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Abstract. In the present paper a 2 x 2 block operator matrix H is considered as a
bounded self-adjoint operator in the direct sum of two Hilbert spaces. The structure of
the essential spectrum of H is studied. Under some natural conditions the infiniteness
of the number of eigenvalues is proved, located inside, in the gap or below the bottom
of the essential spectrum of H.

1 Introduction

Perturbation problems for operators with embedded eigenvalues are generally challeng-
ing since the embedded eigenvalues cannot be separated from the rest of the spectrum.
Embedded eigenvalues occur in many applications arising in physics. In quantum me-
chanics, for instance, eigenvalues of the energy operator correspond to energy bound
states that can be attained by the underlying physical system. If such an eigenvalue is
embedded in the continuous spectrum, it is of fundamental importance to determine
whether it, and therefore corresponding bound state, persists upon perturbing the po-
tential. Alternatively, embedded eigenvalues in inverse scattering problems correspond
to soliton-type structures for the original integrable problems whose robustness under
perturbations is therefore again determined by the fate of the embedded eigenvalues.

It is well known [5, 17| that the Schrédinger operator —A + V(x) does not have
eigenvalues embedded in its continuous spectrum if V' (z) is integrable. However, the
Wigner-von Neumann example [17| shows that the Schrodinger operator with the po-
tential

V(z) := q(z) coswz, w >0,

where for some a > 0
¢(x) =077 as x—o00, j=1,23,

has eigenvalues embedded in the continuous spectrum.
In [2], S. Albeverio describes how one can construct potentials that lead to any
finite number of bound states having preassigned energies. In [18], M.M. Skriganov
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constructed potentials that have a countable number of positive eigenvalues for the one-
dimensional Schrodinger operator. In this constructions, the methods of the inverse
scattering problem play an important role. The existence of a potential with infinite
number of eigenvalues in the continuous spectrum for a discrete Schrodinger operator
is demonstrated in [12]. The existence of a multi-dimensional generalized Friedrichs
model with a given number of eigenvalues located within the continuous spectrum is
proved in [1]. The infiniteness of the number of eigenvalues in the gap of the essential
spectrum for the three-particle discrete Schrodinger operator was proven in (8], and a
formula for the number of its eigenvalues in an arbitrary interval outside of the essential
spectrum was obtained in [9]. In the paper [10], it is shown that the discrete spectrum
of the three-particle Schrodinger operator on a one-dimensional lattice is infinite in the
case in which the masses m, and mg of two particles are infinite.

It is remarkable that the above mentioned operators describe systems with a con-
served finite number of particles in continuous space and on a lattice. However, in both
cases, there exist problems with a non-conserved number of particles that are more in-
teresting in a certain sense. Such problems occur in solid state physics, quantum field
theory and statistical physics. Systems with a non-conserved finite number of particles
in continuous space were considered in [7, 21]. Usually the Hamiltonians describing
such type of systems in both cases can be expressed as block operator matrices.

In the present paper we consider the 2 x 2 block operator matrix H in the direct
sum of Hilbert spaces. We describe the structure of the essential spectrum of H. We
find conditions for the infiniteness of the number of eigenvalues located inside, in the
gap and below of the bottom of the essential spectrum of H, respectively.

We note that such type of operator matrices were considered in [11, 13, 20] and only
its essential spectrum was investigated. This paper is a continuation of those papers.

The plan of the paper is as follows. Section 1 is a general introduction. In Section 2,
the operator matrix H is introduced and the main results of the present paper are
formulated. In Section 3, we recall some spectral properties of the corresponding
Friedrichs models. In Section 4, we study the structure of the essential spectrum of
H. In Section 5, an asymptotic formula for the number of negative eigenvalues of
Hys (diagonal entry of H) is obtained. In Section 6, we prove the infiniteness of the
number of eigenvalues of H lying inside, in the gap or below the bottom of its essential
spectrum.

We adopt the following conventions throughout the present paper. Let N, Z, R and
C be the set of all positive integers, integers, real, and complex numbers respectively.
We denote by T? the three-dimensional torus (the first Brillouin zone, i.e., dual group
of Z3), the cube (—m,n]* with appropriately identified sides equipped with its Haar
measure. The torus T? will always be considered as an abelian group with respect to
the addition and multiplication by real numbers regarded as operations on the three-
dimensional space R?* modulo (27Z)3.

Denote by o(-), 0ess(+) and ogisc(+), respectively, the spectrum, the essential spec-
trum, and the discrete spectrum of a bounded self-adjoint operator. In what follows
we deal with the operators in various spaces of vector-valued functions. They will be
denoted by bold letters and will be written in the matrix form.
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For each § > 0, the notation Us(pg) is used for the d—neighborhood

{peT?:|p—po| <6}

of the point py € T3.

2 Block operator matrix and main results

Let Ly(T?) be the Hilbert space of square integrable (complex) functions defined on T?
and L3((T?)?) be the Hilbert space of square integrable (complex) symmetric functions
defined on (T?®)2. Denote by H the direct sum of spaces H; := Ly(T?) and Hy :=
L5((T?)?), that is, H := H; & Hs. The Hilbert spaces H; and Hy are one-particle and
two-particle subspaces of a bosonic Fock space Fy(Lo(T?)) over Lyo(T?), respectively.
We consider the block operator matrix H acting in the Hilbert space H given by

Hyy Hio
H =
(i, i02)
with the entries H;; : H; — H;, 4,5 =1,2:

(Hufi)(p) = ulp) fi(p),  (Hizf2)(p) = VA . v(s) f2(p, 5)ds,

(Haafa)(p,q) = w(p, q) fa(p, @) — 1t /Tg fo(p,s)ds — /Ts fa(s,q)ds,

where f; € H;, i =1,2; u, A > 0; u(+) is a positive valued continuous function on T3,
the function v(-) is real-valued analytic on T* and the function w(,-) is defined by

w(p, q) = lie(p) + le(p + q) + Lie(q),

with ll,lg > (0 and

3
e(q) ==Y _(1—cos(2¢")), ¢ = (¢, ¢, ¢*) € T,

=1

Here H7, denotes the adjoint operator to Hi2 and

VA

(Hiyf1)(p,q) = 7(@(19)]%(61) +v(q)f1(p), fi € Hu.

Under these assumptions the operator H is bounded and self-adjoint in H.

We note that the operators Hy, and H7y, are called annihilation, creation operators
respectively.

Set Hy := C. To formulate the main results of the paper we introduce a family of
bounded self-adjoint operators (Friedrichs models operators) hy,(p), p € T* which act

in Hy @ H, as
N hoo(p) hot )
h = ,
M/\(p) ( hy hn(P)
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where the operators h;;(p) : H; — H;, © = 0,1 and hg; : H; — Hp are defined as
A
hoo(p) fo = u(p) fo, horf1 = \/;/ v(s) fi(s)ds,
T3

hii(p) = hy(p) —v,  (h9y(p) f1)(q) = w(p,q) filq), (vfi)(q) = p y fi(s)ds.

The following theorem [14] describes the location of the essential spectrum of H.

Theorem 2.1. The essential spectrum of H satisfies the equality

Oess(H) = U oaise(hn(p)) U [0; M], M := g

peT3

(211 + 1), (2.1)

Moreover, the set ooss(H) is a union of at most four intervals.

Throughout this paper we assume the following additional assumption that the
real-valued analytic function v(-) satisfies the condition

/1r3 v(s)g(p,s)ds =0 (2.2)

for any function g € L§((T?)?), which is periodical on each variable with period 7.
3 3
Note that the functions v(p) = 3 ¢; cos p® and v(p) = Y ¢; cos p cos(2p™), where
=1 =1
¢i, © = 1,2,3 are arbitrary real numbers, satisfies condition (2.2). Indeed, for v(p) =

3
> ¢;cos p, we have
i=1

[ oo s)is = [ o+ mgtps+ mds =~ [ os)glp.s)ds, 7= (77,
T3 T3 T3
which yields equality (2.2).

Under condition (2.2) the discrete spectrum of ﬂw\(p) coincides (see Lemma 3.1
below) with the union of discrete spectra of the operators

h h
)= () pe T and )= (b ) e

It follows by the definition of the operators h,(p) and hy(p) that their structure is
simpler than that of h,(p).

We introduce the following points of T? :
b1 = (07 07 0)7 P2 = (77', 07 O)? ps3 = (OJ T, 0)7 Ps = (07 07 7T),

Ps = (7T77T7 0)7 Dbe ‘= (7'(', OJ ﬂ-)? b7 = (07 7T77T)7 bs ‘= (7]—7 T, ﬂ-)‘
It is easy to verify that the function w(-,-) has non-degenerate minimum at the
points (p;,p;) € (T?)?, 4,5 = 1,8; where 1,n = 1,...,n. Therefore, for any p € T? the

integral
v2(s)ds
)= [ 2
1 w(p,s)
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is finite.
The Lebesgue dominated convergence theorem and the equality I(p1) = I(p;), i =
2, 8 yield
I(p1) = lim I(p;), i = 1,8,

p—pi
and hence the function I(-) is continuous on T3. Therefore there exist points 6y, 6; € T3
such that

min I(p) = 1(#;) and maxI(p)=1(6p).

p€eT3 p€eT3

From now on we assume that the function u(-) has a minimum at p = 6, and a
maximum at p = ¢, and introduce the following notations:

s £(8)
ay = min{ U aaise(ha(p)) N (—oo;O}}, by := max{ U aaise(ha(p)) N (—oo;O}},

p€eT? p€eT?

o = (zl+zg)(/T ﬁ>_1, e = 2u(00)(T(0))", k= 0,1:

for A > A.
The structure of the essential spectrum of H can be precisely described as in the
following theorem.

Theorem 2.2. Let 1 = pg. Then the following assertions hold.
1) If X € (0; \o], then (—oo; M| N oess(H) = [0; M];
2) If X € (Mo; A1, then (—oo; M) N oess(H) = [an; M] and ay < 0;

3) If A € (A\1;+00), then (—oo; M| N oess(H) = [ax; ba] U [0; M| and ay < by < 0.

Let us denote by Tess(A) the bottom of the essential spectrum oe(A) of a bounded
self-adjoint operator A and by N(A;z) the number of eigenvalues of A lying below the
point 2, z < Tegs(A).

It is clear that h,(p1) = hu(p:i), @ = 2,8. Note that [16] the operator h,(p) with
p = po is strictly positive for any p € T®\ {p1,...,ps}, and thus the operator h,(p1)
corresponding to the value p; of p is the unique operator whose spectrum attains the
bottom of the essential spectrum of Hay. Moreover, Tess(Haz) = 0 for p = pp.

The main results of the present paper as follows.

Theorem 2.3. For p = pg the operator Hao has infinitely many negative eigenvalues
Ey,...,E,, ..., such that lim E, =0, and the function N(Hag;-) obeys the relation
N(Hsy;

lim —( 2i2)

m |10g ‘ZH = Uy, 0<Uy< . (23)

It is easy to see that the infiniteness of the cardinality of the negative discrete
spectrum of Hsy directly follows by the positivity of U.

For n € N denote by fz(n) the eigenfunction corresponding to the eigenvalue F,, of
H22 with ou = Ho-
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Theorem 2.4. Let u = pg. Then for any N\ > 0 the numbers Ey, ..., E,, ... are
eigenvalues of H and the corresponding eigenfunction has the form: f™ = (O,fén)),
n € N. Moreover,

1) if X € (0; o], then the set {E, : n € N} is located below the bottom of the
essential spectrum of H;

2) if A € (Ao; A1), then the countable subset of {E, : n € N} is located in the
essential spectrum of H;

3) if A € (A\1;+0), then the countable subset of {E, : n € N} is located in the gap
of the essential spectrum of H.

Since \ li/\m Ob,\ = 0, it follows from assertions 3) of Theorems 2.2 and 2.4 that for
—A1+

any given finite number k£ € N there exists A € (A;;+00) such that for p = ug and
A = X the set {E,, : n € N} N [ay; by] consists of k elements.

3 Spectral properties of the Friedrichs model ﬂuk(p)

In this section we study spectral properties of the Friedrichs model E#,\ (p), which plays
a crucial role in the study of the spectral properties of Hyy and H.

3.1 Spectrum of ﬂu/\(p)
Let the operator h'(p) acts in Hy & H; as

0= (0 sy )

The perturbation EM(p) — h%p) of the operator h°(p) is a self-adjoint operator
of rank at most 3, and thus, according to the Weyl theorem, the essential spectrum
of the operator h,,(p) coincides with the essential spectrum of h°(p). It is clear that
0ess(hO(p)) = [m(p); M (p)], where the numbers m(p) and M (p) are defined by

m(p) == minw(p,q), M(p):=maxw(p,q).
qeT? qeT3

This yields ous (B (p)) = [m(p); M(p)].
For any fixed p, A > 0 and p € T* we define the functions

ds A v%(s)ds
Al(/,l/7p,2) = 1 _M/E3 w(p’s) _27 AQ()\prz) = u(p) -z — 5/]1‘3 w(p’S) _27

that are regular in C\ [m(p); M (p)]; these functions are the Fredholm determinants

associated with the operators h,(p) and hy(p) respectively.
The following lemma describes the relation between the eigenvalues of the operators

hu(p), ha(p) and by (p).
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Lemma 3.1. The number z € C\ [m(p); M(p)] is an eigenvalue of BH,\(p) if and only
if z is an eigenvalue of at least one of the operators h,(p) and hy(p).

Proof. Suppose (fo, f1) € Ho ® H; is an eigenvector of the operator ﬂw(p) associated
with the eigenvalue z € C\ [m(p); M(p)]. Then f, and f; satisfy the following system
of equations

(u(p) = ) o+ /3 Jra v() i ()ds = 0
\/><)f0+(( )—Zfl — 1 fps f1(s)ds = 0.

Since for any z € C\ [m(p); M(p)] and q € T? the relation w(p, q) — z # 0 holds for
all p € T3, from the second equation of (3.1) for f; we have

he) = —ACe Aok (32

w(p,q) — w(p, q) —

(3.1)

where
N fi(s)ds. (3.3)

Substituting expression (3.2) for f; into the first equation of system (3.1) and
equality (3.3), and then using condition (2.2), we conclude that the system of equations
(3.1) has a nontrivial solution if and only if the system of equations

{ Ao\, p;2)fo=0
Ai(p,p;2)C, =0

has a nontrivial solution, i.e., if the condition A;(p,p;2)A2(\, p;2) = 0 is satisfied.
It is clear [16] (|15]) that the number z € C\ [m(p); M (p)] is an eigenvalue of h,,(p)
(ha(p)) if and only if Ai(u,p;2) =0 (Az(A,p;2) =0). O

By Lemma 3.1 it follows that
oaise(hu(p)) = {2z € C\ [m(p); M(p)] : Ai(p,p;2) =0}
agise(ha(p)) = {2 € C\ [m(p); M(p)] : Azx(\,p;2) =0}

and

Oaise (B (1)) = Oatise (1 (P)) U 0aise (B (p)). (3.4)

In the following lemma we precisely describe the dependence of the negative eigen-
values of hy(p) on the parameter A > 0.

Lemma 3.2. 1) Let A € (0; o). Then for any p € T2 the operator hy(p) has no
negative eigenvalues;

2) Let A\ € (\o; \1]. Then there exists a non empty open set Dy C T? such that
Dy # T3, and for any p € Dy the operator hy(p) has a unique negative eigenvalue and
for any p € T3\ D, the operator hy(p) has no negative eigenvalues;

3) Let X > \i. Then for any p € T® the operator hy(p) has a unique negative
ergenvalue.
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Proof. First we prove part 2). Let A € (Ag; A1]. By the definition of the numbers \;,
i = 0,1 it follows that m% As(A,p;0) < 0and max Ag(A,p;0) >0 for any A € (Ao; A1
J4S peE

Since the function /() has minimum at p = 6; and maximum at p = 6y, and the
function u(-) has minimum at p = #y and maximum at p = 6, it is clear that

min Ag(A,p;0) = Ag(A, 60p;0) and maxAq(A,p;0) = Ag(A, 01;0).
peT3 peT3

Therefore Ag(A,00;0) < 0 and Ay(\, 6;;0) > 0 for any A € (Ag; ]

We introduce the notation: Dy := {p € T® : Ay(\,p;0) < 0}. Then it is obvious
that D, is a non-empty open set and Dy # T%.

For any A > 0 and p € T? the function Ay(),p;-) is continuous and decreasing on
(—o0; 0] and zgmm Ao(N, p;2z) = 4o00. Then for any p € D, there exists a unique point

ex(p) € (—o0;0) such that Ay(X\, p;ea(p)) = 0. By Lemma 3.1 for any p € T? the point
ex(p) is the unique negative eigenvalue of the operator hy(p).

For any p € T3\ Dy and z < 0 we have Ay(\,p;2) > Ay()\,p;0) > 0. Hence by
Lemma 3.1 for each p € T3\ D, the operator hy(p) has no negative eigenvalues.

If A € (0; \g] (respectively A € (\j;+00)), then Dy = @) (respectively Dy = T?) and
the above analysis leads again to the case 1) (respectively 3)). The straightforward
details are omitted. O

3.2 Threshold energy expansion for the Fredholm determinant
Al(:“? p; Z)

First we remark that Aj(u, p1;0) = Aq(p,p;i;0), i = 2,8. Moreover, by the definition
of 1o one can see that Aq(p,pr;0) =0 if and only if © = po.
The following expansion plays an important role in the proof of Theorem 2.3.

Lemma 3.3. The following decomposition

87T2IU0 l% + 2[1[2
NI
1(”0ap7z) (ll_l_lz)g/g\/ l1+l2

Z
p=pil? = 5+ O(p —pi") + O(J2])

holds for all |p — p;| — 0,4 =1,8 and z — —0.
Remark 1. A similar lemma for the two-body discrete Schrodinger operator was

3
proven in [3] for £(q) = > (1 — cos¢).

=1
Proof of Lemma 3.3. Let us sketch the main idea of the proof. Take a sufficiently small
§ > 0 such that Us(p;) N Us(p;) = 0 for all ¢ # 5, 4,5 = 1,8.

Set

Ty :=T*\ | Us(p;)-

j=1
Using the additivity of the integral we rewrite the function A (ug,-;-) as

8
ds ds
A Ho,piz)=1—p E / — M / — N - 3.5
1( ° ) Oj:1 Us(pj) w(p,s)—z ’ Ts U}(p,S)—Z ( )
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Since the function w(-, -) has non-degenerate minimum at the points (p;, p;), ,j =

1,8, we can argue as in [4]. It is easy to show that

/ ds _/ ds  n? Gt2hly
Usto) W 5) =2 Jugy wlons) i+ BPR\ ThE C T

+O(lp — pil*) + O(|2));
/M(L: / S O(p—p?) + O(l2))

p78) -z w(pi78)

as |p — pi| — 0 for i = 1,8 and z — —0. Substituting the last two expressions to the
equality (3.5) we obtain

8200 |12+ 20, 2
Ay (tto,p; 2) = Ay (pig, pi 0) + — 2= Z40(p-p)+0
1(#07 72) l( 0y Pi 5 ) (ll l2)3/2\/ ll l2 ‘p p | 9 (|p p | ) (’ZD

as |[p—p;| — 0 for i =1,8 and 2 — —0. Now the equality A;(u,p;;0) = 0 completes
the proof of Lemma 3.3. O]

Corollary 3.1. For some C1,Cs,C5 > 0 and 0 > 0 the following inequalities hold
1) Cilp — pil < Ai(po,p;0) < Colp —pil, p € Us(ps), i = 1,8;

2) Ai(po,p;0) > Cs, p € Ts.

Proof. The Lemma 3.3 yields assertion 1) for some positive numbers C, Cy. The posi-
tivity and continuity of the function A;(uo,-;0) on the compact set Ts imply assertion
2). O

At the end of this section we prove one more assertion.

Lemma 3.4. There exist Cy,Cy,C3 > 0 and § > 0 such that

1) Ci(lp—pil* +1a—p;*) < w(p,q) < Callp—pil*+|a—p;1?), (p,q) € Us(pi) x Us(p;),
1,7 =1,8;

2) w(p,q) > Cs, (p,q) € T2
Proof. The expansion

w(p, q) = 2((Li+1) [p—pi|*+2la(p—pi, ¢—p;) + (L +12) |g—p;[*) +O(|p—pi) +O(lg—p;|*)

as |p—pil, [g—p;| — 0, for i, j = 1,8 implies that there exist Cy,C,C5 > 0 and § > 0
satisfying both inequalities of the lemma. n
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4 Essential spectrum of H

In this section using Theorem 2.1 and the assertions proved in Section 3, we prove
Theorem 2.2.
First we recall that by Theorem 2.1 and equality (3.4) we have

Oess(H) = | 0aice(hu(p)) U | daisc(hir(p)) U [0; M]. (4.1)

peT3 peT3

Proof of Theorem 2.2. It was shown in [16] that if ;1 = g then

U oaise(u(p)) U [0; M] = [0; M]. (4.2)

p€eT3

Hence by equality (4.1) it suffices to study the structure of the set

U oame(a(p)) U [0 M)

peT3

We consider the following three cases.
1) Let A € (0; \o]. Then by Lemma 3.2 it follows that for any p € T? the operator
h,(p) has no negative eigenvalues, that is,

U aise(ha(p)) N (—00;0) = 0.

peT3

Then equalities (2.1), (4.1) and (4.2) complete the proof of assertion 1) of Theorem 2.2.
2) Let A € (Ao; A1]. Then by assertion 2) of Lemma 3.2 there exists a non-empty
open set Dy C T3 such that Dy # T3, and for any p € D, the operator hy(p) has a
unique negative eigenvalue e, (p). Since the function u(-) is continuous, v(-) and w(-, )
are analytic on its domains, the function ey : p € D) — e)(p) is continuous on D).
Since for any p € T? the operator hy(p) is bounded and T? is a compact set, there

exists a positive number C, such that sup ||hy(p)|| < C, and for any p € T* we have
peT3

o(ha(p)) C [=Cx; Ol (4.3)

For any q € 0Dy = {p € T? : Ay(\,p;0) = 0} there exist {p,} C D, such that p, — ¢

as n — oo. If we set e&”) = ex(pn), then by Lemma 3.2 for any n € N the inequality

e!™ < 0 holds and from (4.3) we get {e{”} C [~Cy:0). Without loss of generality we
assume that eE\") — 6&0) as n — oo for some e&o) € [=Cy; 0] (otherwise we would have
to take a subsequence).

By the continuity of the function Ay(),-;-) in T® x (—o0;0] and p, — ¢ and
eg\n) — eg\o) as n — oo it follows that

0= lim As(\, pn; ef\n)) = Ag(/\,q;eg\o)).

n—oo

Since for any A > 0 and p € T? the function Ay(\,p;-) is decreasing in (—oo; 0]
and g € 0D, we see that As(\, q; ef\o)) = 0 if and only if eE\O) =0.
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Now for ¢ € 0D, we define

ex(g)= lim ey(p') =0.
p'—q,p' €D
Since the function ey(-) is continuous on the compact set Dy U dD) and ey(q) = 0 for
all ¢ € 9D, we conclude that Imey = [ay; 0] and a) < 0, where Ime, denotes an image
of the function ey ().

Hence the set

U aaise(ha(p)) N (—00; 0]

p€eT3
coincides with the set Imey = [ay;0]. Then equalities (2.1), (4.1) and (4.2) complete
the proof of assertion 2) of Theorem 2.2.

3) Let A > \;. Then by Lemma 3.2 for all p € T? the operator hy(p) has a unique
negative eigenvalue ey (p). Since the function ey : p € Dy — ey(p) is continuous on T3
the range Ime, of the function e,(-) is a connected closed subset of (—o0;0), that is,
Imey = [ay; by] with by < 0 and hence

U O'disc<h)\<p)) N (—OO, O] = [OJ)\; b>\]

p€eT3

Then again equalities (2.1), (4.1) and (4.2) complete the proof of assertion 3) of The-
orem 2.2. []

5 Asymptotics for the number of negative eigenvalues of Hs

In this section first we review the corresponding Birman-Schwinger principle for the
operator Hos and next we derive asymptotic relation (2.3) for the number of negative
eigenvalues of Hys.

The Birman-Schwinger principle. For a bounded self-adjoint operator A acting
in a Hilbert space R, we define the number n(v, A) as follows

n(y, A) :=sup{dimF : (Au,u) >y, u € F CR, ||ul| =1}.

Here n(y,A) = oo, if v < maxoes(A); if n(vy, A) < oo, then it is equal to the
number of eigenvalues of A which are greater than ~.
By the definition of N(A4;z), we have

N(Hag,z) =n(—2z,—Has), —2 > —Tess(Haa).

Note that for any g > 0, p € T? and 2 < Te(Haz) we have Ay(p,p;z) > 0 and
hence there exists its positive square root.

In our analysis of the discrete spectrum of Hsy the crucial role is played by the
compact integral operator T),(2), z < Tess(Ha2) acting on Lo(T?) with the kernel

W
VAL P 2) /A (g5 2) (w(p. q) — 2)

The following lemma is a realization of the well-known Birman-Schwinger principle
for the operator Hay (see [3, 8,9, 15, 16, 19]).
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Lemma 5.1. For any z < Tess(Haz) the operator T,(z) is compact and continuous in
z and

N(Hys, z) =n(1,T,(2)).

Proof of Theorem 2.3. Let us recall some results of [19] which are important in our
work. Set o := Ly(S?), where S? stands for the unit sphere in R?, and let Sy, r > 0, be
the integral operator on Lo((0,r),0) with the kernel

1 (I +1y)? 1
AT /T3 + 2011, (L + 1) coshy + It

where y =z — 2/, z, 2’ € (0,r), t = ({,n), §,n € S%
Let S(6), 6 € R, be the integral operator on o whose kernel is of the form

S(y,t) ==

0.1y = L (1t sinh[f arccos -2-1]
T 4 B 42, sinh(760) ’

and depends on the inner product ¢ = (£,n) of the arguments £, € S?. For v > 0,
define
L . 50)a
U(y) i=— :
=3 [ 050

This function was studied in detail in [19]; where it was used in showing the existence of
the Efimov effect. In particular, as it was shown in [19], the function U(+) is continuous
in 7 > 0, and the limit

1
liII[l) Qr_ln(% Sy) =U(v) (5.1)
exists and the number U(1) is positive.

Theorem 2.3 can be derived by using a perturbation argument based on the following

lemma. O

Lemma 5.2. Let A(z) = Ap(2)+A1(z), where Ag(2) (A1(2)) is compact and continuous
for z < 0 (for z <0). Assume that the limit

lim f(z)n(y, Ao(2)) = 1(7)

exists and l(-) is continuous in (0;+00) for some function f(-), where f(z) — 0 as
z — 0. Then the same limit exists for A(z) and

Timy [()n(y, A(2)) = 1(7).

For the proof of Lemma 5.2, we refer to Lemma 4.9 in [19].

Since the function U(-) is continuous with respect to 7, it follows by Lemma 5.2
that any perturbation of Ay(z) treated in Lemma 5.2 (which is compact and continuous
up to z = 0) does not contribute to asymptotic relation (2.3).

Let T(8;|z|) be an integral operator in Lo(T?) with the kernel

(h +12)22 o~ xs(p = pi)xs(q — p3)(mlp — pil> + |2]/2) " (mlq — p;|2 + |2]/2) 73
1672 = (L + B)|p = pil® + 20a(p — piyg — pj) + (L + 12)lg — pi > + [2]/2

where m := (12 + 2l1l5)/(ly + l2) and xs(+) is the characteristic function of the domain
Us(0), 0 := (0,0,0) € T?. The operator T'(d; |z|) is called singular part of T},,(z).
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Lemma 5.3. For any z < 0 and small § > 0 the difference T,,,(z) — T(0;|z|) belongs
to the Hilbert-Schmidt class and is continuous with respect to z < 0.

Proof. Applying Corollary 3.1 and Lemma 3.4 we obtain that there exist C7,Cy > 0
such that the kernel of the operator 7),,(z) — T'(d; |z]) can be estimated by the square-
integrable function

p—pilE+lg—pl7+1
Cl+022| ‘ | | ]’

o lp—pilP+ (0 =pig—p) +la—pil*

Hence, the operator T),,(z) —1'(d; |z|) belongs to the Hilbert-Schmidt class for all z < 0.
In combination with the continuity of the kernel of the operator with respect to z < 0,
this implies the continuity of T),,(z) — T'(d;|z|) with respect to z < 0. O

The following theorem is fundamental for the proof of the asymptotic relation (2.3).

Theorem 5.1. We have the relation

n(y,T(:]2)) _
MTO Tog Al U(vy), ~>0. (5.2)

8
Proof. The subspace of functions f, supported by the set |J Us(p;) is invariant with
i=1
respect to the operator T'(0; |z]).
Let To(9; |z]) be the restriction of the 1ntegral operator T'(d; |z|) to the subspace

(U Us(pi)), that is, integral operator in Lo U Us(p;)) with the kernel T(0;|z]; -, )

i=1
8
defined on U Us(pi) x U Us(p;) as
i=1 j=1
To(0; |2[:p. ) =
(lh+1)*? (mlp — pil* +121/2) "3 (mlg — p, > + |2]/2) "5

1672 (L +lo)lp — pil* + 2la(p — pi, ¢ — pj) + (L + lo)|q — pyl* + |2]/2]
(p,q) € Us(pi) x Us(p;) for i,j = 1,8.
8 8
Since Lo(|J Us(pi)) = @ L2(Us(p;)), we can express the integral operator T(0; |2])
i=1 i=1

8
as the block operator matrix Ty(0; |z|) acting on @ L2(Us(p;)) as
i=1

FRRCIEN IR s CIED
To(d;]2]) = : 5 |
TV 1) - TEOE D)

where Téi’j)(é; |2[) © L2(Us(p;)) — La(Us(pi)) is an integral operator with the kernel
To(0; 21, 9), (P, q) € Us(pi) x Us(p;) for 4,5 =1,8.
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Set
LP(UA0)) = {p = (91, . 95) : i € Lo(U(0)), i = T8},
It is easy to show that Tq(d;|z|) is unitarily equivalent to the operator Ti(r),
r = |z|72, acting on LY (U,(0)) as
1,1 1,1
V) o T
Ty(r) == L : :
Ty o T ()

where Tl(l’l)(r) is the integral operator on Lo(U,.(0)) with the kernel

(h + 1p)*? (mlp? +1/2)5 (mlg|* + 1/2)"7
1672 (I + 12)[p* + 22(p, @) + (I + 1) [gf* + 1/2°

The equivalence is realized by the unitary dilation

8
B, = diag{ B!, ..., B®} . (P La(Us(ps)) — LS (U(0)),
=1

Here the operator B : Ls(Us(p;)) — Lo(U-(0)), i = 1,8 acts as

e = (5) 1 Cptp)

Denote by A, and C the 8 x 1 and 1 x 8 matrices of the form

()
A, = : , C:=(1,....1),
7Y ()

respectively, where I is the identity operator on Ly(U,.(0)).

It is well known that if 77,75 are bounded operators and v # 0 is an eigenvalue
of T\T5, then v is an eigenvalue for T57] as well of the same algebraic and geometric
multiplicities (see e.g. [6]). Therefore, n(vy, A, C) = n(vy, CA,), v > 0. Direct calcula-
tion shows that T(r) = A, C and CA, = 8T1(1’1)(7“). So, n(~y, T1(r)) = n(y, 8T1(1’1)(r)),
v > 0.

Further, replacing

el

(m|p|* + 1/2)i, (m|q* +1/2)1 and (I, + I)|p|* + 2a(p, q) + (I, + 15)|q|* +1/2

by the expressions
(mlp)T(1—x1(p) ™", (mlg®)T(1—x1(q)™" and  (Li+1)[p*+2ls(p, q)+ (L +12)|gl?,

respectively, we obtain the integral operator T5(r). The error 8T1(1’1)(r) —Ty(r) is a
Hilbert-Schmidt operator continuous up to z = 0.
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Using the dilation
M : Ly(U,(0) \ U1(0)) — Lo((0.x),0), (M [)(z,w) = */2f(e"w),

where r = [log |z, € (0,r), w € S*, one can see that the operator T5(r) is unitarily
equivalent to the integral operator S,.

Since the difference of the operators S, and T'(d;|z|) is compact (up to unitary
equivalence) and hence, since r = 1/2|log |z||, we obtain the equality

on(, T |2) 1
lim ————— = lim —r~ "n(v, S;), > 0.
B0 |log 2] i v n(n,S)
Now (5.1) completes the proof of Theorem 5.1. O

Proof of Theorem 2.3. Using Lemmas 5.2, 5.3 and Theorem 5.1 we have

n(1, T, (2) _
=0 |log |2|| = U).

Taking into account the last equality and Lemma 5.1, and setting Uy = U(1l) we
complete the proof of Theorem 2.3. n

6 Infiniteness of the number of eigenvalues embedded in the
essential spectrum of H

Proof of Theorem 2.4. Let u = po. By Theorem 2.3 the operator Hys has infinitely
many negative eigenvalues Fy, ..., E,, ..., accumulating at zero. Let f2(1), e ,fQ("), e
be the corresponding eigenfunctions.

Denote by Ly the subspace of all eigenfunctions of Hy, corresponding to the neg-

ative eigenvalues. We show that H 12’ = 0. Let f5 be the eigenfunction of Hyy corre-
c

0
sponding to the eigenvalue z < 0, that is, Hosfo = 2 f5 or

i

W)_Z[SD(P) + ¢(q)], (6.1)

f2(p.q) =

where

©(p) = ., f(p,s)ds. (6.2)

Substituting expression (6.1) for f; in equality (6.2), we obtain

o) = [ o) + ol

p,s)— 2
" _u p(s)ds
2 = Al(ﬂ,p;Z)/w(p,S) —z

’]I‘S
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This implies that ¢(-) is a periodic function of each variable with period 7. Therefore,
the function f5(,-), defined by (6.1), is a periodic function in each six variables with
period 7. Hence this function satisfies condition (2.2):

/11“3 v(s) fa(p, s)ds = 0,

that is, Hiofo = 0 for any fy € L.

By this, in particular, it follows that Hio fQ(n) = 0 for any n € N. Therefore the
numbers Ey, ..., E,, ... are eigenvalues of H and the corresponding eigenvectors have
the form: f™ = (0, £"), n € N.

If A € (0; ], then by Theorem 2.2 we have minoes(H) = 0. In this case the
set {FE, : n € N} is located below the bottom of the essential spectrum of H and
lim £, = 0. Let A € (A\o; A1]. Then Theorem 2.2 implies that oes(H) = [ay; M] with

n—oo

ay < 0. Hence, the countable part of the set {E, : n € N} is located in the essential
spectrum of H. If A > Ay, then oo(H) = [ay; by] U [0; M], by < 0. It means that the
countable subset of the set {E,, : n € N} located in (b,;0). O
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