0).

From now on we assume that the function u(·) has a minimum at p = θ0 and a
maximum at p = θ1, and introduce the following notations:

µ0 := (l1 + l2)

( ∫
T3

ds

ε(s)

)−1

, λk := 2u(θk)(I(θk))−1, k = 0, 1;

aλ := min
{⋃

p∈T3

σdisc(hλ(p)) ∩ (−∞; 0]
}
, bλ := max

{⋃
p∈T3

σdisc(hλ(p)) ∩ (−∞; 0]
}
,

for λ > λ0.
The structure of the essential spectrum of H can be precisely described as in the

following theorem.

Theorem 2.2. Let µ = µ0. Then the following assertions hold.

1) If λ ∈ (0;λ0], then (−∞;M ] ∩ σess(H) = [0;M ];

2) If λ ∈ (λ0;λ1], then (−∞;M ] ∩ σess(H) = [aλ;M ] and aλ < 0;

3) If λ ∈ (λ1; +∞), then (−∞;M ] ∩ σess(H) = [aλ; bλ] ∪ [0;M ] and aλ < bλ < 0.

Let us denote by τess(A) the bottom of the essential spectrum σess(A) of a bounded
self-adjoint operator A and by N(A; z) the number of eigenvalues of A lying below the
point z, z < τess(A).

It is clear that hµ(p1) ≡ hµ(pi), i = 2, 8. Note that [16] the operator hµ(p) with
µ = µ0 is strictly positive for any p ∈ T3 \ {p1, . . . , p8}, and thus the operator hµ(p1)
corresponding to the value p1 of p is the unique operator whose spectrum attains the
bottom of the essential spectrum of H22. Moreover, τess(H22) = 0 for µ = µ0.

The main results of the present paper as follows.

Theorem 2.3. For µ = µ0 the operator H22 has infinitely many negative eigenvalues
E1, . . . , En, . . . , such that lim

n→∞
En = 0, and the function N(H22; ·) obeys the relation

lim
z→−0

N(H22; z)

| log |z||
= U0, 0 < U0 <∞. (2.3)

It is easy to see that the infiniteness of the cardinality of the negative discrete
spectrum of H22 directly follows by the positivity of U0.

For n ∈ N denote by f (n)
2 the eigenfunction corresponding to the eigenvalue En of

H22 with µ = µ0.
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Theorem 2.4. Let µ = µ0. Then for any λ ≥ 0 the numbers E1, . . . , En, . . . are
eigenvalues of H and the corresponding eigenfunction has the form: f (n) = (0, f

(n)
2 ),

n ∈ N. Moreover,

1) if λ ∈ (0;λ0], then the set {En : n ∈ N} is located below the bottom of the
essential spectrum of H;

2) if λ ∈ (λ0;λ1], then the countable subset of {En : n ∈ N} is located in the
essential spectrum of H;

3) if λ ∈ (λ1; +∞), then the countable subset of {En : n ∈ N} is located in the gap
of the essential spectrum of H.

Since lim
λ→λ1+0

bλ = 0, it follows from assertions 3) of Theorems 2.2 and 2.4 that for

any given finite number k ∈ N there exists λ′ ∈ (λ1; +∞) such that for µ = µ0 and
λ = λ′ the set {En : n ∈ N} ∩ [aλ; bλ] consists of k elements.

3 Spectral properties of the Friedrichs model ĥµλ(p)

In this section we study spectral properties of the Friedrichs model ĥµλ(p), which plays
a crucial role in the study of the spectral properties of H22 and H.

3.1 Spectrum of ĥµλ(p)

Let the operator h0(p) acts in H0 ⊕H1 as

h0(p) :=

(
0 0
0 h0

11(p)

)
.

The perturbation ĥµλ(p) − h0(p) of the operator h0(p) is a self-adjoint operator
of rank at most 3, and thus, according to the Weyl theorem, the essential spectrum
of the operator ĥµλ(p) coincides with the essential spectrum of h0(p). It is clear that
σess(h

0(p)) = [m(p);M(p)], where the numbers m(p) and M(p) are defined by

m(p) := min
q∈T3

w(p, q), M(p) := max
q∈T3

w(p, q).

This yields σess(ĥµλ(p)) = [m(p);M(p)].
For any fixed µ, λ > 0 and p ∈ T3 we define the functions

∆1(µ, p ; z) := 1− µ
∫

T3

ds

w(p, s)− z
, ∆2(λ, p ; z) := u(p)− z − λ

2

∫
T3

v2(s)ds

w(p, s)− z
,

that are regular in C \ [m(p);M(p)]; these functions are the Fredholm determinants
associated with the operators hµ(p) and hλ(p) respectively.

The following lemma describes the relation between the eigenvalues of the operators
hµ(p), hλ(p) and ĥµλ(p).
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Lemma 3.1. The number z ∈ C \ [m(p);M(p)] is an eigenvalue of ĥµλ(p) if and only
if z is an eigenvalue of at least one of the operators hµ(p) and hλ(p).

Proof. Suppose (f0, f1) ∈ H0 ⊕H1 is an eigenvector of the operator ĥµλ(p) associated
with the eigenvalue z ∈ C \ [m(p);M(p)]. Then f0 and f1 satisfy the following system
of equations  (u(p)− z)f0 +

√
λ
2

∫
T3 v(s)f1(s)ds = 0√

λ
2
v(q)f0 + (w(p, q)− z)f1(q)− µ

∫
T3 f1(s)ds = 0.

(3.1)

Since for any z ∈ C \ [m(p);M(p)] and q ∈ T3 the relation w(p, q)− z 6= 0 holds for
all p ∈ T3, from the second equation of (3.1) for f1 we have

f1(q) =
µCf1

w(p, q)− z
−
√
λ

2

v(q)f0

w(p, q)− z
, (3.2)

where
Cf1 =

∫
T3

f1(s)ds. (3.3)

Substituting expression (3.2) for f1 into the first equation of system (3.1) and
equality (3.3), and then using condition (2.2), we conclude that the system of equations
(3.1) has a nontrivial solution if and only if the system of equations{

∆2(λ, p ; z)f0 = 0
∆1(µ, p ; z)Cf1 = 0

has a nontrivial solution, i.e., if the condition ∆1(µ, p ; z)∆2(λ, p ; z) = 0 is satisfied.
It is clear [16] ([15]) that the number z ∈ C \ [m(p);M(p)] is an eigenvalue of hµ(p)

(hλ(p)) if and only if ∆1(µ, p ; z) = 0 (∆2(λ, p ; z) = 0).

By Lemma 3.1 it follows that

σdisc(hµ(p)) = {z ∈ C \ [m(p);M(p)] : ∆1(µ, p ; z) = 0};

σdisc(hλ(p)) = {z ∈ C \ [m(p);M(p)] : ∆2(λ, p ; z) = 0}
and

σdisc(ĥµλ(p)) = σdisc(hµ(p)) ∪ σdisc(hλ(p)). (3.4)

In the following lemma we precisely describe the dependence of the negative eigen-
values of hλ(p) on the parameter λ > 0.

Lemma 3.2. 1) Let λ ∈ (0;λ0]. Then for any p ∈ T3 the operator hλ(p) has no
negative eigenvalues;

2) Let λ ∈ (λ0;λ1]. Then there exists a non empty open set Dλ ⊂ T3 such that
Dλ 6= T3, and for any p ∈ Dλ the operator hλ(p) has a unique negative eigenvalue and
for any p ∈ T3 \Dλ the operator hλ(p) has no negative eigenvalues;

3) Let λ > λ1. Then for any p ∈ T3 the operator hλ(p) has a unique negative
eigenvalue.
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Proof. First we prove part 2). Let λ ∈ (λ0;λ1]. By the definition of the numbers λi,
i = 0, 1 it follows that min

p∈T3
∆2(λ, p ; 0) < 0 and max

p∈T3
∆2(λ, p ; 0) ≥ 0 for any λ ∈ (λ0;λ1].

Since the function I(·) has minimum at p = θ1 and maximum at p = θ0, and the
function u(·) has minimum at p = θ0 and maximum at p = θ1, it is clear that

min
p∈T3

∆2(λ, p ; 0) = ∆2(λ, θ0 ; 0) and max
p∈T3

∆2(λ, p ; 0) = ∆2(λ, θ1 ; 0).

Therefore ∆2(λ, θ0 ; 0) < 0 and ∆2(λ, θ1 ; 0) ≥ 0 for any λ ∈ (λ0;λ1].
We introduce the notation: Dλ := {p ∈ T3 : ∆2(λ, p ; 0) < 0}. Then it is obvious

that Dλ is a non-empty open set and Dλ 6= T3.
For any λ > 0 and p ∈ T3 the function ∆2(λ, p ; ·) is continuous and decreasing on

(−∞; 0] and lim
z→−∞

∆2(λ, p ; z) = +∞. Then for any p ∈ Dλ there exists a unique point

eλ(p) ∈ (−∞; 0) such that ∆2(λ, p ; eλ(p)) = 0. By Lemma 3.1 for any p ∈ T3 the point
eλ(p) is the unique negative eigenvalue of the operator hλ(p).

For any p ∈ T3 \ Dλ and z < 0 we have ∆2(λ, p ; z) > ∆2(λ, p ; 0) ≥ 0. Hence by
Lemma 3.1 for each p ∈ T3 \Dλ the operator hλ(p) has no negative eigenvalues.

If λ ∈ (0;λ0] (respectively λ ∈ (λ1; +∞)), then Dλ = ∅ (respectively Dλ = T3) and
the above analysis leads again to the case 1) (respectively 3)). The straightforward
details are omitted.

3.2 Threshold energy expansion for the Fredholm determinant
∆1(µ, p ; z)

First we remark that ∆1(µ, p1 ; 0) = ∆1(µ, pi ; 0), i = 2, 8. Moreover, by the definition
of µ0 one can see that ∆1(µ, p1 ; 0) = 0 if and only if µ = µ0.

The following expansion plays an important role in the proof of Theorem 2.3.

Lemma 3.3. The following decomposition

∆1(µ0, p ; z) =
8π2µ0

(l1 + l2)3/2

√
l21 + 2l1l2
l1 + l2

|p− pi|2 −
z

2
+O(|p− pi|2) +O(|z|)

holds for all |p− pi| → 0, i = 1, 8 and z → −0.

Remark 1. A similar lemma for the two-body discrete Schrödinger operator was

proven in [3] for ε(q) =
3∑

i=1

(1− cos q(i)).

Proof of Lemma 3.3. Let us sketch the main idea of the proof. Take a sufficiently small
δ > 0 such that Uδ(pi) ∩ Uδ(pj) = ∅ for all i 6= j, i, j = 1, 8.

Set

Tδ := T3 \
8⋃

j=1

Uδ(pj).

Using the additivity of the integral we rewrite the function ∆1(µ0, · ; ·) as

∆1(µ0, p ; z) = 1− µ0

8∑
j=1

∫
Uδ(pj)

ds

w(p, s)− z
− µ0

∫
Tδ

ds

w(p, s)− z
. (3.5)
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Since the function w(·, ·) has non-degenerate minimum at the points (pi, pj), i, j =
1, 8, we can argue as in [4]. It is easy to show that

∫
Uδ(pj)

ds

w(p, s)− z
=

∫
Uδ(pj)

ds

w(pi, s)
− π2

(l1 + l2)3/2

√
l21 + 2l1l2
l1 + l2

|p− pi|2 −
z

2

+O(|p− pi|2) +O(|z|);∫
Tδ

ds

w(p, s)− z
=

∫
Tδ

ds

w(pi, s)
+O(|p− pi|2) +O(|z|)

as |p − pi| → 0 for i = 1, 8 and z → −0. Substituting the last two expressions to the
equality (3.5) we obtain

∆1(µ0, p ; z) = ∆1(µ0, pi ; 0)+
8π2µ0

(l1 + l2)3/2

√
l21 + 2l1l2
l1 + l2

|p− pi|2 −
z

2
+O(|p−pi|2)+O(|z|)

as |p− pi| → 0 for i = 1, 8 and z → −0. Now the equality ∆1(µ0, pi ; 0) = 0 completes
the proof of Lemma 3.3.

Corollary 3.1. For some C1, C2, C3 > 0 and δ > 0 the following inequalities hold
1) C1|p− pi| ≤ ∆1(µ0, p ; 0) ≤ C2|p− pi|, p ∈ Uδ(pi), i = 1, 8;

2) ∆1(µ0, p ; 0) ≥ C3, p ∈ Tδ.

Proof. The Lemma 3.3 yields assertion 1) for some positive numbers C1, C2. The posi-
tivity and continuity of the function ∆1(µ0, · ; 0) on the compact set Tδ imply assertion
2).

At the end of this section we prove one more assertion.

Lemma 3.4. There exist C1, C2, C3 > 0 and δ > 0 such that

1) C1(|p−pi|2+|q−pj|2) ≤ w(p, q) ≤ C2(|p−pi|2+|q−pj|2), (p, q) ∈ Uδ(pi)×Uδ(pj),
i, j = 1, 8;

2) w(p, q) ≥ C3, (p, q) ∈ T2
δ .

Proof. The expansion

w(p, q) = 2((l1+l2)|p−pi|2+2l2(p−pi, q−pj)+(l1+l2)|q−pj|2)+O(|p−pi|4)+O(|q−pj|4)

as |p− pi|, |q− pj| → 0, for i, j = 1, 8 implies that there exist C1, C2, C3 > 0 and δ > 0
satisfying both inequalities of the lemma.
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4 Essential spectrum of H

In this section using Theorem 2.1 and the assertions proved in Section 3, we prove
Theorem 2.2.

First we recall that by Theorem 2.1 and equality (3.4) we have

σess(H) =
⋃

p∈T3

σdisc(hµ(p)) ∪
⋃

p∈T3

σdisc(hλ(p)) ∪ [0;M ]. (4.1)

Proof of Theorem 2.2. It was shown in [16] that if µ = µ0 then⋃
p∈T3

σdisc(hµ(p)) ∪ [0;M ] = [0;M ]. (4.2)

Hence by equality (4.1) it suffices to study the structure of the set⋃
p∈T3

σdisc(hλ(p)) ∪ [0;M ].

We consider the following three cases.
1) Let λ ∈ (0;λ0]. Then by Lemma 3.2 it follows that for any p ∈ T3 the operator

hλ(p) has no negative eigenvalues, that is,⋃
p∈T3

σdisc(hλ(p)) ∩ (−∞; 0) = ∅.

Then equalities (2.1), (4.1) and (4.2) complete the proof of assertion 1) of Theorem 2.2.
2) Let λ ∈ (λ0;λ1]. Then by assertion 2) of Lemma 3.2 there exists a non-empty

open set Dλ ⊂ T3 such that Dλ 6= T3, and for any p ∈ Dλ the operator hλ(p) has a
unique negative eigenvalue eλ(p). Since the function u(·) is continuous, v(·) and w(·, ·)
are analytic on its domains, the function eλ : p ∈ Dλ → eλ(p) is continuous on Dλ.

Since for any p ∈ T3 the operator hλ(p) is bounded and T3 is a compact set, there
exists a positive number Cλ such that sup

p∈T3

‖hλ(p)‖ ≤ Cλ and for any p ∈ T3 we have

σ(hλ(p)) ⊂ [−Cλ;Cλ]. (4.3)

For any q ∈ ∂Dλ = {p ∈ T3 : ∆2(λ, p ; 0) = 0} there exist {pn} ⊂ Dλ such that pn → q

as n → ∞. If we set e(n)
λ = eλ(pn), then by Lemma 3.2 for any n ∈ N the inequality

e
(n)
λ < 0 holds and from (4.3) we get {e(n)

λ } ⊂ [−Cλ; 0). Without loss of generality we
assume that e(n)

λ → e
(0)
λ as n → ∞ for some e(0)λ ∈ [−Cλ; 0] (otherwise we would have

to take a subsequence).
By the continuity of the function ∆2(λ, · ; ·) in T3 × (−∞; 0] and pn → q and

e
(n)
λ → e

(0)
λ as n→∞ it follows that

0 = lim
n→∞

∆2(λ, pn ; e
(n)
λ ) = ∆2(λ, q ; e

(0)
λ ).

Since for any λ > 0 and p ∈ T3 the function ∆2(λ, p ; ·) is decreasing in (−∞; 0]

and q ∈ ∂Dλ we see that ∆2(λ, q ; e
(0)
λ ) = 0 if and only if e(0)λ = 0.
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Now for q ∈ ∂Dλ we define

eλ(q) = lim
p′→q, p′∈Dλ

eλ(p′) = 0.

Since the function eλ(·) is continuous on the compact set Dλ ∪ ∂Dλ and eλ(q) = 0 for
all q ∈ ∂Dλ we conclude that Imeλ = [aλ; 0] and aλ < 0, where Imeλ denotes an image
of the function eλ(·).

Hence the set ⋃
p∈T3

σdisc(hλ(p)) ∩ (−∞; 0]

coincides with the set Imeλ = [aλ; 0]. Then equalities (2.1), (4.1) and (4.2) complete
the proof of assertion 2) of Theorem 2.2.

3) Let λ > λ1. Then by Lemma 3.2 for all p ∈ T3 the operator hλ(p) has a unique
negative eigenvalue eλ(p). Since the function eλ : p ∈ Dλ → eλ(p) is continuous on T3

the range Imeλ of the function eλ(·) is a connected closed subset of (−∞; 0), that is,
Imeλ = [aλ; bλ] with bλ < 0 and hence⋃

p∈T3

σdisc(hλ(p)) ∩ (−∞; 0] = [aλ; bλ].

Then again equalities (2.1), (4.1) and (4.2) complete the proof of assertion 3) of The-
orem 2.2.

5 Asymptotics for the number of negative eigenvalues of H22

In this section first we review the corresponding Birman-Schwinger principle for the
operator H22 and next we derive asymptotic relation (2.3) for the number of negative
eigenvalues of H22.

The Birman-Schwinger principle. For a bounded self-adjoint operator A acting
in a Hilbert space R, we define the number n(γ,A) as follows

n(γ,A) := sup{dimF : (Au, u) > γ, u ∈ F ⊂ R, ||u|| = 1}.

Here n(γ,A) = ∞, if γ < maxσess(A); if n(γ,A) < ∞, then it is equal to the
number of eigenvalues of A which are greater than γ.

By the definition of N(A; z), we have

N(H22, z) = n(−z,−H22), −z > −τess(H22).

Note that for any µ > 0, p ∈ T3 and z < τess(H22) we have ∆1(µ, p ; z) ≥ 0 and
hence there exists its positive square root.

In our analysis of the discrete spectrum of H22 the crucial role is played by the
compact integral operator Tµ(z), z < τess(H22) acting on L2(T3) with the kernel

µ√
∆1(µ, p ; z)

√
∆1(µ, q ; z)(w(p, q)− z)

.

The following lemma is a realization of the well-known Birman-Schwinger principle
for the operator H22 (see [3, 8, 9, 15, 16, 19]).
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Lemma 5.1. For any z < τess(H22) the operator Tµ(z) is compact and continuous in
z and

N(H22, z) = n(1, Tµ(z)).

Proof of Theorem 2.3. Let us recall some results of [19] which are important in our
work. Set σ := L2(S2), where S2 stands for the unit sphere in R3, and let Sr, r > 0, be
the integral operator on L2((0, r), σ) with the kernel

S(y, t) :=
1

4π2

(l1 + l2)
2√

l21 + 2l1l2

1

(l1 + l2) cosh y + l2t
,

where y = x− x′, x, x′ ∈ (0, r), t = 〈ξ, η〉, ξ, η ∈ S2.

Let Ŝ(θ), θ ∈ R, be the integral operator on σ whose kernel is of the form

Ŝ(θ, t) :=
1

4π2

(l1 + l2)
2

l21 + 2l1l2

sinh[θ arccos l2
l1+l2

t]

sinh(πθ)
,

and depends on the inner product t = 〈ξ, η〉 of the arguments ξ, η ∈ S2. For γ > 0,
define

U(γ) :=
1

4π

∫ +∞

−∞
n(γ, Ŝ(θ))dθ.

This function was studied in detail in [19]; where it was used in showing the existence of
the Efimov effect. In particular, as it was shown in [19], the function U(·) is continuous
in γ > 0, and the limit

lim
r→0

1

2
r−1n(γ, Sr) = U(γ) (5.1)

exists and the number U(1) is positive.
Theorem 2.3 can be derived by using a perturbation argument based on the following

lemma.

Lemma 5.2. Let A(z) = A0(z)+A1(z), where A0(z) (A1(z)) is compact and continuous
for z < 0 (for z ≤ 0). Assume that the limit

lim
z→−0

f(z)n(γ,A0(z)) = l(γ)

exists and l(·) is continuous in (0; +∞) for some function f(·), where f(z) → 0 as
z → 0. Then the same limit exists for A(z) and

lim
z→−0

f(z)n(γ,A(z)) = l(γ).

For the proof of Lemma 5.2, we refer to Lemma 4.9 in [19].
Since the function U(·) is continuous with respect to γ, it follows by Lemma 5.2

that any perturbation of A0(z) treated in Lemma 5.2 (which is compact and continuous
up to z = 0) does not contribute to asymptotic relation (2.3).

Let T (δ; |z|) be an integral operator in L2(T3) with the kernel

(l1 + l2)
3/2

16π2

8∑
i,j=1

χδ(p− pi)χδ(q − pj)(m|p− pi|2 + |z|/2)−
1
4 (m|q − pj|2 + |z|/2)−

1
4

(l1 + l2)|p− pi|2 + 2l2(p− pi, q − pj) + (l1 + l2)|q − pj|2 + |z|/2
,

where m := (l21 + 2l1l2)/(l1 + l2) and χδ(·) is the characteristic function of the domain
Uδ(0), 0 := (0, 0, 0) ∈ T3. The operator T (δ; |z|) is called singular part of Tµ0(z).
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Lemma 5.3. For any z ≤ 0 and small δ > 0 the difference Tµ0(z) − T (δ; |z|) belongs
to the Hilbert-Schmidt class and is continuous with respect to z ≤ 0.

Proof. Applying Corollary 3.1 and Lemma 3.4 we obtain that there exist C1, C2 > 0
such that the kernel of the operator Tµ0(z)− T (δ; |z|) can be estimated by the square-
integrable function

C1 + C2

8∑
i,j=1

|p− pi|−
1
2 + |q − pj|−

1
2 + 1

|p− pi|2 + (p− pi, q − pj) + |q − pj|2
.

Hence, the operator Tµ0(z)−T (δ; |z|) belongs to the Hilbert-Schmidt class for all z ≤ 0.
In combination with the continuity of the kernel of the operator with respect to z < 0,
this implies the continuity of Tµ0(z)− T (δ; |z|) with respect to z ≤ 0.

The following theorem is fundamental for the proof of the asymptotic relation (2.3).

Theorem 5.1. We have the relation

lim
|z|→0

n(γ, T (δ; |z|))
| log |z||

= U(γ), γ > 0. (5.2)

Proof. The subspace of functions f, supported by the set
8⋃

i=1

Uδ(pi) is invariant with

respect to the operator T (δ; |z|).
Let T0(δ; |z|) be the restriction of the integral operator T (δ; |z|) to the subspace

L2(
8⋃

i=1

Uδ(pi)), that is, integral operator in L2(
8⋃

i=1

Uδ(pi)) with the kernel T0(δ; |z|; ·, ·)

defined on
8⋃

i=1

Uδ(pi)×
8⋃

j=1

Uδ(pj) as

T0(δ; |z|; p, q) :=

(l1 + l2)
3/2

16π2

(m|p− pi|2 + |z|/2)−
1
4 (m|q − pj|2 + |z|/2)−

1
4

(l1 + l2)|p− pi|2 + 2l2(p− pi, q − pj) + (l1 + l2)|q − pj|2 + |z|/2
,

(p, q) ∈ Uδ(pi)× Uδ(pj) for i, j = 1, 8.

Since L2(
8⋃

i=1

Uδ(pi)) =
8⊕

i=1

L2(Uδ(pi)), we can express the integral operator T0(δ; |z|)

as the block operator matrix T0(δ; |z|) acting on
8⊕

i=1

L2(Uδ(pi)) as

T0(δ; |z|) :=

 T
(1,1)
0 (δ; |z|) . . . T

(1,8)
0 (δ; |z|)

... . . . ...
T

(8,1)
0 (δ; |z|) . . . T

(8,8)
0 (δ; |z|)

 ,

where T (i,j)
0 (δ; |z|) : L2(Uδ(pj)) → L2(Uδ(pi)) is an integral operator with the kernel

T0(δ; |z|; p, q), (p, q) ∈ Uδ(pi)× Uδ(pj) for i, j = 1, 8.
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Set
L

(8)
2 (Ur(0)) := {ϕ = (ϕ1, · · · , ϕ8) : ϕi ∈ L2(Ur(0)), i = 1, 8}.

It is easy to show that T0(δ; |z|) is unitarily equivalent to the operator T1(r),

r = |z|− 1
2 , acting on L(8)

2 (Ur(0)) as

T1(r) :=

 T
(1,1)
1 (r) . . . T

(1,1)
1 (r)

... . . . ...
T

(1,1)
1 (r) . . . T

(1,1)
1 (r)

 ,

where T (1,1)
1 (r) is the integral operator on L2(Ur(0)) with the kernel

(l1 + l2)
3/2

16π2

(m|p|2 + 1/2)−
1
4 (m|q|2 + 1/2)−

1
4

(l1 + l2)|p|2 + 2l2(p, q) + (l1 + l2)|q|2 + 1/2
.

The equivalence is realized by the unitary dilation

Br := diag{B(1,1)
r , . . . , B(8,8)

r } :
8⊕

i=1

L2(Uδ(pi))→ L
(8)
2 (Ur(0)),

Here the operator B(i,i)
r : L2(Uδ(pi))→ L2(Ur(0)), i = 1, 8 acts as

(B(i,i)
r f)(p) =

(r
δ

)− 3
2
f(
δ

r
p+ pi).

Denote by Ar and C the 8× 1 and 1× 8 matrices of the form

Ar :=

 T
(1,1)
1 (r)

...
T

(1,1)
1 (r)

 , C := (I, . . . , I),

respectively, where I is the identity operator on L2(Ur(0)).
It is well known that if T1, T2 are bounded operators and γ 6= 0 is an eigenvalue

of T1T2, then γ is an eigenvalue for T2T1 as well of the same algebraic and geometric
multiplicities (see e.g. [6]). Therefore, n(γ,ArC) = n(γ,CAr), γ > 0. Direct calcula-
tion shows that T1(r) = ArC and CAr = 8T

(1,1)
1 (r). So, n(γ,T1(r)) = n(γ, 8T

(1,1)
1 (r)),

γ > 0.
Further, replacing

(m|p|2 + 1/2)
1
4 , (m|q|2 + 1/2)

1
4 and (l1 + l2)|p|2 + 2l2(p, q) + (l1 + l2)|q|2 + 1/2

by the expressions

(m|p|2)
1
4 (1−χ1(p))

−1, (m|q|2)
1
4 (1−χ1(q))

−1 and (l1+l2)|p|2+2l2(p, q)+(l1+l2)|q|2,

respectively, we obtain the integral operator T2(r). The error 8T
(1,1)
1 (r) − T2(r) is a

Hilbert-Schmidt operator continuous up to z = 0.
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Using the dilation

M : L2(Ur(0) \ U1(0))→ L2((0, r), σ), (Mf)(x,w) = e3x/2f(exw),

where r = 1
2
| log |z||, x ∈ (0, r), w ∈ S2, one can see that the operator T2(r) is unitarily

equivalent to the integral operator Sr.
Since the difference of the operators Sr and T (δ; |z|) is compact (up to unitary

equivalence) and hence, since r = 1/2| log |z||, we obtain the equality

lim
|z|→0

n(γ, T (δ; |z|))
| log |z||

= lim
r→0

1

2
r−1n(γ, Sr), γ > 0.

Now (5.1) completes the proof of Theorem 5.1.

Proof of Theorem 2.3. Using Lemmas 5.2, 5.3 and Theorem 5.1 we have

lim
|z|→0

n(1, Tµ0(z))

| log |z||
= U(1).

Taking into account the last equality and Lemma 5.1, and setting U0 := U(1) we
complete the proof of Theorem 2.3.

6 Infiniteness of the number of eigenvalues embedded in the
essential spectrum of H

Proof of Theorem 2.4. Let µ = µ0. By Theorem 2.3 the operator H22 has infinitely
many negative eigenvalues E1, . . . , En, . . . , accumulating at zero. Let f (1)

2 , . . . , f
(n)
2 , . . .

be the corresponding eigenfunctions.
Denote by L0 the subspace of all eigenfunctions of H22, corresponding to the neg-

ative eigenvalues. We show that H12

∣∣∣
L0

= 0. Let f2 be the eigenfunction of H22 corre-
sponding to the eigenvalue z < 0, that is, H22f2 = zf2 or

f2(p, q) =
µ

w(p, q)− z
[ϕ(p) + ϕ(q)], (6.1)

where
ϕ(p) =

∫
T3

f(p, s)ds. (6.2)

Substituting expression (6.1) for f2 in equality (6.2), we obtain

ϕ(p) =

∫
T3

µ

w(p, s)− z
[ϕ(p) + ϕ(s)]ds

or

ϕ(p) =
µ

∆1(µ, p ; z)

∫
T3

ϕ(s)ds

w(p, s)− z
.
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This implies that ϕ(·) is a periodic function of each variable with period π. Therefore,
the function f2(·, ·), defined by (6.1), is a periodic function in each six variables with
period π. Hence this function satisfies condition (2.2):∫

T3

v(s)f2(p, s)ds = 0,

that is, H12f2 = 0 for any f2 ∈ L0.
By this, in particular, it follows that H12f

(n)
2 = 0 for any n ∈ N. Therefore the

numbers E1, . . . , En, . . . are eigenvalues of H and the corresponding eigenvectors have
the form: f (n) = (0, f

(n)
2 ), n ∈ N.

If λ ∈ (0;λ0], then by Theorem 2.2 we have minσess(H) = 0. In this case the
set {En : n ∈ N} is located below the bottom of the essential spectrum of H and
lim

n→∞
En = 0. Let λ ∈ (λ0;λ1]. Then Theorem 2.2 implies that σess(H) = [aλ;M ] with

aλ < 0. Hence, the countable part of the set {En : n ∈ N} is located in the essential
spectrum of H. If λ > λ1, then σess(H) = [aλ; bλ] ∪ [0;M ], bλ < 0. It means that the
countable subset of the set {En : n ∈ N} located in (bλ; 0).
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