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Abstract. For classes of differentiable periodic functions, defined by means of gener-
alized moduli of continuity Ωm(f, t), satisfying the condition h∫

0

Ω2/m
m (f (r), t)dt

m/2

≤ Φ(h),

where m ∈ N, r ∈ Z+, h > 0 and Φ is a given majorant, under certain restrictions on
the majorant, the exact values of various n-widths in the space L2 are calculated.

1 Setting of extremal problems

Let L2 =: L2[0, 2π] be the space of all real-valued Lebesgue measurable 2π-periodic
functions f with finite norm

‖f‖ := ‖f‖L2 =

 1

π

2π∫
0

|f(x)|2dx

1/2

.

By T2n−1 we denote the space of all trigonometric polynomials

Tn−1(x) =
α0

2
+

n−1∑
k=1

(αk cos kx+ βk sin kx)

of order not exceeding n − 1. It is well known that for an arbitrary function f ∈ L2

with the Fourier series

f(x) ∼ a0(f)

2
+

∞∑
k=1

(ak(f) cos kx+ bk(f) sin kx)
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the value of its best approximation by elements of the space T2n−1 is equal to

En−1(f) = inf {‖f − Tn−1‖ : Tn−1(x) ∈ T2n−1}

= ‖f − Sn−1(f)‖ =

{
∞∑
k=n

ρ2
k(f)

}1/2

, (1.1)

where

Sn−1(f, x) =
n−1∑
k=1

(ak(f) cos kx+ bk(f) sin kx)

is the partial sum of order n − 1 of the Fourier series of the function f and ρ2
k =

a2
k(f) + b2k(f).

By the modulus of continuity of order m (m ∈ N) of a function f ∈ L2 we mean
the quantity

ωm(f, t) := sup {‖∆m
h (f ·)‖ : |h| ≤ t} , (1.2)

where

∆m
h (f, x) =

m∑
k=0

(−1)m−k
(
m

k

)
f(x+ kh)

is the difference of order m of the function f with step h at the point x.
By L(r)

2 (r ∈ Z+;L0
2 ≡ L2) we denote the space of all 2π-periodic functions f ∈ L2

whose derivatives of order (r−1) are absolutely continuous and the derivatives of order
r are such that f (r) ∈ L2.

By inequalities of Jackson–Stechkin type in a normed space X inequalities are
meant in which the best approximation En−1(f)X of the function f ∈ X by a finite-
dimensional subspace Nn ⊂ X is estimated via the modulus of continuity of the func-
tion itself or its derivative:

En−1(f)X ≤ Xn−rωm
(
f (r),

t

n

)
X

, (1.3)

where t > 0, f (r) ∈ X, r ∈ Z+, f 0 ≡ f, m ∈ N, and X is independent of f and n.
Pointing at importance of studying the problem of minimization of the constant X

in inequality (1.3), the authors of the monograph [2] emphasize that “the interest to
sharp constants, which arose in connection with inequalities of Jackson–Stechkin type,
could be not that justified if each new case did not require implementing new ideas
and methods, which later appeared to be useful for solving other extremal problems”.

When solving extremal problems of the approximation theory for periodic differ-
entiable functions f ∈ L2, related to finding the sharp constant in inequality (1.3),
mathematicians considered various extremal characteristics. (See, for example, [1], [3],
[4], [6]–[10], [12]–[16].) In particular, in [13] the following extremal characteristic

Xm,n,r(h) = sup

nrEn−1(f)

 h∫
0

ω2/m
m (f (r), t)dt

−m/2

: f ∈ L(r)
2 , f (r) 6= const

 ,
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was considered, where m,n ∈ N, r ∈ Z+, 0 < h ≤ π/n, and it was proved that

Xm,n,r(h) =

{
n

2(nh− sinnh)

}m/2
. (1.4)

Equality (1.4) implies in particular for m = 1 the result due to L.V. Taikov [10].
Sometimes, when solving similar extremal problems of the approximation theory

for periodic differentiable functions f ∈ L2, it is more convenient to use the following
characteristic equivalent to quantity (1.2)

Ωm(f, t)2 =

 1

tm

t∫
0

· · ·
t∫

0

∥∥∆m
h
f(·)

∥∥2
dh1 · · · dhm


1/2

, t > 0, (1.5)

where h = (h1, h2, · · ·, hm),

∆m
h

= ∆1
h1
◦ · · · ◦∆1

hm
, ∆1

hj
f = f(·+ hj)− f(·), j = 1,m.

(See, for example, [12], [14]). In order to obtain an analogue of equality (1.4) we
introduce the following extremal characteristic for the modulus of continuity (1.5)

Km,n,r(h) = sup

nrEn−1(f)

 h∫
0

Ω2/m
m (f (r), t)dt

−m/2

; f ∈ L(r)
2 , f (r) 6= const

 (1.6)

and we shall prove the following statement.

Theorem 1.1. Let m,n ∈ N, r ∈ Z+ and 0 < h ≤ π/n. Then the following equalities

Km,n,r(h) =

{
n

2(nh− Si(nh)

}m/2
, (1.7)

hold, where Si(t) =

t∫
0

sin x

x
dx is the integral sine.

Proof. Indeed, f ∈ L(r)
2 and

f(x) ∼ 1

2
a0(f) +

∞∑
k=1

(ak(f) cos kx+ bk(f) sin kx)

is the Fourier series for f , by direct calculations we get

Ω2
m

(
f (r), t

)
= 2m

∞∑
k=1

k2rρ2
k

(
1− sin kt

kt

)m
, (1.8)

where ρ2
k = ρ2

k(f) = a2
k(f) + b2k(f), k ∈ N. By Hölder’s inequality for sums and by

formulas (1.1) and (1.8), we have

E2
n−1(f)−

∞∑
k=n

ρ2
k

sin kt

kt
=

∞∑
k=n

ρ2
k

(
1− sin kt

kt

)
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=
∞∑
k=n

ρ
2(1−1/m)
k · ρ2/m

k

(
1− sin kt

kt

)
≤

(
∞∑
k=n

ρ2
k

)1−1/m( ∞∑
k=n

ρ2
k

(
1− sin kt

kt

)m)1/m

≤ (En−1(f))1−1/m · 1

2n2r/m
· Ω2/m

m

(
f (r); t

)
.

This implies that

E2
n−1(f) ≤

∞∑
k=n

ρ2
k

sin kt

kt
+
(
E2
n−1(f)

)1−1/m · 1

2n2r/m
· Ω2/m

m

(
f (r); t

)
.

By integrating this inequality in t from 0 to h and by using the definition of the integral
sine, we get

hE2
n−1(f) ≤

∞∑
k=n

ρ2
k

Si(kh)

k
+
(
E2
n−1(f)

)1−1/m · 1

2n2r/m
·

h∫
0

Ω2/m
m

(
f (r); t

)
dt. (1.9)

Dividing both parts of inequality (1.9) by h > 0 and taking into account that the
function Si(x)/x is non-increasing on [0,∞) [15], we have

max

{
Si(kh)

kh
: k ≥ n

}
=
Si(nh)

nh
, 0 < nh ≤ π.

Therefore from inequality (1.9) it follows that

(
1− Si(nh)

nh

)m/2
· En−1(f) ≤ 1

(2h)m/2
· 1

nr

 h∫
0

Ω2/m
m

(
f (r); t

)
dt

m/2

. (1.10)

Inequality (1.10) implies that

nr · En−1(f) h∫
0

Ω2/m
m

(
f (r), t

)
dt

m/2
≤
{

n

2(nh− Si(nh))

}m/2
,

hence, taking into account the definition of quantity (1.6), we obtain the following
estimate above

Km,n,r(h) ≤
{

n

2(nh− Si(nh)

}m/2
. (1.11)

In order to prove equality (1.7), it suffices to consider the function f0(x) = cosnx ∈
L2 for which

En−1(f0) = 1, Ω2
m

(
f

(r)
0 ; t

)
= 2mn2r

(
1− sinnt

nt

)m
, 0 < nt ≤ π, (1.12)
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hence we obtain the estimate below

Km,n,r(h) ≥ nr · En−1(f0)(
h∫
0

Ω
2/m
m

(
f

(r)
0 , t

)
dt

)m/2 =

{
n

2(nh− Si(nh))

}m/2
. (1.13)

Comparing inequalities (1.11) and (1.13), we get equality (1.7).

As a corollary of Theorem 1.1 we get the following statement.

Theorem 1.2. For each m,n ∈ N, and r ∈ Z+ the following inequality

1

2m/2
≤ sup

{
nrEn−1(f)

Ωm(f (r), π/n)
: f ∈ L(r)

2 , f (r) 6= const

}
≤
{

π

2(π − Si(π))

}m/2
. (1.14)

holds. The lower estimate in (1.14) is attained for the function f0(x) = cosnx ∈ L(r)
2 .

Proof. Indeed, taking into account that the modulus of continuity Ωm(f (r), t) is an
increasing function, by (1.10) we get(

1− Si(nh)

nh

)m/2
· En−1(f) ≤ 1

2m/2
· 1

nr
· Ωm

(
f (r), h

)
. (1.15)

Taking h = π/n in (1.15) we can get for any f ∈ L(r)
2 the estimate above

nrEn−1(f)

Ωm(f (r), π/n)
≤
{

π

2(π − Si(π))

}m/2
. (1.16)

On the other hand, by using the function f0(x) = cosnx ∈ L(r)
2 and taking into account

equality (1.12), we get the estimate below.

sup
f∈L(r)

2

f(r) 6=const

nrEn−1(f)

Ωm(f (r), π/n)
≥ nrEn−1(f0)

Ωm(f
(r)
0 , π/n)

=
1

2m/2
. (1.17)

Estimates (1.16) and (1.17) imply the desired inequality (1.14).

2 Widths of classes of functions

First we recall the notions and definitions required for for formulation of further results.
Let S = {x, ‖x‖ ≤ 1} be the unit ball in L2, N a convex centrally symmetric subset

of L2, Λn ⊂ L2 an n-dimensional subspace , Λn ⊂ L2 a subspace of codimension n,
L : L2 → Λn a continuous linear operator, and L⊥ : L2 → Λn be the continuous linear
projection operator.

The quantities

bn(N, L2) = sup {sup {ε > 0; εS ∩ Λn+1 ⊂ N} : Λn+1 ⊂ L2} ,
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dn(N, L2) = inf {sup {inf {‖f − ϕ‖ : ϕ ∈ Λn} : f ∈ N} : Λn ⊂ L2} ,

λn(N, L2) = inf {inf {sup {‖f − Lf‖ : f ∈ N} : LL2 ⊂ Λn} : Λn ⊂ L2} ,

dn(N, L2) = inf {sup {‖f‖ : f ∈ N ∩ Λn} : Λn ⊂ L2} ,

Πn(N, L2) = inf
{

inf
{

sup
{
‖f − L⊥f‖ : f ∈ N

}
: L⊥L2 ⊂ Λn

}
: Λn ⊂ L2

}
are called the Bernshtein, Kolmogorov, linear, Gelfand and projection n-widths in the
space L2. Since L2 is a Hilbert space, the following relations for the above n-widths
hold [11], [5]:

bn(N, L2) ≤ dn(N, L2) ≤ dn(N, L2) = λn(N, L2) = Πn(N, L2). (2.1)

Let also
En−1(N) := sup{En−1(f) : f ∈ N}.

We shall call a majorant any continuous increasing function Φ(t) on [0,∞) such
that Φ(0) = 0. The set of all majorants we denote by M. By Mk with k ∈ N we denote
the set of all majorants Φ ∈M, satisfying the following conditions:

1) t−k1 Φ(t1) < t−k2 Φ(t2), if 0 < t1 < t2 <∞;

2) lim
t→0+

t−kΦ(t) = 0.

For m ∈ N, r ∈ Z+ and h > 0 we introduce the following classes of functions:

W (r)(Ωm, h) :=

f ∈ L(r)
2 :

h∫
0

Ω2/m
m

(
f (r), t

)
dt ≤ 1

 ,

W
(r)
1 (Ωm,Φ) :=

f ∈ L(r)
2 :

 h∫
0

Ω2/m
m

(
f (r), t

)
dt

m/2

≤ Φ(h)

 ,

where Φ ∈ M1. Following paper [14], we denote by t∗ the value of the argument of
the function sin t/t, at which it attains the minimal value on [0,∞). Clearly t∗ is the
minimal positive root of the equation t = tan t, 4, 49 < t∗ < 4, 51. Let(

1− sin t

t

)
∗

:=

{
1− sin t

t
, if 0 ≤ t ≤ t∗; 1− sin t∗

t∗
, if, t ≥ t∗

}
.

Theorem 2.1. Let nh ≤ t∗. then the following equalities hold

γ2n

(
W (r)(Ωm, h);L2

)
= γ2n−1

(
W (r)(Ωm, h);L2

)
= En−1

(
W (r)(Ωm, h)

)
=

1

nr

{
n

2(nh− Si(nh))

}m/2
, (2.2)

where γn(·) is any of the n-widths mentioned above.
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Proof. By inequality (1.10) we get that for arbitrary function f ∈ L(r)
2

En−1(f) ≤
{

n

2(nh− Si(nh))

}m/2
· 1

nr

 h∫
0

Ω2/m
m (f (r), t)dt

m/2

(2.3)

hence, taking into account the definition of the class W (r)(Ωm, h) and also relations
(2.1), we have

γ2n

(
W (r)(Ωm, h);L2

)
≤ γ2n−1

(
W (r)(Ωm, h);L2

)
≤ En−1

(
W (r)(Ωm, h)

)
≤
{

n

2(nh− Si(nh))

}m/2
1

nr
. (2.4)

For obtaining an estimate below we consider the ball of trigonometric polynomials

S2n+1 :=

{
Tn ∈ T2n+1 : ‖Tn‖ ≤

1

nr

(
n

2(nh− Si(nh))

)m/2}
and, by using the following inequality proved in [12]

Ωm

(
T (r)
n , τ

)
≤ 2m/2nr

(
1− sinnτ

nτ

)m/2
∗
· ‖Tn‖, (2.5)

we shall show that the ball S2n+1 is contained in the class W (r)(Ωm, h). Indeed, taking
into accopu8nt that nh ≤ t∗, by (2.5) we get

h∫
0

Ω2/m
m

(
T (r)
n , τ

)
dτ ≤ 2n2r/m

h∫
0

(
1− sinnτ

nτ

)
∗
dτ ‖Tn‖2/m

≤ n2r/m · 2(nh− Si(nh))

n
· n

2(nh− Si(nh))
· 1

n2r/m
= 1,

which proves the inclusion S2n+1 ⊂ W (r)(Ωm, h).
By the definition of the Bernshtein n-width and inequalities (2.1), we get

γ2n

(
W (r)(Ωm, h);L2

)
≥ b2n

(
W (r)(Ωm, h);L2

)
≥ b2n(S2n+1, L2) ≥

{
n

2(nh− Si(nh))

}m/2
1

nr
. (2.6)

Comparing inequalities (2.4) and (2.6), we get the desired equality (2.2).

Theorem 2.1 implies the following statements.

Corollary 2.1. Under the assumptions of Theorem 2.1 for all n ∈ N

sup
{
|an(f)|, |bn(f)| : f ∈ W (r)(Ωm, h)

}
=

{
n

2(nh− Si(nh))

}m/2
1

nr
,

where an(f) and bn(f) are the cosine Fourier coefficients, the sine Fourier coefficients
respectively, of the function f.
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Proof. Without loss of generality we shall give the proof for the coefficients an(f).
Taking into account the orthogonality of the function cosnx and the partial Fourier
sum Sn−1(f, x), we have

an(f) =
1

π

2π∫
0

(f(x)− Sn−1(f, x)) cosnxdx.

By the Cauchy-Bunyakovsky inequality and relation (2.2), we get

sup
{
|an(f)| : f ∈ W (r)(Ωm, h)

}
≤ sup

{
‖f − Sn−1(f)‖ : f ∈ W (r)(Ωm, h)

}
= En−1

(
W (r)(Ωm, h)

)
=

{
n

2(nh− Si(nh))

}m/2
1

nr
. (2.7)

In order to obtain an estimate below we consider the function

g0(x) =

{
n

2(nh− Si(nh))

}m/2
1

nr
cosnx.

Elementary calculations show that g0(x) ∈ W (r)(Ωm, h). On the other hand we have

sup
{
|an(f)| : f ∈ W (r)(Ωm, h)

}
≥ |an(g0)| =

{
n

2(nh− Si(nh))

}m/2
1

nr
. (2.8)

The statement of Corollary 2.1 follows by comparing inequalities (2.7) and (2.8).

Theorem 2.2. Let for all 0 < t < ∞ and n ∈ N the majorant Φ ∈ M1 satisfy the
condition

(
Φ(t)

Φ(π/n)

)2/m

≥

nt∫
0

(1− sin τ

τ
)∗dτ

π − Si(π)
. (2.9)

Then for all m,n ∈ N and r ∈ Z+

γ2n−1

(
W

(r)
1 (Ωm,Φ);L2

)
= γ2n

(
W

(r)
1 (Ωm,Φ);L2

)
= En−1

(
W

(r)
1 (Ωm,Φ)

)
=

1

nr

{
n

2(π − Si(π))
· Φ
(π
n

)}m/2
, (2.10)

where γn(·) is any of the n-widths mentioned above.
The set of majorants satisfying condition (2.9) is not empty.

Proof. By setting in inequality (2.3) h = π/n and using the definition of the class
W

(r)
1 (Ωm,Φ), we get that for any function f ∈ W (r)

1 (Ωm,Φ)

En−1(f) ≤ 1

nr

{
n

2(π − Si(π))
· Φ
(π
n

)}m/2
. (2.11)
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By using inequality (2.11) and taking into account relations (2.1), we get the following
estimate above for all n-widths mentioned above

γ2n

(
W

(r)
1 (Ωm,Φ);L2

)
≤ γ2n−1

(
W

(r)
1 (Ωm,Φ);L2

)
≤ d2n−1

(
W

(r)
1 (Ωm,Φ);L2

)
≤ En−1

(
W

(r)
1 (Ωm,Φ)

)
≤ 1

nr

{
n

2(π − Si(π))
· Φ
(π
n

)}m/2
. (2.12)

For obtaining an estimate below for all n-widths mentioned above we consider the
ball

S∗2n+1 :=

{
Tn ∈ T2n+1 : ‖Tn‖ ≤ n−r

(
n

2(π − Si(π))
· Φ
(π
n

))m/2}
.

Further, using inequality (2.5) and taking into account relations (2.9), we shall prove
that S∗2n+1 ⊂ W (r)(Ωm,Φ). Indeed, for any trigonometric polynomial Tn ∈ S∗2n+1

h∫
0

Ω2/m
m (T (r)

n , t)dt ≤ 2n2r/m‖Tn‖2/m
h∫

0

(
1− sinnt

nt

)
∗
dt

= 2n2r/m‖Tn‖2/m
1

n

nh∫
0

(
1− sin t

t

)
∗
dt

≤ 2n2r/mn−2r/m n

2(π − Si(π))
· Φ(π/n) · 1

n

nh∫
0

(
1− sin t

t

)
∗
dt

=
Φ(π/n)

π − Si(π)

nh∫
0

(
1− sin t

t

)
∗
dt ≤ Φ(h).

Consequently, the ball S∗2n+1 is contained in the class W (r)(Ωm,Φ). By the definition
of the Bernshtein n-width and by relations (2.1) we get the following estimate below

γ2n(W (r) (Ωm,Φ);L2) ≥ b2n
(
W (r)(Ωm,Φ);L2

)
≥ b2n(S∗2n+1, L2) ≥ n−r

{
n

2(π − Si(π))
· Φ(π/n)

}m/2
. (2.13)

Comparing inequalities (2.12) and (2.13) we get inequality (2.10).
Let us show that the function Φ∗(t) = tαm/2, with

α =
π

π − Si(π)
, 2, 42 < α < 2, 44, (2.14)
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satisfies condition (2.9). Substituting Φ∗ in (2.9), we get the inequality

(
nt

π

)α
≥

nt∫
0

(
1− sin τ

τ

)
∗
dτ

π − Si(π)
,

which is to be proved. Setting µ = nt, 0 ≤ t < ∞, we rewrite the last inequality in
the following equivalent form

µα ≥

πα
µ∫

0

(
1− sin τ

τ

)
∗
dτ

π − Si(π)
, 0 ≤ µ <∞. (2.15)

By considering the auxiliary function

β(µ) = µα − πα(π − Si(π))−1

µ∫
0

(
1− sin τ

τ

)
∗
dτ (2.16)

we shall show that β(µ) ≥ 0 for all µ ∈ [0,+∞). We shall consider the following three
cases:

1) 0 ≤ µ ≤ π; 2) π ≤ µ ≤ t∗; 3) t∗ ≤ µ <∞.
Let 0 ≤ µ ≤ π. We expand the function β(µ) in a neighbourhood of zero:

β(µ) = µα
(

1− πα

18(π − Si(π))
·O(µ3−α)

)
.

This equality implies that for sufficiently small µ > 0 the function β(µ) is positive.
Assuming the contrary, we shall prove that on the interval (0, π) the function β(µ)
does not change sign.

To this end assume that there exists a point ξ ∈ (0, π) at which the function β(µ)
changes sign. Since β(0) = β(π) = 0, by the Rolle Theorem we conclude that the
derivative

β
′
(µ) = αµα−1 − πα

π − Si(π)

(
1− sinµ

µ

)

=
1

µ

(
αµα − πα

π − Si(π)
(µ− sinµ)

)
:=

β1(µ)

µ
(2.17)

should have at least two different roots on the interval (0, π).
Clearly the same refers to the function β1(µ), which we shall investigate next.

Taking into account formulas (2.14) and (2.17), we deduce that β1(0) = β1(π) = 0.
Consequently, the derivative

β
′

1(µ) = α2µα−1 − πα

π − Si(π)
(1− cosµ) (2.18)
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by the Rolle Theorem should have at least three different roots on the interval (0, π).
Since also β ′1(0) = 0, by a similar argument the second derivative

β
′′

1 (µ) = α2(α− 1)µα−2 − πα

π − Si(π)
sinµ (2.19)

should have at least three different roots on the interval (0, π). Since β ′′1 (0) = 0, the
same conclusion on existence of at least three different roots on the interval (0, π) can
be derived also for the third derivative

β
′′′

1 (µ) = α2(α− 1)(α− 2)µα−3 − πα

π − Si(π)
cosµ. (2.20)

By (2.14) and (2.20) β ′′′1 (µ) is the difference of two functions, one of which is convex and
another one is concave. From geometric point of view it is clear that the function β ′′′1 (µ)
cannot have more than two zeros on the interval (0, π). This contradiction proves the
validity of inequality (2.15) on the closed interval 0 ≤ µ ≤ π.

Next, let π ≤ µ ≤ t∗. Assume to the contrary that there exists at least one point
ξ ∈ (π, t∗), at which the function β(µ) changes sign. Since β(π) = 0, by the Rolle
Theorem and (2.17), the function β ′(µ) and, hence, the function β ′1(µ) should have at
least one zero on the interval (π, t∗). By (2.19) it follows that for any u ∈ [π, t∗] the
function β ′′1 (u) > 0. By using formulas (2.14) and (2.18), one can prove that

β
′

1(π) = πα−1

(
α2 − 2π

π − Si(π)

)
> 0.

Consequently, the function β ′1(µ) is positive and increasing on the closed interval [π, t∗].
Since β1(π) = 0, by the above argument follows that on (π, t∗] the function β1(µ) should
be positive and increasing. The obtained contradiction proves the validity of inequality
(2.15) on the closed interval (π, t∗].

Finally, consider the case t∗ ≤ µ <∞. By using (2.16), we write

β(µ) = µα − πα

π − Si(π)

(
µ

(
1− sin t∗

t∗

)
+ sin t∗ − Si(t∗)

)
. (2.21)

Hence

β
′
(µ) = αµα−1 − πα

π − Si(π)

(
1− sin t∗

t∗

)
. (2.22)

Since, by elementary calculations, it follows that β ′(t∗) > 0, hence by (2.22) β ′(µ) > 0
for all µ ∈ [t∗,∞). By (2.21) we have

β(t∗) = πα
((

t∗
π

)α
− t∗ − Si(t∗)
π − Si(π)

)
> 0.

By the above arguments about β ′(µ), we conclude that the function β(µ) is positive and
increasing on [t∗,∞). Hence on the set t∗ ≤ µ <∞ inequality (2.15) is also valid.
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Corollary 2.2. Under the assumptions of Theorem 4 for all n ∈ N

γ2n

(
W (r)(Ωm,Φ∗);L2

)
= γ2n−1

(
W (r)(Ωm,Φ∗);L2

)
= En−1

(
W (r)(Ωm,Φ∗)

)
=

{
ππ/(π−Si(π))

2(π − Si(π))

}m/2
· n−(r+mSi(π))/2(π−Si(π)).

Corollary 2.3. Under the assumptions of Theorem 4 for all n ∈ N

sup
{
|an(f)|, |bn(f)| : f ∈ W (r)(Ωm, L2)

}
= n−r

{
n

2(π − Si(π))
· Φ
(π
n

)}m/2
.
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