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Abstract. Given a von Neumann algebra M with a faithful normal finite trace,
we introduce the so-called finite tracial algebra Mf as the intersection of Lp-spaces
Lp(M,µ) over all p ≥ 1 and over all faithful normal finite traces µ on M. Basic algebraic
and topological properties of finite tracial algebras are studied. We prove that all
derivations on these algebras are inner.

1 Introduction

In the present paper we introduce a new class of algebras, the so-called finite tracial
algebras, which are defined as the intersection of non-commutative Lp-spaces Lp(M,µ)
[13] over all p ∈ [1,∞) and over all faithful normal finite (f.n.f.) traces µ on a von
Neumann algebra M. Equivalently, a finite tracial algebra Mf is the intersection of all
non-commutative Arens algebras Lω(M,µ) =

⋂
p≥1

Lp(M,µ), over all f.n.f. traces µ. It

is known that Arens algebras are metrizable locally convex ∗-algebras with respect to
the topology generated by the system of Lp-norms for a fixed trace. Algebraic and
topological properties of Arens algebras have been investigated in the papers [1, 2, 3,
6, 9].

In the present paper we study basic properties of finite tracial algebras with the
topology generated by all Lp-norms {‖ · ‖µp}, where p ∈ [1,∞) and µ runs over all f.n.f.
traces on a given von Neumann algebra M. We prove that a finite tracial algebra Mf

is metrizable or reflexive if and only if the center of the von Neumann algebra M is
finite-dimensional; in this case Mf coincides with an appropriate Arens algebra. We
also give a necessary and sufficient condition for Mf to coincide (as a set) with M. But
even in this case one has a new topology on the von Neumann algebra M. We obtain
also a description of the dual space for the algebra Mf .

Finally we prove that every derivation on a solid subalgebra of the Arens algebra
Lω(M, τ) is inner. In particular we obtain that the algebra Mf admits only inner
derivations.

Throughout the paper we consider a von Neumann algebra M with a f.n.f trace.
Therefore M is a finite von Neumann algebra and thus all closed densely defined
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operators affiliated with M are measurable with respect to M, i.e. the set of all such
operators coincides with the algebra S(M) of all measurable operators and hence also
with the algebra LS(M) of all locally measurable operators affiliated with M ; moreover
the center of S(M) = LS(M) coincides with the set of operators affiliated with the
center of M.

2 Preliminaries

Let M be a von Neumann algebra with the positive cone M+ and let 1 denote the
identity operator in M.

A positive linear functional µ is called a finite trace, if µ(uxu∗) = µ(x) for all x ∈M
and each unitary operator u ∈M.

A finite trace µ is said to be faithful if for x ∈M+, µ(x) = 0 implies that x = 0.

A finite trace µ is normal if given any monotone net {xα} increasing to x ∈M, one
has µ(x) = supµ(xα).

Let τ be a fixed faithful normal finite (f.n.f.) trace on a von Neumann algebra M.
The Radon–Nikodym theorem [11, Theorem 14] implies that given any f.n.f. trace µ
on M there exists a positive operator h ∈ L1(M, τ) affiliated with the center of M
such that µ(x) = τ(hx) for all x ∈ M. This operator h is called the Radon–Nikodym
derivative of the trace µ with respect to the trace τ and is denoted by dµ

dτ
.

We recall [11], [13] that given a f.n.f. trace τ on a von Neumann algebra M the
space Lp(M, τ), p ∈ [1,∞), is deЇned as

Lp(M, τ) = {x ∈ S(M) : |x|p ∈ L1(M, τ)}.

The space Lp(M, τ) equipped with the norm ‖x‖p = (τ(|x|p))
1
p is a Banach space and

its dual space coincides with Lq(M, τ), where 1
p + 1

q = 1, and the duality is given by

〈x, a〉 = fa(x) = τ(ax)

for all fa ∈ Lp(M, τ)∗, a ∈ Lq(M, τ) (see [13, Theorem 4.4]).
Following [9] consider the intersection

Lω(M, τ) =
⋂

p∈[1,∞)

Lp(M, τ).

It is known (see also [2], [3], [6]), that Lω(M, τ) is a complete locally convex ∗-algebra
with respect to the topology tτ generated by the system of norms {‖ · ‖}p∈[1,∞).

Each operator a ∈
⋃

q∈[1,∞)

Lq(M, τ) defines a continuous linear functional fa on

(Lω(M, τ), tτ ) by the formula fa(x) = τ(ax), and conversely given an arbitrary con-
tinuous linear functional f on the algebra (Lω(M, τ), tτ ) there exists an element
a ∈

⋃
q∈[1,∞)

Lq(M, τ) such that f(x) = τ(ax).
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3 Finite tracial algebras

Let M be a finite von Neumann algebra. Denote by F the set of all f.n.f. traces on M
and from now on suppose that F 6= ∅.

Consider the space

Mf =
⋂
µ∈F

⋂
p∈[1,∞)

Lp(M,µ) =
⋂
µ∈F

Lω(M,µ).

On the space Mf one can consider the topology t, generated by the system of norms
{‖ · ‖µp} : µ ∈ F , p ∈ [1,∞).

Since each Arens algebra Lω(M,µ), µ ∈ F , is a complete locally convex topological
∗-algebra in S(M) from the above definition one easily obtains the following

Theorem 3.1. (Mf , t) is a complete locally convex topological ∗-algebra.

Definition 3.1. The topological ∗-algebra Mf is called the finite tracial algebra with
respect to the von Neumann algebra M.

Remark 3.1. Finite tracial algebras present examples of so called GW ∗-algebras in
the sense of [10].

Recall (see [10]) that a topological ∗-algebra (A, tA) is called a GW ∗-algebra, if A
has a W ∗-subalgebra B with (1 + x∗x)−1 ∈ B for all x ∈ A and the unit ball of B is
tA-bounded.

The finite tracial algebra Mf is a GW ∗-algebra. Since M ⊂ Mf , it is sufficient to
show that the unit ball in M is t-bounded in Mf .

Let x ∈M, ‖x‖∞ ≤ 1. For µ ∈ F and 1 ≤ p <∞, we have

‖x‖µp = ‖x1‖µp ≤ ‖x‖∞‖1‖µp ≤ µ(1)
1
p ,

i.e. ‖x‖µp = ‖x1‖µp ≤ µ(1)
1
p for all x ∈ M, ‖x‖∞ ≤ 1. This means that the unit ball of

M is t-bounded in Mf . Therefore Mf is a GW ∗-algebra.
Although the algebra Mf contains M, it is a rather small algebra, since it is con-

tained in all Lp(M,µ) for all p ≥ 1 and f.n.f. traces µ on M. The following result gives
necessary and sufficient conditions for Mf to coincide with M.

Theorem 3.2. For a finite von Neumann algebra M the following conditions are equiv-
alent

(i) Mf = M ;

(ii) M is a finite sum of homogeneous type In, n ∈ N, von Neumann algebras.

The proof of this theorem consists of several auxiliary proposition which are inter-
esting on their own. Let us start with the commutative case.

Proposition 3.1. Let M be a von Neumann algebra with a faithful normal trace and
Z be its center. Then the center of the algebra Mf coincides with Z, i.e. Z(Mf ) = Z.
In particular, if M is abelian, then Mf = M.
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Proof. Let M be a von Neumann algebra with a faithful normal finite trace τ, and
τ(1) = 1.

Consider x ∈ Z(Mf ), x ≥ 0 and let x =
∞∫
0

λ deλ be the spectral resolution of x.

Since x ∈ Z(Mf ) and M ⊂Mf , we have that eλ ∈ Z for all λ ∈ R. Passing if necessary
to the element ε1 + x, we may suppose without loss of generality that e1 = 0.

For n ∈ N set
pn = e(n+1)2 − en2

and
y =

∑
n∈N

n2pn.

Since xpn ≥ n2pn for all n ∈ N, we have that 0 ≤ y ≤ x, and hence y ∈Mf .
Let

F = {n ∈ N : tn = τ(pn) 6= 0}

and
h =

∑
n∈F

1

n2tn
pn ∈ Z(S(M)).

Since
m∨
n=1

pn =
m∨
n=1

(e(n+1)2 − en2) =
m∑
n=1

(e(n+1)2 − en2) = e(m+1)2 − e1 = e(m+1)2 ↑ 1,

one has that
∞∨
n=1

pn = 1.

Therefore there exists h−1 ∈ S(M). Further we have

τ(h) =
∑
n∈F

1

n2tn
τ(pn) =

∑
n∈F

1

n2tn
tn =

∑
n∈F

1

n2 ≤
∑
n∈N

1

n2 <∞,

i.e. h ∈ L1(M, τ).
Put µ(·) = τ(h·). Since y ∈Mf , it follows that y ∈ L1(M,µ). Therefore, µ(y) <∞.
On the other hand,

hy =
∑
n∈F

1

n2tn
pn

∑
n∈N

n2pn =
∑
n∈F

1

tn
pn ,

and thus
µ(y) = τ(hy) =

∑
n∈F

1

tn
τ(pn) =

∑
n∈F

1

tn
tn =

∑
n∈F

1 = |F |,

where F is the cardinality of the set F. Since µ(y) <∞, this implies that F is a finite
set. Let k = max{n : n ∈ F}. Then τ(pn) = 0 for all n > k, and since τ is faithful, we
have that pn = 0 for all n > k, i.e. e(n+1)2 = en2 . As en2 ↑ 1, we have that en2 = 1 for
all n > k. This means that 0 ≤ x ≤ (k + 1)21, i.e. x ∈ Z.
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Proposition 3.2. Let M be a type In, n ∈ N, von Neumann algebra. Then Mf = M.

Proof. By [12, Ch. V, Theorem 1.27] the von Neumann algebra M of type In (n ∈ N)
can be represented as M = Z ⊗ B(Hn), where Z is the center M and Hn is the n-
dimensional Hilbert space. Put FZ = {τ |Z : τ ∈ F}. Therefore by Proposition 3.1 we
obtain

Mf =
⋂

p∈[1,∞)

⋂
τ∈F

Lp(M, τ) =
⋂

p∈[1,∞)

⋂
µ∈FZ

Lp(Z, µ)⊗B(Hn) =

=

 ⋂
p∈[1,∞)

⋂
µ∈F

Lp(Z, µ)

⊗B(Hn) =

= Zf ⊗B(Hn) = Z ⊗B(Hn) = M.

Proposition 3.3. Let M be a finite von Neumann algebra which is isomorphic to
the direct sum of an infinite number of homogeneous type In (n ∈ N) von Neunamm
algebras. Then Mf 6= M.

Proof. Suppose that M =
∑⊕

k∈KMk, where K is an infinite subset of N, and Mk is a
homogeneous type Ik von Neumann algebra.

Since the set K is infinite, there exists a sequence {kn} ⊂ K such that kn ≥ 2n for
all n ∈ N. We have that

Mkn = Zkn ⊗B(Hkn),

where Zkn is the center of Mkn and

Nn = 1n ⊗B(Hn) ⊂Mkn .

Therefore the algebra M contains a subalgebra ∗-isomorphic to the algebra N =∑⊕
n∈NNn.

Hence, without loss of generality we may assume that M =
∑⊕

n∈NNn, where Nn =
B(H2n) is the algebra of all 2n×2n matrices over C. On each Nn we consider the unique
tracial state (i.e. normalized f.n.f. trace) µn and define on M the following f.n.f. trace

τ(x) =
∑
n∈N

2−nµn(xn),

where x =
∑⊕

n∈N xn. Then every f.n.f. trace µ on M has the form

µ(x) = τ(hx) =
∑
n∈N

2−nµn(hnxn) =
∑
n∈N

2−nαnµn(xn),

where

h =
⊕∑
n∈N

hn =
⊕∑
n∈N

αn1n ∈ L1(M, τ),

i.e. αn > 0, n ∈ N,
∑
n∈N

2−nαn <∞.
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Take a minimal projection pn in each Nn = B(H2n). Then µn(pn) = 1/2n.
Consider the unbounded element x =

∑⊕
n∈N npn in S(M) \M and let us prove that

x ∈Mf . For every f.n.f. trace µ on M one has that

µ(xp) =
∑
n∈N

2−nαnµn(nppn) =
∑
n∈N

2−nαnn
p2−n <∞,

because np2−n < 1 for sufficiently large n ∈ N. Therefore x ∈ Lp(M,µ) for all p ≥ 1
and every f.n.f. trace µ ∈ F , i.e. x ∈Mf .

Proposition 3.4. Let M be a type II1 von Neumann algebra with a f.n.f. trace τ.
Then Mf 6= M.

Proof. Suppose that the trace τ is normalized, i.e. τ(1) = 1, and denote by Φ the
canonical center-valued trace on M. Since M is of type II1, there exists a projection
p1 such that

p1 ∼ 1− p1.

Therefore from Φ(p1) + Φ(p⊥1 ) = Φ(1) = 1 and Φ(p1) = Φ(p⊥1 ) we obtain that

Φ(p1) = Φ(p⊥1 ) =
1

2
1.

Suppose that we have constructed mutually orthogonal projections p1, p2, . . . , pn in
M such that

Φ(pk) =
1

2k
1, k = 1, n.

Set en =
∞∑
k=1

pk. Then Φ(e⊥n ) = 1
2n1. Now take a projection pn+1 ≤ e⊥n such that

pn+1 ∼ e⊥n − pn+1,

i.e.
Φ(pn+1) =

1

2n+1
1.

In this manner we obtain a sequence {pn}n∈N of mutually orthogonal projections
such that

Φ(pn) =
1

2n
1, n ∈ N.

It is clear that τ(pn) = τ(Φ(pn)) = 1
2n , n ∈ N.

From
∞∑
n=1

‖npn‖τ1 =
∞∑
n=1

τ(npn) =
∞∑
n=1

n

2n
<∞,

it follows that the element x =
∞∑
n=1

npn belongs to L1(M, τ), and it is unbounded, i.e.

x /∈M.
On the other hand, for an arbitrary central element h ∈ L1(M, τ), h > 0, and n ∈ N

we have
τ(hpn) = τ(Φ(hpn)) = τ(hΦ(pn)) = τ

(
h

1

2n

)
=

1

2n
τ(h).
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Therefore for an arbitrary f.n.f. trace µ on M with dµ
dτ

= h we have

µ(|x|p) = τ(xp) = τ(hxp) = τ

(
h

∞∑
n=1

nppn

)
=

∞∑
n=1

npτ(hnpn) = τ(h)
∞∑
n=1

np

2n
<∞,

i.e. x ∈ Lp(M,µ) for all p ≥ 1 and every f.n.f. trace µ. Therefore x ∈Mf \M.

Proof of Theorem 3.2. The implication (i)⇒ (ii) follows by Propositions 3.3 and 3.4,
while (ii)⇒ (i) follows by Propositions 3.2. �

Now let us describe continuous linear functionals on the space (Mf , t).

Theorem 3.3. Given any µ ∈ F , 1 < q < ∞, and a ∈ Lq(M,µ) the functional
ϕ(x) = µ(xa), x ∈ Mf , is a continuous linear functional on (Mf , t). Conversely for
any continuous linear functional ϕ on (Mf , t) there exist µ ∈ F , 1 < q < ∞ and
a ∈ Lq(M,µ) such that

ϕ(x) = µ(xa), x ∈Mf .

Proof. Let µ ∈ F , 1 < q <∞, a ∈ Lq(M,µ). Put

ϕa(x) = µ(xa), x ∈Mf .

Take p ∈ R such that 1
p + 1

q = 1. Since

|ϕa(x)| = |µ(xa)| ≤ ‖a‖µq ‖x‖µp
for all x ∈Mf , one has that ϕa is a continuous linear functional on (Mf , t).

Conversely, let ϕ be a continuous linear functional on (Mf , t). By [14, Corollary 1,
P. 43] there exist µ ∈ F , 1 ≤ p <∞, c > 0, such that

|ϕ(x)| ≤ c‖x‖µp
for all x ∈Mf . Since M ⊂Mf and M is ‖ · ‖µp -dense in Lp(M, τ), the functional ϕ can
be uniquely extended onto Lp(M,µ). By [13, Theorem 4.4] there exists a ∈ Lq(M,µ),
1
p + 1

q = 1 such that
ϕ(x) = µ(xa)

for all x ∈ Lp(M,µ). In particular,

ϕ(x) = µ(xa)

for all x ∈Mf , i.e. ϕ = ϕa.

If the von Neumann algebra M is a factor then it has a unique (up to a scalar
multiple) f.n.f. trace µ. In this case the finite tracial algebra Mf coincides with the
Arens algebra Lω(M,µ) and the topology t merges to the topology tµ generated by the
system of norms {‖ · ‖µp}p≥1. The following theorem describes the general case where
this phenomenon occurs.

Recall some notions of the theory of linear topological spaces. Let E be a locally
convex linear topological space. An absolutely convex absorbing set in E is called a
barrel. If each barrel in E is a neighborhood of zero, then E is said to be a barreled
space.

It is known [14, Theorem 2, P. 200] that every reflexive locally convex space is
barreled.
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Theorem 3.4. Let M be a finite von Neumann algebra and suppose that F 6= ∅ is the
family of all f.n.f. traces on M. The following conditions are equivalent:

(i) Mf = Lω(M,µ) for some (and hence for all) µ ∈ F ;

(ii) (Mf , t) is metrizable;

(iii) (Mf , t) is reflexive;

(iv) the center Z of M is finite-dimensional, i.e. M =
m∑
i=1

Mi, where all Mi are In-

factors or II1-factors.

Proof. Suppose that Z is finite-dimensional. Then M is a finite direct sum of factors
Mi, i = 1,m, for each factor Mi the algebras (Mi)f and Lω(Mi, µi) coincide, and the
topology ti is the same as tµi

i . Therefore

Mf =

(
m∑
i=1

Mi

)
f

=
m∑
i=1

(Mi)f =
m∑
i=1

Lω(Mi, µi) = Lω(M,µ),

where µ =
∑m

i=1 µi ∈ F , i.e. Mf = Lω(M,µ).
Now since the topology tµ on the Arens algebra Lω(M,µ) is metrizable [2], it follows

that t = tµ is also metrizable.
It is known [1] that for finite traces µ the Arens algebra (Lω(M,µ), tµ) is reflexive

and hence (Mf , t) is also reflexive. Therefore (iv) implies (i), (ii) and (iii).
(i) ⇒ (iv). Suppose that Mf = Lω(M,µ) for an appropriate µ ∈ F . Then there

exists a sequence of mutually orthogonal projections {pn} in Z such that pn 6= 0 for

all n ∈ N. Since the trace µ is finite, one has that
∞∑
k=1

µ(pk) <∞ and hence there is a

subsequence {nk : k ∈ N} such that µ(pnk
) ≤ 1

2k
for all k.

Set

x =
∞∑
k=1

kpk.

For p ≥ 1 we have

µ(|x|p) =
∞∑
k=1

kpµ(pk) =
∞∑
k=1

kp
1

2k
<∞,

and hence x ∈ Lω(M,µ) = Mf .
On the other hand, x is a central element in Mf and Proposition 3.1 implies that

x ∈ Z(Mf ) = Z ⊆ M. But it is clear that the element x is unbounded, i.e. x ∈ M.
The contradiction shows that Z is finite-dimensional.

(ii)⇒ (iv). Suppose that (Mf , t) is metrizable. By Theorem 3.1 it is complete and
hence it is a Fréchet space. In particular the center of Mf which coincides with Zf is
also a Fréchet space. By Proposition 3.1, Zf = Z and hence Z is a Fréchet space with
respect to the induced topology tZ = t|Z .

Consider the identity mapping

I : (Z, ‖ · ‖∞)→ (Z, tZ),
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where ‖ · ‖∞ is the operator norm on Z. From the inequalities

‖x‖µp ≤ Cµ
p ‖x‖∞

(where Cµ
p is an appropriate constant for each p ≥ 1, µ ∈ F) it follows that the mapping

I is continuous. Since (Z, tZ) is a Fréchet space, by the Banach theorem on the inverse
operator (see [14, Chapter II, Section 5]) we obtain that the inverse mapping

I−1 : (Z, tZ)→ (Z, ‖ · ‖∞)

is also continuous. This means that for some p ∈ [1,∞) and an appropriate µ ∈ F
there exists a constant Kµ

p such that

‖x‖∞ ≤ Kµ
p ‖x‖µp (3.1)

for all x ∈ Z (see [14, Theorem 1, P. 42]).
Now suppose that dimZ = ∞. There exists a sequence {pn} of projections in Z

such that pn ↑ 1, pn 6= pn+1. Thus p⊥n 6= 0, µ(p⊥n ) → 0, i.e. ‖p⊥n ‖µp → 0. From the
inequality (3.1) we obtain that ‖p⊥n ‖∞ → 0.

On the other hand, ‖p⊥n ‖∞ = 1. This contradiction implies that Z is finite-
dimensional.

(iii) ⇒ (iv). Suppose that Mf is reflexive. Then the center Z(Mf ) = Z is also
reflexive as a closed subspace of a reflexive space. The set

B = {x ∈ Z : ‖x‖∞ ≤ 1}

is a barrel in (Z, t) and since Z is reflexive, we have that B is a neighborhood of zero
in Z. Therefore there exist p ≥ 1, µ ∈ F and ε > 0 such that

{x ∈ Z : ‖x‖µp ≤ ε} ⊂ B

i.e.
‖x‖∞ ≤ ε−1‖x‖µp

for all x ∈ Z. From this as above it follows that Z is finite-dimensional.

Remark 3.2. In the von Neumann algebra M the operator topology is stronger than
the topology t, t is stronger than tµ, and tµ is stronger than each Lp-norm topology for
any p ≥ 1.

4 Derivations on finite tracial algebras

Derivations on unbounded operator algebras, in particular on various algebras of mea-
surable operators affiliated with von Neumann algebras, appear to be a very attractive
special case of general unbounded derivations on operator algebras.

Let A be an algebra over the complex number. A linear operator D : A → A is
called a derivation if it satisfies the identity D(xy) = D(x)y + xD(y) for all x, y ∈ A
(Leibniz rule). Each element a ∈ A defines a derivation Da on A given as Da(x) =
ax− xa, x ∈ A. Such derivations Da are said to be inner derivations.
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In [4] we have investigated and completely described derivations on the algebra
LS(M) of all locally measurable operators affiliated with a type I von Neumann algebra
M and on its various subalgebras. Recently the above conjecture was also confirmed
for the type I case in the paper [7] by a representation of measurable operators as
operator valued functions. Another approach to similar problems in AW ∗-algebras of
type I was suggested in the recent paper [8].

In the paper [3] we have proved the spatiality of derivations on the non commutative
Arens algebra Lω(M, τ) associated with an arbitrary von Neumann algebra M and a
faithful normal semi-finite trace τ. Moreover if the trace τ is finite then every derivation
on Lω(M, τ) is inner.

In this section we prove that each derivation on a finite tracial algebra is inner.
The following result is an immediate corollary of [5, Proposition 3.6].

Lemma 4.1. Let M be a von Neumann algebra with a faithful normal trace τ. Given
any derivation D : M → Lω(M, τ) there exists an element a ∈ Lω(M, τ) such that

D(x) = ax− xa, x ∈M.

Further we need also the following assertion from [7, Proposition 6.17].

Lemma 4.2. Let A be a ∗-subalgebra of LS(M) such that M ⊆ A and A is solid (that
is, if x ∈ LS(M) and y ∈ A satisfy |x| ≤ |y|, then x ∈ A). If ω ∈ LS(M) is such
that [ω, x] ∈ A for all x ∈ A, then there exists ω1 ∈ A such that [ω, x] = [ω1, x] for all
x ∈ A.

The main result of this section is the following theorem.

Theorem 4.1. Let M be a von Neumann algebra with a faithful normal finite trace τ.
If A ⊆ Lω(M, τ) is a solid ∗-subalgebra such that M ⊆ A, then every derivation on A
is inner.

Proof. Since A ⊆ Lω(M, τ), by Lemma 4.1 there exits an element a ∈ Lω(M, τ) such
that

D(x) = ax− xa, x ∈M. (4.1)

Let us show that in fact

D(x) = ax− xa for all x ∈ A. (4.2)

Consider x ∈ A, x ≥ 0. Then (1 + x)−1 ∈ M. As D(1) = 0, by the Leibniz rule it
follows that for each invertible b ∈ A one has

D(b) = −bD(b−1)b.

Therefore
D(x) = D(1 + x) = −(1 + x)D((1 + x)−1)(1 + x).

On the other hand, since (1 + x)−1 ∈M equality (4.1) implies that

D((1 + x)−1) = a(1 + x)−1 − (1 + x)−1a.
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Therefore

−(1 + x)D((1 + x)−1)(1 + x) = −(1 + x)[a(1 + x)−1 − (1 + x)−1a](1 + x) =

= −(1 + x)a+ a(1 + x) = ax− xa,

i.e.
D(x) = ax− xa, x ∈ A, x ≥ 0.

Since each element from A is a finite linear combination of positive elements, we
obtain equality (4.2) for arbitrary x ∈ A.

Now since A is a solid ∗-subalgebra in Lω(M, τ) containing A, Lemma 4.2 implies
that the element a implementing the derivation D may be chosed from the algebra A,
i.e.

D(x) = ax− xa, x ∈ A

for an appropriate a ∈ A.

Since the algebra Mf is a solid ∗-subalgebra of Lω(M, τ) and contains M, we obtain
the following result.

Corollary 4.1. If M is a von Neumann algebra with a faithful normal trace, then
every derivation on Mf is inner.
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