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Abstract. In an explicit quantitative and often precise manner, we construct the ho-
mogeneous Hölder homeomorphisms and study the approximation of uniformly contin-
uous mappings by the Hölder-Lipschitz ones between the pairs of abstract and concrete
metric and (quasi) Banach spaces including, in particular, Banach lattices, general non-
commutative Lp-spaces, the classes IG and IG+ of independently generated spaces (for
example, non-commutative-valued Bochner-Lebesgue spaces) and anisotropic Sobolev,
Nikol’skii-Besov and Lizorkin-Triebel spaces of functions on an open subset or a class
of domains of an Euclidean space defined with underlying mixed Lp-norms in terms of
differences, local approximations by polynomials, wavelet decompositions and systems
of closed operators, such as holomorphic functional calculus and Fourier multipliers of
smooth Littlewood-Paley decompositions. Our approach also allows to treat both the
finite (as in the initial and/or boundary value problems in PDE) and infinite lp-sums
of these spaces, their duals and “Bochnerizations”. Many results are automatically ex-
tended to the setting of the function spaces with variable smoothness, including the
weighted ones. The sharpness of the approximation results, shown for the majority of
the pairs under some mild conditions and underpinning the corresponding sharpness
of the Hölder continuity exponents of the homogeneous homeomorphisms, indicates
that the range of the exponents is often a proper subset of (0, 1], that is the pres-
ence of Tsar’kov’s phenomenon. We also consider the approximation by the mappings
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taking the values in the convex envelope of the range of the original approximated
mapping. Negative results on the absence of uniform embeddings of the balls of some
function spaces, particularly including BMO, VMO, Nikol’skii-Besov and Lizorkin-
Triebel spaces with q =∞ and their VMO-like separable subspaces, into any Hilbert
space are established. Relying on the solution to the problem of global Hölder conti-
nuity of metric projections and the existence of Hölder continuous homogeneous right
inverses of closed surjective operators and retractions onto closed convex subsets, as
well as our results on the bounded extendability of Hölder-Lipschitz mappings and re-
homogenisation technique, we develop and employ our key explicit quantitative tools,
such as the global (on arbitrary bounded subsets) Hölder continuity of duality map-
pings and the Lozanovskii factorisation, the answer to the three-space problem for
the Hölder classification of infinite-dimensional spheres, the Hölder continuous coun-
terpart of the Kalton-Pe lczyńki decomposition method, the Hölder continuity of the
homogeneous homeomorphism induced by the complex interpolation method and such
counterparts of the classical Mazur mappings as the abstract and simple Mazur ascent
and complex Mazur descent. Important role is also played by the study of the local
unconditional structure and other complementability results, as well as the existence
of equivalent geometrically friendly norms.

Introduction

This is the second part of the article. The content of the first part [1] is briefly described
below.

The first step towards the application of quantitative methods based on the
quasi-Euclidean approach developed in [7, 9, 10, 13] is the choice, if necessary, of a
geometrically-friendly equivalent norm in a space under consideration. Thus, in Sec-
tion 2 we defined and divided into six Γ-groups all the parameterised spaces under
consideration, described subfamilies of equivalent norms on some of them and relations
between different classes of spaces and provided a quantitative description of their
asymmetric uniform convexity and uniform smoothness. A large class of auxiliary
IG-spaces, including, in particular, lp-sums of Lp-spaces with mixed norm (and other
IG-spaces), was introduced, studied and employed in [7, 8, 9, 10, 13]. The class IG+

extends IG including also the lp-sums and “Bochnerizations” of the Lebesgue and se-
quence spaces of functions (possibly, on a discrete set) with values in noncommutative
Lp-spaces [40].

Section 3 contains elementary properties of Hölder-Lipschitz mappings and the
auxiliary results (including some involving the matter of sharpness) on the existence of
either ordinary or Hölder continuous (globally on arbitrary bounded subsets) homoge-
neous inverses for closed linear surjections between Banach spaces. We also introduce
the notions related to the Hölder equivalence of spheres of abstract spaces. Moreover,
Lemma 3.2 constitutes the answer to the three-space problem for our classification (see
the equivalence relation 7∼ in Section 1), while Theorem 3.4 is the Hölder continuous
counterpart of Kalton’s nonlinear version of A. Pe lczyńki’s decomposition method.

Section 4 contains the definitions and properties of our relatively abstract but occa-
sionally sharp key explicit quantitative tools: the global (on arbitrary bounded subsets)
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Hölder continuity of duality mappings and the Lozanovskii factorisation and the Hölder
continuity of the homogeneous homeomorphism induced by the complex interpolation
method. The latter mapping and its uniform continuity are due to M. Daher [24] and
N.J. Kalton [17].

In Section 5, we employed the latter key abstract tool and developed a re-
homogenisation technique to construct and study our counterparts of the Mazur map-
ping that we call the abstract and simple Mazur ascents and complex Mazur descent.
Their compositions appeared to be the Hölder homeomorphisms between the spheres
of the pairs of compatible IG0+-spaces that are sharp in the setting of the IG0-spaces
and occasionally sharp in the setting of the IG0+-spaces.

Part II of the paper starts with Section 6 which contains main results of the paper
on homogeneous Hölder homeomorphisms in a form that permits to trace the constants.
We start with complete description of Banach lattices that are in the same equivalence
class with Hilbert spaces and proceed by employing our abstract and constructive
tools of Sections 4 and 5 to provide quantitative Hölder classification of the spheres
of all the spaces under consideration with respect to the spheres of Hilbert spaces,
including also some spaces that are not equivalent to a Hilbert space. Indeed, relying
on the solution to Smirnov’s problem due to P. Enflo [26] and our results [4, 5, 12]
on the finite representability of c0 in (anisotropic) BMO(G), VMO(G), BMO(G) ∩
L∞(G), VMO∩L∞(G), Nikol’skii (i.e. Nikol’skii-Besov with q =∞) and corresponding
Lizorkin-Triebel spaces, as well as their VMO-like subspaces, we show that the unit
balls of these spaces cannot be uniformly embedded into any separable or nonseparable
Hilbert space.

In Section 7, we introduce commutative homogeneous Hölder group structures (com-
patible with the norm and the existing linear structure) on all our spaces under con-
sideration, even on those that do not admit any C∗-algebra structure.

Section 8 contains various results related to complementability of subspaces of ab-
stract and specific Banach spaces, including the existence of certain complemented
subspaces, that are employed either directly in the second group of the main results
in Section 8, or via some key auxiliary results that are either our counterpart of the
Kalton-Pe lczyńki decomposition method in Section 3, or the presence of Tsar’kov’s
phenomenon (our main sharpness tool) in Section 11.

Section 9 comprises, in an explicit and quantitative form relying on the asymmetric
uniform convexity and smoothness and Markov type and cotype, the basic auxiliary
properties of abstract and specific Hölder-Lipschitz mappings employed in our ap-
proaches to the second main task of the article: globally Hölder-continuous retractions
and metric projections onto closed convex subsets of Banach spaces and the bounded
extendability of Hölder-Lipschitz mappings between Banach spaces.

The second group of the main results that are on the approximation of uniformly
continuous mappings is contained in Section 10, where we utilise all our key tools
developed in the previous sections, as well as the sharpness tools of Section 11. We first
establish the approximation results in abstract and semi-abstract settings of mappings
from metric, quasi-Banach and IG-spaces into quasi-Banach and IG-spaces, and, then,
apply some of these results, as well as our other tools, to treat the approximation of the
uniformly continuous mappings between the pairs of either abstract Banach lattices,
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or our Γ-groups of the specific spaces under consideration.
In Section 11, we benefit from some uniform complementability results given in

Section 8 (see also [12]) by detecting the presence of Tsar’kov’s phenomenon for the
majority of the pairs of the specific spaces under consideration.

The numbering of the equations is used sparingly. Since the majority of references
inside every logical unit are to the formulas inside the unit, equations are numbered
independently inside every proof of a corollary, lemma and theorem, or a definition
(if there are any numbered formulas). The number of the corresponding logical unit
does not accompany the number of the formula in the references inside this unit.

6 Main results: Hölder classification of spheres

This section contain the explicit quantitative (and occasionally sharp) Hölder classifi-
cation of the spheres of both abstract Banach lattices and the spaces from the groups
{Γi}5i=0. In particular, we show that the Hölder and uniform classification of the spheres
of lattices coincide and reveal spaces from

⋃5
i=0 Γi that are not in the same equivalence

classes with the separable and nonseparable Hilbert spaces.

6.1 Hölder classification of abstract lattices

As we have seen in Remark 2.6, a), every (Banach) lattice X can be transformed
into a p-convex lattice X(p) [31] with better properties, and there exists an abstract
counterpart φp : X → X(p) of the Mazur mapping with the same properties. These
properties are the subject of the next result in [17].

Theorem 6.1. (Proposition 9.3 in [17]). For p ∈ (1,∞), let X and X(p) be a Banach

lattice with weak unit and its p-convexification. Then X
(1/p,1)←→ X(p).

After this preparation we can establish one of the main results of this section. It is
the sharp (i.e. under the same conditions) Hölder version of the corresponding result
due to E. Odell and Th. Schlumprecht [36] (Theorem 9.7 in [17]) that states that the
sphere of a Banach lattice is uniformly homeomorphic to the unit sphere of a Hilbert
space. We refer to [17] and [31] for the definitions and details of the proof that are not
explained here.

Let us recall (see [31]) that, if a Banach lattice X does not contain an isomorphic
copy of c0, then it is order complete and order continuous. In the presence of the order
continuity, every subspace of X contains a subspace with unconditional basis (1.e.9 in
[31]). Separable and function Banach lattices possess weak units. Order continuous
Banach lattices with a weak unit allow the function representation [31].

Theorem 6.2. Let X be a Banach lattice with a weak unit. Then we have

X
(1/4,β)←→ H

for some β ∈ (0, 1] and a Hilbert space H if, and only if, X does not contain l∞(In)
uniformly.
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Proof. We focus on the differences with the proof of Theorem 9.7 in [17]. The existence
of subspaces that are uniformly (in n) isomorphic to l∞(In) rules out even a uniform
embedding of BX into a Hilbert space according to P. Enflo [26].

The existence of a weak unit and the absence of the above mentioned subspaces
allow a representation (order isomorphic and linear isometric) of X as a lattice of
functions. The absence of the copies also implies that X is q-concave for some finite
q. Then, according to [31], its 2-convexification X(2) is 2-convex and 2q-concave and,
therefore, admits an equivalent (lattice) norm that makes X(2) 2-uniformly smooth
and 2q-uniformly convex. The latter conditions are equivalent to the (2, hs)-uniform
smoothness and (2q, hc)-uniform convexity. Eventually, Theorems 6.1 and 4.2 and the
properties of the Mazur mappings between L1 and L2 lead to the following chain

X
(1/2,1)←→ X(2) (1,(2q)−1)←→ L1

(1/2,1)←→ L2.

This chain finishes the proof with β = 1/2q thanks to the transitivity of the Hölder
homeomorphisms.

Eventually, the combination of Theorems 3.4, 4.1, 4.2 and 6.2 implies the following
result that includes the qualitative versions of all positive results in Section 6.2 that
do not involve noncommutative spaces. It is also our Hölder counterpart of Corollary
9.11 in [17].

Theorem 6.3. Let X be a superreflexive Banach lattice with a weak unit. Assume
also that Y is either a subspace or a quotient of X. Then the unit sphere SY is Hölder
homeomorphic to the unit sphere of a Hilbert space.

Proof. As a superreflexive lattice, X is q-convex and p-concave for some p, q ∈ (1,∞)
and, thus, can be renormed to be both (q, hs)-uniformly smooth and (p, hc)-uniformly
convex. Hence, due to Theorem 4.2 for both X and L2, we have

X
( q−1

2
, 1
p
)

←→ L2

( 1
q′

p′−1
2

)

←→ X∗. (1)

If Y is a subspace, then it has a subspace with an unconditional basis thanks to Propo-
sition 1.c.9 in Lindenstrauss and Tzafriri [31]. The latter is renormed into a sequence
lattice (1-unconditional basis) and, therefore, its unit sphere is Hölder homeomorphic
to the unit sphere of a Hilbert space due to Theorem 6.2. The application of Theorem
3.4 shows that the same is true for Y .

If Y is a quotient, then Y ∗ is a subspace of the superreflexive lattice X∗ and
the above argument applies. Since Y is also (after renorming of X) (q, hs)-uniformly
smooth and (p, hc)-uniformly convex, its unit sphere is Hölder homeomorphic to the
unit sphere of Y ∗ according to Theorem 4.1.

We also need the following lemma.

Lemma 6.1. For 2 ∈ [q, p] ⊂ (1,∞), let X be a Banach lattice that does not contain
an isomorphic copy of c0 and contains a subspace Y possessing the Rademacher type
q and cotype p. Then Y contains a subspace Z with unconditional basis, such that, for
every ε > 0, there exists a (qε, hs,ε)-uniformly smooth and (pε, hc,ε)-uniformly convex
Banach (sequence) lattice Zε with qε ∈ (q− ε, q], pε ∈ [p, p+ ε) and non-trivial hs,ε and
hc,ε that is isomorphic to Z.
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Proof. The no-c0 condition means that X is order continuous, and, hence, Y contains
a subspace Z with an unconditional basis. Therefore, Z is isomorphic (i.e. can be
renormed) to a sequence Banach lattice Z0 possessing the Rademacher type q and
cotype p. This condition implies that, for every ε > 0, there are qε and pε satisfying
the conditions of the lemma, such that Z0 is qε-convex and pε-concave. Hence, Z0

is isomorphic to a (qε, hs,ε)-uniformly smooth and (pε, hc,ε)-uniformly convex Banach
(sequence) lattice Zε that we are looking for.

6.2 Hölder classification of Γ-groups

In this section, we establish the explicit Hölder classification of the spaces from the
groups Γi estimating the parameters α(X,H) and α(H,X) for the spaces X under
consideration. One uses combinations of our major tools developed in the previous
sections, along with the sharpness tools in Section 11.

Theorem 6.4. For n ∈ N and i ∈ {1, 2, 3}, let Xi ⊂ Γi. That is we assume that:
(i) X1 has the form Xs1

p1,q1,a1
(G1) or X̃s1,A1

p1,q1,a1
(G1), or Xs1

p′1,q′1,a′1
(G1)

∗, or X̃s1,A1

p′1,q′1,a′1
(G1)

∗

with an admissible a1, where every component of a1 is in the convex envelope of q1
and {p1j}nj=1,
(ii) X2 has the form Xs2

p2
(G2), or Xs2

p′2
(G2)

∗,
and
(iii) X3 has the form Xs3

p3,q3
(Rn), or Xs3

p′3,q′3
(Rn)∗.

Then, if Gi ⊂ Rn satisfies the C-flexible λ-horn condition for i = 1, 2, we have

a) min (α(Xi, l2), α(l2, Xi)) ≥ δi =
min (pi min, qi, 2)

max (pi max, qi, 2)
for i ∈ {1, 3},

where α(Xi, l2) = δi if max (pi max, qi) ≤ 2, and α(l2, Xi) = δi if min (pi min, qi) ≥ 2;

b) min (α(X2, l2), α(l2, X2)) ≥ δ2 =
min (p2min, 2)

max (p2max, 2)
,

where α(X2, l2) = δ2 if max (p2max, 2) ≤ 2, and α(l2, X2) = δ2 if min (p2min, 2) ≥ 2.

Remark 6.1. a) It is possible to show that, under the above conditions of sharpness,

the optimal value δi of α(Xi, l2) and α(l2, Xi) for i ∈ I3 is achieved (i.e. Xi
(δi,δi)←→ l2)

if 2 is among the parameters {pij, qi}j∈In . This result will appear in a separate
paper because it requires real/harmonic analysis tools and exposes the limitations of
Theorem 4.3.

b) The choice of an admissible a1 that will not affect the maximum and minimum
of q1 and all the components of p1 is possible according to [3].

c) Note that the application of Theorem 4.3 in the proof permits to estimate,
explicitly, the behavior of the Hölder norms of the homeomorphisms involved.
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Proof. Regarding the complex interpolation method, we use the notation from [19].
In the case of every i = 1, 2 or 3, we apply Theorem 4.3. Indeed, it is easily checked
(particularly, with the aid of the point of view in §2.2) that taking all the parameters
(every component of the vector parameters) of Xi to be equal 2 makes it a Hilbert space
that we denote Hi = Xi2̄. O.V. Besov [20] has shown that the classes of reflexive spaces
Bs

p,q,1(G), Lp,q,1(G) and W s
p (G) are closed with respect to the complex interpolation if

the domain G satisfies the C-flexible λ-horm condition. For example,(
Bs0

p0,q0,1(G), Bs1
p1,q1,1(G)

)
[θ]
� Bsθ

pθ,qθ,1(G) and
(
Ls0

p0,q0,1(G), Ls1
p1,q1,1(G)

)
[θ]
� Lsθ

pθ,qθ,1(G),

where

1

pθ

=
1− θ
p0

+
θ

p1

,
1

qθ
=

1− θ
q0

+
θ

q1
and sθ = (1− θ)s0 + θs1. (1)

At the same time, it is demonstrated in [2, 3] that the corresponding spaces defined in
terms of the local approximation by polynomials are isomorphic to the corresponding
spaces defined in terms of the averaged differences, and that the constant a = 1̄ is in
the admissible range for X1, and every a in the admissible range delivers an equivalent
norm. Thanks to the duality theorem for the complex interpolation method [19] and
this renorming, (1) remain valid for the dual spaces.

The interpolation properties of the spaces with wavelet norms of functions on Rn

are well-known. For example, Rn satisfies the C-flexible λ-horn condition and they are
isomorphic to the spaces in [20].

Hence, we can always find spaces A0, A1 ∈ Γi for i ∈ {1, 2, 3} with the parameters
of A0 and A1 being arbitrary close to Xi and Hi correspondingly, such that

Xi � (A0, A1)[ε] and Hi � (A0, A1)[1−ε]. (2)

The application of Theorem 4.3 with r = 2 reduces the problem to computing the
(q, hs)-uniform smoothness and (p, hc)-uniform convexity parameters for the l2-sum

Yi = L2 (R, l2 ({0, 1}, {A0, A1})) = L2 (R, (A0 ⊕ A1)2) .

According to Section 2.2 Xi, if it is not defined as a dual, is a subspace of an IG
space Zi featuring the same parameters. Hence, Yi itself is a subspace of the IG space

Ei = l2 ({0, 1}, {Zi, Hi}) = (Zi ⊕Hi)2 .

Since Ei has the same set of parameters as Xi plus {2}, we just combine Theorems 2.2
and 4.3 to establish the (α, α)-Hölder equivalence where α can be chosen arbitrary close
to the proposed lower bound for α(Xi, Hi) and α(Hi, Xi). Similarly, if Xi is defined as
a dual, we deal with the quotients covered by Theorem 2.2 as well.

The sharpness follows immediately by Lemma 11.1 and Theorem 10.6, finishing the
proof.

The next theorem, dealing with function spaces on arbitrary open subsets of an
Euclidean space, shows that the irregularity of the domain of the functions from a
function space is likely to worsen the homogeneous Hölder homeomorphism with l2.
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Theorem 6.5. For n ∈ N and i ∈ {1, 2, 4}, let Xi ⊂ Γi. That is we assume that:
(i) X1 has the form Xs1

p1,q1,a1
(G1) or X̃s1,A1

p1,q1,a1
(G1), or Xs1

p′1,q′1,a′1
(G1)

∗, or X̃s1,A1

p′1,q′1,a′1
(G1)

∗

with an admissible a1, where every component of a1 is in the convex envelope of q1 and
{p1j}nj=1,
(ii) X2 has the form Xs2

p2
(G2), or Xs2

p′2
(G2)

∗,
and
(iii) X4 has the form Xs4

p4,q4
(G4), or Xs4

p′4,q′4
(G4)

∗.
Then we have

a) min (α(Xi, l2), α(l2, Xi)) ≥
min (pi min, qi, 2)5

max (pi max, qi, 2)6

min (pi min, qi, 2)− 1

2
for i ∈ {1, 4};

b) min (α(X2, l2), α(l2, X2)) ≥
min (p2min, 2)5

max (p2max, 2)6

min (p2min, 2)− 1

2
.

Remark 6.2. a) The group Γ4 is very large and some of its classes are known to be
isomorphic even to the spaces in Γ3.

b) In the case of Part a), the estimates can be improved, at least, up to

min (α(Xi, l2), α(l2, Xi)) ≥ δ3
i ,

where δi is defined in Theorem 6.4, but it requires an additional real/harmonic analysis
argument.

Proof. We prove only Part a) because the proof of b) is almost identical (one should
omit q and q′). According to §2.2, a non-dual Xi is a subspace of an IG-space Yi with
the same set of parameters (excluding smoothness) as Xi, and Corollary 5.1 implies
the equivalence

Yi
(α0,β0)←→ l2 with α0 =

min (pi min, qi, 2)

2
, β0 =

2

max (pi max, qi, 2)
. (1)

The reflexivity of Yi precludes it from possessing isomorphic copies of c0, and Theorem
2.2 provides its Rademacher type and cotype sets. Therefore, we combine Lemma 6.1
with our quantitative Lozanovskii factorization in Theorem 4.2 to find, for an arbitrary
small ε > 0, a subspace Zε of Xi, such that

Zε
(α1,β1)←→ l2 with α1 + ε =

min (pi min, qi, 2)− 1

2
, β1 + ε =

1

max (pi max, qi, 2)
. (2)

Now we finish the proof in the non-dual setting by means of applying Theorem 3.4 and
letting ε→ 0.

If Xi is a dual space, then, thanks to the reflexivity of Xi [2, 13], X∗
i is a subspace

of an IG-space Zi, with the same set of parameters (excluding smoothness) as X∗
i , and,

therefore, Xi itself is isometric to a quotient of the IG-space Z∗
i . Corollary 5.1 implies

the equivalence

Z∗
i

(α0,β0)←→ l2. (3)
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Applying Lemma 6.1 to X∗
i as a subspace of the lattice Zi, we find, for an arbitrary

small ε > 0, a subspace Wε of X∗
i that is isomorphic to a (qε, hs,ε)-uniformly smooth

and (pε, hc,ε)-uniformly convex Banach (sequence) lattice W̃ε with

pε = max (p′i min, q
′
i, 2) + ε and qε = min (p′i max, q

′
i, 2)− ε. (4)

Thus, W ∗
ε is isometric to a quotient of Xi and isomorphic to the lattice W̃ ∗

ε . Moreover,
thanks to the duality Theorem 4.5 from [13] (see also [10]), the lattice W̃ ∗

ε is
(
p′ε, h

1−p′ε
c,ε

)
-

uniformly smooth and
(
q′ε, h

1−q′ε
s,ε

)
-uniformly convex. Theorem 4.2 leads to

W ∗
ε

(αε,βε)←→ l2 with αε =
p′ε − 1

2
, βε =

1

q′ε
. (5)

Now we finish the proof by applying Theorem 3.4 to Z∗
i , Xi and W ∗

ε and tending ε to
0.

The following theorem shows that not all (even separable) Nikol’skii-Besov and
Lizorkin-Triebel spaces are in the same equivalence class with a Hilbert space with
respect to our Hölder classification of spheres.

Theorem 6.6. Let X ∈ Γ1([1,∞]) be not defined as a dual and its pmax = ∞. For
n ∈ N, p ∈ [1,∞]n, a ∈ (0,∞]n, s ∈ [0,∞), D = D̂ ⊂ Nn

0 , |D| <∞, assume also that
either s = 0 and p = (∞, . . . ,∞), or s > max (0, (γa, 1/p− 1/a)). Let also
Y ∈

{ ◦
Bs

p,∞,a(G),
◦
b s

p,∞,a(G), Bs
p,∞,a(G), bsp,∞,a(G),

◦
Ls

p,∞,a(G),
◦
lsp,∞,a(G), Ls

p,∞,a(G), lsp,∞,a(G),

◦

B̃ s,D
p,∞,a(G),

◦

b̃ s,D
p,∞,a(G), B̃s,D

p,∞,a(G), b̃s,Dp,∞,a(G),
◦

L̃ s,D
p,∞,a(G),

◦

l̃ s,D
p,∞,a(G), L̃s,D

p,∞,a(G), l̃s,Dp,∞,a(G)

}
.

Then the unit balls BX and BY of X and Y cannot be uniformly embedded into a
Hilbert space.

Remark 6.3. Note that Theorem 6.6 covers the (anisotropic) spaces

Y ∈
{
BMOλa(G), V MOλa(G), BMOλa(G) ∩ L∞, V MOλa(G) ∩ L∞

}
.

Proof. It was shown in [4] and [13] that Y contains an isomorphic copy of c0, while X
contains l∞(In) uniformly according to [13] (see also [5] for the application to strength-
ening and extending a result due to G. M. Fichtenholtz and L. V. Kantorovich [27]
on the non-complementability of C([0, 1]) in L∞([0, 1]), such as that VMO(G) is not
complemented in BMO(G)). Thanks to Enflo’s result in [26], this means that the unit
balls of all these spaces are not even uniformly embedded into any Hilbert space.

Theorem 6.7. Let X ∈ IG+ and H = X2̄, where the function 2̄ is constant 2 on
V(X). For p ∈ (1,∞), assume that

γ =
min(p, 2)

max(p, 2)
and δ =

min (pmin(X), 2)

max (pmax(X), 2)
.

Then we have
a) min (α(X,H), α(H,X)) ≥ δ and, if X ∈ IG0+, X

(δ,δ)←→ H.
If X contains an (isomorphic) complemented copy of lp, we also have

b) X
(δ2γ,δ2γ)←→ H and, if X ∈ IG, X

(δγ,δγ)←→ H.
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Remark 6.4. a) Note that, if one of the elements of the tree T (X) is l2, ltp,q(Zn×R),
or ltp,q(Zn × R)∗ with 2 ∈ {p, q}, then X contains an isometric complemented copy of
l2 (see [13]). Moreover, if X is not purely a sequence space (i.e. one of the elements of
the tree T (X) is Lp(Ω, µ) with not purely atomic µ), then X contains a complemented
copy of l2 as well. Indeed, X contains (an isometric copy of) Lp(Ω, Y ) for some Y ∈ IG,
whose tree is the subtree of X grown from Lp(Ω, µ), while the latter obviously contains
Lp(Ω, µ) itself, where we can construct a Rademacher system and use the Khinchin
isomorphism to show the complementability of its span in Lp(Ω, µ).

b) We can substitute the condition X ∈ IG in Part b) of the preceding theorem with
X ∈ IG0+ and Pnc = PI (see Theorem 5.2 and Corollary 5.4) and employ Corollary
5.5 instead of Corollary 5.2 in the proof.

Proof. It is straightforward from [19] that A0, A1 ∈ IG0+ form a compatible pair if
T (A0) = T (A1) and, thus, the same parameter position set p, and we also have

(A0, A1)[θ] = Apθ
(isometry). (1)

Therefore, applying Corollary 4.1 to the pair (X,X2̄) and repeating the limiting argu-
ment from the proof of Theorem 4.5, we obtain the second relation in Part a).

In the case A0, A1 ∈ IG+, we now combine (1) with Theorem 8.5 with the aid of
Lemma 8.2 to obtain

(A0, A1)[θ] � Apθ
, (2)

where Apθ
∈ IG+ is the space with the same tree as A0 and A1 and the parameter

position function
1

pθ

=
1− θ
pA0

+
1

pA1

.

Similarly to the proof of Theorem 6.4, we choose Y0 and Y1, so that

pX = pε and p1−ε = 2̄

and use Theorem 4.3 with r = 2, where we compute the convexity and smoothness
exponents of L2 (R, l2 ({0, 1}, {A0, A1})) with the aid of Theorem 2.2. Eventually the
lower bound δ in Part a) is obtained by passing to the limit ε→ 0.

According to Lemma 8.2, X ∈ IG+ (X ∈ IG) is either a complemented subspace of
a quotient Z/Z0 with Z0 being complemented in Z, or a complemented subspace of Z,
where Z ∈ IG0+ (Z ∈ IG0) has exactly the same range of the parameters (the image
of the parameter position function: I(X) = I(Z)) as X. If X contains a complemented
copy of lp, we apply Theorem 3.4 either to the triple l2 ⊂ X ⊂ Z in the former case, or
to the triple l2 ⊂ X0 ⊂ Z in the latter case, where X0 is chosen to be isomorphic to X
in the following way. Choosing a complement Z1 to Z0 in Z (i.e. Z = Z0⊕Z1), we see
that Z1 is isomorphic to Z/Z0 and, therefore, Z1 contains a complemented subspace
X0 that is isomorphic to X. Let us note that X0 is also complemented in Z. Thus,
we obtain the first relation in Part b) combining this observation and the proof of the
lower estimate in Part a) by means of Theorem 3.4.

For X ∈ IG, the parameters

α =
min (pmin(X), 2)

2
, β =

2

max (pmax(X), 2)
in Z

(α,β)←→ Z2̄
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(recall that the Hilbert Z2̄ has the tree T (Z) but all the parameters are equal to 2,
pmin(Z) = pmin(X) and pmax(Z) = pmax(Z)) are provided by Corollary 5.2. Thus,

Theorem 3.4 gives us X
(δ,δ)←→ H with the desired δ = αβ.

Theorem 6.8. For p ∈ (1,∞), β = min(p, 2)/max(p, 2), let X = Lp(M) and H =
L2(M), whereM is a von Neumann algebra, be infinite-dimensional. Then, for δ = β3,
we have

X
(δ,δ)←→ H.

Proof. Let Z be the space corresponding to X and described in Theorem 8.6. Then,
extending the mutually inverse mappings mp,2 and m2,p provided by Theorem 4.5 by
continuity from the dense subset provided by Part 2) of Theorem 8.6 to Z, we obtain

Z
(β,β)←→ H, (1)

where H has the same density character as L2(M). According to Lemma 8.4, X
contains a 1-complemented copy of lp. It is the property of the classical Mazur mapping
[32] that

lp
(α1,β1)←→ l2 for α1 = min(p/2, 1) and β1 = min(2/p, 1). (2)

We finish the proof by combining (1) and (2) with the aid of Theorem 3.4.

7 Homogeneous Hölder group structures on Banach spaces

To rule out the existence of C∗-algebra structures (compatible with the norm and
linear structure) for some spaces under the consideration, one can use the following
result established by G. Pisier in the proof of Theorem 9.6 and on pages 128 and 129
in [39].

Theorem 7.1. ([39]). Let A be a C∗-algebra, and let Y be of Rademacher cotype 2.
Then any operator T ∈ L(A, Y ) factors through a Hilbert space.

Corollary 7.1. Let an infinite-dimensional X ∈ Γi ((1, 2)) for i ∈ {0, 1, 2, 3, 4, 5},
or X = Lp(M) with p ∈ (1, 2). Then X does not allow an introduction on it of a
C∗-algebra structure compatible with the norm and the existing linear structure.

Proof. Thanks to Theorems 2.2−2.8,X has the Rademacher cotype 2 (sharper type and
cotype constant estimates for the spaces under consideration are in [10, 13]). Therefore,
it is isomorphic to a Hilbert space thanks to Theorem 7.1 (i.e. the identity operator
factors through a Hilbert space) if X admits a multiplication group structure making
it a C∗-algebra. Since X does not have the Rademacher type 2, according to Theorem
8.11 from §8 in [13] (see also [12]), it is impossible. The absence of the Rademacher type
2 for many groups of the spaces under consideration is also implied by the existence
of the copies of sequence spaces (and the related finite representability) discussed in
Section 8, and the consideration of other spaces is similar.

It appears to be still possible to introduce a multiplication group structure by means
of sacrificing the distributivity and the Lipschits continuity.
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Definition 7.1. Let X be a Banach space and γ ∈ (0, 1]. We say that X admits a
homogeneous γ-Hölder group structure if there exists a binary operation ∗ : X×X −→
X and a constant C > 0, satisfying

a) λa ∗ µb = λµ(a ∗ b) for a, b ∈ X and λ, µ ∈ R;

b) ‖a ∗ b‖X ≤ ‖a‖X‖b‖X for a, b ∈ X;

c) ‖a0 ∗ b0 − a1 ∗ b1‖X ≤ C max
i=0,1

(‖ai‖X , ‖bi‖X)1−γ (‖a0 − a1‖+ ‖b0 − b1‖)γ

for ai, bi ∈ X.

We say that X admits a homogeneous Hölder group structure if it admits a homogeneous
γ-Hölder group structure for some λ.

Surprisingly, our infinite-dimensional spaces under consideration allow even com-
mutative homogeneous Hölder group structures.

Theorem 7.2. Let an infinite-dimensional Banach space X be either in Γi for some i ∈
{0, 1, 2, 3, 5} or Lp(M) with p ∈ (1,∞), or a Banach lattice with a weak unit that does
not contain l∞(In) uniformly (by n ∈ N). Then X allows a commutative homogeneous
Hölder group structure. In particular, Lp(M) allows a commutative homogeneous δ2/2-
Hölder group structure, where δ is defined in Theorem 5.13.

Proof. Corollaries 5.2 and 5.5, Theorems 6.2, 6.4, 6.5, 6.7, 6.8, the Hölder regularity
properties of the classical Mazur mapping [32] (or Theorem 4.2 for L2) and the Riesz-
Fisher theorem imply, for some infinite index set I, the relations

X
(α,β)←→ l2(I)

(1,1/2)←→ l1(I) and, thus, X
(α,β/2)←→ l1(I).

The convolution operation makes l1(I) a commutative Banach algebra. Hence, defining,
for a, b ∈ X, the multiplication by

a ∗ b = φ−1 (φ(a) ∗ φ(b)) ,

where φ : X ←→ l1(I) is the homogeneous extension of a Hölder homeomorphism
of spheres, we introduce a commutative homogeneous αβ/2-Hölder group structure on
X. In the case of Lp(M), one has α = β = δ thanks to Theorem 6.8.

The same argument relying on Theorem 6.2 imply the existence of the homogeneous
Hölder group structure on a very large class of lattices.

Theorem 7.3. Let X be a Banach lattice with a weak unit that does not contain l∞(In)
uniformly (by n). Then X allows a commutative homogeneous Hölder group structure.

8 Complemented subspaces, copies of sequence spaces and local
unconditional structure

The possession of the local unconditional structure by a Banach space indicates its
local similarity to a lattice [25]. A Banach space X possesses the local unconditional
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structure simultaneously with its dual X∗ [25]. Moreover, it happens if, and only if,
X∗∗ is isomorphic to a complemented subspace of a Banach lattice [25]. One of the
traditional fine questions in functional analysis is the correlation between the local
unconditional structure and the other properties of Banach space, and the last char-
acterisation of this property, as well as the lattice property of the IG-spaces, relates it
to the complementability matter.

As we see in Sections 3.2, 3.3, 6.2, 10 and 11, the sharpness of both the exponents
and the constants of the Hölder-Lipschitz regularity strongly depends on the existence
and complementability of certain subspaces in the spaces under consideration. In
particular, the presence of the local unconditional structure appears to be intimately
related to our problems at hand.

Remark 8.1. Let us note that the complementability of a subspace X in Y = Y ∗∗ is
equivalent to the existence of a Lipschitz retraction of Y onto X due to the linearisation
properties of the Lipschitz mappings into reflexive subspaces (see Corollary 7.3 in [17]).

The next theorem follows from a celebrated result due to O.V. Besov in [20] on the
interpolation of Nikol’skii-Besov and Lizorkin-Triebel spaces of function defined on a
domain satisfying the C-flexible λ-horn condition.

Theorem 8.1. Let X ∈ Γ1 be a space of functions defined on a domain G ⊂ Rn

satisfying the C-flexible λ-horn condition with an admissible parameter a and λ =
γa. Then X is a complemented subspace of the corresponding IG-space Y with I(Y )
consisting of the same parameters as X, except for the components {ai}ni=1 of a, and
X∗ is isomorphic to a complemented subspace of Y ∗.

Proof. In the case X ∈ {Bs
p,q,1(G), Ls

p,q,1(G)}, the conclusion of the theorem is estab-
lished by O. V. Besov in [20]. For a wide class of the domains G satisfying flexible
λ-horn condition (also introduced by Besov), the isomorphisms

Bs
p,q,1(G) � Bs

p,q,a(G) � B̃s,A
p,q,a(G) and Ls

p,q,1(G) � Ls
p,q,a(G) � L̃s,A

p,q,a(G)

were established for every admissible a. Combining these results, we establish the
statement for X. Lemma 6.1 finishes the proof, providing the statement regarding
X∗.

The next lemma is very helpful despite its simplicity.

Lemma 8.1. ([9, 13]). Let X be a Banach space, and P ∈ L(X) be a projector onto
its subspace Y ⊂ X. Assume also that QY : X → X̃ = X/KerP as the quotient map.
Then we have

‖QY x‖X̃ ≤ ‖Px‖X ≤ ‖P |L(X)‖‖QY x‖X̃ for every x ∈ X.

In particular, the dual space Y ∗ = X∗/Y ⊥ and Y are isometric to P ∗X∗ and X̃ if, and
only if, Y is 1-complemented in X, i.e ‖P |L(X)‖ = 1.

These lemma and theorem immediately imply that some spaces under consideration
possesses the local unconditional structure (see [25]).
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Remark 8.2. As mentioned after Definition 2.2, the space ltp,q is isometric to a com-
plemented subspace of Lp(Rn, lq) for p ∈ (1,∞)n, q ∈ (1,∞) (see [9, 13] for the mixed
norm case). In the case of scalar p and q, it an immediate consequence of the Fefferman-
Stein inequality. Therefore, according to the previous lemma, the space lt∗p,q is not
necessarily isometric to ltp′,q′ unless p = q̄ but still isomorphic to ltp′,q′ .

Relying on Theorem 2.1 and a celebrated result due to J. Bourgain [22] (extended
in [6]), we have established [9] the following lemma allowing us to treat the whole class
Γ0 = IG+.

Lemma 8.2. ([9, 13]). Let X ∈ IG+ (X ∈ IG). Then there exists X ∈ IG0+

(X ∈ IG0) with I(X) = I(Y ) and T (X) ⊂ T (Y ), such that X is a complemented
subspace in the quotient Y/Z, where Z is a complemented subspace in Y . Moreover, if
lt∗p,q 6∈ T (X), then X is a complemented subspace in Y .

Corollary 8.1. Let X ∈ IG ∪
⋃3

j=1 Γj. Assume also that, if X ∈ Γ1 is a space of
functions defined on a domain G ⊂ Rn or its dual, the domain G satisfies the C-
flexible λ-horn condition. Then X has the local unconditional structure.

The proof of Corollary 8.1. If X ∈ IG∪Γ3, then it has the lattice structure of its own
and, thus, has the local unconditional structure. If X ∈ Γ1∪Γ2 and is not defined as a
dual, then it possesses the local unconditional structure because it is a complemented
subspace of an IG-space (lattice; see [25]) due to Theorem 8.1. We finish the proof by
noticing that, if X ∈ Γ1 is defined as a dual, then it is isomorphic to a complemented
subspace thanks to Lemma 8.1.

Here we present the results on the existence of isomorphic copies of lp-spaces in
the various Sobolev, Nikol’skii-Besov and Lizorkin-Triebel spaces from Γi for i ∈ I3.
The combination of the succeeding theorems and lemmas with the next observation
complements Dvoretzky’s theorem for the spaces under consideration.

Remark 8.3. Let us recall that, for p ∈ (1,∞), lp(I2n) contains a C0-isomorphic and
C2-complemented copy of l2(In) for every n ∈ N thanks to the Hölder and Khinchin
inequalities and Lemma 8.1.

Theorem 8.2. ([12, 13]). Let G ⊂ Rn, p, a ∈ (1,∞)n, q, ς ∈ (1,∞), s ∈ (0,∞) and
r ∈ {pmin, pmax, q, 2}. Assume also that

Y ∈
{
Bs

p,q,a(G), B̃s,A
p,q,a(G), Ls

p,q,a(G), L̃s,A
p,q,a(G), bsp,q,a(G), b̃s,Ap,q,a(G), lsp,q,a(G), l̃s,Ap,q,a(G),

Bs
p′,q′,a′(G)∗, B̃s,A

p′,q′,a′(G)∗, Ls
p′,q′,a′(G)∗, L̃s,A

p′,q′,a′(G)∗,

bsp′,q′,a′(G)∗, b̃s,Ap′,q′,a′(G)∗, lsp′,q′,a′(G)∗, l̃s,Ap′,q′,a′(G)∗
}
,

and a is in admissible range for Y . Then there are constants C0, C1 > 0, such that Y
contains an C0-isomorphic and C1-complemented copy of lr(Im) for every m ∈ N.
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Theorem 8.3. ([12, 13]). Let Y ∈ {W s
p (G), W s

p′(G)∗} for G ⊂ Rn, p ∈ (1,∞)n,
ς ∈ (1,∞), s ∈ Nn

0 and r ∈ {pmin, pmax, 2}. Then there are constants C0, C1 > 0,
such that Y contains an C0-isomorphic and C1-complemented copy of lr(Im) for every
m ∈ N.

Theorem 8.4. ([12, 13]). Let Y ∈ {Bs
p,q(Rn)w, L

s
p,q(Rn)w, B

s
p′,q′(Rn)∗w, L

s
p′,q′(Rn)∗w}

for p ∈ (1,∞)n, ς ∈ (1,∞), s ∈ (0,∞) and r ∈ {pmin, pmax, q, 2}. Then Y contains an
isometric 1-complemented copy of lr(Im) for every m ∈ N.

Nevertheless, the spaces ltp,q and lt∗p,q contain an isometric and 1-complemented
copies of lp and lq according to the next lemma.

Lemma 8.3. ([9, 13]). Let p ∈ [1,∞)n and q ∈ [1,∞). Then the spaces ltp,q(Rn) and
ltp′,q′(Rn)∗ contain isometric 1-complemented copies of lp(Nn), lq(N) and lp (Zn, lq(N)),
and the spaces ltp,q(F ) and ltp′,q′(F )∗ contain isometric 1-complemented copies of lq(N),
lp (Im, lq(N)) for every m ∈ Nn.

What follows is the counterpart of Lemma 8.3 for Schatten-von Neumann classes
and general Lp(M), where M is a von-Neumann algebra (with a normal semifinite
faithful weight that always exists).

Lemma 8.4. ([9, 13]). For p ∈ [1,∞], the space Sp contains 1-complemented copies
of Sn

p , lp(In) and lp for n ∈ N. Moreover, an infinite-dimensional Lp(M) contains a
1-complemented isometric copy of lp.

Remark 8.4. The existence of isomorphic copies of c0 and l∞ in different classes of
function spaces was investigated in [4, 5], where stronger results than the counterparts
of the celebrated non-complementability of C([0, 1]) in L∞([0, 1]) due to G.M. Fichten-
holtz and L.V. Kantorovich [27] were established. The finite representability and the
existence of the copies of lp and other sequence spaces in the spaces under consideration
was studied in [12, 13].

We also need the following quantitative version of the result due to M.S. Baouendi
and G. Goulaouic [16, 41].

Theorem 8.5. For p ∈ [1,∞], θ ∈ (0, 1), let (A0, A1) be a compatible couple of Banach
spaces, and let B be a complemented subspace of A0 +A2, whose projector P ∈ L(A0)∩
L(A1). Then (B0, B1) = (A0 ∩B,A1 ∩B) is also compatible, and we have

a) dBM ((B0, B1)θ,p, (A0, A1)θ,p ∩B) ≤ ‖P |L(A0)‖1−θ‖P |L(A1)‖θ;
b) dBM

(
(B0, B1)[θ], (A0, A1)[θ] ∩B

)
≤ ‖P |L(A0)‖1−θ‖P |L(A1)‖θ.

While the lower estimates for ‖x|(B0, B1)θ,p‖ and ‖x|(B0, B1)[θ]‖ are provided by the
definitions of the interpolation functors, the upper estimates follow from the exactness
of these functors:

max
(
‖P |L ((A0, A1)θ,p)‖ ,

∥∥P |L ((A0, A1)[θ]

)∥∥) ≤ ‖P |L(A0)‖1−θ‖P |L(A1)‖θ.

The following theorem permits us to reduce the study of the properties of the
general Lp(M) (Haagerup Lp-spaces) to checking them for the Lp spaces of finite von
Neumann algebras (Lp(M, τ) with n.f.f. τ).
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Theorem 8.6. (Haagerup [40]). Let M be a von Neumann algebra with a nor-
mal semifinite faithful weight φ, p ∈ (0,∞)), and let Lp(M, φ) be the associated
Haagerup Lp-space. Then there are a min(p, 1)-Banach space Z, a directed family
{(Mi, τi)}i∈I of finite von Neumann algebras and a family {Ji}i∈I of isometric embed-
dings Ji : Lp(Mi, τi) ↪→ Z satisfying

1) Im Ji ⊂ Im Ji′ for all i, i′ with i ≤ i′;

2)
⋃
i∈I

Im Ji is dense in Z;

3) Lp(M, φ) is isometric to a subspace of Z, complemented if p ∈ [1,∞).

9 Hölder-Lipschitz mappings: basic mappings and
properties. II

This section is dedicated to the following important tools of the analysis of mappings
between Banach spaces: the existence and the ordinary and explicit (an occasionally
sharp) global Hölder continuity of retractions and metric projections onto closed convex
subsets and the problem of the bounded extension of the Hölder-Lipschitz mappings
from an arbitrary subset of a matric space into a Banach space to Hölder-Lipschitz map-
pings defined on the whole metric space with explicit and occasionally sharp bounds.

9.1 Retractions

Definition 9.1. For a metric space Y and its subset X, a mapping f : Y → X is
a retraction of Y onto X if f(x) = x for every x ∈ X. The subset X is said to be a
retract of Y .

According to Part b) of the next lemma, l∞(Γ) is an absolute 1-Lipschitz retract.
It is Lemma 1.1 from [17].

Lemma 9.1. ([17]). a) Every metric space is isometric to a subset of l∞(X).
b) Let Y be a metric space, Z ⊂ Y , and ω be a nondecreasing subadditive function

defined on (0,∞) with limt→0 ω(t) = 0. Assume also that f : Z → l∞(Γ) satisfies
ω(·, f, Z) ≤ ω. Then there exists a uniformly continuous extension F : Y → l∞(Γ) of
f with ω(·, F, Y ) ≤ ω.

The next theorem is a particular setting of a bounded set A of the corresponding
more general results in [7, 13]. The numerical constant from [7] was improved in [13]
with the aid of [10].

Theorem 9.1. ([7, 13]). For p ∈ [2,∞), let A be a closed convex bounded subset of a
quasi-Banach space X that is isomorphic to a (p, hc)-uniformly convex Banach space
Z with dBM(X,Z) < d and σ ∈ (0,∞). Assume also that a metric space Y contains
an isometric copy Ã of A (endowed with the metric inherited from X), and Aaσ is
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the σ-neighborhood of this copy in Y . Then there exists a retraction φ of Aσ onto Ã
satisfying

‖φ|H1/p(Y, Ã)‖ ≤ d(8p)1/p

(
sup

µ∈(0,1/2]

(1− µ)hc(µ)

)−1/p

(r(A,A) + d(A))1/p′ .

Moreover, if X is a (p, hc)-uniformly convex Banach space itself, one should take d = 1
in this estimate.

9.2 Chebyshev sets and metric projection

Metric projection is a very important example of a retraction possessing better smooth-
ness than the retractions considered in the previous subsections. In approximation
theory it corresponds to the best approximation of a function by a function from a
closed convex or linear subclass.

In this subsection, we describe the smoothness of the metric projections on closed
convex subsets of either uniformly convex, or both uniformly convex and uniformly
smooth spaces. We further provide retractions onto such subsets from the ambient
space that is either uniformly convex, or both uniformly convex and uniformly smooth.
These retractions possess either better smoothness, or better constants than their coun-
terparts in the preceding subsection.

Definition 9.2. A subset D ⊂ X of a Banach space X is a Cheyshev set if the metric
projection mapping PD : X → D is well-defined by the relation

‖x− PDx‖X = min
y∈D
‖x− y‖X ,

that is, for every x ∈ X, there exists a unique y = PDx minimizing the distance between
x and D.

Note that, thanks to the Hahn-Banach theorem, PDy = PDx if y = λx+(1−λ)PDx
for some λ ≥ 0.

Remark 9.1. a) While every closed convex subset of a reflexive and strictly convex
Banach space is a Chebyshev set, there exist examples of such Banach spaces with
discontinuous (in norm) metric projections on some Chebyshev sets (see [23, 46]). The
necessary and sufficient condition on a Banach space for the continuity of the metric
projections onto the closed convex subsets was found by L. P. Vlasov [47] (see Theorem
9.2 below). This condition was introduced by V.L. Shmul’yan in 1940. Every uniformly
convex space satisfies this condition.

b) There exists an important characterization of inner product spaces due to Phelps
[37]: a Banach space X with dimX > 2 is a Hilbert space if, and only if, the metric
projection on every closed convex Chebyshev subset is 1-Lipschitz (nonexpansive).

c) The metric projections onto the balls of a strictly convex normed space X are
2-Lipschitz (see, for example, [7] and (3) in the proof of Lemma 5.3). This means that
balls are too good subsets to distinguish the peculiar features of the (local) geometry
of X from the point of view of the metric projection.
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Theorem 9.2. (L.P. Vlasov [47]). The metric projection onto every closed and convex
subset of a Banach space X is single-valued and continuous (in norm) if, and only if,
every subsequence {xk}k∈N ⊂ X with ‖xn‖X = 1 for every n, satisfying the condition
limk→∞ f(xk) = 1 for some f ∈ X∗ with ‖f‖X∗ = 1, is convergent in X.

The uniform continuity of the set-valued metric projection was investigated by
Berdyshev [18], while the same phenomenon for the (single-valued) metric projection
in uniformly continuous and uniformly smooth spaces was studied by Björnest̊al [21], in
the case of the metric projections onto subspaces, and by Benyamini and Lindenstrauss
[17] in the case of the metric projections onto the closed convex subsets. In the latter
case, the estimates for the local uniform continuity, that is for the modulus ω(t, PD, x+
r(x)BX) with r(x) ≤ Cd(x,D), were established in terms of the classical moduli of the
uniform continuity and uniform smoothness. In some special case, global estimates of
similar nature (that cannot be derived from the local ones) were established by Alber
[14]. In this section, we present global estimates in the general setting of an arbitrary
closed convex subset providing the same order of the Hölder regularity with explicit
numerically friendly constants.

Since every Hilbert space is (2, 1)-uniformly convex and smooth according to the
Jacoby identity [9], even Part b) of the last remark suggests that the global regularity
of the metric projection could be higher if the space is not only (p, hc)-uniformly convex
but also (q, hs)-uniformly smooth. It is the subject of the next theorem and corollary
that are extracts from the corresponding results in [13] (their counterparts in [7] are
less precise in the general setting but still lead to the same numerical estimates for the
spaces under consideration).

According to Theorem 6.16 from [13], the Hölder-Lipschitz regularity exponent
given in the next theorem and corollary are sharp for X ∈ IG+ under the restriction
that, if pmin(X) < 2, X (Y ) contains isometric 1-complemented copies of {lpk

}k∈N
with pk ∈ I(X) for every k ∈ N and limk→∞ pk = pmin(X), and, if pmax(X) > 2, X
contains isometric 1-complemented copies of {lqk

}k∈N with qk ∈ I(X) for every k ∈ N
and limk→∞ qk = pmax(X).

Theorem 9.3. ([7, 13]). For 2 ∈ [q, p] ⊂ (1,∞), let X be a (p, hc)-uniformly convex
and (q, hs)-uniformly smooth Banach space and a closed convex D ⊂ X. Assume also
that A ⊂ X is a bounded subset of X and

cc = sup
µ∈(0,1/2]

(1− µ)hc(µ) and cs = inf
µ∈(0,1/2]

(1− µ)1−qhs(µ).

Then we have

∥∥PD|Hq/p(A,D)
∥∥ ≤ ( pcs

qc
1+q/p
c

)1/p(
æ(A,D)q + csc

−q/p
c d(A)q

)1/q−1/p
.

Moreover, if p = q = 2, we also have∥∥PD|H1(X,D)
∥∥ ≤ c

1/2
s

cc
,

that is PD is c1/2
s /cc-Lipschitz.
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Corollary 9.1. ([7, 13]). For 2 ∈ [q, p] ⊂ (1,∞), let X be a quasi-Banach space that
is isomorphic to a (p, hc)-uniformly convex and (q, hs)-uniformly smooth Banach space
Y with dBM(X, Y ) < d, and a closed convex D ⊂ X. Assume also that A ⊂ X is a
bounded subset of X and

cc = sup
µ∈(0,1/2]

(1− µ)hc(µ) and cs = sup
µ∈(0,1/2]

(1− µ)1−qhs(µ).

Then there exists a retraction ψD of X onto D satisfying

∥∥ψD|Hq/p(A,D)
∥∥ ≤ d

(
pcs

qc
1+q/p
c

)1/p(
æ(A,D)q + csc

−q/p
c d(A)q

)1/q−1/p
.

Moreover, if p = q = 2, we also have

∥∥ψD|H1(X,D)
∥∥ ≤ dc

1/2
s

cc
,

that is PD is dc1/2
s /cc-Lipschitz.

9.3 Hölder-Lipschitz mappings: bounded extension

This auxiliary section is dedicated to the extension problem for the Hölder-Lipschitz
mappings from a subset of a metric or a Banach space into a Banach space. It is
essentially an extract from [11, 13] where more information including complete proofs,
background and applications to the pairs of the spaces under consideration are pre-
sented, a well as a Markov type and cotype counterpart of the Rademacher type and
cotype theory (see also references therein).

Definition 9.3. Assume that X is a metric space, Y is a Banach space, and α, d > 0.
Let Hα(X, Y ) be the Banach space of all Y -valued continuous functions f defined on
X with the finite norm:

‖f |Hα(X, Y )‖ := sup {‖f(x)− f(y)‖Y /dX(x, y) : x, y ∈ X and x 6= y} .

We say that the pair (X, Y ) possesses (d, α)-extension property if, for every subset
F ⊂ X (with the induced metric) and every f ∈ Hα(F, Y ), there is an extension
f̃ ∈ Hα(X, Y ) satisfying

f̃(x) = f(x) for x ∈ F and ‖f̃ |Hα(X, Y )‖ ≤ d‖f |Hα(F, Y )‖.

Let Sb(X, Y ) ⊂ (0,∞) be the set of all α, such that the pair (X, Y ) possesses (d, α)-
extension property for some d <∞.

We say that the pair (X, Y ) possesses convex (d, α)-extension property if it possesses
the (d, α)-extension property, and there exists a corresponding extension f̃ ∈ Hα(X, Y )
of f ∈ Hα(F, Y ) satisfying f̃(X) ⊂ cof(F ).
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Remark 9.2. a) Let also S=(X,Y ) ⊂ (0,∞) be the set of all α, such that the pair
(X, Y ) possesses (1, α)-extension property, while S=,c(X, Y ) ⊂ (0,∞) be the set of
all α, such that the pair (X,Y ) possesses convex (1, α)-extension property. The sets
S=(X, Y ) and S=,c(X, Y ) for the pairs of spaces under consideration are found in [9].

b) The discrepancy between an arbitrary pair of {Sb(X, Y ), S=(X, Y ), S=,c(X, Y )}
is called the phase transition phenomenon for the pair.

c) For the applications of the results on bounded extension it is very useful to
observe that, if a pair (X, Y ) has a (d, α)-extension property, and X is C0-Lipschitz
homeomorphic (or C0-isomorphic if X is Banach) to X0, while Y is C1-isomorphic to
Y0, then the pair (X0, Y0) has the (dCα

0 C1, α)-extension property, where X0 can be a
quasi-metric or a quasi-Banach space and Y0 can be a quasi-Banach space.

Markov type and Markov cotype

Let us define the notions of Markov type and Markov cotype.

Definition 9.4. ([34]). Let (X, d) be a metric space and p ∈ (0,∞]. The space
X is said to possess the Markov type p with a constant CMT if, for every n ∈ N,
every stationary reversible Markov chain {ξk}k∈N∪{0} with the state set S, and every
f : S → X, one has the estimate

(Ed (f(ξn), f(ξ0))
p)

1/p ≤ CMT (nEd (f(ξ1), f(ξ0))
p)

1/p
.

The best constant CMT is designated by CMT (p,X).

Remark 9.3. a) Note that we can consider only the chains with strictly positive
stationary distributions.

b) K. Ball [15] showed that every metric space (X, d) has the Markov type 1 with
the constant 1. Since dα with α ∈ (0, 1) is still a metric on X, every metric space is
also of type α.

c) Markov type properties (type and the constant) are inherited by the subsets of
a metric space.

d) In fact, Theorem 1.6 in [15] shows that the definition of Markov type in [15]
(Definition 1.6 in [15]) is equivalent to, at least, a formally less restrictive counterpart
of Definition 9.4 where only the stationary reversible Markov chains with symmetric
transition matrixes are allowed. Thus, if X is of Markov type p with a constant
CMT according to Definition 9.4, it is also of Markov type p with not worse constant
according to Ball’s original definition.

e) There are other notions of type and cotype than Markov or Rademacher ones
(see [38]).

To define the Markov cotype, we slightly modify the original definition of Ball
(written in the language of matrixes) by substituting the exponent 2 with q.

Definition 9.5. ([15]). Let X be a normed space and q ∈ [1,∞]. The space X is said
to possess the Markov cotype p with a constant CMC if, for every n ∈ N, β ∈ (0, 1),
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symmetric (double) stochastic n× n matrix A and sequence {xi}ni=1 ⊂ X, one has the
estimate(

β
n∑

i,j=1

ai,j

∥∥∥∥∥
n∑

k=1

ci,kxk −
n∑

l=1

cj,lxl

∥∥∥∥∥
q

X

)1/q

≤ CMC

(
(1− β)

n∑
i,j=1

ci,j‖xi − xj‖qX

)1/q

,

where C = (1− α)(I − αA)−1 and {ai,j} and {ci,j} are the entries of A and C respec-
tively.

For the sake of convenience, we say that X possesses the Markov cotype ∞ with the
constant 1 if, instead, one has

n
max
i,j=1

∥∥∥∥∥
n∑

k=1

ci,kxk −
n∑

l=1

cj,lxl

∥∥∥∥∥
X

≤ n
max
i,j=1
‖xi − xj‖X .

The best constant CMC is designated by CMC(q,X).

Remark 9.4. a) Since
∑n

k=1 ci,kxk −
∑n

l=1 cj,lxl =
∑n

k=1

∑n
l=1 ci,kcj,l(xk − xl), the

triangle inequality implies that every Banach space has the Markov cotype∞ with the
constant 1.

b) Let us note that, if a Banach space X is finitely represented in Y possessing
the Markov type p with the constant CMT and the Markov cotype q with the constant
CMC , then X has the same Markov type and cotype with the same constants.

c) Note that the Markov cotype can also be correctly defined for the convex subsets
of a Banach space.

The next theorem relates the (q, hs)-uniform smoothness to the Markov type q and
(p, hc)-uniform convexity to the Markov cotype p in a quantitative manner.

Theorem 9.4. ([11, 13]). Assume that 2 ∈ [q, p] ⊂ [1,∞).
a) If X is a (q, hs)-uniformly smooth Banach space, then it possesses the Markov

type q with the constant

Cq,hs =

(
inf

µ∈(0,1/2]
(1− µ)1−qhs(µ)

)1/q

.

b) If X is a (p, hc)-uniformly convex Banach space, then it possesses the Markov
cotype p with the constant

Cp,hc = 2

(
sup

µ∈(0,1/2]

(1− µ)hc(µ)

)−1/p

.

Adaptation of Ball’s scheme

Let us present the adaptation of Ball’s approach [15] to the bounded extension problem
for Hölder-Lipschitz mappings established in [11, 13]. K. Ball treated the extension
of Lipschitz mappings from a Markov type 2 metric space into a Markov cotype 2
Banach space but Naor [33] mentioned that it works also for some Hölder mappings
and different values of Markov types and cotypes because d(x, y)α with α ∈ (0, 1] is a
metric if d(x, y) is, and because Lp endowed with the metric ‖x− y‖p/2 for p ∈ (0, 2] is
isometrically embedded into L2 thanks to Theorem 5.11 in [48].
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Theorem 9.5. ([11, 13]). For α = p/q ∈ (0, 1] with p, q ∈ [1,∞), let (X, d) be a metric
space possessing the Markov type p with a constant CMT , and let Y be a Banach space
possessing the Markov cotype q with a constant CMC. Assume also that Z ⊂ X and
f ∈ Hα(Z, Y ). Then there is an extension f̃ ∈ Hα(X, Y ∗∗) of f with

‖f̃ |Hα(X, Y ∗∗)‖ ≤ 3
p−1

q (Cq
MC + 2)

1
qCα

MT‖f |Hα(Z, Y )‖ ≤ (3CMT )αCMC‖f |Hα(Z, Y )‖.

Remark 9.5. a) As far as the concrete pairs are concerned, K. Ball [15] applied his
abstract result on the existence of isomorphic extensions of the Lipschitz mappings
from a Markov type 2 space into a Markov cotype 2 space to the pairs of Lebesgue
spaces (L2, Lq) with q ∈ [2,∞). More precisely, he showed that the pair possesses the
(1, dp,q)-extension property with the constant dp,q = 6(q−1)−1/2. But he also explicitly
quantitatively related the uniform convexity and Markov cotype and established the
Markov type constant of Lp for p ∈ (1, 2] to be 1. Naor [33] mentioned that Ball’s
scheme works for the Lipschitz mappings (α ∈ (0, 1]) between the pairs (X, Y ) of
the Markov type p X and Markov cotype p Y spaces and, in addition, found that
Sb(lp, Lq) = p/max(q, 2) for p ∈ (1, 2] and q ∈ (1,∞) (interpreting Hölder mappings as
Lipschitz; see Remark 9.3, b)). Naor, Peres, Schramm and Sheffield [34] showed that
Lp has the Markov type 2 for p ∈ (2,∞), estimated the Markov type constant using a
representation of a Markov chain as a sum of a backward and a forward martingales.
Therefore, they completed also the computation of Sb(Lp, Lq) for any pair p, q ∈ (1,∞).
The pair (Lp, Lq) with 2 ∈ [q, p] was shown to have the (1, dp,q)-extension property with

dp,q ≤ 24

√
p− 1

q − 1
.

They conjectured that the constant 24 can be reduced to 1. Theorems 9.4 and 9.5
established in [11] (see also [13]) with the aid of our Markov chain counterpart of
Pisier’s martingale inequality obtained in [10, 13] provide the estimate dp,q ≤ 6

√
p−1
q−1

not only for the pairs of commutative spaces, but also for the pairs of Schatten-von
Neumann classes, general noncommutative Lp-spaces or, even, mixed pairs with the
same conditions on p and q. The constant 6 above comes from the Ball’s scheme
meaning that the justification of the conjecture requires to improve Ball’s scheme itself.

b) The results in [11, 13] cover the pairs of spaces from the union of the classes
of spaces under the consideration in this paper, including the sharpness of the Hölder
exponents.

10 Main results: approximation of uniformly continuous map-
pings

In this section we establish the main results describing the uniform approximation of
uniformly continuous mappings from a metric spaces, or a (convex) subset of a space
under consideration into another such space by Hölder-Lipschitz mappings.

The best possible smoothness exponents of the approximating Hölder-Lipschitz
mappings for the uniformly continuous mappings from the unit ball of Lp lp into Lq

or lq for various pairs (p, q) were found by I. G. Tsar’kov [42, 43, 44] (see also § 2.1
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in [17]). His approach relies on the investigation of the Hölder-Lipschitz regularity
of the Mazur maps and M. D. Kirszbraun’s extension theorem [29] (see also [28] for
generalizations). Earlier [30] he used a different approach utilizing Frechet’s extension
theorem to approximate the uniformly continuous mappings from a metric space into
a superreflexive (uniformly convex) space.

Our approach is based on our counterparts of Tsar’kov’s tools developed in [7, 11, 13]
and below. We shall deal with the following classes of uniformly continuous mappings.

Definition 10.1. ([30]). Let X be a metric space with a metric ρX and Y a
(quasi) Banach space. Assume also that ΩS is the class of the semiadditive functions
ω : [0,∞)→ [0,∞) satisfying limt→0 ω(t) = ω(0) = 0.

Then, by means of Hω(X, Y ) for ω ∈ ΩS, we designate the class of the continuous
mappings f : X → Y satisfying

‖f(x)− f(z)‖Y ≤ ω (ρX(x, z)) for every x, z ∈ X.

Note that, whenever X is metrically convex (for example, X is a convex subset
of a normed space with the inherited metric), one has f ∈ Hωf for every uniformly
continuous mapping f : X → Y , where ωf is the modulus of continuity of f .

10.1 Abstract Bernstein-Jackson principle

The following common abstract step, reflecting the classical relation between the ap-
proximation properties of a mapping and its smoothness, can be extracted from both
approaches due to Tsar’kov mentioned above.

Lemma 10.1. For d ≥ 1 and ω ∈ ΩS, let (X,Y ) be a pair of a metric space X and
a Banach space Y possessing the (d, 1)-extension property, and f ∈ Hω(X,Y ). Then,
for every ε > 0, there exists fε ∈ H1(X,Y ) satisfying

‖f − fε|C(X, Y )‖ ≤ (1 + 2d)ω(ε) and ‖fε|H1(X, Y )‖ ≤ 2dω(ε)/ε.

Proof. Thanks to M. Zorn’s lemma, there exists a maximal ε-separated subsetMε ⊂ X.
The restriction f̄ε of f on Mε is 2ω(ε)/ε-Lipschitz thanks to the subadditivity of ω.
With the aid of the triangle inequality, the proof is finished by choosing fε to be a
2dω(ε)/ε-Lipschitz extension of f̄ε onto X.

Sometimes the smoothness of the approximation fε is less important than the
convex-envelope stability of the images f(X) and fε(X). The next lemma shows how
to improve the geometry of the image fε(X) at the expense of its smoothness.

Lemma 10.2. For 2 ∈ [q, p] ⊂ (1,∞), let X be a bounded metric space, and let Y
be a quasi-Banach space that is isomorphic to a (p, hc)-uniformly convex and (q, hs)-
uniformly smooth Banach space Z with dBM(Y, Z) < d,

cc = sup
µ∈(0,1/2]

(1− µ)hc(µ) and cs = inf
µ∈(0,1/2]

(1− µ)1−qhs(µ).
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Assume also that ω ∈ ΩS and gω, hω : (0,∞)→ (0,∞) with limt→0+ gω(t) = 0 are such
functions that, for some α ∈ (0, 1) and every f ∈ Hω(X, Y ) and ε > 0, there exists
f̃ε ∈ Hα(X, Y ) satisfying

‖f − f̃ε|C(X,Y )‖ ≤ gω(ε) and ‖f̃ε|Hα(X,Y )‖ ≤ hω(ε).

Then, for every f ∈ Hω(X, Y ) and ε > 0, there exists fε ∈ Hqα/p(X, Y ) satisfying
fε(X) ⊂ co (f(X)),

‖f−fε|C(X,Y )‖ ≤ dgω(ε)q/p

(
pcs

qc
1+q/p
c

)1/p(
gω(ε)q + csc

−q/p
c (ω (d(X)) + 2gω(ε))q)1/q−1/p

and

‖f |Hqα/p(X, Y )‖ ≤ dhω(ε)q/p

(
pcs

qc
1+q/p
c

)1/p(
gω(ε)q + csc

−q/p
c (ω (d(X)) + 2gω(ε))q)1/q−1/p

.

Moreover, if p = q = 2 and X is either bounded, or unbounded, for every f ∈ Hω(X, Y )
and ε > 0, there exists fε ∈ Hα(X,Y ) satisfying fε(X) ⊂ co (f(X)),

‖f − fε|C(X, Y )‖ ≤ dc
1/2
s

cc
gω(ε)

and

‖f |Hα(X, Y )‖ ≤ dc
1/2
s

cc
hω(ε).

Proof. It is sufficient to choose fε = ψD ◦ f̃ε, where ψD is the retraction onto D =
co (f(X)) provided by Corollary 9.1, and take advantage of the conclusion of Corollary
9.1 (with A = f̃ε(X) ⊂ D + gω(ε)BY if q < p) and Corollary 3.1, a).

Corollary 10.1. Let X be a metric space that is d0-Lipschitz homeomorphic to a metric
space X0 possessing the Markov type 2 with a constant CMT , a bounded A ⊂ X and ω ∈
ΩS. Assume also that Y is a subspace of a quasi-Banach space Z isomorphic to some
Banach space Z0 possessing the Markov cotype 2 with a constant CMC, dBM(Z,Z0) < d1

and d = 3CMTCMC. Then, for every ε > 0 and f ∈ Hω(A, Y ), there exists fε ∈
Hβ(A, Y ) satisfying

‖f − fε|C(A, Y )‖ ≤ gω(ε) and ‖fε|Hβ(A, Y )‖ ≤ hω(ε)

for the following combinations β, gω and hω in the following settings.
a) One can choose fε : A→ co (f(A)), β = rs/rc,

gω(ε) = (1 + 2d)d1ω(ε)

(
rccs

rsc
1+rs/rc
c

) 1
rc
(

1 + csc
− rs

rc
c

(
2 +

ω(d(A))

2dω(ε)

)rs
) 1

rs
− 1

rc
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and

hω(ε) = 2dd
rs
rc
0 d1ω(ε)ε−

rs
rc

(
rccs

rsc
1+rs/rc
c

) 1
rc
(

1 + csc
− rs

rc
c

(
2 +

ω(d(A))

2dω(ε)

)rs
) 1

rs
− 1

rc

if Z0 is (rc, hc)-uniformly convex and (rs, hs)-uniformly smooth with

cc = sup
µ∈(0,1/2]

(1− µ)hc(µ) and cs = inf
µ∈(0,1/2]

(1− µ)1−rshs(µ).

b) One can take β = 1, gω(ε) = (1+2d)d1ω(ε) and hω(ε) = dd0d1ω(ε)/ε. Moreover,
if Z0 is Hilbert, one even has fε : A→ co (f(A)).

Proof. Let T0 : X −→ X0 and T1 : Z −→ Z0 be, correspondingly, a homeomor-
phism and an isomorphism satisfying ‖T0|H1(X,X0)‖‖T−1

0 |H1(X0, X)‖ ≤ d0 and
‖T1|L(Z,Z0)‖‖T−1

1 |L(Z0, Z)‖ < d1, f ∈ Hω(A, Y ) and

f̄ = T1 ◦ f ◦ T−1
0 : X0 −→ T1Y ⊂ Z0. (1)

Thanks to Theorem 9.5 and Part b) of Remark 9.4 the pair (X0, Y0) with Y0 = T1Y
possesses the (d, 1)-extension property. Due to Lemma 10.1, combined with Corollary
3.1, and its proof, for any ε = ‖T−1

0 |H1(X0, X)‖ε′ > 0, there exist f̄ε and a maximal
ε′-net Āε ⊂ T0A = A0 satisfying f̄(x) = f̄ε(x) for x ∈ Āε,

‖f̄ − f̄ε|C(X0, Y0)‖ ≤ (1 + 2d)‖T1|L(Z,Z0)‖ω(ε)

and
‖f̄ε|H1(X0, Y0)‖ ≤ 2d‖T1|L(Z,Z0)‖ω(ε)/ε′.

Note that, according to our construction, we have d
(
f̄(A0)

)
≤ ‖T1|L(Z,Z0)‖ω (d(A)),

dH

(
f̄ε(A0), f̄(A0)

)
≤ dH

(
f̄ε(A0), f̄(Āε)

)
≤ 2d‖T1|L(Z,Z0)‖ω(ε)

and
æ
(
f̄ε(A0), f̄(A0)

)
≤ æ

(
f̄ε(A0), f̄(Āε)

)
≤ 2d‖T1|L(Z,Z0)‖ω(ε). (2)

To finish the proof of Part a) and the Hilbert setting in Part b), we construct

fε = T−1
1 ◦ PD ◦ f̄ε ◦ T0 : A→ co (f(A)) , (3)

where PD is the metric projection onto D = co (T1f(A)) (that is 1-Lipschitz if Z0 is
Hilbert). The application of Lemma 9.1, a), Theorem 9.3 and (2) shows that a) and
the Hilbert case of b) hold.

To finish the proof of the corollary in the case of the rest of b), we just take

fε = T−1
1 ◦ f̄ε ◦ T0 : A→ D = Y.
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10.2 Adaptation of Tsar’kov’s scheme I

Unfortunately, for f ∈ Hω(X, Y ), the pair (X,Y ) may not have the (c, 1)-extension
property. The first approach of Tsar’kov [30] (that covers the case of the uniformly
continuous mappings of the unit ball of Lp or lp into Lq or lq for p ∈ {1,∞} and q =∞)
is based on Lemma 3.1 suggesting that Y (or A ⊂ Y ) is a subset of l∞(Y ) (or l∞(A))
and the pair (X, l∞(Y )) (or (X, l∞(A))) always has the (1, 1)-extension property. We
use the implementation of this idea quantified in the following way.

Theorem 10.1. For p ∈ [2,∞), let X be a bounded metric space, and let Y be a
quasi-Banach space that is isomorphic to a (p, hc)-uniformly convex Banach space Z
with dBM(Y, Z) < d and f ∈ Hω(X,Y ) for some ω ∈ ΩS. Then, for every ε > 0, there
exists fε ∈ H1/p(X,Y ) satisfying fε : X → co (f(X)),

‖f − fε|C(X, Y )‖ ≤ d (24pω(ε))1/p

(
sup

µ∈(0,1/2]

(1− µ)hc(µ)

)−1/p

(ω (r(X)) + ω (d(X)))1/p′

and

‖fε|H1/p(X, Y )‖ ≤ d (16pω(ε)/ε)1/p

(
sup

µ∈(0,1/2]

(1− µ)hc(µ)

)−1/p

(ω (r(X)) + ω (d(X)))1/p′ .

Moreover, if Y is a (p, hc)-uniformly convex Banach space itself, one should take d = 1
in these estimates.

Proof. Let T : Y −→ Z with ‖T |L(Y, Z)‖ ‖T−1|L(Z, Y )‖ < d. For f̄ = T ◦ f assume
that A = co

(
f̄(X)

)
and, therefore, f̄ : X → A. According to Lemma 9.1, a), l∞(A)

contains an isometric copy Ã of A, and we can interpret f̄ as an Hω(X, l∞(A))-mapping
with ω = ‖T |L(Y, Z)‖ω. Due to Lemmas 3.1, b) and 10.1, for every ε > 0, there exists
f̃ε satisfying

‖f̄ − f̃ε|C(X, l∞(A))‖ ≤ 3ω(ε) and ‖f̃ε|H1(X, l∞(A))‖ ≤ 2ω(ε)/ε.

To finish the proof with the aid of Corollary 3.1, a), it is left to choose fε = T−1 ◦φ◦ f̃ε,
where φ is the retraction provided by Theorem 9.1, and note that

r
(
f̄(X), f̄(X)

)
≤ ω (r(X)) and d

(
f̄(X)

)
≤ ω (d(X)) .

10.3 Adaptations of Tsar’kov’s scheme II

To establish the best possible smoothness exponents of the approximating Hölder-
Lipschitz mappings for the uniformly continuous mappings of the unit ball of Lp or lp
into Lq or lq for p, q ∈ (1,∞), I.G. Tsar’kov [42, 43, 44] (see also §2.1 in [17]) studied the
Hölder-Lipschitz regularity of the Mazur maps and used them to reduce the problem of
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approximating by Hölder mappings from Lp into Lq to the problem of approximating
by Lipschitz mappings. To solve the latter, he followed the Bernstein-Jackson principle
(Lemma 10.1) utilizing the (1, 1)-extension property of the pairs of Hilbert spaces (L2 or
l2), that is M.D. Kirszbraun’s extension theorem [29] (see also [28] for generalizations),
instead of Frechet’s extension for the pairs (X, l∞) that he used earlier. A. Naor found
a way how to demonstrate the sharpness of the smoothness exponent in the case q = 1
in Tsar’kov’s result by considering the limit q → 1.

In this section we develop an adaptation of Tsar’kov’s approach to the setting
of various pairs of function, IG and noncommutative spaces under consideration by
means of studying generalised Mazur mappings (simple Mazur ascent and complex
Mazur descent), using (the proof of) Corollary 10.1 and Theorems 5.1 and 9.5 instead
of Kirszbraun’s theorem and Lemma 9.1.

To formulate our three key approximation theorems in this section in a concise
manner, we introduce the auxiliary functions

ξ(α,W ) := (2/α− 1)Nmin(W ) and η(α) = 1 + 21−α for α ∈ (0, 1]

and W ∈ IG (see Definition 2.13).

Remark 10.1. a) In applications of the following theorems, we can consider proper
compositions with translations and limiting arguments to have f(0) = 0 and substitute
r(A, 0) with r(A,X), when X is a quasi-Banach space.

b) We are using Theorem 9.4, b) to deduce the Markov cotype of Y from the (2, hc)-
uniform convexity of Z0 in Part c), keeping in mind that Z0/Z1 inherits the (2, hc)-
uniform convexity of Z0.

Theorem 10.2. Let X be a quasi-Banach space isomorphic to some X0 ∈ IG0 with
dBM(X,X0) < d0, a bounded A ⊂ X, ω ∈ ΩS, α0 = min(pmin(X0), 2)/2 and

d = 3
√
pmax(X0)/α0 − 1CMC .

Assume also that a quasi-Banach space Z is isomorphic to some Banach space Z0

possessing the Markov cotype 2 with a constant CMC and dBM(Z,Z0) < d1. Then, for
every ε > 0 and f ∈ Hω(A, Y ), there exists fε ∈ Hβ(A, Y ) satisfying

‖f − fε|C(A, Y )‖ ≤ gω(ε) and ‖fε|Hβ(A, Y )‖ ≤ hω(ε)

for the following combinations of β, gω and hω in the following settings.
a) If Y is a subspace of Z, one can choose fε : A→ co (f(A)), β = α0rs/rc,

gω(ε) = (1 + 2d)d1ω(ε)

(
rccs

rsc
1+rs/rc
c

) 1
rc
(

1 + csc
− rs

rc
c

(
2 +

ω(d(A))

2dω(ε)

)rs
) 1

rs
− 1

rc

and

hω(ε) = 2dd1ω(ε)
(
d0η(α0)ξ(α0, X0)r(A, 0)1−α0ε−1

) rs
rc

(
rccs

rsc
1+rs/rc
c

) 1
rc

×

×
(

1 + csc
− rs

rc
c

(
2 +

ω(d(A))

2dω(ε)

)rs
) 1

rs
− 1

rc
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if Z0 is (rc, hc)-uniformly convex and (rs, hs)-uniformly smooth with

cc = sup
µ∈(0,1/2]

(1− µ)hc(µ) and cs = inf
µ∈(0,1/2]

(1− µ)1−rshs(µ).

b) One can take β = α0, gω(ε) = C(1 + 2d)d1ω(ε) and

hω(ε) = 2Cd0dd1η(α0)ξ(α0, X0)r(A, 0)1−α0ω(ε)/ε

either if Y is a subspace of Z and C = 1, or if Y is a factor space Z/Z1 with ‖I −
PZ1|L(Z)‖ ≤ C for a projector PZ1 : Z → Z1. Moreover, if Z0 is Hilbert, one has
C = 1 and fε : A→ co (f(A)).

c) If Y is a factor space Z/Z1, one can choose fε : A→ co (f(A)), β = α0rs/rc,

gω(ε) = CHI(1 + 2d)d1ω(ε)
rs
rc ω (r(A, 0))1− rs

rc

(
rccs

rsc
1+rs/rc
c

) 1
rc

×

×
(

1 + csc
− rs

rc
c

(
2 +

ω(d(A))rs/rc

2dω(ε)rs/rc

)rs) 1
rs
− 1

rc

and

hω(ε) = 2CHIdd1ω(ε)
rs
rc ω (r(A, 0))1− rs

rc

(
d0η(α0)ξ(α0, X0)r(A, 0)1−α0ε−1

) rs
rc ×

×
(

rccs

rsc
1+rs/rc
c

) 1
rc
(

1 + csc
− rs

rc
c

(
2 +

ω(d(A))rs/rc

2dω(ε)rs/rc

)rs) 1
rs
− 1

rc

if Z0 is (rc, hc)-uniformly convex and (rs, hs)-uniformly smooth with cc and cs as in
Part a) and

CHI =

(
21−rs/rc +

(
rccs

rsc
1+rs/rc
c

)1/rc(
1 + csc

−rs/rc
c 2rs

)1/rs−1/rc

)
.

Proof. It is very similar to the proof of Corollary 10.1. In particular, the last step in
the proofs of a) and c) is the application of Theorem 9.3 because the corresponding
metric projection is the last mapping in the composition of fε. Thus, we describe the
differences using notations from that proof. The d0-Lipschitz homeomorphism becomes
linear. We also apply Lemma 10.1 to

f̄ = T1 ◦ f ◦ T−1
0 ◦mβ0 : X1 −→ T1Y ⊂ Z0, (1)

where X1 ∈ IG0 has the same tree T (X0) = T (X1), min(pmin(X0), 2)pX1 = 2pX0 and
β0 is the constant function 1/α0. The expression for d is provided by Theorems 9.4
and 9.5 with the aid of Theorem 2.2. Eventually, one takes

fε = T−1
1 ◦ PD ◦ f̄ε ◦mα0,a ◦ T0 : A→ co (f(A)) for D = co (T1f(A)) (2)

in the case of Part a) and the case of Hilbert Z0 ⊃ Y in b), and

fε = P ◦ T−1
1 ◦ f̄ε ◦mα0,a ◦ T0 : A→ Y, (3)
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when Y is a C-complemented subspace in b). In the case of the rest of b), we substitute
f in (1) with B ◦ f , where B : Y = Z/Z1 → Ker(PZ1) ⊂ Z is the linear right inverse
of the quotient map QZ1 : Z → Y corresponding to PZ1 .

As far as Part c) is concerned, the isomorphism T1 induces the isomorphism
T̃1 : Z/Z1 −→ Z0/T̃1Z1 with

‖T1|L(Z,Z0)‖ =
∥∥∥T̃1|L(Z/Z1, Z0/T̃1Z1)

∥∥∥
and ∥∥T−1

1 |L(Z0, Z)
∥∥ =

∥∥∥T̃−1
1 |L(Z0/T̃1Z1, Z/Z1)

∥∥∥ .
Thus, instead of (1), we use

f̄ = B ◦ T̃1 ◦ f ◦ T−1
0 ◦mβ0 : X1 −→ Z0, (4)

where B : T1Y −→ Z0 is the homogeneous inverse of the quotient map Q0 : Z0 → T1Y
given in Corollary 3.2. Then we employ Corollary 3.2 to estimate the modulus of
continuity of f̄ and proceed exactly as above. The counterpart of (2) is

fε = T̃−1
1 ◦ PD ◦Q0 ◦ f̄ε ◦mα0,a ◦ T0 : A→ co (f(A)) for D = co(T̃1A). (5)

Note that the quotient space T̃1Y inherits the convexity and smoothness properties of
Z0 and, thus, we use Theorem 9.3 exactly as in a).

In addition to the multiple usage of Lemma 3.1, a), we also employ the regularity
estimates for our homogeneous Mazur mappings established in Theorem 5.1. Part c)
of Remark 5.1 provides the algebraic identity I = mβ0mα0,a.

Let us recall that functions ωc and ωs are defined in Section 2.6.

Theorem 10.3. Let X be a metric space that is d0-Lipschitz homeomorphic to a metric
space X0 possessing the Markov type 2 with a constant CMT , a bounded A ⊂ X and
ω ∈ ΩS. Assume also that a quasi-Banach space Z is isomorphic to some Z0 ∈ IG0

with dBM(Z,Z0) < d1, α1 = 2/max(2, pmax(Z0)), d = 6CMT (α1pmin(Z0)− 1)−1/2,
rs = min(pmin(Z0), 2) and rc = max(pmax(Z0), 2) = 2/α1. Then, for every ε > 0 and
f ∈ Hω(A, Y ), there exists fε ∈ Hβ(A, Y ) satisfying

‖f − fε|C(A, Y )‖ ≤ gω(ε) and ‖fε|Hβ(A, Y )‖ ≤ hω(ε)

for the following combinations of β, gω and hω in the following settings.
a) If Y is a subspace of Z, one can choose fε : A→ co (f(A)), β = α1rs/rc,

gω(ε) = (1 + 2d)d1η(α1)ξ(α1, Z0)
2ω(ε)

(
1 +

ω (r(A, 0))

2dω(ε)

)1−α1
(

rccs

rsc
1+rs/rc
c

) 1
rc

×

×
(

1 + csc
− rs

rc
c

(
2 +

ω (r(A, 0))

2dω(ε)

)α1rs
) 1

rs
− 1

rc
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and

hω(ε) = 2dd1η(α1)ξ(α1, Z0)
2ω(ε)(d0/ε)

α1rs
rc

(
1 +

ω (r(A, 0))

2dω(ε)

)1−α1
(

rccs

rsc
1+rs/rc
c

) 1
rc

×
(

1 + csc
− rs

rc
c

(
2 +

ω (r(A, 0))

2dω(ε)

)α1rs
) 1

rs
− 1

rc

,

where cs = ωs(0, pmax(Z0), rs), cc = ωc(0, pmin(Z0), rc).
b) One can take

β = α1, gω(ε) = C(1 + 2d)d1η(α1)ξ(α1, Z0)
2ω(ε) (1 + ω (r(A, 0)) /2dω(ε))1−α1

and
hω(ε) = 2Cdd0d1η(α1)ξ(α1, Z0)

2ω(ε)ε−1 (1 + ω (r(A, 0)) /2dω(ε))1−α1

either if Z is
C-complemented in Z, or if Y = Z/Z1 with ‖I − PZ1|L(Z)‖ ≤ C for a projector
PZ1 : Z → Z1. Moreover, C = 1 if Y = Z or Z0 is Hilbert. In the latter case, one
even has fε : A→ co (f(A)).

c) If Y is a factor space Z/Z1, one can choose fε : A→ co (f(A)), β = α1rs/rc,

gω(ε) = CHI(1 + 2d)d1η(α1)ξ(α1, Z0)
2ω(ε)

rs
rc

× ω (r(A, 0))1− rs
rc

(
1 +

ω (r(A, 0))rs/rc

2dω(ε)rs/rc

)1−α1

×
(

rccs

rsc
1+rs/rc
c

) 1
rc

(
1 + csc

− rs
rc

c

(
2 +

ω (r(A, 0))rs/rc

2dω(ε)rs/rc

)α1rs
) 1

rs
− 1

rc

and

hω(ε) = 2CHIdd1η(α1)ξ(α1, Z0)
2ω(ε)

rs
rc

× ω (r(A, 0))1− rs
rc (d0/ε)

α1rs
rc

(
1 +

ω (r(A, 0))rs/rc

2dω(ε)rs/rc

)1−α1

×
(

rccs

rsc
1+rs/rc
c

) 1
rc

(
1 + csc

− rs
rc

c

(
2 +

ω (r(A, 0))rs/rc

2dω(ε)rs/rc

)α1rs
) 1

rs
− 1

rc

,

where cs and cc are as in a) and

CHI = 21−rs/rc +

(
rccs

rsc
1+rs/rc
c

)1/rc(
1 + csc

−rs/rc
c 2rs

)1/rs−1/rc
.

Proof. It is very similar to the proof of Corollary 10.1. Thus, we describe the distinc-
tions using notations from that proof. We apply Lemma 10.1 to

f̄ = mpZ0
/ min(pZ0

,2) ◦ T1 ◦ f ◦ T−1
0 : X0 −→ Z1, (1)
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where Z1 ∈ IG0 has the same tree T (Z0) = T (Z1) and pZ1 = min (pZ0 , 2). The
expression for d is provided by Theorems 9.4 and 9.5 with the aid of Theorem 2.2.
Eventually, one takes

fε = T−1
1 ◦PD ◦mmin(pZ0

,2)/α1pZ0
◦mα1,a ◦ f̄ε ◦ T0 : A→ co (f(A)) for D = co (T1f(A))

(2)
in the case of Part a) and the case of Hilbert Z0 in b), and

fε = P ◦ T−1
1 ◦mmin(pZ0

,2)/α1pZ0
◦mα1,a ◦ f̄ε ◦ T0 : A→ Y, (3)

when Y is a C-complemented subspace in b). In the case of the rest of b), we substitute
f in (1) with B ◦ f , where B : Y = Z/Z1 → Ker(PZ1) ⊂ Z is the linear right inverse
of the quotient map QZ1 : Z → Y corresponding to PZ1 .

As far as Part c) is concerned, there exists the isomorphism T̃1 : Z/Z1 −→ Z0/T̃1Z1

as in the preceding proof. Thus, instead of (1), we use

f̄ = mpZ0
/ min(pZ0

,2) ◦B ◦ T̃1 ◦ f ◦ T−1
0 : X0 −→ Z1, (4)

where B : T1Y −→ Z0 is the homogeneous inverse of the quotient map Q0 : Z0 → T1Y
given in Corollary 3.2. Then we employ Corollary 3.2 to estimate the modulus of
continuity of f̄ and proceed exactly as above. The counterpart of (2) is

fε = T̃−1
1 ◦PD ◦Q0 ◦mmin(pZ0

,2)/α1pZ0
◦mα1,a ◦ f̄ε ◦T0 : A→ co (f(A)) for D = co(T̃1A).

(5)
Note that the quotient space T̃1Y inherits the convexity and smoothness properties of
Z0 and, thus, we use Theorem 9.3 exactly as in a).

In addition to the multiple usage of Lemma 3.1, a), we also employ the regularity
estimates for our homogeneous Mazur mappings established in Theorem 5.1. Remark
5.1 provides the algebraic identity

I = mmin(pZ0
,2)/α1pZ0

mα1,ampZ0
/ min(pZ0

,2).

Theorem 10.4. Let X be a quasi-Banach space with dBM(X,X0) < d0 for some
X0 ∈ IG0, a bounded A ⊂ X, ω ∈ ΩS and α0 = min(pmin(X0), 2)/2. Assume also
that a quasi-Banach space Z is isomorphic to some Z0 ∈ IG0 with dBM(Z,Z0) < d1,
α1 = 2/max(2, pmax(Z0)), rs = min(pmin(Z0), 2), rc = max(pmax(Z0), 2) and

d = 6

(
pmax(X0)/α0 − 1

α1pmin(Z0)− 1

)1/2

.

Then, for every ε > 0 and f ∈ Hω(A, Y ), there exists fε ∈ Hβ(A, Y ) satisfying

‖f − fε|C(A, Y )‖ ≤ gω(ε) and ‖fε|Hβ(A, Y )‖ ≤ hω(ε)

for the following combinations of β, gω and hω in the following settings.
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a) If Y is a subspace of Z, one can choose fε : A→ co (f(A)), β = α0α1rs/rc,

gω(ε) = (1 + 2d)d1η(α1)ξ(α1, Z0)
2ω(ε)

(
1 +

ω (r(A, 0))

2dω(ε)

)1−α1
(

rccs

rsc
1+rs/rc
c

) 1
rc

×
(

1 + csc
− rs

rc
c

(
2 +

ω (r(A, 0))

2dω(ε)

)α1rs
) 1

rs
− 1

rc

and

hω(ε) = 2dd1η(α1)ξ(α1, Z0)
2ω(ε) (d0η(α0)ξ(α0, X0)/ε)

α1rs
rc

(
1 +

ω (r(A, 0))

2dω(ε)

)1−α1

×
(

rccs

rsc
1+rs/rc
c

) 1
rc
(

1 + csc
− rs

rc
c

(
2 +

ω (r(A, 0))

2dω(ε)

)α1rs
) 1

rs
− 1

rc

,

where cs = ωs(0, pmax(Z0), rs), cc = ωc(0, pmin(Z0), rc).
b) One can take β = α0α1,

gω(ε) = (1 + 2d)d1η(α1)ξ(α1, Z0)
2ω(ε)

(
1 +

ω (r(A, 0))

2dω(ε)

)1−α1

and

hω(ε) = 2dd1η(α1)ξ(α1, Z0)
2ω(ε) (d0η(α0)ξ(α0, X0)/ε)

α1

(
1 +

ω (r(A, 0))

2dω(ε)

)1−α1

if Z is C-complemented in Z, or if Y is a factor space Z/Z1 with ‖I −PZ1|L(Z)‖ ≤ C
for a projector PZ1 : Z → Z1. Moreover, C = 1 if Y = Z or Z0 is Hilbert. In the
latter case, one even has fε : A→ co (f(A)).

If Y is a factor space Z/Z1,
c) one can choose fε : A→ co (f(A)), β = α0α1rs/rc,

gω(ε) = CHI(1 + 2d)d1η(α1)ξ(α1, Z0)
2ω(ε) (r(A, 0))1− rs

rc ×

×
(

1 +
ω (r(A, 0))

2dω(ε)

)1−α1
(

rccs

rsc
1+rs/rc
c

) 1
rc
(

1 + csc
− rs

rc
c

(
2 +

ω (r(A, 0))

2dω(ε)

)α1rs
) 1

rs
− 1

rc

and

hω(ε) = 2CHIdd1η(α1)ξ(α1, Z0)
2ω(ε) (d0η(α0)ξ(α0, X0)/ε)

α1rs
rc (r(A, 0))1− rs

rc ×

×
(

1 +
ω (r(A, 0))

2dω(ε)

)1−α1
(

rccs

rsc
1+rs/rc
c

) 1
rc
(

1 + csc
− rs

rc
c

(
2 +

ω (r(A, 0))

2dω(ε)

)α1rs
) 1

rs
− 1

rc

,

where cs and cc are as in a) and

CHI = 21−rs/rc +

(
rccs

rsc
1+rs/rc
c

)1/rc(
1 + csc

−rs/rc
c 2rs

)1/rs−1/rc
.
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Proof. As above, it is very similar to the proof of Theorem 10.2. In fact, it is close to
a composition of parts of the proofs of Theorems 10.2 and 10.3. Thus, we describe the
differences using notations from that proof. The d0-Lipschitz homeomorphism becomes
linear. We apply Lemma 10.1 to

f̄ = mpZ0
/ min(pZ0

,2) ◦ T1 ◦ f ◦ T−1
0 ◦mβ0 : X1 −→ Z1, (1)

where X1 ∈ IG0 has the same tree T (X0) = T (X1), min(pmin(X0), 2)pX1 = 2pX0 and
β0 is the constant function 1/α0, and Z1 ∈ IG0 has the same tree T (Z0) = T (Z1) and
pZ1 = min (pZ0 , 2). The expression for d is provided by Theorems 9.4 and 9.5 with the
aid of Theorem 2.2. Eventually, one takes

fε = T−1
1 ◦ PD ◦mmin(pZ0

,2)/α1pZ0
◦mα1,a ◦ f̄ε ◦mα0,a ◦ T0 : A→ co (f(A))

for D = co (T1f(A))
(2)

in the case of Part a) and the case of Hilbert Z0 in b), and

fε = P ◦ T−1
1 ◦mmin(pZ0

,2)/α1pZ0
◦mα1,a ◦ f̄ε ◦mα0,a ◦ T0 : A→ Y, (3)

when Y is a C-complemented subspace in b). In the case of the rest of b), we substitute
f in (1) with B ◦ f , where B : Y = Z/Z1 → Ker(PZ1) ⊂ Z is the linear right inverse
of the quotient map QZ1 : Z → Y corresponding to PZ1 .

As far as Part c) is concerned, there exists the isomorphism T̃1 : Z/Z1 −→ Z0/T̃1Z1

with the same norms of itself and the inverse. Thus, instead of (1), we use

f̄ = mpZ0
/ min(pZ0

,2) ◦B ◦ T̃1 ◦ f ◦ T−1
0 ◦mβ0 : X1 −→ Z1, (4)

where B : T1Y −→ Z0 is the homogeneous inverse of the quotient map Q0 : Z0 → T1Y
given in Corollary 3.2. Then we employ Corollary 3.2 to estimate the modulus of
continuity of f̄ and proceed exactly as above. The counterpart of (2) is

fε = T̃−1
1 ◦ PD ◦Q0 ◦mmin(pZ0

,2)/α1pZ0
◦mα1,a ◦ f̄ε ◦mα0,a ◦ T0 : A→ co (f(A))

for D = co(T̃1A).
(5)

As above, we use Theorem 9.3 exactly as in a).
In addition to the multiple usage of Lemma 3.1, a), we also employ the regularity

estimates for our homogeneous Mazur mappings established in Theorem 5.1 and rely
on the algebraic identities obtained in the proofs of Theorems 10.2 and 10.3 (following
from Remark 5.1).

The following lemma shows how to handle the situation when the domain space is
isomorphic to a quotient of a “good" space. It follows immediately from Corollaries 3.2
and 3.1, a).

Lemma 10.3. Let X be a quasi-Banach space isomorphic to a Banach space X0 that
is (rc, hc)-uniformly convex and (rs, hs)-uniformly smooth with dBM(X,X0) < d0,

cc = sup
µ∈(0,1/2]

(1− µ)hc(µ), cs = inf
µ∈(0,1/2]

(1− µ)1−rshs(µ),
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and let Z = X/X1 be a factor space of X, and a bounded A ⊂ Z. For a quasi-Banach
space Y , assume that, for some β ∈ (0, 1] and an arbitrary bounded B ⊂ X and ω ∈ ΩS,
one has the approximation property: for every ε > 0 and f ∈ Hω(B, Y ), there exists
fε ∈ Hβ(B, Y ) satisfying

‖f − fε|C(B, Y )‖ ≤ gω(ε) and ‖fε|Hβ(B, Y )‖ ≤ hω(ε).

Then, given ω ∈ ΩS, for every ε > 0 and f ∈ Hω(A, Y ), there exists fε ∈ Hβrs/rc(A, Y )
satisfying

‖f − fε|C(A, Y )‖ ≤ gω(ε) and ‖fε|Hβrs/rc(A, Y )‖ ≤ Cβ
HIr(A, 0)β(1−rs/rc)hω(ε),

where

CHI = 21−rs/rc +

(
rccs

rsc
1+rs/rc
c

)1/rc(
1 + csc

−rs/rc
c 2rs

)1/rs−1/rc
.

Remark 10.2. Let us note that, depending on the parameters of the spaces, Theorem
10.1 can provide better Hölder-Lipschitz regularity exponents than Theorems 10.2 −
10.4.

In the next corollary we see that Theorem 5.2 permits to substitute the IG0 spaces
with the IG0+ spaces in Theorems 10.2− 10.4.

Corollary 10.2. a) With occasionally different ξ and η, the conclusions of The-
orems 10.2 − 10.4 remain true if X0 ∈ IG+ in Theorems 10.2 and 10.4 with
α0 = min (pmin(X0), 2) /2, and Z0 ∈ IG+ in Theorems 10.3 and 10.4 with 1/α1 =
max (pmax(Z0), 2) /2, rs = min (pmin(Z0), 2) and rc = max (pmax(Z0), 2).

b) With occasionally different ξ and η, the conclusions of Theorems 10.2 and 10.3
remain true if X0 = Lp0(M0) ∈ Γ5 in Theorems 10.2 with α0 = min (p0, 2) /2 and/or
Z0 = Lp1(M1) ∈ Γ5 in Theorems 10.3 with 1/α1 = max (p1, 2) /2, rs = min (p1, 2) and
rc = max (p1, 2).

Proof. a) Lemmas 8.2 and 8.1 allow us to reduce the proof of a) to the setting X0 ∈
IG0+ and Z0 ∈ IG0+. The details of this reduction are the same as in the proof
of Part b) below. According to Theorems 2.2 and 2.4 the exponents p, q of the best
(p, hc)-uniform convexity and (q, hs)-uniform smoothness are computed in a similar way
leading to the same outcomes from the applications of the results on metric projections
and homogeneous inverses from Sections 3.2 and 9.2. The usage of the abstract Mazur
ascent from Definition 5.3 in tandem with Theorem 5.2 completely substitutes the
usage of the simple Mazur ascent from Definition 5.2 and Theorem 5.1, b), while Part
a) of Theorem 5.1 remains applicable. Indeed, the reason for employing the simple
Mazur ascent in Theorems 10.2− 10.4 is the reduction of the approximation problem
for an arbitrary pair to the pair of a Markov type 2 space and a Markov type 2
space that require to change all the parameters pX0(i) < 2 and all the parameters
pZ0 > 2 to the value 2 that is achieved by using the Mazur ascents with the parameters
α0 = min (pmin(X0), 2) /2 and 1/α1 = max (pmax(Z0), 2) /2 correspondingly. Theorem
5.2 with β ≤ α permits to perform the same tasks with the same exponents.



Hölder analysis and geometry on Banach spaces. Part II 41

In details, we only need to find the substitutions for the pair of mutually inverse
operators

(mα0,a,mβ0) and
(
mmin(pZ0

,2)/α1pZ0
◦mα1,a,mpZ0

/ min(pZ0
,2)

)
used in the proofs of Theorems 10.2− 10.4, while we would like to maximize only the
smoothness of the substitutes for mα0,a : X0 → X1 and mmin(pZ0

,2)/α1pZ0
◦mα1,a : Z1 →

Z0, where pmin(X1) ≥ 2 and pmax(Z1) ≤ 2.
In the case of mα0,a, we choose PI = {i ∈ Pnc(X0) : pX0(i) ≥ 2} and use the

abstract Mazur ascent mapping provided by Theorem 5.2 with β = α0. Both this
mapping and its inverse are α0-Hölder according to the same theorem.

In the second case, we choose PI = {i ∈ Pnc(Z0) : pZ0(i) ≤ 2}. Note that
pZ1(i) = 2 for i ∈ Pnc(Z0) \ PI , and one needs to transform them to the values pZ0

and, possibly, also to increase the value 2 = pZ1(i0) for (possibly commutative spaces)
at the vertex(es) i0 with pZ0(i0) = pmax(Z0). This first step is achieved by the abstract
Mazur ascent mapping from Theorem 7.5 with β = α1. Afterwards we use the same
complex Mazur descent (note that it deals only with the “commutative” vertexes while
the noncommutative are already “in place") to return the parameters that became
too large back to their values for Z0. In the opposite direction we increase all the
noncommutative parameters between pmax(Z0) and 2 to the values not less than 2
utilizing the degenerated ascent described in Remark 5.3. Then we reduce them all to
the value Pmax(Z0) by the appropriate complex descent and, eventually, return back
to Z1 with the aid of the inverse of the first abstract Mazur ascent above provided by
Theorem 5.2.

The proof of Part b) requires even less changes. If X0 = Lp0(M0) and/or
0 = Lp1(M1), one works, correspondingly, with the spaces X0 and/or Z0 provided
by Theorem 8.6 instead of X0 and/or Z0. Substituting p0 and p1 with 2, we also in-
voke Theorem 8.6 in the same manner to obtain the Hilbert spaces X2 and Z2 and
extend by continuity the union of the mappings mr,2 and m2,r for r ∈ {r, 2} provided
by Theorem 4.5, as in the proof of Theorem 6.8, construct the homogeneous Hölder
homeomorphisms between X0 and X2, and between Z0 and Z2.

10.4 Pairs of abstract Banach lattices

To reveal the intimate relation between the approximation of uniformly continuous
mappings and the Hölder classification of spheres, let us note that Theorem 6.2 implies
the following theorem.

Theorem 10.5. Let X and Y be Banach lattices with a weak unit that do not contain
l∞(In) uniformly (by n). Assume also that f : D → Y is uniformly continuous
on a bounded D ⊂ X with the modulus of continuity dominated by a nondecreasing
subadditive ω : R+ → R+ with limt→0 ω(t) = 0. Then there exists γ ∈ (0, 1], such that,
for every ε > 0, there is fε ∈ Hγ(X, Y ) satisfying

‖f(x)− fε(x)‖Y ≤ ε for x ∈ D.

Moreover, one also has γ = 1/4 and fε(X) ⊂ co(f(D)) if Y is a Hilbert space.
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Proof. We essentially follow Tsar’kov’s scheme II of the reduction of the case of a pair
of Lebesgue spaces to the case of a pair of Hilbert spaces followed by the application
of Kirszbraun’s extension theorem [29]. The difference is in the usage of the Hölder
homeomorphisms provided by Theorem 6.2 instead of our counterparts of the Mazur
mapping and the composition with a metric projection in the special case of Hilbert
Y .

Indeed, let Dδ ⊂ D be a maximal δ-separated subset of D, and let ψ0 : X
(α0,β0)←→ H0

and ψ1 : Y
(α1,β1)←→ H1 be the homogeneous Hölder homeomorphisms supplied by The-

orem 6.2 (H0 and H1 are Hilbert). Assume also that φ = ψ1 ◦ f ◦ ψ−1
0 : D0 →

H1 and D0δ = ψ0(Dδ), where D0 ⊂ H0. Let
∥∥ψ−1

0

∣∣Hβ0(ψ0(D), X)
∥∥ = C0 and

‖ψ1|Hα1(f(D), H1)‖ = C1. Therefore, the modulus ω(t, φ) of continuity of φ on ψ0(D)
satisfies

ω(t, φ) ≤ C1 (ω (C0t
α))β = w(t).

Since w is subadditive, the restriction of φ to D0δ is Lipschitz with ‖φ|H1(D0δ, H1)‖ ≤
2w(δ′)/δ′, where δ′ = (δ/C0)

1/β0 , and, thus, is extended to φδ : H0 → H1 satisfying
‖φδ|H1(H0, H1)‖ ≤ 2w(δ′)/δ′ with the aid of Kirszbraun’s extension theorem. Now we
choose fδ = ψ−1

1 ◦ φδ ◦ ψ0 and use Corollary 3.1 to conclude that fδ ∈ Hα0β1(D, Y ).
Clearly, for every x ∈ D, there is y ∈ Dδ with ‖x− y‖X < δ, and, therefore, one has

‖f(x)− fδ(x)‖Y ≤ ‖f(x)− f(y)‖Y + ‖fδ(x)− fδ(y)‖Y
≤ ω(δ) + ‖fδ|Hα0β1(D, Y )‖δα0β1 .

(1)

Since limt→0 ω(t) = 0, the right-hand side of (1) is less than a given ε > 0 for sufficiently
small δ > 0. The proof of the general case is finished because x ∈ D was arbitrary.

If Y = H1, then fδ ∈ H1/4(H, Y ) due to Theorem 6.2 and the composition rule
(Corollary 3.1, a)). Considering f̃δ = P ◦ fδ, where P is the metric projection onto
co(f(D)), we obtain the identity f− f̃δ = P ◦ (f−fδ). Since P is 1-Lipschitz according
to the Phelps characterisation of Hilbert spaces, we achieve the additional properties
f̃δ ∈ H1/4(X, Y ) and f̃δ(D) ⊂ co(f(D)) finishing the proof of the theorem.

10.5 Pairs of concrete spaces

Corollary 10.1 and Theorems 10.1− 10.4 suggest the following definition.

Definition 10.2. Let X be a metric space and its bounded subset, and let Y be a quasi-
Banach space. Assume also that β, γ, δ ∈ (0, 1]. We say that the pair (X,Y ) possesses
the (β, γ, δ)-uniform approximation property if there exist constants Cg, Ch > 0 and
exponents β0, β1 ∈ [0, 1) depending on the (parameters of) the spaces X and Y , such
that, for every ω ∈ ΩS, bounded A ⊂ X, f ∈ Hω(A, Y ) and ε > 0, there exists
fε ∈ Hβ(A, Y ) satisfying

‖f − fε|C(A, Y )‖ ≤ C0ω (r(A))β1 ω(ε)γ

and
‖fε|Hβ(A, Y )‖ ≤ C1r(A)β0ω (r(A))β1 ω(ε)γε−δ.

If, in addition, one also has fε : A −→ co (f(A)), we say that the pair (X,Y ) possesses
the convex (β, γ, δ)-uniform approximation property.
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One uses the term β-uniform approximation property when γ and δ are not impor-
tant. If, in addition, the pair (X, Y ) does not possess the β′-uniform approximation
property for any β′ ∈ (0, β), we say that the pair (X,Y ) possesses the sharp β-uniform
approximation property.

Theorem 10.6. For i ∈ I5 ∪ {0}, let X be a metric space and Xi, Yi ⊂ Γi. Assume
also that Z ∈ {Xi, Yi} has the form:
(i) Z ∈

{
ZsZ

pZ ,qZ ,aZ
(GZ), Z̃sZ ,AZ

pZ ,qZ ,aZ
(GZ), ZsZ

p′Z ,q′Z ,a′Z
(GZ)∗, Z̃sZ ,AZ

p′Z ,q′Z ,a′Z
(GZ)∗

}
with admissi-

ble aZ if Z ∈ {X1, Y1},
(ii) Z ∈

{
ZsZ

pZ
(GZ), ZsZ

p′Z
(GZ)∗

}
if Z ∈ {X2, Y2},

(iii) Z ∈
{
ZsZ

pZ ,qZ
(Rn)w, Z

sZ

p′Z ,q′Z
(Rn)∗w

}
if Z ∈ {X3, Y3},

(iv) Z ∈
{
ZsZ

pZ ,qZ ,F(G), ZsZ

p′Z ,q′Z ,F(G)∗
}

if Z ∈ {X4, Y4},
and
(v) Z = ZpZ

if Z ∈ {X5, Y5}.
Let also:
1) 2α0 = min (pmin(X0), 2), 2αi = min

(
pXi min, qXi

, 2
)
, 2/β0 = max (pmax(X0), 2) and

2/βi = max
(
pXi max, qXi

, 2
)

for i ∈ {1, 3, 4},
2) 2α2 = min (pX2 min, 2), 2/β2 = max (pX2 max, 2), 2α5 = min(pX5

, 2) and 2/β5 =
max(pX5

, 2),
and
3) αj and βj be defined by substituting Xi with Yj in the above expressions for αi and
βi respectively.
Then the following holds.

a) The pair (X, Yj) possesses the convex (βj/2, βj/2, βj/2)-uniform approximation
property for i ∈ I5 ∪ {0}.

b) Assume that GYj
satisfies the C-flexible λ-horn condition for j ∈ {1, 2}, and, if

Xi is defined as a dual for i ∈ {1, 2}, GXi
satisfies the C-flexible λ-horn condition too.

Let also X4 be not defined as a dual. Then the pair (Xi, Yj) possesses the (αiβj, βj, βj)-
uniform approximation property for i ∈ I5 ∪ {0} and j ∈ {0, 1, 2, 3, 5}.

c) Assume that Xi is as in b) for all i, and, if Yj is defined as a dual, GYj
satisfies

the C-flexible λ-horn condition for j ∈ {1, 2}. Let also Y4 be not defined as a dual.
Then the pair (Xi, Yj) possesses the convex (αiαjβ

2
j , αjβ

2
j , αjβ

2
j )-uniform approximation

property for i, j ∈ I5 ∪ {0}.
d) Assume that Xi is as in b) for all i. Then the pair (Xi, Yj) possesses the convex
(αiαjβ

2
j , α

2
jβ

3
j , αjβ

2
j )-uniform approximation property for i, j ∈ I5 ∪ {0}.

e) Assume that Yj is as in b) for all j. Then the pair (Xi, Yj) possesses the
(α2

iβiβj, βj, βj)-uniform approximation property for i, j ∈ I5 ∪ {0}.
f) Assume that Yj is as in c) for all j. Then the pair (Xi, Yj) possesses the convex

(α2
iβiαjβ

2
j , αjβ

2
j , αjβ

2
j )-uniform approximation property for i, j ∈ I5 ∪ {0}.

g) Assume that Yj is as in d) for all j. Then the pair (Xi, Yj) possesses the convex
(α2

iβiαjβ
2
j , α

2
jβ

3
j , αjβ

2
j )-uniform approximation property for i, j ∈ I5 ∪ {0}.

Moreover, the parameter β = αiβj is sharp (maximal possible) in Part b) if i 6= 4,
dim(X5) = dim(Y5) =∞, and X0 and Y0 contain copies of l2α0 and l2/β0 respectively.
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Remark 10.3. a) Since the (convex) (β, γ, δ)-uniform approximation property of a
pair (X, Y ) is stable with respect to the substitution of one or both elements with
isomorphic spaces (or the usage of equivalent norms), the applicability of the theo-
rem is noticeably extended by the results on the equivalent characterisations of the
spaces under consideration. For example, some spacial cases of X4 and Y4, such as
the anisotropic Nikol’skii-Besov spaces (on Rn) defined in terms of Fourier multipliers
(approximation by entire functions of exponential type) [35] and the Triebel-Lizorkin
spaces F s

p,q(Rn) [41], that are their Lizorkin-Triebel counterparts defined in terms of
Fourier multipliers (smooth Littlewood-Paley decompositions) are isomorphic to both
(X3, Y3) (wavelet characterisations) and (X1(Rn), Y1(Rn)) with the same parameters
and an admissible a. Furthermore, the usage of Theorem 10.4 in the proof shows
that the substitution of F s

p,q(Rn) with F s
p,q(G) with an open G ⊂ Rn in a pair does

not change its (convex) (β, γ, δ)-uniform approximation property as well because such
F s

p,q(G) is isomorphic to a complemented subspace in F s
p,q(Rn).

b) Let us note that, according to Theorem 11.2 with q = 1, the exponent βj/2 in
Part a) of Theorem 10.6 is sharp not only when the metric space X is, for example,
(a ball in) one of the spaces lp and lq (N, {lp}n∈N) with p = 1 or p =∞, but also when
X ∈ Γi for i ∈ {1, 2} and one of the parameters of X (different from a component of
a compatible aX if i = 1) is equal to 1 or ∞ or X ∈ {S1, S∞} thanks to Corollary 3.1
from [13] (see also Remark 8.4 above) complementing the results in the next section
by identifying the existence of isomorphic copies of l1(In) and l∞(In) in these spaces.

c) While Xi may have some parameters equal to 1 thanks to Part a), Parts b) and
e) remain true also in the case pmin(Y0) = 1. The sharpness is shown by means of
factorizing via a sequence of spaces with converging parameters (see Theorem 2.3 in
[17] for an analogous argument due to Naor).

Proof. Theorem 10.1, combined with Theorems 2.2−2.8 and Remark 2.11, b) describing
the (p, hc)-uniform convexity of Yj, implies Part a).

According to Section 2.2, Xi and Yi for i ∈ I4 are subspaces of the corresponding
IG(lp, Lp) space with the same range of the parameters, and Yi (i 6= 4) is even com-
plemented thanks to Theorem 8.1 and Remark 8.2. When GXi

possesses the flexible
λ-horn condition, Xi, defined as a dual for i = 1, 2, is isomorphic to a subspace in the
corresponding IG-space with the same parameters due to Section 2.2, Theorem 8.1
and Lemma 8.1. Thus, we obtain Part b) with the aid of Theorems 10.2, b) and 10.3, b)
and Corollary 10.2 if i ∈ {0, 5} and/or j ∈ {0, 5}. In the rest of b), we use Theorem
5.6, b).

The sharpness in b) is inferred from Theorem 11.2 with the help of Theorems
8.2 − 8.4, Lemmas 8.1 and 6.3 and Remarks 8.2 and 8.3 insuring the existence of the
complemented copies of sequence spaces. To check the presence of the corresponding
extension properties for various pairs under consideration that are also required in
Theorem 11.2, we use Remark 5.1, b) or 5.1, c) in tandem with Theorems 2.2 − 2.8 or
4.2− 4.5 respectively.

Parts c) and d) are deduced, correspondingly, from Parts a) and c) of Theorems
10.2− 10.4 assisted by Corollary 10.2 whenever the spaces from Γ0 ∪ Γ1 are involved.
As above, all the exponents (and even parameters) are traced with the aid of Theorems
2.2− 2.8.
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To establish e), f) and g), we add the usage of Lemma 10.3 to the above con-
siderations leading, respectively, to b), c) and d) and, thus, finishing the proof of the
theorem.

11 Tsar’kov’s phenomenon and sharpness of Hölder exponents

The approximation of uniformly continuous mappings between Banach spaces by
Hölder-Lipschitz mappings is closely related to the problem of the existence of homo-
geneous Hölder-Lipschitz homeomorphisms of Banach spaces. Tsar’kov’s phenomenon
for a pair of Banach spaces X and Y is the existence of an exponent α ∈ (0, 1) such
that not every uniformly continuous mapping from a unit ball of X into Y can be ar-
bitrary well-approximated by an α-Hölder mapping. In this section, we relate the best
Hölder smoothness of the homeomorphisms between the spheres of the spaces under
consideration with the limiting exponents describing Tsar’kov’s phenomenon.

The best possible smoothness exponents of the Hölder-Lipschitz mappings approx-
imating the uniformly continuous mappings of the unit ball of Lp or lp into Lq or lq
for various pairs (p, q) were found by I. G. Tsar’kov [42, 43, 44] (see also §2.1 in [17]).
I. G. Tsar’kov studied the Hölder-Lipschitz regularity of the classical Mazur mappings
and used them to reduce the problem of approximating by Hölder mappings from Lp

into Lq to the problem of approximating by Lipschitz mappings. To solve the latter, he
followed the Bernstein-Jackson principle utilizing the (1, 1)-extension property of the
pairs of Hilbert spaces (L2 or l2), that is M. D. Kirszbraun’s extension theorem [29]
(see also [28] for generalizations), instead of Frechet’s extension for the pairs (X, l∞)
that he used earlier [30]. A. Naor found a way how to demonstrate the sharpness of
the smoothness exponent in the case q = 1 in Tsar’kov’s result by considering the limit
q → 1.

In 1993, I.G. Tsar’kov [45] had solved the problem of the uniform approximation of
a set-valued uniformly continuous mapping f from a uniformly smooth X into the set
of closed convex subsets of a uniformly convex Y by means of a single-valued mapping
fε satisfying

rX (f(x), fε(x)) ≤ ε for x ∈ X

and

‖fε(x1)− fε(x2)‖Y ≤ C
(
ω−1

Y (ΩX (C‖x1 − x2‖X)) + ‖x1 − x2‖X
)

for x1, x2 ∈ D,

where D is an arbitrary bounded subset of X, C = C(D), and ωY and ΩX are the
classical moduli of uniform convexity and smoothness of Y and X correspondingly. He
had also established the sharpness of the Hölder regularity exponent min(p,2)

max(q,2)
of fε for

the reflexive X = Lp and Y = Lq.
The essence of our approach is in the next lemma relating Hölder homeomorphisms

and the approximation problem.

Lemma 11.1. Let X0, X1, Y0, Y1 be Banach spaces and γ0, γ1, δ0, δ1 ∈ (0, 1]. Assume
also that the pairs (X0, Y0) and (X1, Y1) possess the γ0 and γ1-uniform approximation
properties respectively, while the pairs (X0, X1) and (Y0, Y1) possess the sharp δ0 and
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δ1-uniform approximation properties correspondingly. Then

α(Y0, X1) ≤ min (δ1/γ1, δ0/γ0) .

Proof. Assume that φ : Y0
(α,β)←→ X1 for some α, β ∈ (0, 1]. If f0 : BX0 → X1 and

f1 : BY0 → Y1 are some uniformly continuous mappings, then so are the compositions
φ−1 ◦ f0 and f1 ◦ φ−1 that can be uniformly approximated by some g0 ∈ Hγ0(BX0 , Y0)
and g0 ∈ Hγ1(BX1 , Y1). Therefore, the compositions φ ◦ g0 and g1 ◦ φ approximate,
respectively, the original mappings f0 and f1. The application of Lemma 3.1, a) finishes
the proof by implying

α ≤ min (δ1/γ1, δ0/γ0) .

Theorem 11.1. Let X, Y ∈ IG+([1,∞)) have the same tree T (X) = T (Y ) (and, thus,
common P ). Assume also that, for every ε > 0 and m ∈ N, there exist

p ∈ I(X)∩({pmin(X), pmax(X)}+ (−ε, ε)) and q ∈ I(Y )∩({pmin(Y ), pmax(Y )}+ (−ε, ε)) ,

such that X and Y contain C0-isomorphic and C1-complemented copies of lp(Im) an
lq(m) correspondingly for some C0, C1 ∈ [1,∞). Then

α(X,Y ) ≤ min

(
min(pmin(X), 2)

min(pmin(Y ), 2)
,
max(pmax(X), 2)

max(pmax(Y ), 2)

)
.

In particular, α(X,H) ≤ min(pmin(X), 2)/2 and α(H,X) ≤ 2/max(pmax(X), 2) if
Y = H = X2̄.

Proof. ]We use Lemma 11.1 with Y0 = X, X1 = Y and X0 = Y1 = X2̄. Its conditions
are verified with the aid of the proof of Parts a) and b) of Theorem 10.6 and Remark
10.3, b), while the conditions of Theorem 11.2 follow from the conditions of the assumed
existence of the uniformly complemented and isomorphic subspaces and Remark 8.3.

11.1 Sharpness: key approximation theorem

This section is dedicated to Tsar’kov’s approximation lemma that is extended and
extensively used in [7, 11, 13]. Let us recall that the space of continuous mappings
from X into Y is correctly defined.

Definition 11.1. Let X and Y be metric and Banach spaces correspondingly. Then
C(X,Y ) is the Banach space of all continuous mappings from X into Y with the norm

‖f |C(X, Y )‖ = sup
x∈X
‖f(x)‖Y .

Lemma 11.2. ([42, 43, 44, 17]) For some 1 ≤ p < q < ∞ and α > p/q and every
n ∈ 2N, let ψn be an element of Hα(B(lp(In), lq(In)) satisfying

C = sup
n∈2N
‖ψn|Hα(B(lp(In), lq(In))‖ <∞.
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Then one has

‖Mp/q − ψn|C(B(lp(In), lq(In))‖ ≥ (1− C(n/2)1/q−α/p)/2,

where Mp/q : lp(In) −→ lq(In), x 7−→ ‖x|lp‖p/q−1x is the Mazur mapping.

The following theorem shows the sharpness of the majority of our approximation
results in Section 10 and underpins the applicability of Lemma 11.1 to the study of the
sharpness of the Hölder exponents of the homogeneous Hölder homeomorphisms of the
pairs of Banach spaces under consideration.

Theorem 11.2. For 2 ∈ [q, p] ⊂ [1,∞) and d, C0, C1, C2 ≥ 1, let X be a bounded met-
ric space containing C0-Lipschitz homeomorphic copy of the unit ball B(lq(In)) of lq(In)
for every n ∈ N, and let Y be a quasi-Banach space containing a C2-complemented
and C1-isomorphic copy of lp(In) for every n ∈ N. Let also the pair (X,Y ) pos-
sess the (d, q/p)-extension property. Assume also that, for every ω ∈ ΩS, there is
gω : (0,∞) → (0,∞), such that, for every f ∈ Hω(X, Y ) and ε > 0, there exists
fε ∈ Hα(X,Y ) satisfying

‖f − fε|C(X,Y )‖ ≤ ε and ‖fε|Hα(X, Y )‖ ≤ gω(ε).

Then we have α ≤ q/p.

Remark 11.1. Theorem 11.2 works equally well even if X is L1 or an appropriate
metric space.

Proof. Assume that α > q/p. For n ∈ N, let φn : B(lq(In)) → X, Tn : lp(In) → Y
and Pn : Y → ImTn be a corresponding C0-homeomorphism, a C1-isomorphism and a
projector satisfying ‖Pn|L(Y )‖ ≤ C2. Choosing f̄n = Tn ◦Mq/p ◦φ−1

n ∈ Hq/p(Imφn, Y ),
where Mq/p ∈ Hq/p (B(lq), lp) is the Mazur mapping (see Lemma 11.2), we utilize the
(d, q/p)-extension property of the pair (X, Y ) to extend it to fn ∈ Hq/p(X, Y ) satisfying

‖fn|Hq/p(X, Y )‖ ≤
≤ d‖φ−1

n |H1(Imφn, B(lq(In)))‖q/p‖Tn|L(lp(In), Y )‖ · ‖Mq/p|Hq/p(B(lq), lp)‖. (1)

This means, in particular, that {fn}n∈N ⊂ Hω(X, Y ) for some ω(t) = c3t
q/p. Therefore,

for every ε′ > 0, there exists gn ∈ Hα(X,Y ) satisfying

‖fn − gn|C(X,Y )‖ ≤ ε′ and ‖gn|Hα(X, Y )‖ ≤ gω(ε′). (2)

Observing that T−1
n ◦ Pn◦fn ◦ φn = Mq/p, we define ψn = T−1

n ◦ Pn◦gn ◦ φn and use (1)
and (2) to infer the estimates

‖Mq/p − ψn|C(B(lq(In)), lp(In))‖ ≤ ε′‖T−1
n |L(ImTn, lq(In))‖C2 = ε

and
‖ψn|Hα(B(lq(In)), lp(In))‖ ≤ C4gω (C5ε) . (3)

Now we choose ε = 1/3 in (3) to achieve the contradiction with Lemma 11.2, providing,
for sufficiently large n, the estimate

‖Mq/p − ψn|C(B(lq(In)), lp(In))‖ > 1/3.
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