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Abstract. The notions of the real coupling constant and the index for real W*-algebras
are introduced and investigated. The main tool in our approach is the reduction of
real W*-algebras to involutive *-anti-automorphisms of their complex enveloping von
Neumann algebras. Similar to the complex case the values of the index for type IIy
real factors are calculated.

1 Introduction

In 1930’s von Neumann and Murray introduced the notion of the coupling constant for
finite factors (see [14-16]). In 1983, V. Jones suggested a new approach to this notion,
defined the notion of the index for type II; factors, and proved a surprising theorem
on values of the index for subfactors (see [6]). He also introduced a very important
technique in the proof of this theorem: the towers of algebras. Since then this theory
has become a focus of many fields in mathematics and physics ( [7]). In [8], H. Kosaki
extended the notion of the index to an arbitrary (normal faithful) expectation from a
factor onto a subfactor. While Jones’ definition of the index is based on the coupling
constant, Kosaki’s definition of the index of an expectation relies on the notion of spatial
derivatives due to A. Connes [2| as well as on the theory of operator-valued weights
due to U. Haagerup [5]. In [8,9] it was shown that many fundamental properties of the
Jones’ index in the type II; case can be extended to the general setting. At present
the theory of index thanks to works by V. Jones, P. Loi, R. Longo, H. Kosaki and
other mathematicians is deeply developed and has many applications in the theory of
operator algebras and physics (see also [12,13]).

Unlike to the complex case, for real factors the notion of the coupling constant
(therefore the notion of the index as well) has not been investigated. In the present
paper the notions of the real coupling constant and the index for finite real factors are
introduced and investigated. The main tool in our approach is the reduction of real
factors to involutive *-anti-automorphisms of their complex enveloping von Neumann
algebras.
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2 Preliminaries

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space
H. A weakly closed *-subalgebra 2 containing the identity operator 1 in B(H) is
called a W*-algebra. A real *-subalgebra ® C B(H) is called a real W*-algebra if it
is closed in the weak operator topology and R N iR = {0}. A real W*-algebra R is
called a real factor if its center Z(R) consists of the elements {AI, A € R}. We say
that a real W*-algebra R is of the type I, I, I, I, or III,, (0 < A <1) if the
enveloping W*-algebra 2((R) has the corresponding type in the ordinary classification of
W*-algebras. A linear mapping « of an algebra into itself with a(z*) = a(x)* is called
an *-automorphism if a(zy) = a(x)a(y); it is called an involutive *-antiautomorphism
if a(zy) = a(y)a(z) and o*(z) = x. If a is an involutive *-antiautomorphism of a
W+-algebra M, we denote by (M, «) the real W*-algebra generated by «, i.e. (M,a) =
{r € M : a(x) = z*}. Conversely, every real W*-algebra R is of the form (M, «),
where M is the complex envelope of i and « is an involutive *-antiautomorphism of M
(see [1,7,17]). Therefore we shall identify from now on the real von Neumann algebra
R with the pair (M, «).

3 Canonical representation

Let M (C B(H)) be a finite factor and let 7 be the unique faithful normal tracial
state of M. If « is an involutive *-antiautomorphism of M, then it is clear that 7
is automatically a-invariant. Denote by L*(M) the completion of M with respect to
the norm ||z||; = 7(2*x)Y/2. Similarly by L?(M,a) we denote the completion of the
real factor (M, ). Then it is obvious that the Hilbert space L*(M) and the algebra
B(L*(M)) of all bounded linear operators on it are the complexifications of the real
Hilbert space L?(M,a) and of B,(L*(M,«)), respectively, where B,(L*(M,«)) is the
algebra of all bounded linear operators on the real Hilbert space L?(M, ). Moreover,
it is easy to show that the Hilbert spaces L*(M,«) and L*(M) are separable.

For each © € M, set A\(z)y = zy, for all y € M. Clearly, |[A(z)y|l2 < ||z|||ly]|2- Thus
A can be uniquely extended to a bounded linear operator on L?(M), still denoted by
A(z). Then we obtain a faithful W*-representation (A, L?(M)) of M. In a similar way,
taking the map A, defined as \.(z)y = zy (for all z,y € (M, «)) we obtain a faithful
real *-representation (\., L*(M, «)) of (M, «).

Theorem 1. The map 3 : N(M) — A(M) defined as (3(Az) = Aa(w) is an involutive
*-antiautomorphism of AN(M). Moreover, 5 and « are also related in the following
way: (M,a)g = N\(M,«), where (M,a)s = {\s € N(M) : B(N\s) = \i} is the real
W*-algebra, generated by 3, i.e. (M,a)s = (AM(M),[3).

Proof. The first part of the assertion is trivial. Further, let A, € (M, a)g. Since
B(Az) = A, then A\ym) = Ap». Hence a(x) = 2%, i.e. © € (M, a). Then from

e € M(M) C B(L*(M)) = B.(L*(M, a)) + iB,(L*(M, o))

we have (M,a)s C B.(L*(M,«)). Hence (M,a)s C M\(M,a), since \.(M,a) =
{\' € B.(L*(M,q)) : for a(z) = z* and a(y) = y*, \.(y) := xy}.
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Now let A € A.(M,a). Then a(z) = z* and N\, € A\.(M,«) C A(M). Hence
B(AL) = Ay = Az = (AL)7, therefore A} € (M, a)g. O

Corollary 1. \.(M,«) is a real W*-algebra, and A(M) is the complexification of
A (M, ), i.e. \p(M,a) +iX(M, ) = AX(M). Moreover, {\.,L*(M,a)} is a faithful
real W*-representation of (M, ).

This representation will be called the canonical W*-representation of (M, «).

4 Commutant of the canonical representation

Since ||z||s = ||z*||2 for all z € M, the map J : x — z* can be uniquely extended to
a conjugate linear isometry on L?(M), still denoted by J. From the theory of W*-
algebras it is well-known that \(M)" = JA(M)J and A\(M) = JA(M)'J. Similarly to
Theorem 1 and Corollary 1 we have the following assertion.

Theorem 2. The map ' : N(M) — ANM) defined as §'(-) = JB(J - J)J, is an
involutive *-antiautomorphism of A(M)'. The set M\(M,«a) = {A\y € A(M) :
B'(Aer) = AL} is a real W*-algebra, and N(M)' is the complexification of \.(M, ),
i.e. \e(M,a) +i\.(M,a) = AN(M)'.

We have the following connection between \,.(M, ) and A (M, a)'.
Theorem 3. \.(M,a) = J\.(M,«a)J .

Proof. Since A\, € \.(M,a) implies that JA\,J € JA\.(M,a)J and [(\;) = Ak, we

T
have

B(INT) = JB(JINgTT)T = JB(Ne)J = JNLT = (TN, ).

Hence JA,J € \.(M,a)', ie. JN(M,a)J CA\(M, ).

Conversely, let A,y € A\ (M,a) C A(M)" =JAM)J. Then A\, = JA,J, for some
Ay € A(M). Since B(A\y) = %, we have B/(JA,J) = JA, ie. JB(JINJT)S =
JXJ. Hence J?B(A,)J? = J°X5J?, ie. B(N\)) = A;. Therefore A\, € A\.(M,a). Thus
we obtain A\, = JA\,J = JA.(M, «)J, and therefore \.(M,«) C JA.(M,a)J. O

Theorem 4. The real W*-algebra \.(M, ) is the commutant of \.(M,«) in the al-
gebra B.(L*(M,q)), i.e. N\ (M,a) = {\; € B.(L*(M,a)) : M\pAy = My, VA, €
A(M; o)}

Proof. Similarly to the proof of Theorem 1 for 3'(\,) = A% we have \, € B.(L*(M, «)).
Therefore \.(M,«) C B,(L?*(M,a)). On the other hand for any A\, € \.(M,«)
C AMY and A, € A (M, a) C A(M), we have Ayd, = A\ A, 0
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5 Relations between faithful nondegenerate W*-representa-
tions and the canonical representation

Theorem 5. Let My C B(H;) and My C B(H,) be two W*-algebras and let «; be
an involutive *-antiautomorphism of M;, i = 1,2. If ® : My — M,y is a normal
*_homomorphism with ® o a; = ay 0 D, then

CI):(I)go(IDQO(I)h

where

&y is a *~homomorphism from M; onto M;® CI; with ®1o0a; = a;o®, defined
as ®(a) =a® 1y, where 1y is the identity operator on an appropriate Hilbert space
L and a3 = oy ®1d;

Oy is a *-homomorphism from M;® CIy onto (Mi® CIp)p" with ®y0a; = a1ody
defined as Po(a @ 1) = (a @ 1p)p', where p' is a projection from (M@ CI1p)" with
a'(p)y =p and oy’ = Jia(L()Nh)J ®id, @ (- p') =a()p;

O3 is a *-isomorphism from (M@ CIp)p" to My with ®30a; = ag o Ps.

Proof. First we assume that (Ms, ay) admits a cyclic vector . In this case (Ms, ag)n =
Hj is a real Hilbert space and

Mon = (Ma, ag)n + i(Ma, an)n = Hy +iH) = Ho,

hence 7 is a cyclic vector of My. Since ®oa; = ago ®, for all a € (M, )
we have s (®(a)) = ®(ai(a)) = ®(a*) = ®(a)*, ie. @(a) € (Ma, ). Hence
®((My, 1)) C (Ma,a2). Define a functional ¢ by

pla) =< ®(a)n,n >, a€ (M,a).

Obviously, ¢ is a normal positive functional on (M, ). We can extend ¢ by linearity
to a functional on M (still denoted by ¢) such that

gp(a + ib) = gp(a) + Z@(b)? a,be (Mh 041)a

which clearly also is a normal positive functional. Let H{ be a real Hilbert space
with H] + iH{ = H; such that (M;,aq) C B(H7). By [11, 4.2.1] there is a sequence
(&,) C HT with > ||&,4]]* < oo such that p(a) = Y < a&,, &, >, for all a € (M, aq).

Set L, = 05 = {(z,) CR: Y 22 < oo}, L =L, +iL, &= (&) C H ® L, and
®i(a) =a® 1 for all a € M;. Then @, is a map from M; to Mi® CI; and
(Proag)(a) = P(aq(a)) =a1(a) @ I = (v ®id)(a® 1))
= ai(®i(a)) = (a1 0 P1)(a),

ie. ®yo0a; =da;o®;. Moreover, for all a € (My, ;) we have

< ®1(a)¢, & >=< (a®@1p,)§, & >= Y < ay, & >= o(a).
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Let p' be the projection from H] ® L, to CI>1((M1,a1))§. Then for all z = a® 1, €
(M7, 1)® RI;) we have

(P2)§ = p((a® 1L, )E) =p(Pi(a)f) = P1(a)§
= (a® 1, )§ =2 =2((1®1,)§) = z(P:1 (1))
= 2(p/(2:(1)¢)) = z(p'(€)) = (zp)¢.
Similarly, for all v € H{ ® L, with ~ # ¢ we also obtain
P'z)y = p(Pi(a)y) =0 =xz(0) = 2(p/(2:1(1)7))
= ap (1@ 1p,)y) = 2p' (7).

Therefore p'z = xp/, i.e. p' € (My,a;)® R1,). Hence p' € (M;® CI) and for
021' = Jldl(Jl(.)Jl)Jl X id we have dll(p,) = p/.

Define the map @, : M1® CI;, — (M;® CI)p" as Pr(a®1y) = (a®1,)p', a € M.
Then

(Proar)(a® 1) = Py(ar(a®1p)) = Dy(aq(a) @ 1))
= (a(a)@Tp)p' = ay(a® 1)y’
= @((a@1.)p) =a(Pr(a® 1))
= (ao0®s)(a® 1),

hence yo0dy =@ o ®,. Since ¢ = p/(1® 1,)€) = p(@1 (1)) = By(1)E = &, we
have

< (P20 Pi)(@),€> = < (P2(a®11,))E,{>=<(a® 1, )p'{, &>
= <(a®1;,)§E>=<P1(a)é, § >= ¢(a),
for all a € (M, 1), i.e. p(a) =< (Py0 Pq)(a), & >.
Now, define a linear map w: ®((My,oq))n — p/(H] ® L,) as follows:
ud(a)n = (P20 ¢1)(a)é = p'(a&n) = (a&n) (a € (M, an)).

Since u®(a)n = (P30 P1)(a) and < P(a)n,n >= pa) =< (P32 0 P1)(a)¢, & >
(a € (My,aq)), it follows that ||[u®(a)n|” = ||®(a)n||5, i.e. the map w is an isometry,
where || - || is the norm of the space Hy and || - ||’ is the norm of the space H] ® L,.
Moreover, since @((Ml,al))n = (Ms,a9)n, (P20 (131)((M1,a1))§ = (131((]\/[1,(11))5,
and

(I)((Mlv 051))77 = (MQ’ 042)77 = Hga

(®g 0 1) ((My, )€ = @1 ((My, )€ =p'(H] ® L,),
u can be extended to a unitary operator w: Hj — p'(H] ® L). Clearly,

udP(a)u ' = Py0Pi(a), ac (M, ). (5.1)
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Therefore we can define a spatial real *-isomorphism ®3 : ((Mi, 1)@ R )p —
(M, a9) as ®3(.) =u ~'(.)u, and it can be extended to a spatial *-isomorphism (still
denoted by ®3) @5 : (Mi® CIp)p — My as ®3(a +ib) = P3(a) + iP3(b), where
a,be ((Ml,ozl)® R][Lr)p’. Then, by (5.1) we have ® = &30 dy 0 P;.

Considering now the general case, the real Hilbert space Hj with Hj +iH} = H>
can be decomposed as

Hy = @;H, and H)= (M,,o0)y, where m € Hy, forleN.

Let q : Hy — (M, o) = H} be the projection. Then ¢ € (Ma, o)’ for all I. For
each [, &, = ¢® : (M, 1) — (Ma, a)q; is a normal *-homomorphism, which can be
extended to a normal *-homomorphism ®; : M; — Magq]. Then, by the above argument
&, =0V 00 0" forall I. Set ®; = @,®", i =1,2,3. Then ® = 30 dy0P; and

7 )

the maps @3, Py, P satisty all our conditions. O

Theorem 6. Let M be a finite factor and let o be an involutive *-antiautomorphism
of M. If {m, H} is a faithful nondegenerate W#*-representation of M and roa = o
for an involutive *-antiautomorphism & of w(M), then there exist a projection p' €
M\ (M,a) ® 1g,)', and a unitary operator u : H, — p'(L*(M, o) ®K,) such that

ur(z) = (AMz) ® Ik)u, r € M,

i.e., the real W*-algebras m(M,«) (= (m(M),&)) and (A\.(M, ) @ 1g.)p' are spatially
*-isomorphic and therefore the W*-algebras w(M) and (A(M )@ 1k )p’ are also spatially
*_isomorphic; where K, is a separable infinite dimensional Hilbert space, and K =
K, +1K,.

Proof. Set M; = A(M) and My = w(M). Define the map & : M; — M, by
®(A(z)) = 7(x). Then @ is a *-isomorphism and @ (X, (M,«)) C (7(M),&). Now the
conclusion follows immediately from Theorem 5 and the separability of H. U

6 The coupling constants for real factors

If M (C B(H)) is a finite factor with the finite commutant M’, the coupling constant
dimyy (H) of M is defined as trp (EX") /tryy (E}), where € is a non-zero vector in H, try
denotes the normalized trace and Eg‘ is the projection onto the closure of the subspace
AE. This definition, due to Murray and von Neumann in [14], is independent of £. We
recall some properties of the coupling constant ( [14,15], see also [6], [1], [10, Ch. 17])
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dimps(L*(M)) = 1, (6.1a)
dimp(H) - dimpp (H) = 1, (6.1b)
If {m,H} and {n’, H'} are faithful nondegenerate W *representations of M,  (6.1c)
then dimy;(H) = dimys(H') if and only if {m, H} = {=', H'},
i.e. if these W* — representations are spatially * —isomorphic.

If {m;, H;}i>1 is a sequence of faithful nondegenerate W*representations of M, (6.1d)
then dimy () H;) = dimyy (Hy),

If {m, H} is a faithful nondegenerate W*representation of M, then (6.1e)
m(M)" is finite if and only if dimy/(H) < oc.

dimps(H) > 1 (respectively < 1) if and only if M admits a separating

(respectively cyclic) vector. (6.1f)

We are now in a position to give the definition of the coupling constant for real
finite factors. Let us first prove an auxiliary Lemma.

Lemma 1. If H is a real Hilbert space and R C B(H) is a real W*-algebra, then
R + iR = (R+iR)', where the latter commutant is taken in B(H + iH).

Proof. A straightforward calculation shows that R’ 4+ iR’ C (R+iR)’. Since B(H +
iH)= B(H)+iB(H) (see |11, Proposition 1.1.11]), for each @’ € (R 4 iR)’ there exist
2,y € B(H) such that ' = 2’ +14y’. Since a’'b = ba’ for all b = z + iy € R+ iR,
we have that 2’z — vy = z2’ — yy' and 2’z + 3y = v’ + yy'. Hence 2’z = z2’ and
vy =uyy, ie 2,y € R. Therefore ' € R' +iR'. O

Now, let M be a finite factor and let o be an involutive *-antiautomorphism of
M. If {m H} is a faithful nondegenerate W*-representation of M, and 7o «a =
& o for an involutive *-antiautomorphism & of w(M), then by Lemma 1 we have
(m(M),a) + i(r(M),&) = w(M)". Since the von Neumann algebra m(M)’ is semi-
finite, the real factor (w(M), &)’ is also semi-finite. Thus there exists a unique (up to
multiplication by a positive constant) faithful normal semi-finite G-invariant trace on
m(M)'.. We define a natural a-invariant trace on w(M)', as follows.

() If {m,H} ={\®1,L*(M)® K}, where K is a countably infinite dimensional
Hilbert space, then the von Neumann algebra (A(M) ® 1) = JA(M)JRB(K) is
infinite and for the real factor (M,«a) we have

{7T|(M,oz)a Hr} = {/\r ® 1, L2<M’ Oé) ® KT}?

(Ar(M, 0) @ 1) = I\ (M, ) JRB(K,)

(further, for the sake of convenience, we shall write 7, instead of 7|)). Pick an
orthogonal normalized basis {e;};cp of K, where |A| = dim¢ K. Then each element
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' € (MM) ® 1x)' can be uniquely represented as t' = (J\(z;;).J), where z;; € M,
foralli,j. If ¢ € (A\(M,a)®1g,), ie. &' (t') = (¢')*, then it is not difficult to show
that v;; € (M,a) (ie. a(zy) = zj;), for all i, j. Define the natural trace as follows
(see [10, 17.1.4 (i)]):
Teaner®) = 2 m(wa),  ¢= (JA(zi) ) € (MM) @ g ),
1€

where 7 is the unique faithful normal (and hence a-invariant) tracial state on M. It is
casy to show that the definition of Trj, . is independent of the choice of {¢;} and

Trl2ex 1S a faithful semi-finite normal trace on (A(M) ® 1), Moreover, since

(T2 (anyer © @) () =TT 2o (@ () = T2 0k (1))

= ;T(JJZ) = ZT(Oé(xii)) = D (Toa)(zu) =3 7(2i)

— Tr/LQ(M)@)K(t’),
we have that Tr', (MK 1S &’-invariant. Therefore, for Tr’LQ( Ma)eK, defined as follows
T (royer, () = 2 T(@i), 1= (JA(@y)]) € (\(M, @) @ 1k, )},

we have Tr'Lz( M K’(M(M@)@Im), = Tr,[ﬂ(M,a)@KT'
(ii) For a general faithful nondegenerate W*-representation {7, H} of M with 7o
a=da&om by Theorem 6 there are a projection p’ € (A.(M,«) ® 1g,)’ and a unitary

u: H, — p'(L*(M,a) ® K,) such that
ur(x)u’ = (AMz) @ Ig)p', x € M,

where K, is a real Hilbert space and K = K, + iK,. Then we define the natural trace
as follows (see [10, 17.1.4 (ii)]):
Try(t) = Trnex (ut'u’), ten(M),.

The definition of Tr’; is independent on the choice of u and p’, and Tr/; is a faithful
normal trace on w(M),. Since & (u) = u*, we have that Tr’; is &'-invariant. Therefore,
for Tr’LQ( M.0) oK, defined as

T2 ayor, (WU7) = T g (ut'u”), e (m(M),a),
we have

/ _ /
T (n(M)G) Tronaek.

If Try denotes Tr’Lg( M) @K, then we have

/ —
Try, = Try

Thus, Tr/, ) ay is a faithful normal semi-finite trace on (7 (M), &)’
Definition 1. Let M be a finite factor and let o be an involutive *-antiautomorphism
of M. Suppose that {m,H} is a faithful nondegenerate W*-representation of M, and
mToa=aon for an involutive *-antiautomorphism & of w(M). Then

dimqara)(H,) = Trfy, (1)
is called the coupling constant between (w(M),&) and (w(M), &) relative to H,.

(iii) Now, in the case where {7, H} = {\®1, L>(M)® K} we choose another basis.
Namely, pick a real orthogonal normalized basis {f;}icar of K, where |A'| = dimg K.
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Then each element ¢’ € (A\(M)® 1)’ can be uniquely represented as t' = (JA(z;)J),
where z;; € M, for all 4,5. If ¢/ € (\(M,a) ® 1g,), i.e. &' (') = ()", then it is not
difficult to show that z;; € (M,a) (i.e. a(zi) = xj;), for all i,j. We set
2 nex () = ZA T(zi), = (INzy)) € (MM) @ Ig), .
ieN
Clearly, tT7.qx 15 also a faithful normal semi-finite trace on (A(M) ® 1g)’.
Moreover tr’Lz( M)BK is @-invariant. Similarly, we can show that the definition of
tT2(y)ex does not depend on the choice of {f;}.
In the case where um(z)u* = (M) @ Ix)p' (r € M) we put
try(t') = tTpo(apex (ut'u”), tem(M) .

The definition of tr’; is also independent on the choice of u and p/, and the trace tr’y
is &/-invariant.

Let {m, H} be a faithful nondegenerate W*-representation of M with moa = aor
for an involutive *-antiautomorphism & of w(M).

Definition 2. The number dimq)(H) = tr’y (1) is called the coupling constant
between (m(M), &) and (m(M), &) relative to H.

One has the following relations between dimyq)(H,), dimq)(H) and dimy(H).

Theorem 7.

. . 1.
dimy(H) = dims,a)(Hy) = 3 dimps,q)(H)
The proof of this theorem is obvious. OJ
Let us consider some properties of the coupling constants.

Proposition 1. Let M (C B(H)) be a finite factor and let a be an involutive *-
antiautomorphism of M. Then

(1) dime)(L*(M)) =2 and dimq)(L*(M,a)) = 1.

(ii) dim(M’a)(H) : dim(Ma)/(H) =4 and dim(M’a)(Hr) . dim(M,a)/(Hr) =1

(iti) If {m, H} and {7', H'} are a-invariant faithful nondegenerate W*-representations
of M, then dimq)(H) = dima(H') if and only if {m,H} and {7',H'} are
spatially *~isomorphic via a unitary operator w with w(a(w)) = ar'(w) = 7' (w)* ;

(iv) If {m,Hi}i>1 is a sequence of «-invariant faithful nondegenerate W*-
representations of M, then dima (D> H;) = Y dima) (H;);

(v) If {m,H} is an a-invariant faithful nondegenerate W*-representation of M, then
the following conditions are equivalent:

a) real von Neumann algebra (w(M), &) is finite;

b) the trace T'ry s finite;

C) dim(M,a)(H) <0 .

(vi) dimara)(H) > 2 (respectively < 2) if and only if (M, «) admits a separating
(respectively cyclic) vector.
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Proof. The property (6.1a) and Theorem 7 imply the proof of (i). From (6.1b) and
Theorem 7 we obtain the proof of (ii). The equivalence of the conditions dims,q)(H) =
dimprq)(H') and dimy(H) = dimy (H') follows from Theorem 7. The equivalence
of the conditions dimy,(H) = dimy/(H') and {m, H} = {«', H'} follows from (6.1c).
By Theorem 6 in this case there exists a unitary operator w with 7(a(w)) = an'(w) =
7'(w)*  which implements this spatial *-isomorphism {7, H} = {7/, H'}, what is
required to be proved for (iii). From (6.1d) we obtain the proof of (iv). From the
theory of real W*-algebras we know that the real von Neumann algebra (7 (M), &)
is finite if and only if the von Neumann algebra m(M)’ is finite (see [1]). Then by
(6.1e) we obtain the proof of (v). It is easy to see that (M,«a) admits a separating
(respectively, cyclic) vector if and only if M admits a separating (respectively, cyclic)
vector. Then from (6.1f) and Theorem 7 we obtain the proof of (vi). O

Proposition 2. If R is a finite real factor on a real Hilbert space H with the finite
commutant R', and 7, " are the unique faithful normal tracial states on R and R’
7(ee)
' (e)

the choice of §. Moreover, we have cx = dimgp(H), where ez and e; are the cyclic

respectively, then for any £(# 0) € H the number cx = s independent of

projections from H onto R'E and RE respectively.

Proof. We extend 7 and 7 to R + iR and R’ + iR, respectively, by the linearity as
T(a +ib) = 7(a) + i7(b) and 7' (a' 4 ib") = 7'(a’) + ¢7'(V'). It is obvious, that for the
cyclic projections € and e from H. = H +iH onto RIEFIRNE, RE4IRE, respectively,
we have igéfl)) = T(eg). Since igé_g,))
T(E)  T(e) T (€)
number is equal to dimg;»(H + ¢H), we obtain that dimg(H) = cg. O

is independent on the choice of &, and this

Example 1. Let M be a factor of type I, on an m-dimensional Hilbert space H
(n,m < 00), and let o be an involutive *-antiautomorphism of M. It is known that

dimy/(H) = m/n?, i.e dimy(H) = dim(H)/dim(M). Then by Theorem 7 we have
_ 2dim(H) _

dimyr.q) (H) = 2m/n?, hence, since dim(M, a) = n*, one has dim,q)(H) = F0n

dimg(H)/dim(M, «).

From the theory of real W*-algebras we know (see [1,7,17]), that if n is an odd num-
ber, then M possesses exactly one conjugacy class of involutive *-antiautomorphism,
and if n is an even number, then there are two conjugacy class of involutive *-
antiautomorphism of M. Namely, in the first case (M, a) = M, (R), and in the second
case we have also the possibility (M, o) = M, o(H), where H is the quaternion algebra.

Thus

| _ dimg(H) __ dimg(H)
dimyy, ) (H) = n?2  dim(M,(R))’

di H) = - B '
iy, ) (H) n2 (%)2 dimg (M, , (H))
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7 The index of subfactors in finite real factors

Definition 3. Let M C B(H) be a finite factor. Consider a subfactor N C M and
let o be an involutive *-antiautomorphism of M with «(N) C N. Consider the real
factors R = (M, a) and Q = (N,«). The index of Q in R, denoted by [R : Q] or by
(M, ) : (N,«)], is defined as dimg(L*(R)).

Between real and complex indices there is the following relation

Theorem 8. We have [(M,a): (N,«a)] =[M,N], ie. [R:Q]=[R+iR:Q+iqQ)].

Proof. By Theorem 7 we have [(M,a) : (N,a)] = dimpye)(L*(M, @) =
& dim ) (L2(M)) = & - 2dimy (L2(M)) = [M. N} .
We recall some properties of the complex index ( [6], [8], [10, Ch. 17]): if M is a

finite factor and N is a subfactor of M then

M2 N] = dimy (H)/ dimyy (H), (7.12)
[M : N] > 1, in particular, [M : M] =1, (7.1b)
[M : N]=[N": M, (7.1c)
(7.1d)
(7.1e)

If P is a subfactor of N, then [M : P] =[M : N|-[N : P], 7.1d
If P is a subfactor of N, [M : P] < oo and [M : P] = [M : NJ, 7.1e
then N = P,

If M; is a finite factor and N; is a subfactor of M;(i =1,2) (7.1f)

then [M1®M2 : N1®N2] = [Ml : Nl] . [MQ . NQ]

Similarly to the complex case, using Theorem 8 we can prove the following pro-
perties of the real index

Theorem 9. Let H, be a real Hilbert space. Suppose that R C B(H,) is a finite real
factor and Q C R is a real subfactor. Let M = R + iR be the enveloping complex
factor for R and let o be the involutive *-antiautomorphism of M which generates R,

i.e. R = (M,«) (in this case it is clear that Q = (N, «), where N = Q 4+ iQ). Then

dim(N@)(Hr) dimQ(Hr)
dim(Mﬂ)(Hr) ’ dlmm(Hr) '

(i) [(M, a)l: (N,o)] > 1,4e [R:Q] > 1. Inparticular, [(M,«a): (M,«a)] =

(i) [(M,a): (N,a)] = ie. R:Q] =

i) [(M,a): (N,a)] = [(N,a) : (M,a)], ie [R:Q=[Q:R].

(

(iv) If Q1 is a real subfactor of Q, then [(M,«) : (N, a)] = [(M, ) : (N,a)]-[(N,«a) :
(N1, )], de. R:Q=[R:Q] [Q:Q1], where Ny = Q1 +1iQ;.
(

v) If Q1 is a real subfactor of Q, [R: Q1] < oo and [(M,«): (N, a)] =[(M,«a) :

—e
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(N,a)], then N = Ny, i.e. if [R:Q1] =[R:Q], thenQ = Qq, where Ny = Q1+iQ);.

(vi) Let %; be a finite real factor, and let Q; be a real subfactor of ®;, i = 1,2. If
M; = R, +iR; and N; = Q1 + iQ); are the enveloping complex factors for R; and Q;,
respectively, then let o; denote the involutive *-antiautomorphism of M;, which gene-
rates K;, i.e. ®; = (M;, ), i =1,2. Then

[(My, 00)®(Ma, az) : (N1, 00)&(Np, az)] = [(My, 1) = (N1, )] - [(Ma, o) = (N2, )],
i.e. [§R1®%2 : Ql@QQ] = [(%1 : Ql] : [§R2 : Q2] .
Proof. (i). By Theorem 8 and the property (7.1a) we have [(M,«) : (N,a)] =

dimy (H, + iH,) ldim(N,a)(Hr+7;Hr) dimy,a)(H,)
dimp (H, +iH,) 3 dimare(H, +iH,)  dimoga)(H,)'

=[M: N] =

(ii). By the Theorem 8 and (7.1b) we have [(M,«a) : (N,a)] = [M : N] > 1 and
(M,a): (M,)] = [M : M] = 1.

(iii). As above, let o’ be the involutive *-antiautomorphism of M’ which generates
R, ie R = (M, o). Then (M,a) = (M’ ). Similarly we have (N,«a) = (N, a/).
Hence by Theorem 8 and the property (7.1c) we have [(M,«) : (N,a)] = [M : N] =
[N": M'| =[(N',): (M, )] = [(N,«a) : (M,a)"].

(iv). By Theorem 8 and the property (7.1d) we have [(M,a): (N, a)] =[M : Ny| =
[M: N]-[N:N|=[(Ma):(N,a)-[(N,«a): (N, a)].

(v). If [(M,a) : (N1,)] = [(M,«) : (N,a)], by Theorem 8 we have [M : N;| =
(M, «) : (Nl, a)]l = [(M,a) : (N,a)] = [M : N], i.e. [M : Ny] =[M : N|. Then by
(7.1e) we obtain N = Ny, i.e. Q = Q.

(vi). According to [11, page 69] we have R @Ry + iR1@Ry = (R + iR)R(Ry +

i), ie. (M, a1)®(My, ag) + i(My, a1)®(My, ) = My®@M,. Similarly, we have
(N1, a1)®(Na, ag) + i(Ny, a1)®(Na, ag) = Ny®N,. Then by Theorem 8 and the pro-
perty (7.1f) we get

[(My, 01)®(Ma, az) = (N1, a1)@(Na, )] =
[(My, a1)@ (M2, az) + i(My, a1)®(Ma, az) (N1, a1)@(Na, )+
i(N1, a1)®(Ng, )] = [((My, aq) + i( My, 1)) R((Ma, ) + i( My, ) -
)
[

®
®

((Nl, aq +1 (Nl, 041)) ((N27 012) + Z(NQ, OQ))] [M1®M2 N1®N2] =
[My : Np| - [My: No| = [(My, 1) = (N1,0q)] - [(Ma, ) : (Ng, ag)]. Thus, we have
[Ri@R, : Q1@Qa] = [(R1 : Q1] - [z : Qo] O

As it was noted in the introduction, V. Jones in [6] has proved a theorem on the
values of the index for subfactors. Let us recall this theorem

Theorem 10 ( [6], Theorem 4.3.1). Let M be a finite factor, and let N be a subfactor
of M with [M : N] < oo. Then one has either [M : N| = 4 cos u for some integer
q

q>3 or [M:N]>4.
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From Theorems 8 and 10 we obtain the following real version of the above theorem.

Theorem 11. Let M be a finite factor and let N be a subfactor of M with [M
N] < 0o. Given be an involutive *-antiautomorphism « of M with «(N) C N, put

R =(M,a), Q= (N,a). Then one has either [(M,a): (N,a)] = 4cos” T for some
q
integer ¢ >3 or [(M,a): (N,a)] >4, ie. [R:Q|= dcos? = for some integer
q
q>3 or [R:Q|>4.
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