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Abstract. In an explicit quantitative and often precise manner, we construct the ho-
mogeneous Holder homeomorphisms and study the approximation of uniformly contin-
uous mappings by the Holder-Lipschitz ones between the pairs of abstract and concrete
metric and (quasi) Banach spaces including, in particular, Banach lattices, general non-
commutative L,-spaces, the classes /G and G of independently generated spaces (for
example, non-commutative-valued Bochner-Lebesgue spaces) and anisotropic Sobolev,
Nikol’skii-Besov and Lizorkin-Triebel spaces of functions on an open subset or a class
of domains of an Euclidean space defined with underlying mixed L,-norms in terms of
differences, local approximations by polynomials, wavelet decompositions and systems
of closed operators, such as holomorphic functional calculus and Fourier multipliers of
smooth Littlewood-Paley decompositions. Our approach also allows to treat both the
finite (as in the initial and/or boundary value problems in PDE) and infinite /,-sums
of these spaces, their duals and “Bochnerizations”. Many results are automatically ex-
tended to the setting of the function spaces with variable smoothness, including the
weighted ones. The sharpness of the approximation results, shown for the majority of
the pairs under some mild conditions and underpinning the corresponding sharpness
of the Holder continuity exponents of the homogeneous homeomorphisms, indicates
that the range of the exponents is often a proper subset of (0,1], that is the pres-
ence of Tsar’kov’s phenomenon. We also consider the approximation by the mappings
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taking the values in the convex envelope of the range of the original approximated
mapping. Negative results on the absence of uniform embeddings of the balls of some
function spaces, particularly including BMO, VMO, Nikol’skii-Besov and Lizorkin-
Triebel spaces with ¢ = oo and their V M O-like separable subspaces, into any Hilbert
space are established. Relying on the solution to the problem of global Holder conti-
nuity of metric projections and the existence of Holder continuous homogeneous right
inverses of closed surjective operators and retractions onto closed convex subsets, as
well as our results on the bounded extendability of Holder-Lipschitz mappings and re-
homogenisation technique, we develop and employ our key explicit quantitative tools,
such as the global (on arbitrary bounded subsets) Holder continuity of duality map-
pings and the Lozanovskii factorisation, the answer to the three-space problem for
the Holder classification of infinite-dimensional spheres, the Holder continuous coun-
terpart of the Kalton-Pelczyriki decomposition method, the Holder continuity of the
homogeneous homeomorphism induced by the complex interpolation method and such
counterparts of the classical Mazur mappings as the abstract and simple Mazur ascent
and complex Mazur descent. Important role is also played by the study of the local
unconditional structure and other complementability results, as well as the existence
of equivalent geometrically friendly norms.

Introduction

This is the second part of the article. The content of the first part [1] is briefly described
below.

The first step towards the application of quantitative methods based on the
quasi-Euclidean approach developed in [7, 9, 10, 13| is the choice, if necessary, of a
geometrically-friendly equivalent norm in a space under consideration. Thus, in Sec-
tion 2 we defined and divided into six I'-groups all the parameterised spaces under
consideration, described subfamilies of equivalent norms on some of them and relations
between different classes of spaces and provided a quantitative description of their
asymmetric uniform convexity and uniform smoothness. A large class of auxiliary
IG-spaces, including, in particular, [,-sums of L,-spaces with mixed norm (and other
IG-spaces), was introduced, studied and employed in |7, 8, 9, 10, 13]. The class G,
extends /G including also the [,-sums and “Bochnerizations” of the Lebesgue and se-
quence spaces of functions (possibly, on a discrete set) with values in noncommutative
L,-spaces [40].

Section 3 contains elementary properties of Holder-Lipschitz mappings and the
auxiliary results (including some involving the matter of sharpness) on the existence of
either ordinary or Holder continuous (globally on arbitrary bounded subsets) homoge-
neous inverses for closed linear surjections between Banach spaces. We also introduce
the notions related to the Holder equivalence of spheres of abstract spaces. Moreover,
Lemma 3.2 constitutes the answer to the three-space problem for our classification (see
the equivalence relation < in Section 1), while Theorem 3.4 is the Hélder continuous
counterpart of Kalton’s nonlinear version of A. Pelczyriki’s decomposition method.

Section 4 contains the definitions and properties of our relatively abstract but occa-
sionally sharp key explicit quantitative tools: the global (on arbitrary bounded subsets)
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Holder continuity of duality mappings and the Lozanovskii factorisation and the Holder
continuity of the homogeneous homeomorphism induced by the complex interpolation
method. The latter mapping and its uniform continuity are due to M. Daher [24] and
N.J. Kalton [17].

In Section 5, we employed the latter key abstract tool and developed a re-
homogenisation technique to construct and study our counterparts of the Mazur map-
ping that we call the abstract and simple Mazur ascents and complex Mazur descent.
Their compositions appeared to be the Hélder homeomorphisms between the spheres
of the pairs of compatible Gy, -spaces that are sharp in the setting of the IGy-spaces
and occasionally sharp in the setting of the IG( -spaces.

Part II of the paper starts with Section 6 which contains main results of the paper
on homogeneous Holder homeomorphisms in a form that permits to trace the constants.
We start with complete description of Banach lattices that are in the same equivalence
class with Hilbert spaces and proceed by employing our abstract and constructive
tools of Sections 4 and 5 to provide quantitative Holder classification of the spheres
of all the spaces under consideration with respect to the spheres of Hilbert spaces,
including also some spaces that are not equivalent to a Hilbert space. Indeed, relying
on the solution to Smirnov’s problem due to P. Enflo [26] and our results [4, 5, 12]
on the finite representability of ¢y in (anisotropic) BMO(G), VMO(G), BMO(G) N
Lo (G), VMONLL(G), Nikol’skii (i.e. Nikol’skii-Besov with ¢ = 00) and corresponding
Lizorkin-Triebel spaces, as well as their V M O-like subspaces, we show that the unit
balls of these spaces cannot be uniformly embedded into any separable or nonseparable
Hilbert space.

In Section 7, we introduce commutative homogeneous Hélder group structures (com-
patible with the norm and the existing linear structure) on all our spaces under con-
sideration, even on those that do not admit any C*-algebra structure.

Section 8 contains various results related to complementability of subspaces of ab-
stract and specific Banach spaces, including the existence of certain complemented
subspaces, that are employed either directly in the second group of the main results
in Section 8, or via some key auxiliary results that are either our counterpart of the
Kalton-Pelczyriki decomposition method in Section 3, or the presence of Tsar’kov’s
phenomenon (our main sharpness tool) in Section 11.

Section 9 comprises, in an explicit and quantitative form relying on the asymmetric
uniform convexity and smoothness and Markov type and cotype, the basic auxiliary
properties of abstract and specific Holder-Lipschitz mappings employed in our ap-
proaches to the second main task of the article: globally Holder-continuous retractions
and metric projections onto closed convex subsets of Banach spaces and the bounded
extendability of Holder-Lipschitz mappings between Banach spaces.

The second group of the main results that are on the approximation of uniformly
continuous mappings is contained in Section 10, where we utilise all our key tools
developed in the previous sections, as well as the sharpness tools of Section 11. We first
establish the approximation results in abstract and semi-abstract settings of mappings
from metric, quasi-Banach and IG-spaces into quasi-Banach and IG-spaces, and, then,
apply some of these results, as well as our other tools, to treat the approximation of the
uniformly continuous mappings between the pairs of either abstract Banach lattices,
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or our I'-groups of the specific spaces under consideration.

In Section 11, we benefit from some uniform complementability results given in
Section 8 (see also [12]) by detecting the presence of Tsar’kov’s phenomenon for the
majority of the pairs of the specific spaces under consideration.

The numbering of the equations is used sparingly. Since the majority of references
inside every logical unit are to the formulas inside the unit, equations are numbered
independently inside every proof of a corollary, lemma and theorem, or a definition
(if there are any numbered formulas). The number of the corresponding logical unit
does not accompany the number of the formula in the references inside this unit.

6 Main results: Holder classification of spheres

This section contain the explicit quantitative (and occasionally sharp) Holder classifi-
cation of the spheres of both abstract Banach lattices and the spaces from the groups
{T;}?_,. In particular, we show that the Holder and uniform classification of the spheres
of lattices coincide and reveal spaces from U?:o ['; that are not in the same equivalence
classes with the separable and nonseparable Hilbert spaces.

6.1 Holder classification of abstract lattices

As we have seen in Remark 2.6, a), every (Banach) lattice X can be transformed
into a p-convex lattice X® [31] with better properties, and there exists an abstract
counterpart ¢, : X — X (P) of the Mazur mapping with the same properties. These
properties are the subject of the next result in [17].

Theorem 6.1. (Proposition 9.3 in [17]). For p € (1,00), let X and X?) be a Banach
lattice with weak unit and its p-convezification. Then X et X,

After this preparation we can establish one of the main results of this section. It is
the sharp (i.e. under the same conditions) Hélder version of the corresponding result
due to E. Odell and Th. Schlumprecht [36] (Theorem 9.7 in [17]) that states that the
sphere of a Banach lattice is uniformly homeomorphic to the unit sphere of a Hilbert
space. We refer to [17] and [31] for the definitions and details of the proof that are not
explained here.

Let us recall (see [31]) that, if a Banach lattice X does not contain an isomorphic
copy of ¢g, then it is order complete and order continuous. In the presence of the order
continuity, every subspace of X contains a subspace with unconditional basis (1.e.9 in
[31]). Separable and function Banach lattices possess weak units. Order continuous
Banach lattices with a weak unit allow the function representation [31].

Theorem 6.2. Let X be a Banach lattice with a weak unit. Then we have
X (1/4,8) H

for some 8 € (0,1] and a Hilbert space H if, and only if, X does not contain l(I,)
uniformly.
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Proof. We focus on the differences with the proof of Theorem 9.7 in [17]. The existence
of subspaces that are uniformly (in n) isomorphic to [ (l,) rules out even a uniform
embedding of By into a Hilbert space according to P. Enflo [26].

The existence of a weak unit and the absence of the above mentioned subspaces
allow a representation (order isomorphic and linear isometric) of X as a lattice of
functions. The absence of the copies also implies that X is g-concave for some finite
q. Then, according to [31], its 2-convexification X is 2-convex and 2¢-concave and,
therefore, admits an equivalent (lattice) norm that makes X (2) 2-uniformly smooth
and 2¢-uniformly convex. The latter conditions are equivalent to the (2, hy)-uniform
smoothness and (2¢, h.)-uniform convexity. Eventually, Theorems 6.1 and 4.2 and the
properties of the Mazur mappings between L; and Ly lead to the following chain

x @2 @ (1,29)71) L, (1/2,1) L.
This chain finishes the proof with 5 = 1/2¢ thanks to the transitivity of the Holder
homeomorphisms. []

Eventually, the combination of Theorems 3.4, 4.1, 4.2 and 6.2 implies the following
result that includes the qualitative versions of all positive results in Section 6.2 that

do not involve noncommutative spaces. It is also our Holder counterpart of Corollary
9.11 in [17].

Theorem 6.3. Let X be a superreflexive Banach lattice with a weak unit. Assume
also that Y 1is either a subspace or a quotient of X. Then the unit sphere Sy is Hélder
homeomorphic to the unit sphere of a Hilbert space.

Proof. As a superreflexive lattice, X is g-convex and p-concave for some p, ¢ € (1, 00)
and, thus, can be renormed to be both (g, hs)-uniformly smooth and (p, h.)-uniformly
convex. Hence, due to Theorem 4.2 for both X and L,, we have

/
_ —1
(q 11 1/p2 )

'5) (
X 22, v Xt (1)

If Y is a subspace, then it has a subspace with an unconditional basis thanks to Propo-
sition 1.c.9 in Lindenstrauss and Tzafriri [31]. The latter is renormed into a sequence
lattice (1-unconditional basis) and, therefore, its unit sphere is Hélder homeomorphic
to the unit sphere of a Hilbert space due to Theorem 6.2. The application of Theorem
3.4 shows that the same is true for Y.

If Y is a quotient, then Y™ is a subspace of the superreflexive lattice X* and
the above argument applies. Since Y is also (after renorming of X) (g, hs)-uniformly
smooth and (p, h.)-uniformly convex, its unit sphere is Holder homeomorphic to the
unit sphere of Y* according to Theorem 4.1. ]

We also need the following lemma.

Lemma 6.1. For 2 € [¢,p] C (1,00), let X be a Banach lattice that does not contain
an 1somorphic copy of ¢y and contains a subspace Y possessing the Rademacher type
q and cotype p. Then'Y contains a subspace Z with unconditional basis, such that, for
every € > 0, there exists a (qe, hse)-uniformly smooth and (pe, h..)-uniformly convex
Banach (sequence) lattice Z. with q. € (q—¢,q|, p- € [p,p+¢) and non-trivial hs. and
hee that is isomorphic to Z.
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Proof. The no-cqg condition means that X is order continuous, and, hence, Y contains
a subspace Z with an unconditional basis. Therefore, Z is isomorphic (i.e. can be
renormed) to a sequence Banach lattice Z, possessing the Rademacher type ¢ and
cotype p. This condition implies that, for every € > 0, there are ¢. and p. satisfying
the conditions of the lemma, such that Z, is ¢.-convex and p.-concave. Hence, Z,
is isomorphic to a (g, hs¢)-uniformly smooth and (p., h.)-uniformly convex Banach
(sequence) lattice Z. that we are looking for. O

6.2 Holder classification of I'-groups

In this section, we establish the explicit Holder classification of the spaces from the
groups I'; estimating the parameters a(X, H) and «(H, X) for the spaces X under
consideration. One uses combinations of our major tools developed in the previous
sections, along with the sharpness tools in Section 11.

Theorem 6.4. Forn € N and i € {1,2,3}, let X; C I';. That is we assume that:

. % * 51,4 *
(1) X1 has the form X35 . (Gy) or X3bd1 (Gy), or X;’LQEaa’l(Gl) , or X;’i,qgl,a’l(Gl)
with an admissible ay, where every component of ay is in the convex envelope of ¢

and {plj};‘l:li

(i) Xa has the form X;2(Gs), or X;;(Gg)*,

and

(i4i) X3 has the form X3¢ (R™), or X5 ,(R™)*.

P3,93 P3,93
Then, if G; C R™ satisfies the C-flexible A-horn condition for i = 1,2, we have

min (pz min; G, 2)

max (pz max 4> )

a) min (a(X;,lp), a(ls, X;)) > 6; = for i € {1, 3},

where a(X;, lo) = ; if max (Pimax, ) < 2, and o(ly, X;) = 6; if min (p; min, ¢i) > 2;

min (p2 min; 2)
max (p2 max 2)

b) min (a(Xy, 1), a(lz, X3)) > 0y =

?

where a(Xa,l3) = 0y if max (Pamax, 2) < 2, and a(ly, Xo) = o if min (pamin, 2) > 2.

Remark 6.1. a) It is possible to show that, under the above conditions of sharpness,

the optimal value 0; of a(Xj,ls) and «a(ly, X;) for i € I3 is achieved (i.e. X; Buy) l2)

if 2 is among the parameters {p;;,q;};er,. This result will appear in a separate
paper because it requires real/harmonic analysis tools and exposes the limitations of

Theorem 4.3.

b) The choice of an admissible a; that will not affect the maximum and minimum
of ¢; and all the components of p; is possible according to [3].

¢) Note that the application of Theorem 4.3 in the proof permits to estimate,
explicitly, the behavior of the Holder norms of the homeomorphisms involved.
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Proof. Regarding the complex interpolation method, we use the notation from [19].
In the case of every ¢+ = 1,2 or 3, we apply Theorem 4.3. Indeed, it is easily checked
(particularly, with the aid of the point of view in §2.2) that taking all the parameters
(every component of the vector parameters) of X; to be equal 2 makes it a Hilbert space
that we denote H; = X;5. O.V. Besov [20] has shown that the classes of reflexive spaces
Bs 1(G), Lpg1(G) and W3 (G) are closed with respect to the complex interpolation if

pg;1
the domain G satisfies the C-flexible A-horm condition. For example,

(Byo o (G). Byl 4, 1(G)) =< By

P0,90, P1,q1, Do,90,1

(G) and (Lso 1(G>7LSI 1(G))[9] = L;Z,qeyl(G)’

Ppo»,q0, p1,q1,

where

1:1_04—&,1:1_9+£and59:(1—9)50+051. (1)
Po Po P1 Qe do q1

At the same time, it is demonstrated in |2, 3] that the corresponding spaces defined in
terms of the local approximation by polynomials are isomorphic to the corresponding
spaces defined in terms of the averaged differences, and that the constant a = 1 is in
the admissible range for X, and every a in the admissible range delivers an equivalent
norm. Thanks to the duality theorem for the complex interpolation method [19] and
this renorming, (1) remain valid for the dual spaces.

The interpolation properties of the spaces with wavelet norms of functions on R"
are well-known. For example, R" satisfies the C-flexible A-horn condition and they are
isomorphic to the spaces in [20].

Hence, we can always find spaces Ag, A; € T'; for i € {1,2,3} with the parameters
of Ag and A; being arbitrary close to X; and H; correspondingly, such that

Xi = (Ao,Al)M and Hz = (Ao,A1>[1_a]. (2)

The application of Theorem 4.3 with » = 2 reduces the problem to computing the
(q, hs)-uniform smoothness and (p, h.)-uniform convexity parameters for the ly-sum

Y, =Ly (Ra ly <{07 1}’ {A07 Al})) = Ly (R’ (AO S A1)2) :

According to Section 2.2 X, if it is not defined as a dual, is a subspace of an IG
space Z; featuring the same parameters. Hence, Y; itself is a subspace of the IG space

E; =1, ({O’ 1}7 {Zi7 HZ}) = (Zl S Hi)Q :

Since F; has the same set of parameters as X; plus {2}, we just combine Theorems 2.2
and 4.3 to establish the (a, a)-Holder equivalence where « can be chosen arbitrary close
to the proposed lower bound for «(X;, H;) and «(H;, X;). Similarly, if X; is defined as
a dual, we deal with the quotients covered by Theorem 2.2 as well.

The sharpness follows immediately by Lemma 11.1 and Theorem 10.6, finishing the
proof. O]

The next theorem, dealing with function spaces on arbitrary open subsets of an
Euclidean space, shows that the irregularity of the domain of the functions from a
function space is likely to worsen the homogeneous Holder homeomorphism with 5.
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Theorem 6.5. Forn € N and i € {1,2,4}, let X; C T';. That is we assume that:
(1) X1 has the form X3! (Gy) or Xsl’A1 (Gh), or X5, (Gy)*, or X590 (Gy)*

p1,91,01 p1,91,01 P1,91,07 P1,91,07
with an admissible a1, where every component of ay is in the conver envelope of ¢q1 and
Py}
(i) Xa has the form X;2(Gs), or X;;(Gg)*,
and
(iii) X4 has the form X3t (Gy4), or X;if,qg (Gy)*.

Then we have

min (pz min»y 95 ) min (pz mins 435 2) -
max (pz max; i, ) 2
min <p2 min ) min (p2 min 2) —1

max (p2 max ) 2

1
a) min (a(X;,1lp), a(ly, X;)) > for i € {1,4};

b) min (a(Xs,l2), a(ly, X)) >

Remark 6.2. a) The group I'y is very large and some of its classes are known to be
isomorphic even to the spaces in I'3.
b) In the case of Part a), the estimates can be improved, at least, up to

min (O{(XZ‘, lg) (ZQ, X; )) > 53

where ¢; is defined in Theorem 6.4, but it requires an additional real /harmonic analysis
argument.

Proof. We prove only Part a) because the proof of b) is almost identical (one should
omit ¢ and ¢’). According to §2.2, a non-dual X; is a subspace of an IG-space Y; with
the same set of parameters (excluding smoothness) as X;, and Corollary 5.1 implies
the equivalence

Y (a0,080) min (pimim i, 2) 2 (1)

l, with _ _
2V @0 = 2 ’ /60 max (pz max; i 2)

The reflexivity of Y; precludes it from possessing isomorphic copies of ¢y, and Theorem
2.2 provides its Rademacher type and cotype sets. Therefore, we combine Lemma 6.1
with our quantitative Lozanovskii factorization in Theorem 4.2 to find, for an arbitrary
small £ > 0, a subspace Z. of X;, such that

[e} 1 iminy i, 2)—1 1
Z. @by lngthoq—i-s—mm(p 4:2) O1+e= . (2
2 max (pima)n i, 2)

Now we finish the proof in the non-dual setting by means of applying Theorem 3.4 and
letting ¢ — 0.

If X; is a dual space, then, thanks to the reflexivity of X; [2, 13], X is a subspace
of an IG-space Z;, with the same set of parameters (excluding smoothness) as X, and,
therefore, X; itself is isometric to a quotient of the /G-space Z;. Corollary 5.1 implies

the equivalence

zr @)y, (3)
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Applying Lemma 6.1 to X as a subspace of the lattice Z;, we find, for an arbitrary
small € > 0, a subspace W, of X/ that is isomorphic to a (¢., hs)-uniformly smooth

and (p, he.)-uniformly convex Banach (sequence) lattice W, with
Pe = MaxX (Pf in, > 2) + € and g. = min (pf oy, ¢, 2) — €. (4)

Thus, W is isometric to a quotient of X; and isomorphic to the lattice WE* Moreover,
thanks to the duality Theorem 4.5 from [13] (see also [10]), the lattice W7 is (p;, hizt ) -

uniformly smooth and (q;, h;;qé>-uniformly convex. Theorem 4.2 leads to
-1 1

l2 with Qe = Pe B ,ﬁs = q_é (5)

Now we finish the proof by applying Theorem 3.4 to Z;, X; and W and tending ¢ to

0. O

W: (O‘Evﬁs)

The following theorem shows that not all (even separable) Nikol’skii-Besov and
Lizorkin-Triebel spaces are in the same equivalence class with a Hilbert space with
respect to our Holder classification of spheres.

Theorem 6.6. Let X € T'y([1,00]) be not defined as a dual and its ppax = o0. For
neN, pe[l,0”, a€ (0,00", s €[0,00), D=D CNg, |D| < oo, assume also that
either s =0 and p = (oo, ...,00), or s > max (0, (74, 1/p — 1/a)). Let also

Ye {B}’},oo,a(G), 0pro0alG)s By oo a(G): 0.00.(G)y Ly oo,a(G) o o (G Ly o (Gl 0 o(G),

[e) o

oo (@),b52 (G), By2 (G), b2 (G),%&D (@), 152 (G), L2 (G), 52 ()

p,00,a p,00,a p,00,a ) ¥'p,00,a p,00,a )7 p,00,a p,00,a ) 'p,00,a

Then the unit balls Bx and By of X and Y cannot be uniformly embedded into a
Hilbert space.

Remark 6.3. Note that Theorem 6.6 covers the (anisotropic) spaces
Y € {BMO*(G),VMO*(G), BMO*(G) N Log, VMO (G) N Lo } -

Proof. 1t was shown in [4] and [13] that Y contains an isomorphic copy of ¢y, while X
contains [, (I,) uniformly according to [13] (see also [5] for the application to strength-
ening and extending a result due to G. M. Fichtenholtz and L. V. Kantorovich [27]
on the non-complementability of C([0,1]) in Lo ([0, 1]), such as that VM O(G) is not
complemented in BMO(G)). Thanks to Enflo’s result in [26], this means that the unit
balls of all these spaces are not even uniformly embedded into any Hilbert space. [

Theorem 6.7. Let X € IG, and H = X5, where the function 2 is constant 2 on
V(X). Forp € (1,00), assume that

_ min(p7 2) and § = min (prnin(X)’ 2)

~ max(p,2) max (Pmax(X),2)

Then we have o5
a) min (a(X, H),a(H, X)) > 6 and, if X € IGoy, X JUONSSS
If X contains an (isomorphic) complemented copy of l,,, we also have

D) X 22 and, if X € 16, X O H.
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Remark 6.4. a) Note that, if one of the elements of the tree T'(X) is Iy, lt, ,(Z" x R),
or lt, ,(Z" x R)* with 2 € {p, ¢}, then X contains an isometric complemented copy of
Iy (see [13]). Moreover, if X is not purely a sequence space (i.e. one of the elements of
the tree T'(X) is L,(€2, 1) with not purely atomic p), then X contains a complemented
copy of [ as well. Indeed, X contains (an isometric copy of) L,(€2,Y) for some Y € IG,
whose tree is the subtree of X grown from L, (€2, ), while the latter obviously contains
L,(€, i) itself, where we can construct a Rademacher system and use the Khinchin
isomorphism to show the complementability of its span in L, (€2, u).

b) We can substitute the condition X € IG in Part b) of the preceding theorem with
X € IGoy and P,. = P, (see Theorem 5.2 and Corollary 5.4) and employ Corollary
5.5 instead of Corollary 5.2 in the proof.

Proof. 1t is straightforward from [19] that Ay, A; € IGoy form a compatible pair if
T(Ap) = T(A;) and, thus, the same parameter position set p, and we also have

(Ao, A1) = Ap, (isometry). (1)

Therefore, applying Corollary 4.1 to the pair (X, X3) and repeating the limiting argu-
ment from the proof of Theorem 4.5, we obtain the second relation in Part a).
In the case Ay, A; € IG, we now combine (1) with Theorem 8.5 with the aid of
Lemma 8.2 to obtain
(Ao, Av)g) =< Apy, (2)

where A,, € IG, is the space with the same tree as Ay, and A; and the parameter

position function
1 1—-4 1

Do Day  Pay
Similarly to the proof of Theorem 6.4, we choose Y, and Y, so that

px =pe and p1_. = 2

and use Theorem 4.3 with r = 2, where we compute the convexity and smoothness
exponents of Ly (R, 1y ({0,1}, {Ao, A1})) with the aid of Theorem 2.2. Eventually the
lower bound ¢ in Part a) is obtained by passing to the limit € — 0.

According to Lemma 8.2, X € IG, (X € IG) is either a complemented subspace of
a quotient Z/Z, with Zy being complemented in Z, or a complemented subspace of Z,
where Z € IGy, (Z € IGy) has exactly the same range of the parameters (the image
of the parameter position function: I(X) = I1(Z)) as X. If X contains a complemented
copy of [,, we apply Theorem 3.4 either to the triple I, C X C Z in the former case, or
to the triple [, C Xy C Z in the latter case, where X is chosen to be isomorphic to X
in the following way. Choosing a complement Z; to Zy in Z (i.e. Z = Zy® Zy), we see
that Z; is isomorphic to Z/Z, and, therefore, Z; contains a complemented subspace
X that is isomorphic to X. Let us note that X is also complemented in Z. Thus,
we obtain the first relation in Part b) combining this observation and the proof of the
lower estimate in Part a) by means of Theorem 3.4.

For X € IG, the parameters

min (Pmin (X), 2) 2 ., (af)

pr— p— Z
@ 2 B = (Poan(X),2)

Z3
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(recall that the Hilbert Z5 has the tree T'(Z) but all the parameters are equal to 2,
Pmin(Z) = Pmin(X) and puax(Z) = pmax(Z)) are provided by Corollary 5.2. Thus,
Theorem 3.4 gives us X L 1 with the desired § = af. m
Theorem 6.8. For p € (1,00), f = min(p,2)/ max(p,2), let X = L,(M) and H =
Ly(M), where M is a von Neumann algebra, be infinite-dimensional. Then, for§ = 33,
we have

(6,9)

X = H.

Proof. Let Z be the space corresponding to X and described in Theorem 8.6. Then,
extending the mutually inverse mappings m,, and mgy, provided by Theorem 4.5 by
continuity from the dense subset provided by Part 2) of Theorem 8.6 to Z, we obtain

7280 g, (1)

where H has the same density character as Ly(M). According to Lemma 8.4, X
contains a 1-complemented copy of [,,. It is the property of the classical Mazur mapping
[32] that

Ly Q1Y) ly for oy = min(p/2,1) and B, = min(2/p, 1). (2)
We finish the proof by combining (1) and (2) with the aid of Theorem 3.4. O

7 Homogeneous Holder group structures on Banach spaces

To rule out the existence of C*-algebra structures (compatible with the norm and
linear structure) for some spaces under the consideration, one can use the following
result established by G. Pisier in the proof of Theorem 9.6 and on pages 128 and 129
in [39].

Theorem 7.1. ([39]). Let A be a C*-algebra, and let Y be of Rademacher cotype 2.
Then any operator T € L(A,Y) factors through a Hilbert space.

Corollary 7.1. Let an infinite-dimensional X € T';((1,2)) for i € {0,1,2,3,4,5},
or X = L,(M) with p € (1,2). Then X does not allow an introduction on it of a
C*-algebra structure compatible with the norm and the existing linear structure.

Proof. Thanks to Theorems 2.2—2.8, X has the Rademacher cotype 2 (sharper type and
cotype constant estimates for the spaces under consideration are in [10, 13]). Therefore,
it is isomorphic to a Hilbert space thanks to Theorem 7.1 (i.e. the identity operator
factors through a Hilbert space) if X admits a multiplication group structure making
it a C*-algebra. Since X does not have the Rademacher type 2, according to Theorem
8.11 from §8 in [13] (see also [12]), it is impossible. The absence of the Rademacher type
2 for many groups of the spaces under consideration is also implied by the existence
of the copies of sequence spaces (and the related finite representability) discussed in
Section 8, and the consideration of other spaces is similar. O

It appears to be still possible to introduce a multiplication group structure by means
of sacrificing the distributivity and the Lipschits continuity.
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Definition 7.1. Let X be a Banach space and v € (0,1]. We say that X admits a
homogeneous ~v-Holder group structure if there exists a binary operation x : X x X —
X and a constant C' > 0, satisfying

a) Aa* pb = Au(axb) for a,b € X and \, p € R;
b) lla*blx < llallx[|bllx fora,be X;

c) [lag % bg — ay x b1f|x < ngﬂ( (Naillx 1B:]1x)" " (lao — aa | + [|bo — bi])”

fora;,b; € X.

We say that X admits a homogeneous Holder group structure if it admits a homogeneous
~v-Holder group structure for some \.

Surprisingly, our infinite-dimensional spaces under consideration allow even com-
mutative homogeneous Holder group structures.

Theorem 7.2. Let an infinite-dimensional Banach space X be either in I'; for some i €
{0,1,2,3,5} or L,(M) with p € (1,00), or a Banach lattice with a weak unit that does
not contain ly(1,) uniformly (by n € N). Then X allows a commutative homogeneous
Holder group structure. In particular, L,(M) allows a commutative homogeneous 62 /2-
Holder group structure, where § is defined in Theorem 5.13.

Proof. Corollaries 5.2 and 5.5, Theorems 6.2,6.4,6.5,6.7,6.8, the Holder regularity
properties of the classical Mazur mapping [32] (or Theorem 4.2 for L) and the Riesz-
Fisher theorem imply, for some infinite index set I, the relations

X 221,01y B2 (1) and, thus, X S22 1,(1),

The convolution operation makes /; (1) a commutative Banach algebra. Hence, defining,
for a,b € X, the multiplication by

axb=¢ ' (¢(a)* (b)),

where ¢ : X «— [4(I) is the homogeneous extension of a Holder homeomorphism
of spheres, we introduce a commutative homogeneous «/3/2-Holder group structure on
X. In the case of L,(M), one has o = 3 = § thanks to Theorem 6.8. O

The same argument relying on Theorem 6.2 imply the existence of the homogeneous
Holder group structure on a very large class of lattices.

Theorem 7.3. Let X be a Banach lattice with a weak unit that does not contain loo (1)
uniformly (by n). Then X allows a commutative homogeneous Holder group structure.

8 Complemented subspaces, copies of sequence spaces and local
unconditional structure

The possession of the local unconditional structure by a Banach space indicates its
local similarity to a lattice [25]. A Banach space X possesses the local unconditional
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structure simultaneously with its dual X* [25]. Moreover, it happens if, and only if,
X** is isomorphic to a complemented subspace of a Banach lattice [25]. One of the
traditional fine questions in functional analysis is the correlation between the local
unconditional structure and the other properties of Banach space, and the last char-
acterisation of this property, as well as the lattice property of the IG-spaces, relates it
to the complementability matter.

As we see in Sections 3.2, 3.3, 6.2, 10 and 11, the sharpness of both the exponents
and the constants of the Holder-Lipschitz regularity strongly depends on the existence
and complementability of certain subspaces in the spaces under consideration. In
particular, the presence of the local unconditional structure appears to be intimately
related to our problems at hand.

Remark 8.1. Let us note that the complementability of a subspace X in Y = Y™ is
equivalent to the existence of a Lipschitz retraction of Y onto X due to the linearisation
properties of the Lipschitz mappings into reflexive subspaces (see Corollary 7.3 in [17]).

The next theorem follows from a celebrated result due to O.V. Besov in [20] on the
interpolation of Nikol’skii-Besov and Lizorkin-Triebel spaces of function defined on a
domain satisfying the C-flexible A-horn condition.

Theorem 8.1. Let X € I'y be a space of functions defined on a domain G C R"
satisfying the C-flexible A-horn condition with an admissible parameter a and A =
Ya- Then X is a complemented subspace of the corresponding IG-space Y with 1(Y')
consisting of the same parameters as X, except for the components {a;}'_, of a, and
X* is isomorphic to a complemented subspace of Y*.
Proof. In the case X € {B, ,(G),L; ,,(G)}, the conclusion of the theorem is estab-
lished by O. V. Besov in [20]. For a wide class of the domains G satisfying flexible
A-horn condition (also introduced by Besov), the isomorphisms

BS

p,q,1

(G) =< B2, (G) =< B> (G) and L}

D,q,a D,q,a p,q,1

(G) =< L, (G) =< L2 (G)

p?q?a p7q7a

were established for every admissible a. Combining these results, we establish the
statement for X. Lemma 6.1 finishes the proof, providing the statement regarding
X*. O

The next lemma is very helpful despite its simplicity.

Lemma 8.1. ([9, 13]). Let X be a Banach space, and P € L(X) be a projector onto
its subspace Y C X. Assume also that Qy : X — X = X/ Ker P as the quotient map.
Then we have

Qv ]l < [Prlx < [[PILX)[||Qyz] 5 for every 2 € X.

In particular, the dual space Y* = X*/Y+ and Y are isometric to P*X* and X if, and
only if, Y is 1-complemented in X, i.e ||P|L(X)] = 1.

These lemma and theorem immediately imply that some spaces under consideration
possesses the local unconditional structure (see [25]).
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Remark 8.2. As mentioned after Definition 2.2, the space [, , is isometric to a com-
plemented subspace of L,(R",1,) for p € (1,00)", ¢ € (1,00) (see |9, 13] for the mixed
norm case). In the case of scalar p and ¢, it an immediate consequence of the Fefferman-
Stein inequality. Therefore, according to the previous lemma, the space it} , is not
necessarily isometric to Ity , unless p = ¢ but still isomorphic to It 4.

Relying on Theorem 2.1 and a celebrated result due to J. Bourgain [22] (extended
in [6]), we have established [9] the following lemma allowing us to treat the whole class
FO - IG+

Lemma 8.2. (|9, 13]). Let X € IG, (X € IG). Then there exists X € IGoy
(X € 1Gy) with I(X) = I(Y) and T(X) C T(Y), such that X is a complemented
subspace in the quotient Y/Z, where Z is a complemented subspace in'Y . Moreover, if
ity , & T(X), then X is a complemented subspace in'Y .

Corollary 8.1. Let X € IGU U?:l I';. Assume also that, if X € I'y is a space of
functions defined on a domain G C R™ or its dual, the domain G satisfies the C'-
flexible A-horn condition. Then X has the local unconditional structure.

The proof of Corollary 8.1. If X € IGUT'3, then it has the lattice structure of its own
and, thus, has the local unconditional structure. If X € I'y UT'y and is not defined as a
dual, then it possesses the local unconditional structure because it is a complemented
subspace of an IG-space (lattice; see [25]) due to Theorem 8.1. We finish the proof by
noticing that, if X € I'; is defined as a dual, then it is isomorphic to a complemented
subspace thanks to Lemma 8.1. O

Here we present the results on the existence of isomorphic copies of [,-spaces in
the various Sobolev, Nikol’skii-Besov and Lizorkin-Triebel spaces from I'; for ¢ € Is.
The combination of the succeeding theorems and lemmas with the next observation
complements Dvoretzky’s theorem for the spaces under consideration.

Remark 8.3. Let us recall that, for p € (1,00), l,(2n) contains a Cyp-isomorphic and
Cy-complemented copy of I5(1,,) for every n € N thanks to the Holder and Khinchin
inequalities and Lemma 8.1.

Theorem 8.2. ([12, 13]). Let G C R", p,a € (1,0)", q,s € (1,00), s € (0,00) and
7 € {Pmin, Pmax, ¢; 2}. Assume also that

(@), L;

p,g,a

(G), zs,A

p,q,a

(G),05,40(G): b0 (G, 15, 4.0(G), [ (G),

7 Upg,a e 21 iY 7 pg,a ?'pg,a

Y e {BS (@), B>A

p,q,a p,g,a

s (G)*7BS,A (G)*,Ls (G)*,ES,A (G)*,

p’,q’,a’ v'.q ,a’ v',q ,a’ v',q,a’
bs (G)* BS,A (G)* ls (G)* ZS,A (G)*
v',qa’ ) Vp' g a! ’'p'qa! U )

and a 1s in admissible range for Y. Then there are constants Cy, Cy > 0, such that'Y
contains an Cy-isomorphic and Cy-complemented copy of l.(I,,) for every m € N.
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Theorem 8.3. ([12, 13]). Let Y € {W3(G), W5 (G)*} for G C R", p € (1,00)",
¢ € (1,00), s € NI and r € {Pmin, Pmax, 2}. Then there are constants Co, C; > 0,
such that'Y contains an Cy-isomorphic and Cy-complemented copy of 1.(1,,) for every
m € N.

Theorem 8.4. ([12, 13]). Let Y € {B, (R"),, L; (R"),, By ,(R"):, L (R")%}

forp e (1,00)", ¢ € (1,00), s € (0,00) and r € {Pmin, Pmax, ¢, 2} Then'Y contains an
isometric 1-complemented copy of l,.(1,,) for every m € N.

Nevertheless, the spaces lt,, and [t contain an isometric and 1-complemented

copies of [, and [, according to the next lemma.

Lemma 8.3. ([9, 13]). Let p € [1,00)" and q € [1,00). Then the spaces lt,,(R") and
lty o (R™)* contain isometric 1-complemented copies of 1,(N"), l,(N) and I, (Z",1,(N)),
and the spaces lt, o(F') and Uty o (F)* contain isometric 1-complemented copies of l,(N),

Ly (I, 14,(N)) for every m € N™.

What follows is the counterpart of Lemma 8.3 for Schatten-von Neumann classes
and general L,(M), where M is a von-Neumann algebra (with a normal semifinite
faithful weight that always exists).

Lemma 8.4. (|9, 13]). For p € [1,00], the space S, contains 1-complemented copies
of Sy, I,(In) and I, for n € N. Moreover, an infinite-dimensional L,(M) contains a
1-complemented isometric copy of l,.

Remark 8.4. The existence of isomorphic copies of ¢y and [, in different classes of
function spaces was investigated in [4, 5|, where stronger results than the counterparts
of the celebrated non-complementability of C'([0,1]) in Lo ([0, 1]) due to G.M. Fichten-
holtz and L.V. Kantorovich [27] were established. The finite representability and the
existence of the copies of [, and other sequence spaces in the spaces under consideration
was studied in [12, 13].

We also need the following quantitative version of the result due to M.S. Baouendi
and G. Goulaouic [16, 41].

Theorem 8.5. Forp € [1,00], 8 € (0,1), let (Ag, A1) be a compatible couple of Banach

spaces, and let B be a complemented subspace of Ao+ As, whose projector P € L(Ag) N
L(Ay). Then (By, B1) = (Ao N B, A1 N B) is also compatible, and we have
@) dpar ((Bo, B1)ap: (Ao, Ar)a, N B) < [ PIL(Ao) P PIL(AD;
b) diar ((Bos Br)g)s (Ao, A)gy N B) < [|PIL(Ao) ||| PIL(ADI.

While the lower estimates for ||x[(By, B1)spl|| and ||z|(Bo, B1)jg|| are provided by the

definitions of the interpolation functors, the upper estimates follow from the exactness
of these functors:

max (||P|£ ((Ag, A1)op)ll

P|L (Ao, AD)g)[]) < IIPIL(A)II"[IPIL(AL)”.

The following theorem permits us to reduce the study of the properties of the
general L,(M) (Haagerup L,-spaces) to checking them for the L, spaces of finite von
Neumann algebras (L,(M, 7) with n.f.f. 7).
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Theorem 8.6. (Haagerup [40]). Let M be a von Neumann algebra with a nor-
mal semifinite faithful weight ¢, p € (0,00)), and let L,(M,$) be the associated
Haagerup L,-space. Then there are a min(p,1)-Banach space Z, a directed family
{(M;, ) Yier of finite von Neumann algebras and a family {J; }icr of isometric embed-
dings J; : L,(M;,7;) — Z satisfying

1) Im J; C Im Jy for all i,4" with i < ';
2) UIm J; is dense in Z;

icl
3) L,(M, @) is isometric to a subspace of Z, complemented if p € [1,00).

9 Holder-Lipschitz mappings: basic mappings and
properties. II

This section is dedicated to the following important tools of the analysis of mappings
between Banach spaces: the existence and the ordinary and explicit (an occasionally
sharp) global Holder continuity of retractions and metric projections onto closed convex
subsets and the problem of the bounded extension of the Holder-Lipschitz mappings
from an arbitrary subset of a matric space into a Banach space to Holder-Lipschitz map-
pings defined on the whole metric space with explicit and occasionally sharp bounds.

9.1 Retractions

Definition 9.1. For a metric space Y and its subset X, a mapping f : Y — X is
a retraction of Y onto X if f(x) = x for every x € X. The subset X is said to be a
retract of Y.

According to Part b) of the next lemma, [, (T") is an absolute 1-Lipschitz retract.
It is Lemma 1.1 from [17].

Lemma 9.1. ([17]). a) Every metric space is isometric to a subset of l.(X).

b) Let Y be a metric space, Z CY, and w be a nondecreasing subadditive function
defined on (0,00) with lim;_ow(t) = 0. Assume also that f : Z — l(T") satisfies
w(+, f, Z) < w. Then there ezists a uniformly continuous extension F : Y — (') of
fwithw(-, F)Y) <w.

The next theorem is a particular setting of a bounded set A of the corresponding
more general results in |7, 13|. The numerical constant from |7] was improved in [13]
with the aid of [10].

Theorem 9.1. (|7, 13]). Forp € [2,00), let A be a closed convex bounded subset of a
quasi-Banach space X that is isomorphic to a (p, h.)-uniformly convexr Banach space
Z with dpy (X, Z) < d and 0 € (0,00). Assume also that a metric space Y contains
an isometric copy A of A (endowed with the metric inherited from X), and A,o is
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the o-neighborhood of this copy in' Y. Then there exists a retraction ¢ of A, onto A
satisfying

—1/p
lgl HYP(Y, A)|| < d(8p)"/? ( sup (1 — #)hc(ﬂ)> (r(A, A) + d(A))"".

1e(0,1/2]

Moreover, if X is a (p, he)-uniformly convex Banach space itself, one should take d = 1
in this estimate.

9.2 Chebyshev sets and metric projection

Metric projection is a very important example of a retraction possessing better smooth-
ness than the retractions considered in the previous subsections. In approximation
theory it corresponds to the best approximation of a function by a function from a
closed convex or linear subclass.

In this subsection, we describe the smoothness of the metric projections on closed
convex subsets of either uniformly convex, or both uniformly convex and uniformly
smooth spaces. We further provide retractions onto such subsets from the ambient
space that is either uniformly convex, or both uniformly convex and uniformly smooth.
These retractions possess either better smoothness, or better constants than their coun-
terparts in the preceding subsection.

Definition 9.2. A subset D C X of a Banach space X is a Cheyshev set if the metric
projection mapping Pp : X — D is well-defined by the relation

|z — Ppx||x = min lz —yllx,

that is, for every x € X, there exists a unique y = Ppx minimizing the distance between
x and D.

Note that, thanks to the Hahn-Banach theorem, Ppy = Ppz if y = Ax+ (1 —\)Ppx
for some A > 0.

Remark 9.1. a) While every closed convex subset of a reflexive and strictly convex
Banach space is a Chebyshev set, there exist examples of such Banach spaces with
discontinuous (in norm) metric projections on some Chebyshev sets (see [23, 46]). The
necessary and sufficient condition on a Banach space for the continuity of the metric
projections onto the closed convex subsets was found by L. P. Vlasov [47] (see Theorem
9.2 below). This condition was introduced by V.L. Shmul’yan in 1940. Every uniformly
convex space satisfies this condition.

b) There exists an important characterization of inner product spaces due to Phelps
[37]: a Banach space X with dim X > 2 is a Hilbert space if, and only if, the metric
projection on every closed convex Chebyshev subset is 1-Lipschitz (nonexpansive).

¢) The metric projections onto the balls of a strictly convex normed space X are
2-Lipschitz (see, for example, [7] and (3) in the proof of Lemma 5.3). This means that
balls are too good subsets to distinguish the peculiar features of the (local) geometry
of X from the point of view of the metric projection.
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Theorem 9.2. (L.P. Vlasov [47]). The metric projection onto every closed and convex
subset of a Banach space X is single-valued and continuous (in norm) if, and only if,
every subsequence {xy}ren C X with ||z,||x = 1 for every n, satisfying the condition
limg oo f(zx) =1 for some f € X* with || f||x~ =1, is convergent in X.

The uniform continuity of the set-valued metric projection was investigated by
Berdyshev [18|, while the same phenomenon for the (single-valued) metric projection
in uniformly continuous and uniformly smooth spaces was studied by Bjornestal [21], in
the case of the metric projections onto subspaces, and by Benyamini and Lindenstrauss
[17] in the case of the metric projections onto the closed convex subsets. In the latter
case, the estimates for the local uniform continuity, that is for the modulus w(¢, Pp, z+
r(z)Bx) with r(z) < Cd(z, D), were established in terms of the classical moduli of the
uniform continuity and uniform smoothness. In some special case, global estimates of
similar nature (that cannot be derived from the local ones) were established by Alber
[14]. In this section, we present global estimates in the general setting of an arbitrary
closed convex subset providing the same order of the Hélder regularity with explicit
numerically friendly constants.

Since every Hilbert space is (2, 1)-uniformly convex and smooth according to the
Jacoby identity [9], even Part b) of the last remark suggests that the global regularity
of the metric projection could be higher if the space is not only (p, h.)-uniformly convex
but also (g, hs)-uniformly smooth. It is the subject of the next theorem and corollary
that are extracts from the corresponding results in [13] (their counterparts in [7] are
less precise in the general setting but still lead to the same numerical estimates for the
spaces under consideration).

According to Theorem 6.16 from [13], the Holder-Lipschitz regularity exponent
given in the next theorem and corollary are sharp for X € IG, under the restriction
that, if pmin(X) < 2, X (Y) contains isometric 1-complemented copies of {l,, }ren
with pp € [(X) for every k € N and limy_oo pr = Pmin(X), and, if ppax(X) > 2, X
contains isometric 1-complemented copies of {l,, }ren With g, € I(X) for every k € N
and limg o @ = Pmax(X)-

Theorem 9.3. (|7, 13]). For 2 € [¢,p] C (1,00), let X be a (p, h.)-uniformly convexr
and (g, hs)-uniformly smooth Banach space and a closed convex D C X. Assume also
that A C X is a bounded subset of X and

ce= sup (1 —p)he(p) and ¢, = inf (1 — p)' " Thy(p).
1€(0,1/2] ne(0,1/2]

Then we have

1/p
||pD| H‘J/p(A, D)” < (&) (ae(A, D)q + cscc_q/pd(A)q) 1/q—1/p‘

1+q/p
qcCc /

Moreover, if p=q = 2, we also have

1/2
Y/

| Pol &%, D) < =,

that is Pp is c;/Q/cc-Lipschitz.
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Corollary 9.1. (|7, 13|). For 2 € [q,p] C (1,00), let X be a quasi-Banach space that
is isomorphic to a (p, he)-uniformly convex and (q, hs)-uniformly smooth Banach space
Y with dpy(X,Y) < d, and a closed convex D C X. Assume also that A C X is a
bounded subset of X and

ce= sup (1 —p)he(p) and cs = sup (1 — p)"9h,(p).
ue(0,1/2] ne(0,1/2]

Then there exists a retraction ¥p of X onto D satisfying

1/p
H¢D| Hq/p(A7 D)H < d( yger ) (ae(A, D)q +csc(jQ/pd(A)q)1/q_1/p_

1+q/p
s /

Moreover, if p=q = 2, we also have

1/2
ool icx, D) < %

that is Pp is dc;/2/cC—Lipschitz.

9.3 Holder-Lipschitz mappings: bounded extension

This auxiliary section is dedicated to the extension problem for the Hoélder-Lipschitz
mappings from a subset of a metric or a Banach space into a Banach space. It is
essentially an extract from [11, 13] where more information including complete proofs,
background and applications to the pairs of the spaces under consideration are pre-
sented, a well as a Markov type and cotype counterpart of the Rademacher type and
cotype theory (see also references therein).

Definition 9.3. Assume that X is a metric space, Y is a Banach space, and o, d > 0.
Let H*(X,Y) be the Banach space of all Y -valued continuous functions f defined on
X with the finite norm:

IFIH XY = sup {|[f(x) = F)lly /dx(z,y) - 2,y € X and x # y} .

We say that the pair (X,Y) possesses (d, a)-extension property if, for every subset
F C X (with the induced metric) and every f € H®(F,Y), there is an extension
f e H¥X,Y) satisfying

f(x) = f(x) forz € F and ||f|H*(X,Y)| < d|f|H*(E,Y)]|.

Let Sp(X,Y) C (0,00) be the set of all a, such that the pair (X,Y) possesses (d,«)-
extension property for some d < oco.

We say that the pair (X,Y') possesses convex (d, ov)-extension property if it possesses
the (d, o)-extension property, and there exists a corresponding extension f € H*(X,Y)

of f € H*(F,Y) satisfying f(X) C cof(F).
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Remark 9.2. a) Let also S_(X,Y) C (0,00) be the set of all «, such that the pair
(X,Y) possesses (1, a)-extension property, while S_.(X,Y) C (0,00) be the set of
all o, such that the pair (X,Y’) possesses convex (1, «)-extension property. The sets
S_(X,Y) and S— .(X,Y) for the pairs of spaces under consideration are found in [9].

b) The discrepancy between an arbitrary pair of {S,(X,Y), S_(X,Y),S_ .(X,Y)}
is called the phase transition phenomenon for the pair.

c¢) For the applications of the results on bounded extension it is very useful to
observe that, if a pair (X,Y’) has a (d, a)-extension property, and X is Cy-Lipschitz
homeomorphic (or Cy-isomorphic if X is Banach) to X, while Y is Ci-isomorphic to
Yy, then the pair (Xo, Yp) has the (dC§Ch, a)-extension property, where X, can be a
quasi-metric or a quasi-Banach space and Yy can be a quasi-Banach space.

Markov type and Markov cotype

Let us define the notions of Markov type and Markov cotype.

Definition 9.4. ([34]). Let (X,d) be a metric space and p € (0,00]. The space
X is said to possess the Markov type p with a constant Cyr if, for every n € N,
every stationary reversible Markov chain {&;}renufoy with the state set S, and every
f: S — X, one has the estimate

(Bd (f (&), f(&0))")"" < O (nEd (f(&1), f(&0)))".
The best constant Cyr is designated by Cyrr(p, X).

Remark 9.3. a) Note that we can consider only the chains with strictly positive
stationary distributions.

b) K. Ball [15] showed that every metric space (X, d) has the Markov type 1 with
the constant 1. Since d* with o € (0,1) is still a metric on X, every metric space is
also of type a.

¢) Markov type properties (type and the constant) are inherited by the subsets of
a metric space.

d) In fact, Theorem 1.6 in [15] shows that the definition of Markov type in [15]
(Definition 1.6 in [15]) is equivalent to, at least, a formally less restrictive counterpart
of Definition 9.4 where only the stationary reversible Markov chains with symmetric
transition matrixes are allowed. Thus, if X is of Markov type p with a constant
Chyr according to Definition 9.4, it is also of Markov type p with not worse constant
according to Ball’s original definition.

e) There are other notions of type and cotype than Markov or Rademacher ones
(see [38]).

To define the Markov cotype, we slightly modify the original definition of Ball
(written in the language of matrixes) by substituting the exponent 2 with g¢.

Definition 9.5. ([15]). Let X be a normed space and q € [1,00]. The space X is said
to possess the Markov cotype p with a constant Cyc if, for every n € N, g € (0,1),
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symmetric (double) stochastic n X n matriz A and sequence {x;}"_; C X, one has the
estimate

(ﬁ Z Qi j

1,j=1

q l/q n 1/‘1
) < Cue ((1 —8) Y cijllw — %‘ch) :

X 4,j=1

n n
E Ci kT — E Ci 1T
k=1 =1

where C' = (1 —a)(I — aA)™ and {a;;} and {c;;} are the entries of A and C respec-
tively.

For the sake of convenience, we say that X possesses the Markov cotype oo with the
constant 1 if, instead, one has

n n
E Ci kT — E Ci 1T
k=1 =1

The best constant Cye is designated by Cye(q, X).

Remark 9.4. a) Since Y ;1 CikZr — D 1y CiaTi = 9 opy Dopey CikCis(xr — x7), the
triangle inequality implies that every Banach space has the Markov cotype oo with the
constant 1.

b) Let us note that, if a Banach space X is finitely represented in Y possessing
the Markov type p with the constant C)y;r and the Markov cotype ¢ with the constant
Cuc, then X has the same Markov type and cotype with the same constants.

¢) Note that the Markov cotype can also be correctly defined for the convex subsets
of a Banach space.

max < max ||z; — 2| x.
ij=1 ij=1

X

The next theorem relates the (g, hs)-uniform smoothness to the Markov type ¢ and
(p, he)-uniform convexity to the Markov cotype p in a quantitative manner.

Theorem 9.4. ([11, 13]). Assume that 2 € [q,p] C [1,00).
a) If X is a (q, hs)-uniformly smooth Banach space, then it possesses the Markov
type q with the constant

1/q
Copn. = | inf (1—p)"9h, .
4hs (uemﬂ/ﬂ( 1) (u))

b) If X is a (p, he)-uniformly convexr Banach space, then it possesses the Markov
cotype p with the constant

1e(0,1/2]

-1/p
%m=2<sw u—mmwv -

Adaptation of Ball’s scheme

Let us present the adaptation of Ball’s approach [15] to the bounded extension problem
for Holder-Lipschitz mappings established in [11, 13]. K. Ball treated the extension
of Lipschitz mappings from a Markov type 2 metric space into a Markov cotype 2
Banach space but Naor [33] mentioned that it works also for some Holder mappings
and different values of Markov types and cotypes because d(x,y)* with « € (0,1] is a
metric if d(z,y) is, and because L, endowed with the metric ||z — y||P/? for p € (0,2] is
isometrically embedded into L, thanks to Theorem 5.11 in [48].
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Theorem 9.5. (|11, 13]). Fora =p/q € (0,1] with p,q € [1,00), let (X, d) be a metric
space possessing the Markov type p with a constant Cyr, and let' Y be a Banach space

possessing the Markov cotype q with a constant Cyrc. Assume also that Z C X and
f € H*Z,)Y). Then there is an extension f € H*(X,Y™) of f with

IFIH (X, Y™ < 35 (Clye +2) 1Ol | FIHN(Z, V)| < (3Cwr)* Cousc|| FIH(Z,Y ).

Remark 9.5. a) As far as the concrete pairs are concerned, K. Ball [15] applied his
abstract result on the existence of isomorphic extensions of the Lipschitz mappings
from a Markov type 2 space into a Markov cotype 2 space to the pairs of Lebesgue
spaces (Lo, L,) with ¢ € [2,00). More precisely, he showed that the pair possesses the
(1, d,,)-extension property with the constant d,,, = 6(¢ —1)"*/2. But he also explicitly
quantitatively related the uniform convexity and Markov cotype and established the
Markov type constant of L, for p € (1,2] to be 1. Naor [33] mentioned that Ball’s
scheme works for the Lipschitz mappings (o € (0,1]) between the pairs (X,Y) of
the Markov type p X and Markov cotype p Y spaces and, in addition, found that
Sp(lp, Ly) = p/ max(q,2) for p € (1,2] and ¢ € (1, 00) (interpreting Holder mappings as
Lipschitz; see Remark 9.3,b)). Naor, Peres, Schramm and Sheffield [34] showed that
L, has the Markov type 2 for p € (2, 00), estimated the Markov type constant using a
representation of a Markov chain as a sum of a backward and a forward martingales.
Therefore, they completed also the computation of Sy(L,, L,) for any pair p, g € (1, 00).
The pair (L, L,) with 2 € [¢, p] was shown to have the (1, d, ,)-extension property with

d,, <24, L1

qg—1
They conjectured that the constant 24 can be reduced to 1. Theorems 9.4 and 9.5
established in [11] (see also [13]) with the aid of our Markov chain counterpart of

Pisier’s martingale inequality obtained in [10, 13| provide the estimate d,, < 64/ 2’%}

not only for the pairs of commutative spaces, but also for the pairs of Schatten-von
Neumann classes, general noncommutative L,-spaces or, even, mixed pairs with the
same conditions on p and ¢q. The constant 6 above comes from the Ball’s scheme
meaning that the justification of the conjecture requires to improve Ball’s scheme itself.

b) The results in [11, 13| cover the pairs of spaces from the union of the classes
of spaces under the consideration in this paper, including the sharpness of the Holder
exponents.

10 Main results: approximation of uniformly continuous map-
pings

In this section we establish the main results describing the uniform approximation of
uniformly continuous mappings from a metric spaces, or a (convex) subset of a space
under consideration into another such space by Hoélder-Lipschitz mappings.

The best possible smoothness exponents of the approximating Hoélder-Lipschitz
mappings for the uniformly continuous mappings from the unit ball of L, [, into L,
or 1, for various pairs (p,q) were found by I. G. Tsar’kov [42, 43, 44| (see also § 2.1
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in [17]). His approach relies on the investigation of the Holder-Lipschitz regularity
of the Mazur maps and M. D. Kirszbraun’s extension theorem [29] (see also [28] for
generalizations). Earlier [30] he used a different approach utilizing Frechet’s extension
theorem to approximate the uniformly continuous mappings from a metric space into
a superreflexive (uniformly convex) space.

Our approach is based on our counterparts of Tsar’kov’s tools developed in |7, 11, 13]
and below. We shall deal with the following classes of uniformly continuous mappings.

Definition 10.1. ([30]). Let X be a metric space with a metric px and Y a
(quasi) Banach space. Assume also that Qg is the class of the semiadditive functions
w: [0,00) — [0,00) satisfying lim;_ow(t) = w(0) = 0.

Then, by means of H*(X,Y) for w € Qg, we designate the class of the continuous
mappings f: X — Y satisfying

If(x) — f(2)lly < w (px(x,2)) for every z,z € X.

Note that, whenever X is metrically convex (for example, X is a convex subset
of a normed space with the inherited metric), one has f € H*/ for every uniformly
continuous mapping f : X — Y, where wy is the modulus of continuity of f.

10.1 Abstract Bernstein-Jackson principle

The following common abstract step, reflecting the classical relation between the ap-
proximation properties of a mapping and its smoothness, can be extracted from both
approaches due to Tsar’kov mentioned above.

Lemma 10.1. Ford > 1 and w € Qg, let (X,Y) be a pair of a metric space X and
a Banach space Y possessing the (d, 1)-extension property, and f € HY(X,Y). Then,
for every e > 0, there exists f. € HY(X,Y) satisfying

If = fICX V) < (14 2d)w(e) and || fo] H' (X, Y)|| < 2dw(e)/e.

Proof. Thanks to M. Zorn’s lemma, there exists a maximal e-separated subset M, C X.
The restriction f. of f on M, is 2w(e)/e-Lipschitz thanks to the subadditivity of w.
With the aid of the triangle inequality, the proof is finished by choosing f. to be a
2dw(¢) /e-Lipschitz extension of f. onto X. O

Sometimes the smoothness of the approximation f. is less important than the
convex-envelope stability of the images f(X) and f.(X). The next lemma shows how
to improve the geometry of the image f.(X) at the expense of its smoothness.

Lemma 10.2. For 2 € [q,p] C (1,00), let X be a bounded metric space, and let Y
be a quasi-Banach space that is isomorphic to a (p, h.)-uniformly convex and (q, hs)-
uniformly smooth Banach space Z with dgy (Y, Z) < d,

ce= sup (1 —p)he(p) and c,= inf (1 — p)'"Thy(p).
1e(0,1/2) 1e(©,1/2)
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Assume also that w € Qg and gy, h, : (0,00) — (0, 00) with im0+ g,(t) = 0 are such
functions that, for some a € (0,1) and every f € H*(X,Y) and € > 0, there exists
fe € H*(X,Y) satisfying

If = FICX, V)] < gu(e) and [|£[HY(X,Y)| < hu(e).

Then, for every f € H*(X,Y) and € > 0, there exists f. € H?/P(X,Y) satisfying
f(X) ceo(f(X)),

1/p
I =AY < dgu(e)” ( & ) (9u(2)7 + 0P (@ (d(X)) +20(2)))

qc};H/p
and
1/p
Cs _ 1/q—1
LFE®P(X,Y)]| < dho ()" (%) (9(8)7 + cacs ™ (w (d(X)) + 200())*) 7.
qCc

Moreover, if p = q = 2 and X is either bounded, or unbounded, for every f € H*(X,Y)
and € > 0, there ezists f. € H*(X,Y) satisfying f-(X) C co (f(X)),

dci/ 2

(]

If = [ICX, V) < 9u(€)

and

dc;/ 2

(

[FIH (XY <

he(€).

Proof. Tt is sufficient to choose f. = ¥p o f., where vp is the retraction onto D =
o (f(X)) provided by Corollary 9.1, and take advantage of the conclusion of Corollary
9.1 (with A = f.(X) C D+ ¢,(¢)By if ¢ < p) and Corollary 3.1, a). O

Corollary 10.1. Let X be a metric space that is dy-Lipschitz homeomorphic to a metric
space Xq possessing the Markov type 2 with a constant Cyir, a bounded A C X and w €
Qg. Assume also that Y is a subspace of a quasi-Banach space Z isomorphic to some
Banach space Zy possessing the Markov cotype 2 with a constant Cyc, dpy(Z, Zo) < dy
and d = 3Cy1Cuyc. Then, for every e > 0 and f € HY(A)Y), there exists f. €
HP(A,Y) satisfying

If = ACA Y < gule) and || fo|HP(AY)]| < hu(e)

for the following combinations (3, g, and h,, in the following settings.

a) One can choose f.: A —co(f(A)), B =rs/re,

1 1 _ 1

9u(2) = (1 + 2d)dyeo(e) (%/) <1 et (2+ a;(dcgé)))))—

T'sCe
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and

1 1 1

rs re cCs e e ANy
he(e) = 2ddge dyw(e)e v (%) (1 T CaCe (2 " u;(dai@);) )

T'sCc

if Zo is (re, he)-uniformly conver and (rs, hs)-uniformly smooth with

ce= sup (1 —p)he(p) and co = inf (1 —p)"he(p).
1e(0,1/2) ue(0,1/2

b) One can take =1, g,(¢) = (1+2d)dyw(e) and h, () = ddodyw(e)/e. Moreover,
if Zy is Hilbert, one even has f.: A — co(f(A)).

Proof. Let Ty : X — Xy and T} : Z — Z; be, correspondingly, a homeomor-
phism and an isomorphism satisfying ||To|H' (X, Xo)||| Ty | H (X0, X)|| < do and
\TL|L(Z, Zo) Ty M L£(Zo, Z2)|| < dy, f € HY(A,Y) and

f_:TlofOToili X0—>T1YCZO. (1)

Thanks to Theorem 9.5 and Part b) of Remark 9.4 the pair (X, Yy) with Yy = 7Y
possesses the (d, 1)-extension property. Due to Lemma 10.1, combined with Corollary
3.1, and its proof, for any ¢ = || Ty ' |H"(Xo, X)||¢’ > 0, there exist f. and a maximal
e-net A, C ThA = Ay satisfying f(z) = f.(z) for x € A,,

1f = felC(Xo, Yo) | < (1 + 2d) || 14| £(Z, Zo) || w(e)

and
I f-lH (Xo, Yo)|I < 2d||Th|L(Z, Zo)||w(e) /<"

Note that, according to our construction, we have d (f(Ao)) < [|T1|£(Z, Zo)|jw (d(A)),
d (f-(Ao), f(Ao)) < dy (f(Ao), f(A:)) < 2d||Th|L(Z, Zo)||w(e)

and
e (fo(Ao), f(Ao)) < e (fo(Ao), f(A:)) < 2d|Th|L(Z, Zo)l|w(e).- (2)
To finish the proof of Part a) and the Hilbert setting in Part b), we construct

fE:Tl_loPDofsoTO: A —7co(f(A), (3)

where Pp is the metric projection onto D = o (11f(A)) (that is 1-Lipschitz if Z; is
Hilbert). The application of Lemma 9.1, a), Theorem 9.3 and (2) shows that a) and
the Hilbert case of b) hold.

To finish the proof of the corollary in the case of the rest of b), we just take

fEZTfloﬁoTo: A—-D=Y.
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10.2 Adaptation of Tsar’kov’s scheme I

Unfortunately, for f € H¥(X,Y), the pair (X,Y’) may not have the (¢, 1)-extension
property. The first approach of Tsar’kov [30] (that covers the case of the uniformly
continuous mappings of the unit ball of L, or [, into L, or [, for p € {1,000} and ¢ = o)
is based on Lemma 3.1 suggesting that Y (or A C Y') is a subset of [(Y) (or I (A))
and the pair (X, (Y)) (or (X,lx(A))) always has the (1, 1)-extension property. We
use the implementation of this idea quantified in the following way.

Theorem 10.1. For p € [2,00), let X be a bounded metric space, and let Y be a
quasi-Banach space that is isomorphic to a (p, h.)-uniformly convex Banach space Z
with dgy (Y, Z) < d and f € H*(X,Y) for some w € Qg. Then, for every e > 0, there
exists f. € HYP(X,Y) satisfying f. : X — @0 (f(X)),

—1/p
If = f|C(X,Y)| < d(24pw(e))'” ( sup (1 — H)hc(ﬁb)) (w (r(X)) +w (d(X))"

1e(0,1/2]

and

—-1/p
£l H'P(X, )| < d (16pwie) fe) ( sup (1 —#)Mu)) (w (r(X)) +w (d(X)).

1e(0,1/2]

Moreover, if Y is a (p, he)-uniformly convex Banach space itself, one should take d = 1
in these estimates.

Proof. Let T : Y — Z with |T|L(Y, Z)|| |T7'£(Z,Y)|| < d. For f =T o f assume
that A = o (f(X)) and, therefore, f : X — A. According to Lemma 9.1, a), l5(A)

contains an isometric copy A of A, and we can interpret f as an H(X, lo.(A))-mapping
with @ = ||T|L(Y, Z)||w. Due to Lemmas 3.1,b) and 10.1, for every € > 0, there exists
f- satisfying

If = FAC(X, ()] < 30(e) and || £ H' (X, lo(A))]| < 20(e) /.

To finish the proof with the aid of Corollary 3.1,a), it is left to choose f. = T~ o¢o f.,
where ¢ is the retraction provided by Theorem 9.1, and note that

r (f(X), f(X)) <@ (r(X)) and d (f(X)) <@ (d(X)).

10.3 Adaptations of Tsar’kov’s scheme 11

To establish the best possible smoothness exponents of the approximating Holder-
Lipschitz mappings for the uniformly continuous mappings of the unit ball of L, or [,
into L, or [, for p,q € (1,00), L.G. Tsar’kov [42, 43, 44] (see also §2.1 in [17]) studied the
Holder-Lipschitz regularity of the Mazur maps and used them to reduce the problem of
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approximating by Holder mappings from L, into L, to the problem of approximating
by Lipschitz mappings. To solve the latter, he followed the Bernstein-Jackson principle
(Lemma 10.1) utilizing the (1, 1)-extension property of the pairs of Hilbert spaces (L or
l3), that is M.D. Kirszbraun’s extension theorem [29] (see also [28] for generalizations),
instead of Frechet’s extension for the pairs (X, ) that he used earlier. A. Naor found
a way how to demonstrate the sharpness of the smoothness exponent in the case ¢ = 1
in Tsar’kov’s result by considering the limit ¢ — 1.

In this section we develop an adaptation of Tsar’kov’s approach to the setting
of various pairs of function, /G and noncommutative spaces under consideration by
means of studying generalised Mazur mappings (simple Mazur ascent and complex
Mazur descent), using (the proof of) Corollary 10.1 and Theorems 5.1 and 9.5 instead
of Kirszbraun’s theorem and Lemma 9.1.

To formulate our three key approximation theorems in this section in a concise
manner, we introduce the auxiliary functions

E(a, W) := (2/a — )Mo and n(a) = 1 + 217 for o € (0, 1]
and W € IG (see Definition 2.13).

Remark 10.1. a) In applications of the following theorems, we can consider proper
compositions with translations and limiting arguments to have f(0) = 0 and substitute
r(A,0) with r(A, X), when X is a quasi-Banach space.

b) We are using Theorem 9.4, b) to deduce the Markov cotype of Y from the (2, h.)-
uniform convexity of Z; in Part c¢), keeping in mind that Z,/Z; inherits the (2, h.)-
uniform convexity of 7.

Theorem 10.2. Let X be a quasi-Banach space isomorphic to some Xy € 1Gy with
dpn (X, Xo) < dy, a bounded A C X, w € Qg, ag = min(puin(Xo),2)/2 and

d = 3/ Pmax(Xo) /a0 — 1Cxyc.

Assume also that a quasi-Banach space Z is isomorphic to some Banach space Z
possessing the Markov cotype 2 with a constant Cyc and dgy(Z, Zy) < dy. Then, for
every e >0 and f € HY(A,Y), there exists f. € HP(A,Y) satisfying

If = FICA YY) < gu(e) and | L] HP(A,Y)] < hu(e)

for the following combinations of 3, g, and h,, in the following settings.
a) IfY is a subspace of Z, one can choose f.: A —To(f(A)), 5= ayrs/re,

1 1

90(8) = (14 2d)dyw(e) (%) e (1 b (2 N %>rs> e

T'sCe

and

rs T'eCs re
hulE) = 2ddol) (don(ou)élan, Xo)r(4,0)0=) ()"

T'sCe

X <1 Ve (2+ %)r)—
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if Zy is (re, he)-uniformly convex and (rs, hs)-uniformly smooth with

ce= sup (1 —p)he(p) and ¢, = inf (1 — p) " "he(p).
1E(0,1/2) (0,172

b) One can take B = oy, g,(c) = C(1 + 2d)dyw(e) and
]’Lw(€> = 2Cd0dd17’](060)€(0&0, X())T’(A, O)l_ao(,U(€>/€

either if Y is a subspace of Z and C =1, or if Y is a factor space Z/Z; with ||I —
Py |L(Z)|| < C for a projector Py, : Z — Zy. Moreover, if Zy is Hilbert, one has
C=1and f.: A—7co(f(A)).

c) If Y is a factor space Z/Zy, one can choose f.: A —co(f(A)), B = ars/re,

rs _rs TeCs re
0.(6) = Crrr(1 + 2d)dy (&) ((A,0)) % (—/> x
TSCC

s w(d(A))r/re\ "\ 7 e
14+csce ™ | 24+ ——7—
x( + csc < + 2dw(z) e

and

ho(e) = 2Cxddiw(e) 7w (r(A,0)' (dOU(Oéo)f(OéoaXO)T(AaO)PQOEJ)% X

1 ren = —-L

TeCs e _rs w(d(A))rs/e s Te
w (TG 1+ cuenm (o4 DA77
<rsci+rs/”> ( e < " 2dw(g)rs/re

if Zo is (T¢, he)-uniformly convex and (rg, hy)-uniformly smooth with c. and cs as in
Part a) and

1/7c
T'eC 1/rs—1/rc
CHI — (217“5/Tc + (%S/TC) (1 +Cscgrs/rc2rs) / / ) .
C

s-c

Proof. 1t is very similar to the proof of Corollary 10.1. In particular, the last step in
the proofs of a) and c¢) is the application of Theorem 9.3 because the corresponding
metric projection is the last mapping in the composition of f.. Thus, we describe the
differences using notations from that proof. The dy-Lipschitz homeomorphism becomes
linear. We also apply Lemma 10.1 to

f=TiofoTy omg : X3 — T\Y C Zy, (1)

where X € IGj has the same tree T'(Xy) = T'(X1), min(pmin(Xo), 2)px, = 2px, and
Bo is the constant function 1/ag. The expression for d is provided by Theorems 9.4
and 9.5 with the aid of Theorem 2.2. Eventually, one takes

fe=T'oPpof.omuaoTy: A—co(f(A)) for D =70 (T f(A)) (2)
in the case of Part a) and the case of Hilbert Z; D Y in b), and

fo=PoTi'ofomyaoTy: A=Y, (3)
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when Y is a C-complemented subspace in b). In the case of the rest of b), we substitute
fin (1) with Bo f, where B: Y = Z/Z; — Ker(Py,) C Z is the linear right inverse
of the quotient map )z, : Z — Y corresponding to Py, .

As far as Part c¢) is concerned, the isomorphism 7 induces the isomorphism
Tl . Z/Zl — ZQ/T1Z1 with

ITIL(Z, Zo)l| = ||Ti1£(2/ 21, Zo/ T 21)

and

|72, 2)|| = 771020/ T 21, 2/ 24) |
Thus, instead of (1), we use
f=BoTiofoTy omg : X1 — %, (4)

where B : T1Y — Z; is the homogeneous inverse of the quotient map @)y : Zy — 1Y
given in Corollary 3.2. Then we employ Corollary 3.2 to estimate the modulus of
continuity of f and proceed exactly as above. The counterpart of (2) is

fo=T ' oPpoQyo feomeaoTy: A—co(f(A)) for D==co(T,A). (5)

Note that the quotient space T;Y inherits the convexity and smoothness properties of
Zo and, thus, we use Theorem 9.3 exactly as in a).

In addition to the multiple usage of Lemma 3.1, a), we also employ the regularity
estimates for our homogeneous Mazur mappings established in Theorem 5.1. Part ¢)
of Remark 5.1 provides the algebraic identity I = mg,mqq,q- O

Let us recall that functions w, and w, are defined in Section 2.6.

Theorem 10.3. Let X be a metric space that is dy-Lipschitz homeomorphic to a metric
space Xqo possessing the Markov type 2 with a constant Cyr, a bounded A C X and
w € Qg. Assume also that a quasi-Banach space Z is isomorphic to some Zy € 1G
with dga(Z,Zo) < dy, ay = 2/ max(2, pmax(Z0)), d = 6Carr (a1pmin(Zo) — 1) 2,
rs = Min(Pmin(2o),2) and r. = max(pmax(Zo),2) = 2/ay. Then, for every e > 0 and
f e H(AY), there exists f. € HP(A,Y) satisfying

If = fAICA YY) < gule) and [|£|HO(A,Y)] < ho(e)

for the following combinations of (3, g, and h,, in the following settings.
a) IfY is a subspace of Z, one can choose f.: A —Co(f(A)), 5= oairs/re,

9.() = (1 + 2d)din(an)g(en, Zo)w() (1 + %) : (—/) x

i (@A 0)) Y
><(1+cscC <2—i— 2 (?)
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and

1

hy(g) = 2ddin(or)§(ax, Z0)2W(5)(d0/5)a%25 (1 * %A(;())))) N (%) Tc

() @A)\
X (1+cscc (2+ 2de) ;

where Cs = ws(0>pmax(ZO)7 7as); Cec = Wc(oapmin<ZO)> Tc)'
b) One can take

B=ai, gu(e) = C(1+2d)din(en)é(ar, Zo)*w(e) (1 +w (r(A,0)) /2dw(e))

and
h () = 2Cddydyn(an)é (o, Zo)*w(e)e™ (1 +w (r(A4,0)) /2dw(5))1_°“

either if Z is
C-complemented in Z, or if Y = Z/Zy with ||I — Py |L(Z)|| < C for a projector
Py o Z — Zy. Moreover, C =1 ifY = Z or Zy is Hilbert. In the latter case, one
even has f.: A — @6 (f(A)).

c) If Y is a factor space Z/Zy, one can choose f.: A —co(f(A)), B =ars/re,

Ts

gw(&f) = CH[(]. -+ 2d)d177(041)§(041, Z0)2w<8) Tec

rs/T L=
w(r(A,0))""
2 (e)e /7

X w (r(A,0) (1 +

1 a1Ts 1_ L
T'eCs re - w(T(A)O))TS/TC oo
x [ —2 1+ceee™ |2
(/) ( e ( T 2o

Ts

h(g) = 2Chrddin(aq)é(on, Zo) w(e) ™

ayrs w (r ra/re\ 17
x w (r(A,0)' 77 (do/e) <1+ (r(4,0)) )

and

2dw(e)r/e

1 a1Ts 1_1
TeCs  \7e s w (r(A,0))"/" o
x | ——— 14+ csee™ |2 ;
(rsci”s/”) ( e < * 2dw(g)rs/re

where ¢ and ¢, are as in a) and

1/rc
TeCsg P er 1/rs—1/rc
CHI = 2177'5/7-6 + (—1+rs/rc) (1 + CSCC S/ C2 s) / / )
SCC

Proof. 1t is very similar to the proof of Corollary 10.1. Thus, we describe the distinc-
tions using notations from that proof. We apply Lemma 10.1 to

f=m

2o/ min(pz,,2)

OTlofOTgili XO—>Zly (1)
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where Z; € IG, has the same tree T(Z;) = T(Z;) and pz, = min(pg,,2). The
expression for d is provided by Theorems 9.4 and 9.5 with the aid of Theorem 2.2.
Eventually, one takes

fs:TfIOPDOm Omal,aofsoTO: AH@OE(A)) fOI‘D:@(TLf(A))

(2)

min(pzy,2)/e1pz,
in the case of Part a) and the case of Hilbert Z; in b), and

fo=PoT'om oM a0feoTy: A=Y, (3)

min(PZO,2)/041PZO

when Y is a C-complemented subspace in b). In the case of the rest of b), we substitute
fin (1) with Bo f, where B: Y = Z/Z; — Ker(Py,) C Z is the linear right inverse
of the quotient map @Yz, : Z — Y corresponding to Py, .

As far as Part ¢) is concerned, there exists the isomorphism T,: Z /7y — Zy/ T 7,
as in the preceding proof. Thus, instead of (1), we use

_ T -1,
f_mpzo/min(pzo,2) oBoTyo foly : Xo— Zy, (4)
where B : T'Y — Z; is the homogeneous inverse of the quotient map @)y : Zy — 1Y
given in Corollary 3.2. Then we employ Corollary 3.2 to estimate the modulus of
continuity of f and proceed exactly as above. The counterpart of (2) is

fe=T7 oPpoQyom oMy q0fe0Ty: A—co(f(A)) for D =co(TLA).

(5)
Note that the quotient space T;Y inherits the convexity and smoothness properties of
Zy and, thus, we use Theorem 9.3 exactly as in a).
In addition to the multiple usage of Lemma 3.1, a), we also employ the regularity
estimates for our homogeneous Mazur mappings established in Theorem 5.1. Remark
5.1 provides the algebraic identity

min(pzy,2)/e1pz,

I =

May oM

mmin(pzo,2)/a1pzo pzo/min(pzo,Z) .

]

Theorem 10.4. Let X be a quasi-Banach space with dpny (X, Xo) < do for some
Xo € IGy, a bounded A C X, w € Qg and oy = min(pmin(Xo),2)/2. Assume also
that a quasi-Banach space Z is isomorphic to some Zy € 1Gy with dgy(Z, Zy) < dy,
a = 2/ max(2, Pmax(Z0)), s = Min(pmin(Zo), 2), re = max(pmax(Zo),2) and

d=6 (pmaX<X0)/ozo — 1)1/2.

Oflpmin(ZO) —1

Then, for every e >0 and f € H*(A,Y), there exists f. € HP(A,Y) satisfying
If = £AC(AY)|| < gu(e) and || fo| HP(A, V)| < ho(e)

for the following combinations of 3, g, and h,, in the following settings.
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a) If'Y is a subspace of Z, one can choose f.: A —co(f(A)), 8= apairs/re,

1

W (r(A,0))\ T\
X (1+cscC (2+ 2dw(€)

(s

and

ho(e) = 2ddyn(an)é(an, Zo)2w(€) (don (o) (o, Xo) /e)

1 1 1
TeCs e —Is w(r(A,0))\ "\
1 sCc e 2 )
* (rsci+rs/T“> ( e ( " 2dw(e)

where ¢ = ws(0, Pmax(20),7s)s Ce = we(0, Pmin(Z0), 7e)-
b) One can take 5 = apary,

w (r(4,0) ) .

9u(€) = (1 + 2d)din(an)€(0n, Zo)*w(e) (1 T ()

and

w (r(A, 0)))1—

ho() = 2ddyn(aq)é(au, Zo)*w(e) (don(ao)é(ao, Xo) /€)™ <1 + 2duw(e)

if Z is C-complemented in Z, or if Y is a factor space Z/Zy with ||I — Pz, |L(Z)|| < C
for a projector Py, : Z — Zy. Moreover, C =1 if Y = Z or Zy s Hilbert. In the
latter case, one even has f.: A — @6 (f(A)).

If Y is a factor space Z/Z;,

c¢) one can choose f.: A — T (f(A)), B = apayrs/re,

9.(€) = Crr(1 + 2d)din(a1)& (o, Zo)*w(e) (r(A,0))' 7 x

and

hu(e) = 2Cuddin(en)€(ar, Zo)%w () (dom(ao)é(an, Xo) /o) 7 (r(4,0)' 7 x

WA\ [ s \® . (A, 0))) 7\
I+ = — T 1+coce™ [24 2 7
X ( JETZC Pkl et T T 2du(e)

where ¢ and c. are as in a) and

1/rc
CHI — 21—T5/TC + ( T'eCg > (1 4 CSCC_TS/TCQTS)I/rs—l/TC '
r -
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Proof. As above, it is very similar to the proof of Theorem 10.2. In fact, it is close to
a composition of parts of the proofs of Theorems 10.2 and 10.3. Thus, we describe the
differences using notations from that proof. The dy-Lipschitz homeomorphism becomes
linear. We apply Lemma 10.1 to

f= mpzo/min(pzo,2) oTyofo TO_1 ompg, : X1 — Z, (1)
where X; € IGy has the same tree T'(Xo) = T(X1), min(pmin(Xo), 2)px, = 2px, and
Bo is the constant function 1/ag, and Z; € Gy has the same tree T(Zy) = T(Z;) and
Pz, = min (pz,,2). The expression for d is provided by Theorems 9.4 and 9.5 with the
aid of Theorem 2.2. Eventually, one takes

fe= Tfl oPpo mmin(pzo,Q)/alpzo © May,a © feo Maga ©To: A —To(f(A))

for D =¢o6 (T1f(A)) @)

in the case of Part a) and the case of Hilbert Z; in b), and

f-=PoT om 0May a0 feoMagaoTy: A—Y, (3)

min(pzy,2)/@1pz,

when Y is a C-complemented subspace in b). In the case of the rest of b), we substitute
fin (1) with Bo f, where B : Y = Z/Z; — Ker(Pz,) C Z is the linear right inverse
of the quotient map @z, : Z — Y corresponding to Py, .

As far as Part ¢) is concerned, there exists the isomorphism T, : 7 /7y — Zy/ T\ 7,
with the same norms of itself and the inverse. Thus, instead of (1), we use

f = mpzo/min(pZO,Q)

oBoflofoTO_lom/gO: X\ — 7y, (4)

where B : T1Y — Z; is the homogeneous inverse of the quotient map Qg : Zy — 11Y
given in Corollary 3.2. Then we employ Corollary 3.2 to estimate the modulus of
continuity of f and proceed exactly as above. The counterpart of (2) is

fe=T'oPpoQyom
for D = @o(T1A).

min(pZO,2)/a1pZO O May,a © fe ©Maj,a © Ty: A—©co (f(A))

(5)

As above, we use Theorem 9.3 exactly as in a).

In addition to the multiple usage of Lemma 3.1, a), we also employ the regularity
estimates for our homogeneous Mazur mappings established in Theorem 5.1 and rely
on the algebraic identities obtained in the proofs of Theorems 10.2 and 10.3 (following
from Remark 5.1). O

The following lemma shows how to handle the situation when the domain space is
isomorphic to a quotient of a “good" space. It follows immediately from Corollaries 3.2
and 3.1, a).

Lemma 10.3. Let X be a quasi-Banach space isomorphic to a Banach space X, that
is (e, he)-uniformly convex and (rg, hy)-uniformly smooth with dgp (X, Xo) < do,

ce= sup (L—phe(p), cs= inf (1—p)'""hy(n),
1e(0,1/2] ne(0,1/2]
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and let Z = X/ X1 be a factor space of X, and a bounded A C Z. For a quasi-Banach
space Y, assume that, for some 3 € (0,1] and an arbitrary bounded B C X andw € Qg,

one has the approzimation property: for every e > 0 and f € H¥(B,Y), there ezists
f- € HP(B,Y) satisfying

If = FAC(B.Y)I < gu(e) and || | HP(B,Y)|| < hu(e).

Then, given w € Qg, for everye > 0 and f € H*(A,Y), there exists f. € H"s/™(A)Y)
satisfying

If = LIC(AY) < gu(e) and |[fo|H"(A,Y )| < Cpyr(A, 0)7077/ 7 h, (e),

where /
1/rc
1—7rs/Te TcCs —re/renrs) /Ts—1/Tc
Cor =2 +(T/) (1+eoemm2) -

Remark 10.2. Let us note that, depending on the parameters of the spaces, Theorem
10.1 can provide better Holder-Lipschitz regularity exponents than Theorems 10.2 —
10.4.

In the next corollary we see that Theorem 5.2 permits to substitute the IGg spaces
with the IGy, spaces in Theorems 10.2 — 10.4.

Corollary 10.2. a) With occasionally different & and n, the conclusions of The-
orems 10.2 — 10.4 remain true iof Xo € IGy in Theorems 10.2 and 10.4 with
ap = min (pmin(Xo),2) /2, and Zy € IG, in Theorems 10.3 and 10.4 with 1/oy =
max (Pmax(Z0),2) /2, 7s = min (Pmin(Zo), 2) and r. = max (Pmax(Zo), 2).

b) With occasionally different & and n, the conclusions of Theorems 10.2 and 10.3
remain true if Xo = L, (My) € I's in Theorems 10.2 with oy = min (pg,2) /2 and/or
Zy = Ly, (My) € I's in Theorems 10.3 with 1/a; = max (p1,2) /2, rs = min (p1,2) and
r. = max (p1, 2).

Proof. a) Lemmas 8.2 and 8.1 allow us to reduce the proof of a) to the setting X, €
IGyy and Z, € IGy,. The details of this reduction are the same as in the proof
of Part b) below. According to Theorems 2.2 and 2.4 the exponents p,q of the best
(p, he)-uniform convexity and (g, hs)-uniform smoothness are computed in a similar way
leading to the same outcomes from the applications of the results on metric projections
and homogeneous inverses from Sections 3.2 and 9.2. The usage of the abstract Mazur
ascent from Definition 5.3 in tandem with Theorem 5.2 completely substitutes the
usage of the simple Mazur ascent from Definition 5.2 and Theorem 5.1,b), while Part
a) of Theorem 5.1 remains applicable. Indeed, the reason for employing the simple
Mazur ascent in Theorems 10.2 — 10.4 is the reduction of the approximation problem
for an arbitrary pair to the pair of a Markov type 2 space and a Markov type 2
space that require to change all the parameters px,(i) < 2 and all the parameters
Pz, > 2 to the value 2 that is achieved by using the Mazur ascents with the parameters
ap = min (Pmin(Xo),2) /2 and 1/a; = max (puax(Zo), 2) /2 correspondingly. Theorem
5.2 with 8 < « permits to perform the same tasks with the same exponents.
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In details, we only need to find the substitutions for the pair of mutually inverse
operators

(mao,m mﬁo) and <mmin(1?zo72>/0¢1pzo ©Maj.a mpzo/min(l)zo72))

used in the proofs of Theorems 10.2 — 10.4, while we would like to maximize only the
smoothness of the substitutes for mq,, : Xo — X; and m

Zy, where ppin(X7) > 2 and ppax(Z;) < 2.

In the case of My, 4, we choose P = {i € P,.(Xo) : px,(i) > 2} and use the
abstract Mazur ascent mapping provided by Theorem 5.2 with § = «y. Both this
mapping and its inverse are ap-Holder according to the same theorem.

In the second case, we choose P = {i € P,.(Zy) : pz(i) < 2}. Note that
pz, (1) = 2 for i € P,e(Zy) \ Pr, and one needs to transform them to the values py,
and, possibly, also to increase the value 2 = pz, (ig) for (possibly commutative spaces)
at the vertex(es) igp with pz,(ig) = Pmax(Zo). This first step is achieved by the abstract
Mazur ascent mapping from Theorem 7.5 with § = ay. Afterwards we use the same
complex Mazur descent (note that it deals only with the “commutative” vertexes while
the noncommutative are already “in place") to return the parameters that became
too large back to their values for Z,. In the opposite direction we increase all the
noncommutative parameters between pmax(Zp) and 2 to the values not less than 2
utilizing the degenerated ascent described in Remark 5.3. Then we reduce them all to
the value Pyay(Zy) by the appropriate complex descent and, eventually, return back
to Z; with the aid of the inverse of the first abstract Mazur ascent above provided by
Theorem 5.2.

The proof of Part b) requires even less changes. If X, = L, (M) and/or
0 = L, (M,), one works, correspondingly, with the spaces X, and/or Z, provided
by Theorem 8.6 instead of Xy and/or Zy. Substituting py and p; with 2, we also in-
voke Theorem 8.6 in the same manner to obtain the Hilbert spaces X5 and Z5 and
extend by continuity the union of the mappings m,» and my, for r € {r,2} provided
by Theorem 4.5, as in the proof of Theorem 6.8, construct the homogeneous Hélder
homeomorphisms between X and X, and between Z, and Z. O

. O . —
mln(pzo,2)/a1pzo May,a Zl

10.4 Pairs of abstract Banach lattices

To reveal the intimate relation between the approximation of uniformly continuous
mappings and the Holder classification of spheres, let us note that Theorem 6.2 implies
the following theorem.

Theorem 10.5. Let X and Y be Banach lattices with a weak unit that do not contain
loo(I) uniformly (by n). Assume also that f : D — Y is uniformly continuous
on a bounded D C X with the modulus of continuity dominated by a nondecreasing
subadditive w : Ry — Ry with limy_ow(t) = 0. Then there exists v € (0, 1], such that,
for every e > 0, there is f. € HY(X,Y) satisfying

I|f(z) — fo(x)|ly <€ forxze D.
Moreover, one also has v = 1/4 and f.(X) C co(f(D)) if Y is a Hilbert space.
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Proof. We essentially follow Tsar’kov’s scheme II of the reduction of the case of a pair
of Lebesgue spaces to the case of a pair of Hilbert spaces followed by the application
of Kirszbraun’s extension theorem [29]. The difference is in the usage of the Holder
homeomorphisms provided by Theorem 6.2 instead of our counterparts of the Mazur
mapping and the composition with a metric projection in the special case of Hilbert
Y.

Indeed, let Ds C D be a maximal d-separated subset of D, and let 1 : X (@o.o) H,

and ¢, : Y (Quby) H, be the homogeneous Holder homeomorphisms supplied by The-

orem 6.2 (Hy and H; are Hilbert). Assume also that ¢ = ;0 f oy’ : Dy —
Hy and Dos = 1o(Ds), where Dy C Ho. Let |95 | H?(4(D), X)|| = Co and
1| H*(f (D), Hy)|| = Cy. Therefore, the modulus w(t, ¢) of continuity of ¢ on 1g(D)
satisfies

w(t, ) < Ch (w(Cot®))” = w(t).

Since w is subadditive, the restriction of ¢ to Dos is Lipschitz with ||¢|H'(Dys, Hy)|| <
2w(8") /8", where &' = (§/Cp)Y®, and, thus, is extended to ¢5 : Hy — H, satisfying
\lbs| H (Ho, Hy)|| < 2w(d")/8" with the aid of Kirszbraun’s extension theorem. Now we
choose f5 = 17" o ¢s 0 1y and use Corollary 3.1 to conclude that fs € H*5(D,Y).
Clearly, for every x € D, there is y € Ds with ||z — y||x < J, and, therefore, one has

1f(2) = fs(x)lly < f (@) = fFW)lly + 1 fs(z) = f5(w)lly (1)
< w(0) + | fs| H*P (D, Y) |50

Since lim;_,gw(t) = 0, the right-hand side of (1) is less than a given £ > 0 for sufficiently
small § > 0. The proof of the general case is finished because x € D was arbitrary.

If Y = Hy, then f; € H'/*(H,Y) due to Theorem 6.2 and the composition rule
(Corollary 3.1,a)). Considering fs = P o fs, where P is the metric projection onto
co(f(D)), we obtain the identity f — fs=Po (f — fs). Since P is 1-Lipschitz according
to the Phelps characterisation of Hilbert spaces, we achieve the additional properties
fs € HYA(X,Y) and f5(D) C @(f(D)) finishing the proof of the theorem. O

10.5 Pairs of concrete spaces
Corollary 10.1 and Theorems 10.1 — 10.4 suggest the following definition.

Definition 10.2. Let X be a metric space and its bounded subset, and let Y be a quasi-
Banach space. Assume also that 3,7,6 € (0,1]. We say that the pair (X,Y) possesses
the (B,~,6)-uniform approximation property if there exist constants Cy,C, > 0 and
exponents [, f1 € [0,1) depending on the (parameters of) the spaces X and Y, such
that, for every w € Qg, bounded A C X, f € HY(AY) and ¢ > 0, there exists
f- € HP(A,Y) satisfying

If = FACA )] < Cow (r(A)” w(e)

and

IFIHP (A Y| < Crr(A)*w (r(A)™ w(e)e™.

If, in addition, one also has f. : A — T (f(A)), we say that the pair (X,Y") possesses
the convex (3,7, §)-uniform approximation property.
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One uses the term (-uniform approximation property when v and § are not impor-
tant. If, in addition, the pair (X,Y") does not possess the (3'-uniform approzimation
property for any B’ € (0, 3), we say that the pair (X,Y") possesses the sharp [-uniform
approximation property.

Theorem 10.6. For i € I5; U {0}, let X be a metric space and X;,Y; C I';. Assume
also that Z € {X;,Y;} has the form:

() 2 € {232,0,.0,(C2). B350, (C0). 27
ble az ZfZ S {Xl,Yl},

(i1) Z € {:2(Ga), 237 (Ga)' } if Z € {Xa Vo),

(iti) Z € {Zsz (R™)o, Z;,;q,Z(R")fU} if Z € {X3,Y3),

pPz,q9z

o
Pz.47,05

(Gp)*, 2747 (GZ)*} with admissi-

() Z € {22, 2(G), 27 AG)} if Z € (X, Vi,
and

(v) Z = 2y, if Z € { X5, Y5},

Let also:

1) 2ap = min (Pmin(Xo),2), 2a; = min (pximm,qxi,Q), 2/By = max (Pmax(Xo),2) and
2/B; = max (px, max, 4x,» 2) fori € {1,3,4},

2) 200 = min (Pxyumin, 2), 2/F2 = MaX (Pxymax, 2), 205 = min(px.,2) and 2/8; =
max(py,, 2),

and

3) o and (; be defined by substituting X; with Y; in the above expressions for a; and
0; respectively.

Then the following holds.

a) The pair (X,Y;) possesses the convex (5;/2,5;/2, B;/2)-uniform approximation
property for i € I5 U {0}.

b) Assume that Gy, satisfies the C-flexible A\-horn condition for j € {1,2}, and, if
X, is defined as a dual fori € {1,2}, Gx, satisfies the C-flexible A-horn condition too.
Let also X4 be not defined as a dual. Then the pair (X;,Y;) possesses the («.f3;, B;, B;)-
uniform approximation property for i € Is U {0} and j € {0,1,2,3,5}.

c) Assume that X; is as in b) for all i, and, if Y; is defined as a dual, Gy, satisfies
the C-flexible A-horn condition for j € {1,2}. Let also Yy be not defined as a dual.
Then the pair (X;,Y;) possesses the convex (oziajﬁjz, ozjﬂjz, ozjﬂjz)—uniform approximation
property for i,j € Is U{0}.

d) Assume that X; is as in b) for all i. Then the pair (X;,Y;) possesses the convex
(e B2, 382, a; 32)-uniform approximation property fori,j € Iy U {0}.

e) Assume that Y; is as in b) for all j. Then the pair (X;,Y;) possesses the
(2838}, Bj, B;)-uniform approzimation property for i,j € I5 U {0}.

f) Assume that Y is as in c) for all j. Then the pair (X;,Y;) possesses the convex
(a?ﬁi%ﬂf, ozjﬂjz, ozjﬁjz)—umform approzimation property fori,j € I5 U {0}.

g) Assume that'Y; is as in d) for all j. Then the pair (X;,Y;) possesses the convex
(a?ﬁiajﬁ?, 0432- ]3, ajﬁjz)—umform approzimation property fori,j € I5 U {0}.

Moreover, the parameter 3 = a;3; is sharp (mazimal possible) in Part b) if i # 4,
dim(X5) = dim(Y5) = oo, and X, and Yy contain copies of laa, and ly)g, respectively.
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Remark 10.3. a) Since the (convex) (f3,7,d)-uniform approximation property of a
pair (X,Y) is stable with respect to the substitution of one or both elements with
isomorphic spaces (or the usage of equivalent norms), the applicability of the theo-
rem is noticeably extended by the results on the equivalent characterisations of the
spaces under consideration. For example, some spacial cases of X, and Y}, such as
the anisotropic Nikol’skii-Besov spaces (on R") defined in terms of Fourier multipliers
(approximation by entire functions of exponential type) [35] and the Triebel-Lizorkin
spaces F; (R") [41], that are their Lizorkin-Triebel counterparts defined in terms of
Fourier multipliers (smooth Littlewood-Paley decompositions) are isomorphic to both
(X3,Y3) (wavelet characterisations) and (X;(R"),Y;(R")) with the same parameters
and an admissible a. Furthermore, the usage of Theorem 10.4 in the proof shows
that the substitution of F; (R") with F; (G) with an open G C R" in a pair does
not change its (convex) (3,7, d)-uniform approximation property as well because such
F; (G) is isomorphic to a complemented subspace in F (R™).

b) Let us note that, according to Theorem 11.2 with ¢ = 1, the exponent 3;/2 in
Part a) of Theorem 10.6 is sharp not only when the metric space X is, for example,
(a ball in) one of the spaces [, and I, (N, {l, }nen) with p =1 or p = oo, but also when
X e T for i € {1,2} and one of the parameters of X (different from a component of
a compatible ax if i = 1) is equal to 1 or oo or X € {51, Sw} thanks to Corollary 3.1
from [13] (see also Remark 8.4 above) complementing the results in the next section
by identifying the existence of isomorphic copies of {1([,) and I (1,,) in these spaces.

¢) While X; may have some parameters equal to 1 thanks to Part a), Parts b) and
e) remain true also in the case puin(Yo) = 1. The sharpness is shown by means of
factorizing via a sequence of spaces with converging parameters (see Theorem 2.3 in
[17] for an analogous argument due to Naor).

Proof. Theorem 10.1, combined with Theorems 2.2—2.8 and Remark 2.11, b) describing
the (p, h.)-uniform convexity of Y;, implies Part a).

According to Section 2.2, X; and Y; for ¢ € I; are subspaces of the corresponding
IG(l,, L,) space with the same range of the parameters, and Y; (i # 4) is even com-
plemented thanks to Theorem 8.1 and Remark 8.2. When G, possesses the flexible
A-horn condition, X;, defined as a dual for ¢ = 1, 2, is isomorphic to a subspace in the
corresponding IG-space with the same parameters due to Section 2.2, Theorem 8.1
and Lemma 8.1. Thus, we obtain Part b) with the aid of Theorems 10.2,b) and 10.3,b)
and Corollary 10.2 if ¢ € {0,5} and/or j € {0,5}. In the rest of b), we use Theorem
5.6,0).

The sharpness in b) is inferred from Theorem 11.2 with the help of Theorems
8.2 — 8.4, Lemmas 8.1 and 6.3 and Remarks 8.2 and 8.3 insuring the existence of the
complemented copies of sequence spaces. To check the presence of the corresponding
extension properties for various pairs under consideration that are also required in
Theorem 11.2, we use Remark 5.1,b) or 5.1, ¢) in tandem with Theorems 2.2 — 2.8 or
4.2 — 4.5 respectively.

Parts ¢) and d) are deduced, correspondingly, from Parts a) and ¢) of Theorems
10.2 — 10.4 assisted by Corollary 10.2 whenever the spaces from 'y U I'; are involved.
As above, all the exponents (and even parameters) are traced with the aid of Theorems
2.2 —-28.
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To establish e), f) and ¢), we add the usage of Lemma 10.3 to the above con-
siderations leading, respectively, to b), ¢) and d) and, thus, finishing the proof of the
theorem. O

11 Tsar’kov’s phenomenon and sharpness of Holder exponents

The approximation of uniformly continuous mappings between Banach spaces by
Holder-Lipschitz mappings is closely related to the problem of the existence of homo-
geneous Holder-Lipschitz homeomorphisms of Banach spaces. Tsar’kov’s phenomenon
for a pair of Banach spaces X and Y is the existence of an exponent o € (0, 1) such
that not every uniformly continuous mapping from a unit ball of X into Y can be ar-
bitrary well-approximated by an a-Hdlder mapping. In this section, we relate the best
Holder smoothness of the homeomorphisms between the spheres of the spaces under
consideration with the limiting exponents describing Tsar’kov’s phenomenon.

The best possible smoothness exponents of the Holder-Lipschitz mappings approx-
imating the uniformly continuous mappings of the unit ball of L, or [, into L, or [,
for various pairs (p, q) were found by 1. G. Tsar’kov [42, 43, 44] (see also §2.1 in [17]).
I. G. Tsar’kov studied the Holder-Lipschitz regularity of the classical Mazur mappings
and used them to reduce the problem of approximating by Holder mappings from L,
into L, to the problem of approximating by Lipschitz mappings. To solve the latter, he
followed the Bernstein-Jackson principle utilizing the (1, 1)-extension property of the
pairs of Hilbert spaces (Ly or l3), that is M. D. Kirszbraun’s extension theorem [29]
(see also 28] for generalizations), instead of Frechet’s extension for the pairs (X, l)
that he used earlier [30]. A. Naor found a way how to demonstrate the sharpness of
the smoothness exponent in the case ¢ = 1 in Tsar’kov’s result by considering the limit
qg— 1.

In 1993, I.G. Tsar’kov [45] had solved the problem of the uniform approximation of
a set-valued uniformly continuous mapping f from a uniformly smooth X into the set
of closed convex subsets of a uniformly convex Y by means of a single-valued mapping
f- satistying

rx (f(x), fo(x)) <eforze X

and

1f=(21) = fo(z2)lly < C (wy' (Qx (Cllay — wallx)) + l#1 — @2l x) for xy, 25 € D,

where D is an arbitrary bounded subset of X, C' = C(D), and wy and {2x are the
classical moduli of uniform convexity and smoothness of ¥ and X correspondingly. He
had also established the sharpness of the Holder regularity exponent % of f. for
the reflexive X = L, and Y = L,.

The essence of our approach is in the next lemma relating Hélder homeomorphisms
and the approximation problem.

Lemma 11.1. Let X, X1,Yy,Y; be Banach spaces and o, 71, 00,01 € (0,1]. Assume
also that the pairs (Xo,Yy) and (X1,Y1) possess the v and ~yi-uniform approzimation
properties respectively, while the pairs (Xo, X1) and (Yy, Y1) possess the sharp &y and
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01-uniform approximation properties correspondingly. Then

(Yo, X1) < min (61/71,90/7) -

Proof. Assume that ¢ : Y &) X for some o, 5 € (0,1). If fo : Bx, — X; and

fi: By, — Y; are some uniformly continuous mappings, then so are the compositions
¢ 1o fyand f) 0o ¢! that can be uniformly approximated by some gy € H(Bx,, Yp)
and g9 € H"(Byx,,Y1). Therefore, the compositions ¢ o gy and g, o ¢ approximate,
respectively, the original mappings fo and fi. The application of Lemma 3.1, a) finishes
the proof by implying

a < min (61/71,90/7%) -

]

Theorem 11.1. Let X,Y € IG,([1,00)) have the same tree T(X) =T(Y') (and, thus,
common P). Assume also that, for every e >0 and m € N, there exist

p € H{X)N({Pmin(X), Pmax (X)} + (=€, €)) and ¢ € I(Y)N({Puin(V), Pmax (V) } + (=€, €)) ,

such that X and Y contain Cy-isomorphic and Cy-complemented copies of 1,(1,) an
ly(m) correspondingly for some Cy,Cy € [1,00). Then

min(Pmin(X),2) max(pmax(X),2)

min(pmin(y)> 2) 7 max(pmaX(Y), 2)

In particular, o(X,H) < min(pyin(X),2)/2 and o(H,X) < 2/max(pmax(X),2) if
Y = H =X,

a(X,Y) < min (

Proof. |We use Lemma 11.1 with Yy = X, X; =Y and X, = Y] = X5. Its conditions
are verified with the aid of the proof of Parts a) and b) of Theorem 10.6 and Remark
10.3,b), while the conditions of Theorem 11.2 follow from the conditions of the assumed

existence of the uniformly complemented and isomorphic subspaces and Remark 8.3.
O

11.1 Sharpness: key approximation theorem

This section is dedicated to Tsar’kov’s approximation lemma that is extended and
extensively used in |7, 11, 13]|. Let us recall that the space of continuous mappings
from X into Y is correctly defined.

Definition 11.1. Let X and Y be metric and Banach spaces correspondingly. Then
C(X,Y) is the Banach space of all continuous mappings from X into Y with the norm

IA1CCEY)| = sup | £(a) -

Lemma 11.2. (|42, 43, 44, 17]) For some 1 < p < ¢ < 0o and o > p/q and every
n € 2N, let ¢, be an element of H*(B(l,(1,),1,(1,)) satisfying

€ = sup [[4ul H(BUy(1).1y( 1)) < oo,
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Then one has
1My = Uul C(Bp(In), lg(T))]| > (1 = C(n/2)17e/7) /2,
where My : 1y(1,) — ly(1,), ©— ||z|l,||P/7 2 is the Mazur mapping.

The following theorem shows the sharpness of the majority of our approximation
results in Section 10 and underpins the applicability of Lemma 11.1 to the study of the
sharpness of the Holder exponents of the homogeneous Holder homeomorphisms of the
pairs of Banach spaces under consideration.

Theorem 11.2. For 2 € [¢,p] C [1,00) and d,Cy,Cy,Cy > 1, let X be a bounded met-
ric space containing Co-Lipschitz homeomorphic copy of the unit ball B(l,(1,,)) of 1,(1,)
for every n € N, and let Y be a quasi-Banach space containing a Cs-complemented
and Cy-isomorphic copy of 1,(I,) for every n € N. Let also the pair (X,Y) pos-
sess the (d,q/p)-extension property. Assume also that, for every w € Qg, there is
o : (0,00) — (0,00), such that, for every f € H¥(X,Y) and ¢ > 0, there ezists
fe € H*(X,Y) satisfying

[/ = fAC(X,Y)[[ <e and |[f[H*(X,Y)] < gu(e).
Then we have o < q/p.

Remark 11.1. Theorem 11.2 works equally well even if X is Ly or an appropriate
metric space.

Proof. Assume that a > ¢/p. For n € N, let ¢, : B(l,(1,)) = X, T, : 1,(L,) = Y
and P, : Y — ImT, be a corresponding Cp-homeomorphism, a Ci-isomorphism and a
projector satisfying || P,|L(Y)|| < Cy. Choosing f, = T, 0 My, 04, € H/?(Im ¢,,Y),
where M,,, € HY? (B(l,),1,) is the Mazur mapping (see Lemma 11.2), we utilize the
(d, q/p)-extension property of the pair (X,Y) to extend it to f, € H¥/?(X,Y) satisfying
ful HP(X, V)| <
< dl|¢, | H" (Im ¢, B (L) D IP I Tal £ (1), Y| - (| My HP(B(Lg), L) (1)
This means, in particular, that {f, },en C H*(X,Y) for some w(t) = c3t?/?. Therefore,
for every £ > 0, there exists g, € H*(X,Y) satisfying
1fr = 9ol C(X,Y)|| < " and [|gn| H*(X, Y| < gu(€). (2)
Observing that T, ' o P,of, o ¢, = M/, we define ¢, = T),* o P,0g, o ¢,, and use (1)
and (2) to infer the estimates
1My = al C(BUa(1n), b))l < €T LM Ty, Lg(1))|C2 = &
and
[n| H (B(lg(1n)), lp(In)) || < Cagu (Cse) - (3)

Now we choose ¢ = 1/3 in (3) to achieve the contradiction with Lemma 11.2, providing,
for sufficiently large n, the estimate

1Moy = n| C(B(ly(1n)), bp(In)) ]| > 1/3.
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