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Abstract. This paper reviews complex and real techniques in harmonic analysis.
We describe the common source of both approaches rooted in the covariant transform
generated by the affine group.

1 Introduction

There are two main approaches in harmonic analysis on the real line. The real variables
technique uses various maximal functions, dyadic cubes and, occasionally, the Poisson
integral [40]. The complex variable technique is based on the Cauchy integral and fine
properties of analytic functions [36, 37].

Both methods seem to have clear advantages. The real variable technique:

i. does not require an introduction of the imaginary unit for a study of real-valued
harmonic functions of a real variable (Occam’s Razor: among competing hy-
potheses, the one with the fewest assumptions should be selected);

ii. allows a straightforward generalization to several real variables.

By contrast, access to the beauty and power of analytic functions (e.g., M6bius trans-
formations, factorisation of zeroes, etc. [31]) is the main reason to use the complex
variable technique. A posteriori, a multidimensional analytic version was also discov-
ered [34], it is based on the monogenic Clifford-valued functions [3].
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Therefore, propensity for either techniques becomes a personal choice of a re-
searcher. Some of them prefer the real variable method, explicitly cleaning out any
reference to analytic or harmonic functions [40, Chapter III, p. 88]. Others, e.g. [32, 6],
happily combine the both techniques. However, the reasons for switching between two
methods at particular places may look mysterious.

The purpose of the present paper is to revise the origins of the real and complex
variable techniques. Thereafter, we describe the common group-theoretical root of
both. Such a unification deepens our understanding of both methods and illuminates
their interaction.

Remark 1.1. In this paper, we consider only examples which are supported by the
affine group Aff of the real line. In the essence, Aff is the semidirect product of the
group of dilations acting on the group of translations. Thus, our consideration can
be generalized to the semidirect product of dilations and homogeneous (nilpotent) Lie
groups, cf. [11, 27]. Other important extensions are the group SLy(R) and associated
hypercomplex algebras, see Remarks 3.3, 4.4 and [22, 26, 25|. However, we do not aim
here to a high level of generality, it can be developed in subsequent works once the
fundamental issues are sufficiently clarified.

2 Two approaches to harmonic analysis

As a starting point of our discussion, we provide a schematic outline of complex and
real variables techniques in the one-dimensional harmonic analysis. The application of
complex analysis may be summarised in the following sequence of principal steps:

Integral transforms. For a function f € LP(R), we apply the Cauchy or Poisson
integral transforms:

[Cfl(z +iy) = Q%/R%dt, (2.1)
Pfl(r,y) = %/Rmf(t) dt (2.2)

An equivalent transformation on the unit circle replaces the Fourier series
Sy cre™ by the Taylor series > .o, crz* in the complex variable z = re',
0 <r < 1. It is used for the Abel summation of trigonometric series [42, § I11.6].
Some other summations methods are in use as well [33].

Domains. Above integrals (2.1)—(2.2) map the domain of functions from the real line
to the upper half-plane, which can be conveniently identified with the set of
complex numbers having a positive imaginary part. The larger domain allows us
to inspect functions in greater details.

Differential operators. The image of integrals (2.1) and (2.2) consists of functions,
belonging to the kernel of the Cauchy—Riemann operator 0;, Laplace operator A
respectively, i.e.:

o .0 A 0? 0?

- - 2 9.
Ox lay ’ Ox? + Oy? (2:3)
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Such functions have numerous nice properties in the upper half-plane, e.g. they
are infinitely differentiable, which make their study interesting and fruitful.

Boundary values and SIO. To describe properties of the initial function f on the
real line we consider the boundary values of [Cf](z + iy) or [Pf](z,y), i.e. their
limits as y — 0 in some sense. The Sokhotsky-Plemelj formula provides the
boundary value of the Cauchy integral [35, (2.6.6)]:

1 L[/
—f(x) + % e mdt

[CfK:U?O) = 9

(2.4)

The last term is a singular integral operator defined through the principal value
in the Cauchy sense:

L0 gy iy / / (25)
2mi Jgpt — EHOQm t—x

—0o0 xr+e

For the Abel summation the boundary values are replaced by the limit as r — 1~
k

in the series Y -, cx(re).

Hardy space. Sokhotsky—Plemelj formula (2.4) shows, that the boundary value
[Cf](x,0) may be different from f(z). The vector space of functions f(x) such
that [Cf](z,0) = f(z) is called the Hardy space on the real line [36, A.6.3].

Summing up this scheme: we replace a function (distribution) on the real line by a
nicer (analytic or harmonic) function on a larger domain—the upper half-plane. Then,
we trace down properties of the extensions to its boundary values and, eventually, to
the initial function.

The real variable approach does not have a clearly designated path in the above
sense. Rather, it looks like a collection of interrelated tools, which are efficient for
various purposes. To highlight similarity and differences between real and complex
analysis, we line up the elements of the real variable technique in the following way:

Hardy—Littlewood maximal function is, probably, the most important compo-
nent [31, § VIIL.B.1|, [40, Chapter 2|, |14, § 1.4], [4] of this technique. The
maximal function f* is defined on the real line by the equality:

t+a

fM(t) = sup /|f )| dx p . (2.6)

a>0

Domain is not apparently changed, the maximal function f* is again defined on
the real line. However, an efficient treatment of the maximal functions requires
consideration of tents [40, § I1.2|, which are parametrised by their vertices, i.e.

points (a,b), a > 0, of the upper half-plane. In other words, we repeatedly
t+a
need values of all integrals % [ |f ()| dz, rather than the single value of the

t—a
supremum over a.
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Littlewood—Paley theory [6, § 3| and associated dyadic squares technique [14,
Chapter VII, Theorem 1.1|, [40, § IV.3] as well as stopping time argument [14,
Chapter VI, Lemma 2.2| are based on bisection of a function’s domain into two
equal parts.

STO is a natural class of bounded linear operators in L,(R). Moreover, maximal oper-
ator M : f — fM (2.6) and singular integrals are closely related [40, Chapter IJ.

Hardy space can be defined in several equivalent ways from previous notions. For
example, it is the class of such functions that their images under maximal oper-
ator (2.6) or singular integral (2.5) belong to L,(R) [40, Chapter III|.

The following discussion will line up real variable objects along the same axis as complex
variables. We will summarize this in Table 1.

3 Affine group and its representations

It is hard to present harmonic analysis and wavelets without touching the affine group
one way or another, e.g. through the doubling condition on the measure, cf. [41].
Unfortunately, many sources only mention the group and do not use it explicitly. On
the other hand, it is equally difficult to speak about the affine group without a reference
to results in harmonic analysis: two theories are intimately intertwined. In this section
we collect fundamentals of the affine group and its representations, which are not yet
a standard background of an analyst.

Let G = Aff be the ax + b (or the affine) group |2, § 8.2], which is represented (as
a topological set) by the upper half-plane {(a,b) | a € R, b € R}. The group law is:

(a,0) - (d',b') = (ad’,al’ + b). (3.1)

As any other group, Aff has the left reqular representation by shifts on functions
Aff — C:

Aa,b) : f(d' V) = fap(d,b)=Ff (a—, = b) . (3.2)

a a

A left invariant measure on Aff is dg = a=?da db, g = (a,b). By the definition, the left
regular representation (3.2) acts by unitary operators on L,(Aff, dg). The group is not
unimodular and a right invariant measure is a~! da db.

There are two important subgroups of the ax + b group:

A={(a,0) € Aff | ae R, } and N ={(1,b) € Aff | beR}. (3.3)

An isometric representation of Aff on L (R) is given by the formula:

a

[py(ab) fl(z) = a3 f < - b) | (3.4

Here, we identify the real line with the subgroup /N or, even more accurately, with the
homogeneous space Aff/N [9, § 2]. This representation is known as quasi-reqular for
its similarity with (3.2). The action of the subgroup N in (3.4) reduces to shifts, the
subgroup A acts by dilations.
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Remark 3.1. The ax+b group definitely escapes Occam’s Razor in harmonic analysis,
cf. the arguments against the imaginary unit in the Introduction. Indeed, shifts are
required to define convolutions on R™, and an approximation of the identity |40, § 1.6.1]
is a convolution with the dilated kernel. The same scaled convolutions define the
fundamental mazimal functions, see [40, § I11.1.2] ¢f. Example 16 below. Thus, we can
avoid usage of the upper half-plane C_, but the same set will anyway re-invent itself
in the form of the ax + b group.

The representation (3.4) in L,(R) is reducible and the space can be split into ir-
reducible subspaces. Following the philosophy presented in the Introduction to the
paper |28, § 1| we give the following

Definition 3.1. For a representation p of a group G in a space V', a generalized Hardy
space H is an p-irreducible (or p-primary, as discussed in Section 7) subspace of V.

Example 1. Let G = Aff and the representation p, be defined in V' = L, (R) by (3.4).
Then the classical Hardy spaces H,(R) are p,-irreducible, thus are covered by the above
definition.

Some ambiguity in picking the Hardy space out of all (well, two, as we will see
below) irreducible components is resolved by the traditional preference.

Remark 3.2. We have defined the Hardy space completely in terms of representa-
tion theory of ax + b group. The traditional descriptions, via the Fourier transform
or analytic extensions, will be corollaries in our approach, see Proposition 3.1 and
Example 12.

Remark 3.3. It is an interesting and important observation, that the Hardy space in
L,(R) is invariant under the action of a larger group SLy(IR), the group of 2 x 2 matrices
with real entries and determinants equal to 1, the group operation coincides with the
multiplication of matrices. The ax+b group is isomorphic to the subgroup of the upper-

triangular matrices in SLy(R). The group SLy(R) has an isometric representation in

L (R):
(i fl) flz) ,a_;,;f(ffx_li)’ (3.5)

p
which produces quasi-regular representation (3.4) by the restriction to upper-triangular
matrices. The Hardy space H,(R) is invariant under the above action as well. Thus,
SLs(R) produces a refined version in comparison with the harmonic analysis of the
ax + b group considered in this paper. Moreover, as representations of the ax + b group
are connected with complex numbers, the structure of SLy(R) links all three types of
hypercomplex numbers [22] |26, § 3.3.4] |25, § 3], see also Remark 4.4.

To clarify a decomposition of L,(R) into irreducible subspaces of representa-
tion (3.4) we need another realization of this representation. It is called co-adjoint
and is related to the orbit method of Kirillov [17, § 4.1.4] [12, § 6.7.1]. Again, this
isometric representation can be defined on L,(R) by the formula:

[6,(a,) FI(N) = ar ¢ 2T f(a)). (3.6)
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Since a > 0, there is an obvious decomposition into invariant subspaces of p,:

L,(R) = L,(—00,0) & L, (0, 00). (3.7)

p

It is possible to demonstrate, that these components are irreducible. This decomposi-
tion has a spatial nature, i.e., the subspaces have disjoint supports. Each half-line can
be identified with the subgroup A or with the homogeneous space Aff/N.

The restrictions g and p, of the co-adjoint representation p, to invariant sub-
spaces (3.7) for p = 2 are not unitary equivalent. Any irreducible unitary representa-
tion of Aff is unitary equivalent either to p5 or p,. Although there is no intertwining
operator between ﬁ;r and p,, the map:

T LR) — L(R): f(A) — f(=N), (3.8)

has the property
ﬁ; (CL, _b) oJ=Jo 15;(6% b) (39)

which corresponds to the outer automorphism (a, b) — (a, —b) of Aff.

As was already mentioned, for the Hilbert space L,(R), representations (3.4) and
(3.6) are unitary equivalent, i.e., there is a unitary intertwining operator between them.
We may guess its nature as follows. The eigenfunctions of the operators p,(1,b) are

2miwx

e and the eigenfunctions of py(1,b) are §(A —w). Both sets form “continuous bases”
of L,(R) and the unitary operator which maps one to another is the Fourier transform:

F:fl@)— f\) = / e 2 £ (1) du. (3.10)
R
Although, the above arguments were informal, the intertwining property Fp,(a,b) =
p5(1,b)F can be directly verified by the appropriate change of variables in the Fourier
transform. Thus, cf. [36, Lemma A.6.2.2]:

Proposition 3.1. The Fourier transform maps irreducible invariant subspaces H, and
H3 of (3.4) to irreducible invariant subspaces Ly(0,00) = F(H,) and Ly(—00,0) =
F(H3) of co-adjoint representation (3.6). In particular, L,(R) = H, ® Hy .

Reflection J (3.8) anticommutes with the Fourier transform: FJ = —JF. Thus,
J also interchange the irreducible components ,0;; and p, of quasi-regular representa-
tion (3.4) according to (3.9).

Summing up, the unique roéle of the Fourier transform in harmonic analysis is based
on the following facts from the representation theory. The Fourier transform

e intertwines shifts in quasi-regular representation (3.4) to operators of multiplica-
tion in co-adjoint representation (3.6);

e intertwines dilations in (3.4) to dilations in (3.6);

e maps the decomposition Ly(R) = H, & H3- into spatially separated spaces with
disjoint supports;

e anticommutes with J, which interchanges p5 and p; .

Armed with this knowledge we are ready to proceed to harmonic analysis.
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4 Covariant transform

We make an extension of the wavelet construction defined in terms of group repre-
sentations. See [16] for a background in the representation theory, however, the only
treated case in this paper is the ax + b group.

Definition 4.1. /23, 25]. Let p be a representation of a group G in a space V and
F be an operator acting from V to a space U. We define a covariant transform WY,
acting from V' to the space L(G,U) of U-valued functions on G by the formula:

W v d(g) = F(p(g~ ), veV, ged. (4.1)

The operator F' will be called a fiducial operator in this context (cf. the fiducial vector
in [30]).

We may drop the sup/subscripts from W1, if the functional F" and/or the represen-
tation p are clear from the context.

Remark 4.1. We do not require that the fiducial operator F' be linear. Sometimes
the positive homogeneity, i.e. F'(tv) = tF(v) for t > 0, alone can be already sufficient,
see Example 5.

Remark 4.2. It looks like the usefulness of the covariant transform is in the reverse
proportion to the dimension of the space U. The covariant transform encodes properties
of v in a function Whwv on G, which is a scalar-valued function if dim U = 1. However,
such a simplicity is not always possible. Moreover, the paper [27] gives an important
example of a covariant transform which provides a simplification even in the case

dimU = dim V.

We start the list of examples with the classical case of the group-theoretical wavelet
transform.

Example 2. [38, 10, 20, 2, 30, 10|. Let V be a Hilbert space with an inner product
(-,-) and p be a unitary representation of a group G in the space V. Let F': V — C be
the functional v +— (v, vg) defined by a vector vy € V. The vector vy is often called the
mother wavelet in areas related to signal processing, the vacuum state in the quantum
framework, etc.

In this set-up, transformation (4.1) is the well-known expression for a wavelet trans-
form |2, (7.48)] (or representation coefficients):

W:v—9(g) = <p(g’1)v,vo> = (v, p(9)vo) , veV, gedqG. (4.2)

The family of the vectors v, = p(g)vo is called wavelets or coherent states. The image
of (4.2) consists of scalar valued functions on G.

This scheme is typically carried out for a square integrable representation p with
vo being an admissible vector [38, 10, 2, 13, 5, 7], i.e. satisfying the condition:

0 < [léo]* = /G (w0, polg)0)|? dg < oo. (4.3)
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In this case the wavelet (covariant) transform is a map into the square integrable
functions [7] with respect to the left Haar measure on G. The map becomes an isometry
if vy is properly scaled. Moreover, we are able to recover the input v from its wavelet
transform through the reconstruction formula, which requires an admissible vector as
well, see Example 7 below. The most popularized case of the above scheme is provided
by the affine group.

Example 3. For the az + b group, representation (3.4) is square integrable for p = 2.
Any function vg, such that its Fourier transform 0y()) satisfies

o0

5 ()2
/ M d\ < oo, (4.4)
0

is admissible in the sense of (4.3) [2, § 12.2]. The continuous wavelet transform is
generated by representation (3.4) acting on an admissible vector vy in expression (4.2).
The image of a function from L,(R) is a function on the upper half-plane square
integrable with respect to the measure a=2 da db. There are many examples |2, § 12.2] of
useful admissible vectors, say, the Mezican hat wavelet: (1 — xz)e*ﬁ/ 2. For sufficiently
regular vy admissibility (4.4) of vy follows by a weaker condition

/R vo(x) dz = 0. (4.5)

We dedicate Section 8 to isometric properties of this transform.

However, square integrable representations and admissible vectors do not cover all
interesting cases.

Example 4. For the above G = Aff and representation (3.4), we consider the operators
Fy o L,(R) — C defined by:

1 [ f(x)dx
F =— [ ——. 4.6
L= [ 52 (1.6
In Ly(R) we note that F,(f) = (f,c), where c¢(x) = ﬁlfx Computing the Fourier

transform ¢(A) = X(0,400)(A) €7, we see that ¢ € H,(R). Moreover, ¢ does not satisfy
admissibility condition (4.4) for representation (3.4).

Then, covariant transform (4.1) is Cauchy integral (2.1) from L (R) to the space
of functions f(a,b) such that a v f(a,b) is in the Hardy space on the upper/lower
half-plane H,(R%) [36, § A.6.3]. Due to inadmissibility of ¢(z), the complex analysis
become decoupled from the traditional wavelet theory.

Many important objects in harmonic analysis are generated by inadmissible mother
wavelets like (4.6). For example, the functionals P = 1(F} + F_) and Q = . (Fy — F_)
are defined by kernels:

o) = (- ) — oy (47)

Tomi\i—z i4x 71+ 22

Q($)=—%< ! ! ): L (4.8)

i—x itax 1+ a2
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which are Poisson kernel (2.2) and the conjugate Poisson kernel [15, § 4.1] [14, § II1.1]
[31, Chapter 5| [36, § A.5.3], respectively. Another interesting non-admissible vector is
the Gaussian e .

Example 5. A step in a different direction is a consideration of non-linear opera-
tors. Take again the ax + b group and its representation (3.4). We define F' to be a
homogeneous (but non-linear) functional V. — R :

Fulf) =5 [ 1#(e)] do (1.9

Covariant transform (4.1) becomes:

1 1 b+a

! a%f(a:c—l—b)‘ d:c:%l/\f(a:ﬂ dr, (4.10)
b—a

Wy fl(ab) = Floy(h=0n =5 [

-1

where 2 4+ 1 = 1, as usual. We will see its connections with the HardyLittlewood

maximal functions in Example 16.

Since linearity has clear advantages, we may prefer to reformulate the last example
using linear covariant transforms. The idea is similar to the representation of a convex
function as an envelope of linear ones, cf. [14, Chapter I, Lemma 6.1|. To this end, we
take a collection F of linear fiducial functionals and, for a given function f, consider
the set of all covariant transforms Wrf, F' € F.

Example 6. Let us return to the setup of the previous Example for G = Aff and its
representation (3.4). Consider the unit ball B in L [—1,1]. Then, any w € B defines
a bounded linear functional F, on L;(R):

1

Fw(f):%/f(x)w(:c) dx:%/Rf(x)w(:c) dz. (4.11)

-1

Of course, sup,,cp Fo,(f) = Fn(f) with F,, from (4.9) and for all f € L,(R). Then, for
the non-linear covariant transform (4.10) we have the following expression in terms of
the linear covariant transforms generated by F:

WP )(a.) = sup DV f](a. ). (4.12)

The presence of supremum is the price to pay for such a “linearization”.

Remark 4.3. The above construction is not much different to the grand mazimal
function 40, § T11.1.2]. Although, it may look like a generalisation of covariant trans-
form, grand maximal function can be realised as a particular case of Definition 4.1.
Indeed, let M (V') be a subgroup of the group of all invertible isometries of a metric
space V. If p represents a group G by isometries of V' then we can consider the group
G generated by all finite products of M(V) and p(g), ¢ € G with the straightforward
action p on V. The grand maximal functions is produced by the covariant transform
for the representation j of G.
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Remark 4.4. It is instructive to compare action (3.5) of the large SLy(R) group on the
mother wavelet ﬁl for the Cauchy integral and the principal case w(z) = xj-1,1](x) (the
characteristic function of -1, 1]) for functional (4.11). The wavelet —L- is an eigenvector
for all matrices <—021Srf ; 223 , which form the one-parameter compact subgroup K C
SLy(R). The respective covariant transform (i.e., the Cauchy integral) maps functions
to the homogeneous space SLy(R)/K, which is the upper half-plane with the M&bius
(linear-fractional) transformations of complex numbers [22] [26, § 3.3.4] [25, § 3]. By
cosht sinht
sinh? cosht)’
which form the one-parameter subgroup A € SLy(R). The covariant transform (i.e., the
averaging) maps functions to the homogeneous space SLy(R)/A, which can be identified
with a set of double numbers with corresponding Mébius transformations [22, § 3.3.4]
[26] |25, § 3]. Conformal geometry of double numbers is suitable for real variables
technique, in particular, tents [40, § I1.2] make a M&bius-invariant family.

contrast, the mother wavelet x|_;1) is an eigenvector for all matrices

5 The contravariant transform

Define the left action A of a group G on a space of functions over G by:
A(g) : f(h) = f(g~"h). (5.1)

For example, in the case of the affine group it is (3.2). An object invariant under the
left action A is called left invariant. In particular, let L and L' be two left invariant
spaces of functions on G. We say that a pairing (-,-) : L x L' — C is left invariant if

(N A Y= (f, f)y, forall felL, flel, gea. (5.2)

Remark 5.1. i. We do not require the pairing to be linear in general, in some cases
it is sufficient to have only homogeneity, see Example 9.

ii. If the pairing is invariant on space L x L’ it is not necessarily invariant (or even
defined) on large spaces of functions.

iii. In some cases, an invariant pairing on G can be obtained from an invariant

functional | by the formula (f1, f2) = l(f1f2).

For a representation p of G in V and wy € V/, we construct a function w(g) = p(g)wo
on GG. We assume that the pairing can be extended in its second component to this
V-valued functions. For example, such an extension can be defined in the weak sense.

Definition 5.1. /23, 25]. Let (-,-) be a left invariant pairing on L X L' as above, let
p be a representation of G in a space V', we define the function w(g) = p(g)wgy for
wo € V such that w(g) € L' in a suitable sense. The contravariant transform My, is
a map L — V defined by the pairing:

M f e (fw), where f € L. (5.3)
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We can drop out sup/subscripts in MY, as we did for W.

Example 7 (Haar paring). The most used example of an invariant pairing on
L,(G,dp) x Ly(G,dp) is the integration with respect to the Haar measure:

i fo) = /G 11(9)a(g) dg. (5.4)

If p is a square integrable representation of G and wy is an admissible vector, see
Example 2, then this pairing can be extended to w(g) = p(g)we. The contravariant
transform is known in this setup as the reconstruction formula, cf. [2, (8.19)]:

Mo f = /Gf(g) w(g) dg, where w(g) = p(g)wo. (5.5)

It is possible to use different admissible vectors vy and wy for wavelet transform (4.2)
and reconstruction formula (5.5), respectively, cf. Example 15.

Let either

e p be not a square integrable representation (even modulo a subgroup);

or
e wy be an inadmissible vector of a square integrable representation p.

A suitable invariant pairing in this case is not associated with integration over the Haar
measure on G. In this case we speak about a Hardy pairing. The following example
explains the name.

Example 8 (Hardy pairing). Let G be the ax + b group and its representation
p (3.4) in Example 3. An invariant pairing on G, which is not generated by the Haar
measure a~2da db, is:

o0
. db
(o = limy [ Fiad) flad) S (5:6)
—00
For this pairing, we can consider functions %%ﬂ or e‘xQ, which are not admissible
vectors in the sense of square integrable representations. For example, for vy = %#l

we obtain:

(M [](z) Z}lii%/f(a, b)Ldb: T f(a,b)db

mi(z +ia — b) a—0 i b—(x+ia)

—0o0

In other words, it expresses the boundary values at a = 0 of the Cauchy integral

[~Cf](x + ia).

Here is an important example of non-linear pairing.
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Example 9. Let G = Aff and an invariant homogeneous functional on G be given by
the L -version of Haar functional (5.4):

<f1,f2>oo = sup | f1(g) f2(g)|. (5.7)

geG

Define the following two functions on R:

vy (t) = { L it =0; and vy(t) = (5.8)

1, if |t <1
0, ift=£0,

0, if [¢] > 1.

The respective contravariant transforms are generated by representation p,, (3.4) are:

(M fI8) = (1) = (f(a,b), pc(a, b)ch(t)>oo=Sla1p!f(a,t)|, (5.9)
(Mo 1) = f*(t)Z<f(a7b)»poo(a,b)vé‘(t)>oo=aiﬁgt‘!f(aab)l- (5.10)

Transforms (5.9) and (5.10) are the vertical and non-tangential mazimal functions |31,
§ VIII.C.2|, respectively.

Example 10. Consider again G = Aff equipped now with an invariant linear func-
tional, which is a Hardy-type modification (cf. (5.6)) of L -functional (5.7):

<f17f2>éfo = }@] 2g£(fl(a’b)f2<a’b))a (511)

where lim is the upper limit. Then, the covariant transform M for this pairing for
functions v* and v* (5.8) becomes:

M) = (F(@.b). pola, B (1)) = mm f(a,1), (5.12)
MEAE) = (Flab).pulab)g(t) g = T fla,D). (5.13)

[b—t|<a

H
o

They are the normal and non-tangential upper limits from the upper-half plane to the
real line, respectively.

Note the obvious inequality (f1, f2)., > (f1, f2>é{o between pairings (5.7) and (5.11),
which produces the corresponding relation between respective contravariant transforms.

There is an explicit duality between the covariant transform and the contravariant
transform. Discussion of the grand maximal function in the Remark 4.3 shows useful-
ness of the covariant transform over a family of fiducial functionals. Thus, we shall not
be surprised by the contravariant transform over a family of reconstructing vectors as
well.

Definition 5.2. Let w : Aff — L,(R) be a function. We define a new function p,w on
Aft with values in L,(R) via the point-wise action [pyw](g) = p;(g)w(g) of ps (3.4).
If sup, ||w(g)|ly < oo, then, for f € L,(Aff), we define the extended contravariant
transform by:

(Mo fl(x) = " f(9) [p1wl(g) dg. (5.14)
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Note, that (5.14) reduces to the contravariant transform (5.5) if we start from the
constant function w(g) = wy.
Definition 5.3. We call a function r on R a nucleus if:
i. 1 is supported in [—1,1],
it. |r| <3 almost everywhere, and
wi. [pr(x)de =0, cf. (4.5).
Clearly, for a nucleus r, the function s = p,(a, b)r has the following properties:
i. s is supported in a ball centred at b and radius a,
ii. |s| < 5= almost everywhere, and
iii. [, s(z)dx = 0.

In other words, s = p,(a,b)r is an atom, cf. [40, § 111.2.2] and any atom may be
obtained in this way from some nucleus and certain (a,b) € Aff.

Example 11. Let f(g) = >_; Ajdy;(g) with >, [A;| < oo be a countable sum of point
masses on Aff. If all values of w(g;) are nucleuses, then (5.14) becomes:

(M fl(x) = " f(9) [p1wl(g) dg = Z AjSis (5.15)

where s; = p,(g;)w(g;) are atoms. The right-hand side of (5.15) is known as an atomic
decomposition of a function h(x) = [M,, f](x), see [40, § I11.2.2].

6 Intertwining properties of covariant transforms

The covariant transform has obtained its name because of the following property.

Theorem 6.1. [23, 25|. Covariant transform (4.1) intertwines p and the left reqular
representation A (5.1) on L(G,U):

Wp(g) = Ag)WV. (6.1)
Corollary 6.1. The image space W(V') is invariant under the left shifts on G.

The covariant transform is also a natural source of relative convolutions [19, 29|,
which are operators Ay = [, k(g)p(g)dg obtained by integration a representation p
of a group GG with a suitable kernel £ on GG. In particular, inverse wavelet transform
My, f (5.5) can be defined from the relative convolution A; as well: M, f = Afwy.

Corollary 6.2. Covariant transform (4.1) intertwines the operator of convolution K
(with kernel k) and the operator of relative convolution Ay, i.e. KW = WA,.
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If the invariant pairing is defined by integration with respect to the Haar measure, cf.
Example 7, then we can show an intertwining property for the contravariant transform
as well.

Proposition 6.1. |20, Proposition 2.9|. Inverse wavelet transform M., (5.5) inter-
twines left reqular representation A (5.1) on Ly(G) and p:

My Ag) = p(g) M- (6.2)

Corollary 6.3. The image M, (L(G)) CV of a left invariant space L(G) under the
inverse wavelet transform M, is invariant under the representation p.

Remark 6.1. It is an important observation, that the above intertwining property is
also true for some contravariant transforms which are not based on pairing (5.4). For
example, in the case of the affine group all pairings (5.6), (5.11) and (non-linear!) (5.7)
satisfy (6.2) for the respective representation p, (3.4).

There is also a simple connection between a covariant transform and right shifts.

Proposition 6.2. |24, 25|. Let G be a Lie group and p be a representation of G in
a space V. Let Wfl(g) = F(p(g7Y)f) be a covariant transform defined by a fiducial
operator F' : V. — U. Then the right shift [Wf](gq’) by ¢ is the covariant transform
W fl(g) = F'(p(g71)f)] defined by the fiducial operator F' = F o p(g~').

In other words the covariant transform intertwines right shifts R(g) : f(h) — f(hg)
on the group G with the associated action

pp(g) : F—Fop(g™) (6.3)

on fiducial operators:
R(g) oWpr = WpB(g)F, g c G. (64)

Although the above result is obvious, its infinitesimal version has interesting conse-
quences. Let G be a Lie group with a Lie algebra g and p be a smooth representation
of G. We denote by dpy the derived representation of the associated representation
pp (6.3) on fiducial operators.

Corollary 6.4. |24, 25|. Let a fiducial operator F' be a null-solution, i.e. AF =0, for
the operator A = Zj ajdpgj, where X; € g and a; are constants. Then the covariant

transform Wrf](g) = F(p(g~")f) for any f satisfies

DWrf) =0,  where D= ;&%

j
Here, £Xi are the left invariant fields (Lie derivatives) on G corresponding to X;.

Example 12. Consider representation p (3.4) of the ax + b group with the p = 1.
Let A and N be the basis of g generating one-parameter subgroups A and N (3.3),
respectively. Then, the derived representations are:

[dp™ fl(w) = —f(2) —af'(x),  [dp"fl(2) = —f'(2).
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The corresponding left invariant vector fields on ax + b group are:
£h = ad,, eN = 40,.

The mother wavelet x+r1 in (4.6) is a null solution of the operator

d
—dp™ —idpN = I + (z +1)—. (6.5)
dx
Therefore, the image of the covariant transform with fiducial operator F'; (4.6) consists
of the null solutions to the operator —€A +i€N = ia(d, + 19,), that is in the essence
Cauchy—Riemann operator d; (2.3) in the upper half-plane.

1 1

+7207 (4.7) is a null solution

Example 13. In the above setting, the function p(x) =
of the operator:

d d?
dp?)* — dp™ + (dp")* =2 + dz— + (1 4+ 2°)—.
(dp™)” = dp™ + (dp™) oo+ (1+27)
The covariant transform with the mother wavelet p(z) is the Poisson integral, its values
are null solutions to the operator (£4)? — €A + (£€N)2 = a?(0? + 9?), which is Laplace
operator A (2.3).

Example 14. Fiducial functional F},, (4.9) is a null solution of the following functional
equation:
Fin = Fn 0 poo(5:5) = Fin 0 poc (3, —3) =

1
2

Consequently, the image of wavelet transform W, (4.10) consists of functions which

solve the equation:

(I = R(3.3) — R(3,—5)f =0 or f(ab)= f(3a,b+ 30) + f(3a,b— ja).

The last relation is the key to the stopping time argument |14, Chapter VI, Lemma 2.2|
and the dyadic squares technique, see for example [40, § IV.3], [14, Chapter VII,
Theorem 1.1] or the picture on the front cover of the latter book.

The moral of the above Examples 12-14 is: there is a significant freedom in choice
of covariant transforms. However, some fiducial functionals have special properties,
which suggest the suitable technique (e.g., analytic, harmonic, dyadic, etc.) following
from this choice.

7 Composing the covariant and the contravariant transforms

From Propositions 6.1, 6.2 and Remark 6.1 we deduce the following

Corollary 7.1. The composition M, o Wrg of a covariant M,, and contravariant YW
transforms is a map V- — V', which commutes with p, i.e., intertwines p with itself.

In particular for the affine group and representation (3.4), My, o Wg commutes
with shifts and dilations of the real line.
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Since the image space of M, o W is an Aff-invariant space, we shall be interested
in the smallest building blocks with the same property. For the Hilbert spaces, any
group invariant subspace V' can be decomposed into a direct integral V = @ [V, dp of
irreducible subspaces V,, i.e. V, does not have any non-trivial invariant subspace |16,
§ 8.4]. For representations in Banach spaces complete reducibility may not occur and
we shall look for primary subspace, i.e. space which is not a direct sum of two invariant
subspaces [16, § 8.3]. We already identified such subspaces as generalized Hardy spaces
in Definition 3.1. They are also related to covariant functional calculus |21, § 6] [25].

For irreducible Hardy spaces, we can use the following general principle, which has
several different formulations, cf. [16, Theorem 8.2.1]:

Lemma 7.1 (Schur). |2, Lemma 4.3.1]. Let p be a continuous unitary irreducible
representation of G on the Hilbert space H. If a bounded operatorT : H — T commutes
with p(g), for all g € G, then T = kI, for some \ € C.

Remark 7.1. A revision of proofs of the Schur’s Lemma, even in different formulations,
show that the result is related to the existence of joint invariant subspaces for all
operators p(g), g € G.

In the case of classical wavelets, the relation between wavelet transform (4.2) and
inverse wavelet transform (5.5) is suggested by their names.

Example 15. For an irreducible square integrable representation and admissible vec-
tors vy and wy, there is the relation [2, (8.52)]:

Mwowvo = k]; (71)

as an immediate consequence from the Schur’s lemma. Furthermore, square integra-
bility condition (4.3) ensures that k& # 0. The exact value of the constant k& depends
on vy, wy and the Duflo-Moore operator [7, § 8.2] [2].

It is of interest here, that two different vectors can be used as analysing vector
in (4.2) and for the reconstructing formula (5.5). Even a greater variety can be achieved
if we use additional fiducial operators and invariant pairings.

For the affine group, recall the decomposition from Proposition 3.1 into invariant
subspaces L,(R) = H, ® Hy and the fact, that the restrictions pJ and p; of p, (3.4)
on H, and Hjy are not unitary equivalent. Then, Schur’s lemma implies:

Corollary 7.2. Any bounded linear operator T' : Ly(R) — Ly(R) commuting with p,
has the form kilu, ® kQIHQL for some constants ki, ko € C. Consequently, the Fourier
transform maps T to the operator of multiplication by kiX(04o) + k2X(=c0,0)-

Of course, Corollary 7.2 is applicable to the composition of covariant and con-
travariant transforms. In particular, the constants k; and ky; may have zero values:
for example, the zero value occurs for W (4.2) with an admissible vector vy and non-
tangential limit MUHS (5.13)—because a square integrable function f(a,b) on Aff van-
ishes for a — 0.
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Example 16. The composition of contravariant transform M,; (5.10) with covariant
transform W,, (4.10) is:

b+a
M Wafl(t) = sup 4 — / /(@) da (7.2)

a>|b—t| 2ab

b1 <t<bs

b
1
= swp o (@) e
b1

Thus, MWy f coincides with Hardy-Littlewood mazimal function fM (2.6), which
contains important information on the original function f [31, § VIIL.B.1]. Combining
Propositions 6.1 and 6.2 (via Remark 6.1), we deduce that the operator M : f +—
M commutes with Py ppyM = Mp,. Yet, M is non-linear and Corollary 7.2 is not
applicable in this case.

Example 17. Let the mother wavelet vy(z) = d(x) be the Dirac delta function, then
the wavelet transform Ws generated by p., (3.4) on C(R) is Wsf](a,b) = f(b). Take
the reconstruction vector wy(t) = (1—x[-1,1)(t))/t/m and consider the respective inverse
wavelet transform M,,, produced by Hardy pairing (5.6). Then, the composition of
both maps is:

db
a

a—0

My o Wsft) = T = [ 1(8) (e Bhun(t)

_ . 1 i 1_X[fa,a}(t_b)
- (lzli%%/f(b) t—b b

1

1rse .
a—0 T t—>b
[b|>a

(7.3)

The last expression is the Hilbert transform H = M., o Wjs, which is an example of
a singular integral operator (SIO) [40, § 1.5], [35, § 2.6] defined through the principal
value (2.5) (in the sense of Cauchy). By Corollary 7.2 we know that H = kiln, ® kol yy
for some constants ki, ko € C. Furthermore, we can directly check that HJ = —JH,
for the reflection J from (3.8), thus k; = —ks. An evaluation of H on a simple function
from H, (say, the Cauchy kernel x%rl) gives the value of the constant k; = —i. Thus,
H = (—ilp,) ® (i)

In fact, the previous reasons imply the following

Proposition 7.1. [39, § IIL.1.1|. Any bounded linear operator on Ly(R) commuting
with quasi-regular representation py (3.4) and anticommuting with reflection J (3.8) is
a constant multiple of Hilbert transform (7.3).
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Example 18. Consider the covariant transform W, defined by the inadmissible wavelet

q(t) (4.8), the conjugated Poisson kernel. Its composition with the contravariant trans-
form M (5.12) is
Yo

(ME oW, f](t) = Tim L[ fot=o) (7.4)

a=0 T Jp (t — )%+ a?

We can see that this composition satisfies to Proposition 7.1, the constant factor can

again be evaluated from the Cauchy kernel f(x) = x%ﬂ and is equal to 1. Of course,
this is a classical result [15, Theorem 4.1.5] in harmonic analysis that (7.4) provides an

alternative expression for Hilbert transform (7.3).

Example 19. Let W be a covariant transfrom generated either by the functional

Fy (4.6) (i.e. the Cauchy integral) or 1(F, — F_) (i.e. the Poisson integral) from

the Example 4. Then, for contravariant transform M (5.9) the composition M2 W
Yo Yo

becomes the normal boundary value of the Cauchy/Poisson integral, respectively. The
similar composition M%W for reconstructing vector v§ (5.8) turns to be the non-
tangential limit of the Cauchy/Poisson integrals.

The maximal function and SIO are often treated as elementary building blocks of
harmonic analysis. In particular, it is common to define the Hardy space as a closed
subspace of L,(R) which is mapped to L,(R) by either the maximal operator (7.2)
or by the SIO (7.3) [40]*§ II1.1.2 and § II1.4.3 [8]. From this perspective, the coinci-
dence of both characterizations seems to be non-trivial. On the contrast, we presented
both the maximal operator and SIO as compositions of certain co- and contravariant
transforms. Thus, these operators act between certain Aff-invariant subspaces, which
we associated with generalized Hardy spaces in Definition 3.1. For the right choice
of fiducial functionals, the coincidence of the respective invariant subspaces is quite
natural.

The potential of the group-theoretical approach is not limited to the Hilbert space
L,(R). One of possibilities is to look for a suitable modification of Schur’s Lemma 7.1,
say, to Banach spaces. However, we can proceed with the affine group without such a
generalisation. Here is an illustration to a classical question of harmonic analysis: to
identify the class of functions on the real line such that ./\/lfj;W becomes the identity
operator on it.

Proposition 7.2. Let B be the space of bounded uniformly continuous functions on
the real line. Let F': B — R be a fiducial functional such that:

lir% F(py(1/a,0)f) =0, forall f € B such that f(0) =0 (7.5)
and F(py(1,b)f) is a continuous function of b € R for a given f € B.
Then, /\/lf’0 o Wr is a constant multiple of the identity operator on B.

Proof. First of all we note that MY Wr is a bounded operator on B. Let Viap) =
Vg ’

Poola; b)v*. Obviously, v{,;(0) = v*(—2) is an eigenfunction for operators A(d’,0),
a’ € R, of the left regular representation of Aff:

A(d’, 0)vap) (0) = Vo5 (0). (7.6)
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This and the left invariance of pairing (5.2) imply that M% oA(1/a,0) = ./\/lg) for any
(a,0) € Aff. Then, applying intertwining properties (6.1) we obtain that
M o WrfI(0) = [M o A(1/a,0) o Wi f(0)
= [ME «0Wpo Poo(1/a,0) f1(0).

Using the limit @ — 0 (7.5) and the continuity of F o p_(1,b) we conclude that the
linear functional [ : f + [MH ;0 Wr f](0) vanishes for any f € B such that f(0) = 0.
Take a function f; € B such that f1(0) = 1 and define ¢ = [(f;). From linearity of [,
for any f € B we have:

() =1 = FO) A+ F0) /1) = U(f = F0)f1) + F(0)I(fr) = ¢f(0).
Furthermore, using intertwining properties (6.1) and (6.2):
Mz o Wrfl(t) = [pso(L, =) 0 MiE 0 Wrf](0)
= [Mii o Wr o p(1, 1) f](0)
= (peo(L, =1)f)
= clpo(1, =) f1(0)
= cf(t).
This completes the proof. n
To get the classical statement we need the following lemma.
Lemma 7.2. For w(t) € Ly(R), define the fiducial functional on B:

- /R F(#) w(t) dt. (7.7)

Then F' satisfies the conditions (and thus the conclusions) of Proposition 7.2.
Proof. Let f be a continuous bounded function such that f(0) = 0. For € > 0 chose
e § > 0 such that |f(t)| < e for all [t| < J;

o M >0 such that [, |w(t)] dt <e.

Then, for a < 6/M, we have the estimation:

Float/a0n) = | [ 7@ w(t)dt'

/t|<Mf (at) w(t) dt‘ + /t|>Mf (at) w(?) dt‘
< e(lfwllr + [ fllo0)-

Finally, for a uniformly continuous function g for ¢ > 0 there is § > 0 such that
lg(t+b) —g(t)] <eforall b<dandteR. Then

Fpat0)9) = Flo) =| [ (ot ) = gl wlt) dt‘ < cllwl.

This proves the continuity of F(p_ (1,b)g) at b = 0 and, by the group property, at any
other point as well. O

IN
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Remark 7.2. A direct evaluation shows, that the constant ¢ = [(f;) from the proof of
Proposition 7.2 for fiducial functional (7.7) is equal to ¢ = [, w(t) dt. Of course, for non-
trivial boundary values we need ¢ # 0. On the other hand, admissibility condition (4.5)
requires ¢ = 0. Moreover, the classical harmonic analysis and the traditional wavelet
construction are two “orthogonal” parts of the same covariant transform theory in the
following sense. We can present a rather general bounded function w = w,+w, as a sum
of an admissible mother wavelet w, and a suitable multiple w, of the Poisson kernel.
An extension of this technique to unbounded functions leads to Calderén—Zygmund
decomposition [40, § 1.4].

The table integral [g mg—il = 7 tells that the “wavelet” p(t) = 15 (4.7) is in
L,(R) with ¢ = 1, the corresponding wavelet transform is the Poisson integral. Its
boundary behaviour from Proposition 7.2 is the classical result, cf. [14, Chapter I,
Corollary 3.2]. The comparison of our arguments with the traditional proofs, e.g.
in [14], does not reveal any significant distinctions. We simply made an explicit usage
of the relevant group structure, which is implicitly employed in traditional texts anyway,
cf. [4]. Further demonstrations of this type can be found in [1, 9.

8 Transported norms

If the functional F' and the representation p in (4.1) are both linear, then the resulting
covariant transform is a linear map. If Wk is injective, e.g. due to irreducibility of p,
then Wp transports a norm ||-|| defined on V' to a norm || - ||r defined on the image
space WgV by the simple rule:

|lullF :=||v]|,  where the unique v € V' is defined by u = Wpuv. (8.1)
By the very definition, we have the following
Proposition 8.1.  i. Wg is an isometry (V,||-||) = WV, | - ||F).
it. If the representation p acts on (V,||-||) by isometries then || - || is left invariant.

A touch of non-triviality occurs if the transported norm can be naturally expressed
in the original terms of G.

Example 20. It is common to consider a unitary square integrable representation p
and an admissible mother wavelet f € V. In this case, wavelet transform (4.2) becomes
an isometry to square integrable functions on G with respect to a Haar measure |2,
Theorem 8.1.3]. In particular, for the affine group and setup of Example 3, the wavelet
transform with an admissible vector is a multiple of an isometry map from L,(R) to
the functions on the upper half-plane, i.e., the ax+b group, which are square integrable
with respect to the Haar measure a=2 da db.

A reader expects that there are other interesting examples of the transported norms,
which are not connected to the Haar integration.
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Example 21. In the setup of Example 4, consider the space LP(R) with representa-
tion (3.4) of Aff and Poisson kernel p(t) (4.7) as an inadmissible mother wavelet. The
norm transported by Wp to the image space on Aff is [36, § A.6.3]:

1

T db
lull, = sup / (@b 2 (8.2)
a>0 a

In the theory of Hardy spaces, the L -norm on the real line and transported norm (8.2)
are naturally intertwined, cf. [36, Theorem A.3.4.1(iii)|, and are used interchangeably.

The second possibility to transport a norm from V' to a function space on G uses
an contravariant transform M,:

[ullo = IMyul]. (8.3)

Proposition 8.2.  i. The contravariant transform M., is an isometry (L, || - |l,) —

(VA1)

1. If the composition M, o Wg = cl is a multiple of the identity on V then trans-
ported norms || - ||, (8.3) and || - || (8.1) differ only by a constant multiplier.

The above result is well-known for traditional wavelets.

Example 22. In the setup of Example 15, for a square integrable representation and
two admissible mother wavelets vy and wy we know that M, W,, = kI (7.1), thus
transported norms (8.1) and (8.3) differ by a constant multiplier. Thus, norm (8.3) is
also provided by the integration with respect to the Haar measure on G.

In the theory of Hardy spaces the result is also classical.

Example 23. For the fiducial functional F' with property (7.5) and the contravariant
transform ./\/lf(J (5.13), Proposition 7.2 implies ./\/lfj[0 o Wr = c¢l. Thus, the norm

transported to Aff by Mfg from L, (R) up to factor coincides with (8.2). In other
words, the transition to the boundary limit on the Hardy space is an isometric operator.
This is again a classical result of the harmonic analysis, cf. [36, Theorem A.3.4.1(ii)].

The co- and contravariant transforms can be used to transport norms in the opposite
direction: from a classical space of functions on G to a representation space V.

Example 24. Let V' be the space of o-finite signed measures of a bounded variation
on the upper half-plane. Let the ax + b group acts on V' by the representation adjoint
to [py(a,b) fl(z,y) = a ' f(22, %) on Ly(R?), cf. (3.2). If the mother wavelet vy is the
indicator function of the square {0 < x < 1,0 < y < 1}, then the covariant transform of
a measure p is fi(a,b) = a= ' 1(Qap), where Q. is the square {b < r < b+a,0 < y < a}.
If we request that fi(a, b) is a bounded function on the affine group, then p is a Carleson
measure [14, § I.5]. A norm transported from L__(Aff) to the appropriate subset of V'
becomes the Carleson norm of measures. The indicator function of a tent taken as a

mother wavelet will lead to an equivalent definition.



116 V.V. Kisil

It was already mentioned in Remark 4.3 and Example 11 that we may be interested
to mix several different covariant and contravariant transforms. This motivate the
following statement.

Proposition 8.3. Let (V. ||-||) be a normed space and p be a continuous representation
of a topological locally compact group G on V. Let two fiducial operators Fy and Fy
define the respective covariant transforms Wy and W, to the same image space W =
WV = WLV, Assume, there exists an contravariant transform M : W — V such that
MoW, =cil and M oW, = col. Define by || - ||m the norm on U transpordef from
V by M. Then

[Wivi + Wavs||pm = |lervr + covg||,  for any vy, vp € V. (8.4)
Proof. Indeed:

HW1U1 + WQ’UQHM = HM O W1U1 + M o WQUQH

= ||01U1 + CQUQH s
by the definition of transported norm (8.3) and the assumptions M o W, = ¢; 1. O
Although the above result is simple, it does have important consequences.

Corollary 8.1 (Orthogonality Relation). Let p be a square integrable representa-
tion of a group G in a Hilbert space V. Then, for any two admissible mother wavelets
f and f' there exists a constant ¢ such that:

/G (0, 0(9)f) W p@FYdg = ¢ (v,0))  for any vy, v € V. (8.5)

Moreover, the constant ¢ = c(f’, f) is a sesquilinear form of vectors f' and f.

Proof. We can derive (8.5) from (8.4) as follows. Let My be the inverse wavelet
transform (5.5) defined by the admissible vector f, then M ;oW = I on V providing
the right scaling of f. Furthermore, M ;oW = ¢l by (7.1) for some complex constant
c. Thus, by (8.4):

IWpv + Wit = [Jo + || .

Now, through the polarisation identity [18, Problem 476] we get the equality (8.5) of
inner products. O

The above result is known as the orthogonality relation in the theory of wavelets,
for some further properties of the constant ¢ see |2, Theorem 8.2.1].

Here is an application of Proposition 8.3 to harmonic analysis, cf. [15, Theo-
rem 4.1.7:

Corollary 8.2. The covariant transform W, with conjugate Poisson kernel q (4.8) is
a bounded map from (Ly(R), ||-||) to (L(Aff), ] - ||2) with norm || - ||2 (8.2). Moreover:

IWaflla = 1111 for all f € Ly(R).
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Proof. As we establish in Example 18 for contravariant transform M, (5.12), M% o
Yo Yo

W, = —il and il on H, and Hj, respectively. Take the unique presentation f = u+u",
for u € H, and u* € Hy. Then, by (8.4)

Wafllz = || =t +iut|| = [lu+u-|| = [I£]].

This completes the proof. n

9 Conclusion

We demonstrated that both, real and complex, techniques in harmonic analysis have
the same group-theoretical origin. Moreover, they are complemented by the wavelet
construction. Therefore, there is no any confrontation between these approaches and
they can be lined up as in Table 1. In other words, the binary opposition of the real
and complex methods resolves via Kant’s triad thesis-antithesis-synthesis: complex-
real-covariant.
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Covariant scheme

Complex variable

Real variable

Covariant transform is

Wi v 0(g) = F(p(g~v).

In particular, the wavelet transform
for the mother wavelet vy is 0(g) =

(v, p(g)vo)-

The Cauchy integral is generated by the
mother wavelet %%
The Poisson integral is generated by the

mother wavelet +—
T xt+1

The fb) =
b+a

W % f(t)dt is defined by the mother
b—a

averaging operator

wavelet x(-1,1(t),
to average the modulus of f(¢) we use all
elements of the unit ball in L_[—1,1].

The covariant transform maps vectors to
functions on G or, in the induced case,
to functions on the homogeneous space
G/H.

Functions are mapped from the real line
to the upper half-plane parametrised by
either the ax + b-group or the homoge-
neous space SLy(R)/K.

Functions are mapped from the real line
to the upper half-plane parametrised by
either the ax 4 b-group or the homoge-
neous space SLy(R)/A.

Annihilating action on the mother
wavelet produces functional relation on
the image of the covariant transform

The operator —dp” —idp" = I+ (z+1) L
annihilates the mother wavelet MFQ:HFJ{
thus the image of wavelet transform is in
the kernel of the Cauchy-Riemann oper-
ator —£A +1LN = ia(d,+10,). Similarly,

for the Laplace operator.

The mother wavelet vg = x[_1,1) satis-
fies the equality x[—11] = X[-1,0 + X[0,1,
where both terms are again scaled and
shifted vy. The image of the wavelet
transform is suitable for the stopping
time argument and the dyadic squares
technique.

An invariant pairing (-,-) generates the
contravariant transform

(Mo f1(f(g), p(g)wo) for

The contravariant transform with the in-
variant Hardy pairing on the ax+b group
produces boundary values of functions
on the real line.

The covariant transform with the invari-
ant sup pairing produces the vertical and
non-tangential maximal functions.

The composition M, o Wrg of the co-
variant and contravariant transforms is
a multiple of the identity on irreducible
components.

SIO is a composition of the Cauchy in-
tegral and its boundary value.

The Hardy-Littlewood maximal func-
tion is the composition of the averag-
ing operator and the contravariant trans-
form from the invariant sup pairing.

The Hardy space is an invariant sub-
space of the group representation.

The Hardy space consists of the limit-
ing values of the Cauchy integral. SIO is
bounded on this space.

The Hardy—-Littlewood maximal opera-
tor is bounded on the Hardy space H,

Table 1: The correspondence between different elements of harmonic analysis.
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