
EURASIAN MATHEMATICAL JOURNAL
ISSN 2077-9879
Volume 1, Number 4 (2010), 5 – 19

ON JONES’ INDEX FOR REAL W*-ALGEBRAS

S. Albeverio, Sh.A. Ayupov, R.A. Dadakhodjaev, A.A. Rakhimov

Communicated by A.S. Dzumadildaev

Key words: complex and real von Neumann algebras, coupling constant, index of
subfactor.

AMS Mathematics Subject Classification: 46L10, 46L37.

Abstract. The notions of the real coupling constant and the index for real W*-algebras
are introduced and investigated. The main tool in our approach is the reduction of
real W*-algebras to involutive *-anti-automorphisms of their complex enveloping von
Neumann algebras. Similar to the complex case the values of the index for type II1
real factors are calculated.

1 Introduction

In 1930’s von Neumann and Murray introduced the notion of the coupling constant for
finite factors (see [14–16]). In 1983, V. Jones suggested a new approach to this notion,
defined the notion of the index for type II1 factors, and proved a surprising theorem
on values of the index for subfactors (see [6]). He also introduced a very important
technique in the proof of this theorem: the towers of algebras. Since then this theory
has become a focus of many fields in mathematics and physics ( [7]). In [8], H. Kosaki
extended the notion of the index to an arbitrary (normal faithful) expectation from a
factor onto a subfactor. While Jones’ definition of the index is based on the coupling
constant, Kosaki’s definition of the index of an expectation relies on the notion of spatial
derivatives due to A. Connes [2] as well as on the theory of operator-valued weights
due to U. Haagerup [5]. In [8,9] it was shown that many fundamental properties of the
Jones’ index in the type II1 case can be extended to the general setting. At present
the theory of index thanks to works by V. Jones, P. Loi, R. Longo, H. Kosaki and
other mathematicians is deeply developed and has many applications in the theory of
operator algebras and physics (see also [12,13]).

Unlike to the complex case, for real factors the notion of the coupling constant
(therefore the notion of the index as well) has not been investigated. In the present
paper the notions of the real coupling constant and the index for finite real factors are
introduced and investigated. The main tool in our approach is the reduction of real
factors to involutive *-anti-automorphisms of their complex enveloping von Neumann
algebras.
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2 Preliminaries

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space
H. A weakly closed *-subalgebra A containing the identity operator 1I in B(H) is
called a W∗-algebra. A real *-subalgebra < ⊂ B(H) is called a real W∗-algebra if it
is closed in the weak operator topology and < ∩ i< = {0}. A real W∗-algebra < is
called a real factor if its center Z(<) consists of the elements {λ1I, λ ∈ R}. We say
that a real W∗-algebra < is of the type Ifin, I∞, II1, II∞, or IIIλ, (0 ≤ λ ≤ 1) if the
enveloping W∗-algebra A(<) has the corresponding type in the ordinary classification of
W∗-algebras. A linear mapping α of an algebra into itself with α(x∗) = α(x)∗ is called
an *-automorphism if α(xy) = α(x)α(y); it is called an involutive *-antiautomorphism
if α(xy) = α(y)α(x) and α2(x) = x. If α is an involutive *-antiautomorphism of a
W∗-algebra M , we denote by (M,α) the real W∗-algebra generated by α, i.e. (M,α) =
{x ∈ M : α(x) = x∗}. Conversely, every real W*-algebra < is of the form (M,α),
where M is the complex envelope of < and α is an involutive *-antiautomorphism of M
(see [1, 7, 17]). Therefore we shall identify from now on the real von Neumann algebra
< with the pair (M,α).

3 Canonical representation

Let M (⊂ B(H)) be a finite factor and let τ be the unique faithful normal tracial
state of M . If α is an involutive *-antiautomorphism of M , then it is clear that τ
is automatically α-invariant. Denote by L2(M) the completion of M with respect to
the norm ‖x‖2 = τ(x∗x)1/2. Similarly by L2(M,α) we denote the completion of the
real factor (M,α). Then it is obvious that the Hilbert space L2(M) and the algebra
B(L2(M)) of all bounded linear operators on it are the complexifications of the real
Hilbert space L2(M,α) and of Br(L

2(M,α)), respectively, where Br(L
2(M,α)) is the

algebra of all bounded linear operators on the real Hilbert space L2(M,α). Moreover,
it is easy to show that the Hilbert spaces L2(M,α) and L2(M) are separable.

For each x ∈M , set λ(x)y = xy, for all y ∈M . Clearly, ‖λ(x)y‖2 ≤ ‖x‖‖y‖2. Thus
λ can be uniquely extended to a bounded linear operator on L2(M), still denoted by
λ(x). Then we obtain a faithful W∗-representation (λ, L2(M)) of M . In a similar way,
taking the map λr defined as λr(x)y = xy (for all x, y ∈ (M,α)) we obtain a faithful
real ∗-representation (λr, L

2(M,α)) of (M,α).

Theorem 1. The map β : λ(M) → λ(M) defined as β(λx) = λα(x) is an involutive
*-antiautomorphism of λ(M). Moreover, β and α are also related in the following
way: (M,α)β = λr(M,α), where (M,α)β = {λx ∈ λ(M) : β(λx) = λ∗x} is the real
W∗-algebra, generated by β, i.e. (M,α)β = (λ(M), β).

Proof. The first part of the assertion is trivial. Further, let λx ∈ (M,α)β. Since
β(λx) = λ∗x, then λα(x) = λx∗ . Hence α(x) = x∗, i.e. x ∈ (M,α). Then from

λx ∈ λ(M) ⊂ B(L2(M)) = Br(L
2(M,α)) + iBr(L

2(M,α))

we have (M,α)β ⊂ Br(L
2(M,α)). Hence (M,α)β ⊂ λr(M,α), since λr(M,α) =

{λrx ∈ Br(L
2(M,α)) : for α(x) = x∗ and α(y) = y∗, λrx(y) := xy}.
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Now let λrx ∈ λr(M,α). Then α(x) = x∗ and λrx ∈ λr(M,α) ⊂ λ(M). Hence
β(λrx) = λrα(x) = λrx∗ = (λrx)

∗, therefore λrx ∈ (M,α)β. �

Corollary 1. λr(M,α) is a real W∗-algebra, and λ(M) is the complexification of
λr(M,α), i.e. λr(M,α) + iλr(M,α) = λ(M). Moreover, {λr, L2(M,α)} is a faithful
real W∗-representation of (M,α).

This representation will be called the canonical W*-representation of (M,α).

4 Commutant of the canonical representation

Since ‖x‖2 = ‖x∗‖2 for all x ∈ M , the map J : x → x∗ can be uniquely extended to
a conjugate linear isometry on L2(M), still denoted by J . From the theory of W∗-
algebras it is well-known that λ(M)′ = Jλ(M)J and λ(M) = Jλ(M)′J . Similarly to
Theorem 1 and Corollary 1 we have the following assertion.

Theorem 2. The map β′ : λ(M)′ → λ(M)′ defined as β′(·) = Jβ(J · J)J , is an
involutive *-antiautomorphism of λ(M)′. The set λr(M,α)′ = {λx′ ∈ λ(M)′ :
β′(λx′) = λ∗x′} is a real W∗-algebra, and λ(M)′ is the complexification of λr(M,α)′,
i.e. λr(M,α)′ + iλr(M,α)′ = λ(M)′.

We have the following connection between λr(M,α) and λr(M,α)′.

Theorem 3. λr(M,α)′ = Jλr(M,α)J .

Proof. Since λx ∈ λr(M,α) implies that JλxJ ∈ Jλr(M,α)J and β(λx) = λ∗x, we
have

β′(JλxJ) = Jβ(JJλxJJ)J = Jβ(λx)J = Jλ∗xJ = (JλxJ)∗.

Hence JλxJ ∈ λr(M,α)′, i.e. Jλr(M,α)J ⊂ λr(M,α)′.

Conversely, let λx′ ∈ λr(M,α)′ ⊂ λ(M)′ =Jλ(M)J . Then λx′ = JλyJ , for some
λy ∈ λ(M). Since β(λx′) = λ∗x′ , we have β′(JλyJ) = Jλ∗yJ , i.e. Jβ(JJλyJJ)J =
Jλ∗yJ . Hence J2β(λy)J

2 = J2λ∗yJ
2, i.e. β(λy) = λ∗y. Therefore λy ∈ λr(M,α). Thus

we obtain λx′ = JλyJ = Jλr(M,α)J , and therefore λr(M,α)′ ⊂ Jλr(M,α)J . �

Theorem 4. The real W∗-algebra λr(M,α)′ is the commutant of λr(M,α) in the al-
gebra Br(L

2(M,α)), i.e. λr(M,α)′ = {λx ∈ Br(L
2(M,α)) : λxλy = λyλx, ∀ λy ∈

λr(M,α)}.

Proof. Similarly to the proof of Theorem 1 for β′(λx) = λ∗x we have λx ∈ Br(L
2(M,α)).

Therefore λr(M,α)′ ⊂ Br(L
2(M,α)). On the other hand for any λx ∈ λr(M,α)′

⊂ λ(M)′ and λy ∈ λr(M,α) ⊂ λ(M), we have λxλy = λyλx. �
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5 Relations between faithful nondegenerate W∗-representa-
tions and the canonical representation

Theorem 5. Let M1 ⊂ B(H1) and M2 ⊂ B(H2) be two W ∗-algebras and let αi be
an involutive *-antiautomorphism of Mi, i = 1, 2. If Φ : M1 → M2 is a normal
*-homomorphism with Φ ◦ α1 = α2 ◦ Φ, then

Φ = Φ3 ◦ Φ2 ◦ Φ1,

where
Φ1 is a *-homomorphism from M1 onto M1⊗ C1IL with Φ1◦α1 = α̃1◦Φ1 defined

as Φ(a) = a⊗ 1IL, where 1IL is the identity operator on an appropriate Hilbert space
L and α̃1 = α1 ⊗ id;

Φ2 is a *-homomorphism from M1⊗ C1IL onto (M1⊗ C1IL)p′ with Φ2◦α̃1 = α1◦Φ2

defined as Φ2(a ⊗ 1IL) = (a ⊗ 1IL)p′, where p′ is a projection from (M1⊗ C1IL)′ with
α̃1

′(p′) = p′ and α̃1
′ = J1α̃1(J1(.)J1)J1 ⊗ id, α1(· p′) = α̃1(·)p′;

Φ3 is a *-isomorphism from (M1⊗ C1IL)p′ to M2 with Φ3 ◦ α̃1 = α2 ◦ Φ3.

Proof. First we assume that (M2, α2) admits a cyclic vector η. In this case (M2, α2)η =
Hr

2 is a real Hilbert space and

M2η = (M2, α2)η + i(M2, α2)η = Hr
2 + iHr

2 = H2,

hence η is a cyclic vector of M2. Since Φ ◦ α1 = α2 ◦ Φ, for all a ∈ (M1, α1)
we have α2

(
Φ(a)

)
= Φ

(
α1(a)

)
= Φ(a∗) = Φ(a)∗, i.e. Φ(a) ∈ (M2, α2). Hence

Φ
(
(M1, α1)

)
⊂ (M2, α2). Define a functional ϕ by

ϕ(a) =< Φ(a)η, η >, a ∈ (M1, α1).

Obviously, ϕ is a normal positive functional on (M1, α1). We can extend ϕ by linearity
to a functional on M1 (still denoted by ϕ) such that

ϕ(a+ ib) = ϕ(a) + iϕ(b), a, b ∈ (M1, α1),

which clearly also is a normal positive functional. Let Hr
1 be a real Hilbert space

with Hr
1 + iHr

1 = H1 such that (M1, α1) ⊂ B(Hr
1). By [11, 4.2.1] there is a sequence

(ξn) ⊂ Hr
1 with

∑
n

‖ξn‖2 < ∞ such that ϕ(a) =
∑
n

< aξn, ξn >, for all a ∈ (M1, α1).

Set Lr = `r2 = {(xn) ⊂ R :
∑

n x
2
n < ∞}, L = Lr + iLr, ξ = (ξn) ⊂ Hr

1 ⊗ Lr and
Φ1(a) = a⊗ 1IL for all a ∈M1. Then Φ1 is a map from M1 to M1⊗ C1IL and

(Φ1 ◦ α1)(a) = Φ1(α1(a)) = α1(a)⊗ 1IL = (α1 ⊗ id)(a⊗ 1IL)

= α̃1(Φ1(a)) = (α̃1 ◦ Φ1)(a),

i.e. Φ1 ◦ α1 = α̃1 ◦ Φ1. Moreover, for all a ∈ (M1, α1) we have

< Φ1(a)ξ, ξ >=< (a⊗ 1ILr)ξ, ξ >=
∑
n

< aξn, ξn >= ϕ(a).
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Let p′ be the projection from Hr
1 ⊗ Lr to Φ1

(
(M1, α1)

)
ξ. Then for all x = a ⊗ 1ILr ∈

((M1, α1)⊗ R1ILr) we have

(p′x)ξ = p′((a⊗ 1ILr)ξ) = p′(Φ1(a)ξ) = Φ1(a)ξ

= (a⊗ 1ILr)ξ = xξ = x((1I⊗ 1ILr)ξ) = x(Φ1(1I)ξ)

= x(p′(Φ1(1I)ξ)) = x(p′(ξ)) = (xp′)ξ.

Similarly, for all γ ∈ Hr
1 ⊗ Lr with γ 6= ξ we also obtain

(p′x)γ = p′(Φ1(a)γ) = θ = x(θ) = x(p′(Φ1(1I)γ))

= xp′((1I⊗ 1ILr)γ) = xp′(γ).

Therefore p′x = xp′, i.e. p′ ∈ ((M1, α1)⊗ R1ILr)
′. Hence p′ ∈ (M1⊗ C1IL)′ and for

α̃1
′ = J1α̃1(J1(.)J1)J1 ⊗ id we have α̃1

′(p′) = p′.

Define the map Φ2 : M1⊗ C1IL → (M1⊗ C1IL)p′ as Φ2(a⊗1IL) = (a⊗1IL)p′, a ∈M1.
Then

(Φ2 ◦ α̃1)(a⊗ 1IL) = Φ2(α̃1(a⊗ 1IL)) = Φ2(α1(a)⊗ 1IL)

= (α1(a)⊗ 1IL)p′ = α̃1(a⊗ 1IL)p′

= α1

(
(a⊗ 1IL)p′

)
= α1(Φ2(a⊗ 1IL))

= (α1 ◦ Φ2)(a⊗ 1IL),

hence Φ2 ◦ α̃1 = α1 ◦ Φ2. Since p′ξ = p′((1I ⊗ 1IL)ξ) = p′(Φ1(1I)ξ) = Φ1(1I)ξ = ξ, we
have

< (Φ2 ◦ Φ1)(a)ξ, ξ > = < (Φ2(a⊗ 1ILr))ξ, ξ >=< (a⊗ 1ILr)p
′ξ, ξ >

= < (a⊗ 1ILr)ξ, ξ >=< Φ1(a)ξ, ξ >= ϕ(a),

for all a ∈ (M1, α1), i.e. ϕ(a) =< (Φ2 ◦ Φ1)(a)ξ, ξ >.

Now, define a linear map u : Φ
(
(M1, α1)

)
η → p′(Hr

1 ⊗ Lr) as follows:

uΦ(a)η = (Φ2 ◦ Φ1)(a)ξ = p′(aξn) = (aξn) (a ∈ (M1, α1)).

Since uΦ(a)η = (Φ2 ◦ Φ1)(a)ξ and < Φ(a)η, η >= ϕ(a) =< (Φ2 ◦ Φ1)(a)ξ, ξ >
(a ∈ (M1, α1)), it follows that ‖uΦ(a)η‖′ = ‖Φ(a)η‖r2, i.e. the map u is an isometry,
where ‖ · ‖r2 is the norm of the space H2 and ‖ · ‖′ is the norm of the space Hr

1 ⊗ Lr.
Moreover, since Φ

(
(M1, α1)

)
η = (M2, α2)η, (Φ2 ◦ Φ1)

(
(M1, α1)

)
ξ = Φ1

(
(M1, α1)

)
ξ,

and
Φ
(
(M1, α1)

)
η = (M2, α2)η = Hr

2 ,

(Φ2 ◦ Φ1)
(
(M1, α1)

)
ξ = Φ1

(
(M1, α1)

)
ξ = p′(Hr

1 ⊗ Lr),

u can be extended to a unitary operator u : Hr
2 → p′(Hr

1 ⊗ L). Clearly,

uΦ(a)u −1 = Φ2 ◦ Φ1(a), a ∈ (M1, α1). (5.1)
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Therefore we can define a spatial real *-isomorphism Φ3 :
(
(M1, α1)⊗ R1ILr

)
p′ →

(M2, α2) as Φ3(.) = u −1(.)u, and it can be extended to a spatial *-isomorphism (still
denoted by Φ3) Φ3 : (M1⊗ C1IL)p′ → M2 as Φ3(a + ib) = Φ3(a) + iΦ3(b), where
a, b ∈

(
(M1, α1)⊗ R1ILr

)
p′. Then, by (5.1) we have Φ = Φ3 ◦ Φ2 ◦ Φ1.

Considering now the general case, the real Hilbert space Hr
2 with Hr

2 + iHr
2 = H2

can be decomposed as

Hr
2 = ⊕lH

l
2 and H l

2 = (M2, α2)ηl, where ηl ∈ Hr
2 , for l ∈ N.

Let q′l : Hr
2 → (M2, α2)ηl = H l

2 be the projection. Then q′l ∈ (M2, α2)
′, for all l. For

each l, Φl = q′lΦ : (M1, α1) → (M2, α2)q
′
l is a normal *-homomorphism, which can be

extended to a normal *-homomorphism Φl : M1 →M2q
′
l. Then, by the above argument

Φl = Φ
(l)
3 ◦Φ

(l)
2 ◦Φ

(l)
1 , for all l. Set Φi = ⊕lΦ

(l)
i , i = 1, 2, 3. Then Φ = Φ3 ◦Φ2 ◦Φ1 and

the maps Φ3,Φ2,Φ1 satisfy all our conditions. �

Theorem 6. Let M be a finite factor and let α be an involutive *-antiautomorphism
of M . If {π,H} is a faithful nondegenerate W*-representation of M and π ◦α = α̃ ◦ π
for an involutive *-antiautomorphism α̃ of π(M), then there exist a projection p′ ∈
(λr(M,α)⊗ 1IKr)

′, and a unitary operator u : Hr → p′(L2(M,α) ⊗Kr) such that

uπ(x) = (λ(x)⊗ 1IK)u, x ∈M,

i.e., the real W*-algebras π(M,α) (= (π(M), α̃)) and (λr(M,α)⊗ 1IKr)p
′ are spatially

*-isomorphic and therefore the W*-algebras π(M) and (λ(M)⊗1IK)p′ are also spatially
*-isomorphic; where Kr is a separable infinite dimensional Hilbert space, and K =
Kr + iKr.

Proof. Set M1 = λ(M) and M2 = π(M). Define the map Φ : M1 → M2 by
Φ(λ(x)) = π(x). Then Φ is a *-isomorphism and Φ

(
λr(M,α)

)
⊂ (π(M), α̃). Now the

conclusion follows immediately from Theorem 5 and the separability of H. �

6 The coupling constants for real factors

If M (⊂ B(H)) is a finite factor with the finite commutant M ′, the coupling constant
dimM(H) ofM is defined as trM(EM ′

ξ )/trM ′(EM
ξ ), where ξ is a non-zero vector inH, trA

denotes the normalized trace and EA
ξ is the projection onto the closure of the subspace

Aξ. This definition, due to Murray and von Neumann in [14], is independent of ξ. We
recall some properties of the coupling constant ( [14,15], see also [6], [1], [10, Ch. 17])
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dimM (L2(M)) = 1, (6.1a)

dimM (H) · dimM ′(H) = 1, (6.1b)

If {π,H} and {π′,H ′} are faithful nondegenerate W ∗representations of M, (6.1c)

then dimM (H) = dimM (H ′) if and only if {π,H} ∼= {π′,H ′},

i.e. if these W∗ − representations are spatially ∗ −isomorphic.

If {πi,Hi}i≥1 is a sequence of faithful nondegenerate W ∗representations of M, (6.1d)

then dimM

(∑
i

Hi

)
=
∑
i

dimM (Hi),

If {π,H} is a faithful nondegenerate W ∗representation of M, then (6.1e)

π(M)′ is finite if and only if dimM (H) < ∞.

dimM (H) ≥ 1 (respectively ≤ 1) if and only if M admits a separating

(respectively cyclic) vector. (6.1f)

We are now in a position to give the definition of the coupling constant for real
finite factors. Let us first prove an auxiliary Lemma.

Lemma 1. If H is a real Hilbert space and R ⊂ B(H) is a real W ∗-algebra, then
R′ + iR′ = (R + iR)′, where the latter commutant is taken in B(H + iH).

Proof. A straightforward calculation shows that R′ + iR′ ⊂ (R+ iR)′. Since B(H +
iH) = B(H) + iB(H) (see [11, Proposition 1.1.11]), for each a′ ∈ (R+ iR)′ there exist
x′, y′ ∈ B(H) such that a′ = x′ + iy′. Since a′b = ba′ for all b = x + iy ∈ R + iR,
we have that x′x − y′y = xx′ − yy′ and x′x + y′y = xx′ + yy′. Hence x′x = xx′ and
y′y = yy′, i.e. x′, y′ ∈ R′. Therefore a′ ∈ R′ + iR′. �

Now, let M be a finite factor and let α be an involutive *-antiautomorphism of
M . If {π,H} is a faithful nondegenerate W*-representation of M , and π ◦ α =
α̃ ◦ π for an involutive *-antiautomorphism α̃ of π(M), then by Lemma 1 we have
(π(M), α̃)′ + i(π(M), α̃)′ = π(M)′. Since the von Neumann algebra π(M)′ is semi-
finite, the real factor (π(M), α̃)′ is also semi-finite. Thus there exists a unique (up to
multiplication by a positive constant) faithful normal semi-finite α̃-invariant trace on
π(M)′+. We define a natural α̃-invariant trace on π(M)′+ as follows.

(i) If {π,H} = {λ⊗ 1I, L2(M)⊗K}, where K is a countably infinite dimensional
Hilbert space, then the von Neumann algebra (λ(M) ⊗ 1IK)′ = Jλ(M)J⊗B(K) is
infinite and for the real factor (M,α) we have

{π|(M,α), Hr} = {λr ⊗ 1I, L2(M,α)⊗Kr},

(λr(M,α)⊗ 1IKr)
′ = Jλr(M,α)J⊗B(Kr)

(further, for the sake of convenience, we shall write π, instead of π|(M,α)). Pick an
orthogonal normalized basis {ei}i∈Λ of K, where |Λ| = dimCK. Then each element



12 S. Albeverio, Sh.A. Ayupov, R.A. Dadakhodjaev, A.A. Rakhimov

t′ ∈ (λ(M) ⊗ 1IK)′ can be uniquely represented as t′ =
(
Jλ(xij)J

)
, where xij ∈ M ,

for all i, j. If t′ ∈ (λr(M,α)⊗ 1IKr)
′, i.e. α̃′(t′) = (t′)∗, then it is not difficult to show

that xij ∈ (M,α) (i.e. α(xij) = x∗ij), for all i, j. Define the natural trace as follows
(see [10, 17.1.4 (i)]):

Tr′L2(M)⊗K(t′) =
∑
i∈Λ

τ(xii), t′ =
(
Jλ(xij)J

)
∈ (λ(M)⊗ 1IK)′+,

where τ is the unique faithful normal (and hence α-invariant) tracial state on M . It is
easy to show that the definition of Tr′L2(M)⊗K is independent of the choice of {ei} and
Tr′L2(M)⊗K is a faithful semi-finite normal trace on (λ(M)⊗ 1IK)′+. Moreover, since

(Tr′L2(M)⊗K ◦ α̃′)(t′) =Tr′L2(M)⊗K(α̃′(t′)) = Tr′L2(M)⊗K((t′)∗)

=
∑
i

τ(x∗ii) =
∑
i

τ(α(xii)) =
∑
i

(τ ◦ α)(xii) =
∑
i

τ(xii)

= Tr′L2(M)⊗K(t′),
we have that Tr′L2(M)⊗K is α̃′-invariant. Therefore, for Tr′L2(M,α)⊗Kr

defined as follows
Tr′L2(M,α)⊗Kr

(t′) =
∑
i

τ(xii), t′ =
(
Jλ(xij)J

)
∈ (λr(M,α)⊗ 1IKr)

′
+,

we have Tr′L2(M)⊗K

∣∣∣
(λr(M,α)⊗1IKr )′

= Tr′L2(M,α)⊗Kr
.

(ii) For a general faithful nondegenerate W∗-representation {π,H} of M with π ◦
α = α̃ ◦ π by Theorem 6 there are a projection p′ ∈ (λr(M,α)⊗ 1IKr)

′ and a unitary
u : Hr → p′(L2(M,α)⊗Kr) such that

uπ(x)u∗ = (λ(x)⊗ 1IK)p′, x ∈M,

where Kr is a real Hilbert space and K = Kr + iKr. Then we define the natural trace
as follows (see [10, 17.1.4 (ii)]):

Tr′H(t′) = Tr′L2(M)⊗K(ut′u∗), t′ ∈ π(M)′+.
The definition of Tr′H is independent on the choice of u and p′, and Tr′H is a faithful
normal trace on π(M)′+. Since α̃′(u) = u∗, we have that Tr′H is α̃′-invariant. Therefore,
for Tr′L2(M,α)⊗Kr

defined as
Tr′L2(M,α)⊗Kr

(ut′u∗) = Tr′L2(M)⊗K(ut′u∗), t′ ∈ (π(M), α̃)′+
we have

Tr′H
∣∣∣
(π(M),α̃)′

= Tr′L2(M,α)⊗Kr
.

If Tr′Hr
denotes Tr′L2(M,α)⊗Kr

, then we have

Tr′Hr
= Tr′H

∣∣∣
(π(M),α̃)′

.

Thus, Tr′H
∣∣∣
(π(M),α̃)′

is a faithful normal semi-finite trace on (π(M), α̃)′.

Definition 1. Let M be a finite factor and let α be an involutive *-antiautomorphism
of M . Suppose that {π,H} is a faithful nondegenerate W*-representation of M , and
π ◦ α = α̃ ◦ π for an involutive *-antiautomorphism α̃ of π(M). Then

dim(M,α)(Hr) = Tr′Hr
(1I)

is called the coupling constant between (π(M), α̃) and (π(M), α̃)′ relative to Hr.

(iii) Now, in the case where {π,H} = {λ⊗1I, L2(M)⊗K} we choose another basis.
Namely, pick a real orthogonal normalized basis {fi}i∈Λ′ of K, where |Λ′| = dimRK.
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Then each element t′ ∈ (λ(M)⊗1IK)′ can be uniquely represented as t′ =
(
Jλ(xij)J

)
,

where xij ∈M , for all i, j. If t′ ∈ (λr(M,α)⊗ 1IKr)
′, i.e. α̃′(t′) = (t′)∗, then it is not

difficult to show that xij ∈ (M,α) (i.e. α(xij) = x∗ij), for all i, j. We set
tr′L2(M)⊗K(t′) =

∑
i∈Λ′

τ(xii), t′ =
(
Jλ(xij)J

)
∈ (λ(M)⊗ 1IK)′+ .

Clearly, tr′L2(M)⊗K is also a faithful normal semi-finite trace on (λ(M) ⊗ 1IK)′+.
Moreover tr′L2(M)⊗K is α̃′-invariant. Similarly, we can show that the definition of
tr′L2(M)⊗K does not depend on the choice of {fi}.
In the case where uπ(x)u∗ = (λ(x)⊗ 1IK)p′ (x ∈M) we put

tr′H(t′) = tr′L2(M)⊗K(ut′u∗), t′ ∈ π(M)′+ .
The definition of tr′H is also independent on the choice of u and p′, and the trace tr′H
is α̃′-invariant.

Let {π,H} be a faithful nondegenerate W*-representation of M with π◦α = α̃◦π
for an involutive *-antiautomorphism α̃ of π(M).

Definition 2. The number dim(M,α)(H) = tr′H(1I) is called the coupling constant
between (π(M), α̃) and (π(M), α̃)′ relative to H.

One has the following relations between dim(M,α)(Hr), dim(M,α)(H) and dimM(H).

Theorem 7.

dimM(H) = dim(M,α)(Hr) =
1

2
dim(M,α)(H)

The proof of this theorem is obvious. �
Let us consider some properties of the coupling constants.

Proposition 1. Let M (⊂ B(H)) be a finite factor and let α be an involutive *-
antiautomorphism of M . Then
(i) dim(M,α)(L

2(M)) = 2 and dim(M,α)(L
2(M,α)) = 1.

(ii) dim(M,α)(H) · dim(M,α)′(H) = 4 and dim(M,α)(Hr) · dim(M,α)′(Hr) = 1

(iii) If {π,H} and {π′, H ′} are α-invariant faithful nondegenerate W*-representations
of M , then dim(M,α)(H) = dim(M,α)(H

′) if and only if {π,H} and {π′, H ′} are
spatially *-isomorphic via a unitary operator w with π(α(w)) = α̂π′(w) = π′(w)∗ ;

(iv) If {πi, Hi}i≥1 is a sequence of α-invariant faithful nondegenerate W*-
representations of M , then dim(M,α)(

∑
i

Hi) =
∑
i

dim(M,α)(Hi);

(v) If {π,H} is an α-invariant faithful nondegenerate W*-representation of M , then
the following conditions are equivalent:

a) real von Neumann algebra (π(M), α̃)′ is finite;
b) the trace Tr′Hr

is finite;
c) dim(M,α)(H) <∞ .

(vi) dim(M,α)(H) ≥ 2 (respectively ≤ 2) if and only if (M,α) admits a separating
(respectively cyclic) vector.
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Proof. The property (6.1a) and Theorem 7 imply the proof of (i). From (6.1b) and
Theorem 7 we obtain the proof of (ii). The equivalence of the conditions dim(M,α)(H) =
dim(M,α)(H

′) and dimM(H) = dimM(H ′) follows from Theorem 7. The equivalence
of the conditions dimM(H) = dimM(H ′) and {π,H} ∼= {π′, H ′} follows from (6.1c).
By Theorem 6 in this case there exists a unitary operator w with π(α(w)) = α̂π′(w) =
π′(w)∗ which implements this spatial *-isomorphism {π,H} ∼= {π′, H ′}, what is
required to be proved for (iii). From (6.1d) we obtain the proof of (iv). From the
theory of real W*-algebras we know that the real von Neumann algebra (π(M), α̃)′

is finite if and only if the von Neumann algebra π(M)′ is finite (see [1]). Then by
(6.1e) we obtain the proof of (v). It is easy to see that (M,α) admits a separating
(respectively, cyclic) vector if and only if M admits a separating (respectively, cyclic)
vector. Then from (6.1f) and Theorem 7 we obtain the proof of (vi). �

Proposition 2. If < is a finite real factor on a real Hilbert space H with the finite
commutant <′, and τ , τ ′ are the unique faithful normal tracial states on < and <′

respectively, then for any ξ(6= 0) ∈ H the number c< =
τ(eξ)

τ ′(e′ξ)
is independent of

the choice of ξ. Moreover, we have c< = dim<(H), where eξ and e′ξ are the cyclic
projections from H onto <′ξ and <ξ respectively.

Proof. We extend τ and τ ′ to < + i< and <′ + i<′, respectively, by the linearity as
τ(a + ib) = τ(a) + iτ(b) and τ ′(a′ + ib′) = τ ′(a′) + iτ ′(b′). It is obvious, that for the
cyclic projections eξ and e′ξ from Hc = H+ iH onto <′ξ+ i<′ξ, <ξ+ i<ξ, respectively,

we have
τ(eξ))

τ ′(e′ξ)
=

τ(eξ)

τ ′(e′ξ)
. Since

τ(eξ))

τ ′(e′ξ)
is independent on the choice of ξ, and this

number is equal to dim<+i<(H + iH), we obtain that dim<(H) = c<. �

Example 1. Let M be a factor of type In on an m-dimensional Hilbert space H
(n,m < ∞), and let α be an involutive *-antiautomorphism of M . It is known that
dimM(H) = m/n2, i.e dimM(H) = dim(H)/ dim(M). Then by Theorem 7 we have
dim(M,α)(H) = 2m/n2, hence, since dim(M,α) = n2, one has dim(M,α)(H) = 2 dim(H)

dim(M)
=

dimR(H)/ dim(M,α).

From the theory of real W*-algebras we know (see [1,7,17]), that if n is an odd num-
ber, then M possesses exactly one conjugacy class of involutive *-antiautomorphism,
and if n is an even number, then there are two conjugacy class of involutive *-
antiautomorphism of M . Namely, in the first case (M,α) ∼= Mn(R), and in the second
case we have also the possibility (M,α) ∼= Mn/2(H), where H is the quaternion algebra.
Thus

dimMn(R)(H) =
dimR(H)

n2
=

dimR(H)

dim(Mn(R))
,

dimMn/2
(H)(H) =

4 dimH(H)

n2
=

dimH(H)(
n
2

)2 =
dimH(H)

dimH(Mn/2
(H))

.
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7 The index of subfactors in finite real factors

Definition 3. Let M ⊂ B(H) be a finite factor. Consider a subfactor N ⊂ M and
let α be an involutive *-antiautomorphism of M with α(N) ⊂ N . Consider the real
factors < = (M,α) and Q = (N,α). The index of Q in <, denoted by [< : Q] or by
[(M,α) : (N,α)], is defined as dimQ(L2(<)).

Between real and complex indices there is the following relation

Theorem 8. We have [(M,α) : (N,α)] = [M,N ], i.e. [< : Q] = [<+ i< : Q+ iQ].

Proof. By Theorem 7 we have [(M,α) : (N,α)] = dim(N,α)(L
2(M,α)) =

1
2
dim(N,α)(L

2(M)) = 1
2
· 2 dimN(L2(M)) = [M,N ] �

We recall some properties of the complex index ( [6], [8], [10, Ch. 17]): if M is a
finite factor and N is a subfactor of M then

[M : N ] = dimN (H)/ dimM (H), (7.1a)

[M : N ] ≥ 1, in particular, [M : M ] = 1, (7.1b)

[M : N ] = [N ′ : M ′], (7.1c)

If P is a subfactor of N, then [M : P ] = [M : N ] · [N : P ], (7.1d)

If P is a subfactor of N, [M : P ] < ∞ and [M : P ] = [M : N ], (7.1e)

then N = P,

If Mi is a finite factor and Ni is a subfactor of Mi(i = 1, 2) (7.1f)

then [M1⊗M2 : N1⊗N2] = [M1 : N1] · [M2 : N2]

Similarly to the complex case, using Theorem 8 we can prove the following pro-
perties of the real index

Theorem 9. Let Hr be a real Hilbert space. Suppose that < ⊂ B(Hr) is a finite real
factor and Q ⊂ < is a real subfactor. Let M = < + i< be the enveloping complex
factor for < and let α be the involutive *-antiautomorphism of M which generates <,
i.e. < = (M,α) (in this case it is clear that Q = (N,α), where N = Q+ iQ). Then

(i) [(M,α) : (N,α)] =
dim(N,α)(Hr)

dim(M,α)(Hr)
, i.e. [< : Q] =

dimQ(Hr)

dim<(Hr)
.

(ii) [(M,α) : (N,α)] ≥ 1 , i.e. [< : Q] ≥ 1 . In particular, [(M,α) : (M,α)] =
[< : <] = 1 .

(iii) [(M,α) : (N,α)] = [(N,α)′ : (M,α)′], i.e. [< : Q] = [Q′ : <′].

(iv) If Q1 is a real subfactor of Q, then [(M,α) : (N1, α)] = [(M,α) : (N,α)] · [(N,α) :
(N1, α)], i.e. [< : Q1] = [< : Q] · [Q : Q1], where N1 = Q1 + iQ1.

(v) If Q1 is a real subfactor of Q, [< : Q1] < ∞ and [(M,α) : (N1, α)] = [(M,α) :
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(N,α)], then N = N1, i.e. if [< : Q1] = [< : Q], then Q = Q1, where N1 = Q1+iQ1.

(vi) Let <i be a finite real factor, and let Qi be a real subfactor of <i, i = 1, 2. If
Mi = <i + i<i and Ni = Q1 + iQi are the enveloping complex factors for <i and Qi,
respectively, then let αi denote the involutive *-antiautomorphism of Mi, which gene-
rates <i, i.e. <i = (Mi, αi), i = 1, 2. Then

[(M1, α1)⊗(M2, α2) : (N1, α1)⊗(N2, α2)] = [(M1, α1) : (N1, α1)] · [(M2, α2) : (N2, α2)],

i.e. [<1⊗<2 : Q1⊗Q2] = [(<1 : Q1] · [<2 : Q2] .

Proof. (i). By Theorem 8 and the property (7.1a) we have [(M,α) : (N,α)] =

= [M : N ] =
dimN(Hr + iHr)

dimM(Hr + iHr)
=

1
2
dim(N,α)(Hr + iHr)

1
2
dim(M,α)(Hr + iHr)

=
dim(N,α)(Hr)

dim(M,α)(Hr)
.

(ii). By the Theorem 8 and (7.1b) we have [(M,α) : (N,α)] = [M : N ] ≥ 1 and
[(M,α) : (M,α)] = [M : M ] = 1.

(iii). As above, let α′ be the involutive *-antiautomorphism of M ′, which generates
<′, i.e. <′ = (M ′, α′). Then (M,α)′ = (M ′, α′). Similarly we have (N,α)′ = (N ′, α′).
Hence by Theorem 8 and the property (7.1c) we have [(M,α) : (N,α)] = [M : N ] =
[N ′ : M ′] = [(N ′, α′) : (M ′, α′)] = [(N,α)′ : (M,α)′].

(iv). By Theorem 8 and the property (7.1d) we have [(M,α) : (N1, α)] = [M : N1] =
[M : N ] · [N : N1] = [(M,α) : (N,α)] · [(N,α) : (N1, α)].

(v). If [(M,α) : (N1, α)] = [(M,α) : (N,α)], by Theorem 8 we have [M : N1] =
[(M,α) : (N1, α)] = [(M,α) : (N,α)] = [M : N ], i.e. [M : N1] = [M : N ]. Then by
(7.1e) we obtain N = N1, i.e. Q = Q1.

(vi). According to [11, page 69] we have <1⊗<2 + i<1⊗<2 = (<1 + i<1)⊗(<2 +
i<2), i.e. (M1, α1)⊗(M2, α2) + i(M1, α1)⊗(M2, α2) = M1⊗M2. Similarly, we have
(N1, α1)⊗(N2, α2) + i(N1, α1)⊗(N2, α2) = N1⊗N2. Then by Theorem 8 and the pro-
perty (7.1f) we get

[(M1, α1)⊗(M2, α2) : (N1, α1)⊗(N2, α2)] =

[(M1, α1)⊗(M2, α2) + i(M1, α1)⊗(M2, α2) : (N1, α1)⊗(N2, α2)+

i(N1, α1)⊗(N2, α2)] = [((M1, α1) + i(M1, α1))⊗((M2, α2) + i(M2, α2)) :

((N1, α1) + i(N1, α1))⊗((N2, α2) + i(N2, α2))] = [M1⊗M2 : N1⊗N2] =

[M1 : N1] · [M2 : N2] = [(M1, α1) : (N1, α1)] · [(M2, α2) : (N2, α2)]. Thus, we have

[<1⊗<2 : Q1⊗Q2] = [(<1 : Q1] · [<2 : Q2] . �

As it was noted in the introduction, V. Jones in [6] has proved a theorem on the
values of the index for subfactors. Let us recall this theorem

Theorem 10 ( [6], Theorem 4.3.1). Let M be a finite factor, and let N be a subfactor
of M with [M : N ] < ∞. Then one has either [M : N ] = 4 cos2 π

q
for some integer

q ≥ 3 or [M : N ] ≥ 4.
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From Theorems 8 and 10 we obtain the following real version of the above theorem.

Theorem 11. Let M be a finite factor and let N be a subfactor of M with [M :
N ] < ∞. Given be an involutive *-antiautomorphism α of M with α(N) ⊂ N , put
< = (M,α), Q = (N,α). Then one has either [(M,α) : (N,α)] = 4 cos2 π

q
for some

integer q ≥ 3 or [(M,α) : (N,α)] ≥ 4, i.e. [< : Q] = 4 cos2 π

q
for some integer

q ≥ 3 or [< : Q] ≥ 4.
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