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Abstract. Given a von Neumann algebra M with a faithful normal finite trace,
we introduce the so-called finite tracial algebra My as the intersection of L,-spaces
L, (M, ) over all p > 1 and over all faithful normal finite traces ;1 on M. Basic algebraic
and topological properties of finite tracial algebras are studied. We prove that all
derivations on these algebras are inner.

1 Introduction

In the present paper we introduce a new class of algebras, the so-called finite tracial
algebras, which are defined as the intersection of non-commutative L,-spaces L,(M, 1)
[13] over all p € [1,00) and over all faithful normal finite (f.n.f.) traces p on a von
Neumann algebra M. Equivalently, a finite tracial algebra My is the intersection of all

non-commutative Arens algebras LY(M, u) = () L,(M, p), over all fn.f. traces p. It
p=1

is known that Arens algebras are metrizable locally convex x-algebras with respect to
the topology generated by the system of L,-norms for a fixed trace. Algebraic and
topological properties of Arens algebras have been investigated in the papers [1, 2, 3,
6, 9].

In the present paper we study basic properties of finite tracial algebras with the
topology generated by all L,-norms {|| - [|4}, where p € [1,00) and p runs over all f.n.f.
traces on a given von Neumann algebra M. We prove that a finite tracial algebra My
is metrizable or reflexive if and only if the center of the von Neumann algebra M is
finite-dimensional; in this case M; coincides with an appropriate Arens algebra. We
also give a necessary and sufficient condition for M} to coincide (as a set) with M. But
even in this case one has a new topology on the von Neumann algebra M. We obtain
also a description of the dual space for the algebra M.

Finally we prove that every derivation on a solid subalgebra of the Arens algebra
L¥(M, ) is inner. In particular we obtain that the algebra M; admits only inner
derivations.

Throughout the paper we consider a von Neumann algebra M with a f.n.f trace.
Therefore M is a finite von Neumann algebra and thus all closed densely defined
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operators affiliated with M are measurable with respect to M, i.e. the set of all such
operators coincides with the algebra S(M) of all measurable operators and hence also
with the algebra LS(M) of all locally measurable operators affiliated with M; moreover
the center of S(M) = LS(M) coincides with the set of operators affiliated with the
center of M.

2 Preliminaries

Let M be a von Neumann algebra with the positive cone M* and let 1 denote the
identity operator in M.

A positive linear functional p is called a finite trace, if p(uzu*) = p(x) for allz € M
and each unitary operator u € M.

A finite trace p is said to be faithful if for x € M™, u(x) = 0 implies that = = 0.

A finite trace p is normal if given any monotone net {x,} increasing to x € M, one
has p(z) = sup p(z,).

Let 7 be a fixed faithful normal finite (f.n.f.) trace on a von Neumann algebra M.
The Radon—Nikodym theorem [11, Theorem 14| implies that given any fn.f. trace p
on M there exists a positive operator h € L,(M, 1) affiliated with the center of M
such that u(x) = 7(hz) for all x € M. This operator h is called the Radon-Nikodym

derivative of the trace pu with respect to the trace 7 and is denoted by %’f—_

We recall [11], [13] that given a fan.f. trace 7 on a von Neumann algebra M the
space L,(M, ), p € [1,00), is delned as

L,(M,7)={xeS(M): |z|P € Liy(M,T)}.

The space L,(M, ) equipped with the norm ||z, = (T(|$‘p>>% is a Banach space and

its dual space coincides with L (M, ), where Yl? + % =1, and the duality is given by

<.7},a> = fa(x) - T(CLSL’)

for all f, € L,(M,7)*,a € Ly(M, ) (see [13, Theorem 4.4]).
Following [9] consider the intersection

LY(M,7)= () Ly(M,7).

p€[l,00)

It is known (see also [2], [3], [6]), that L (M, T) is a complete locally convex *-algebra
with respect to the topology ™ generated by the system of norms {|| - ||} pef1,00)-

Each operator a € |J Ly (M, 7) defines a continuous linear functional f, on
q€[l,00)
(L“(M,7),t7) by the formula f,(z) = 7(ax), and conversely given an arbitrary con-
tinuous linear functional f on the algebra (L“(M,7),t") there exists an element
ac |J LyM,7) such that f(x) = 7(ax).

q€(1,00)
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3 Finite tracial algebras

Let M be a finite von Neumann algebra. Denote by F the set of all f.n.f. traces on M
and from now on suppose that F # .
Consider the space

My = ﬂ m L;D(Mnu) = m L¥(M, p).

HEF pe[l,00) neF

On the space My one can consider the topology ¢, generated by the system of norms
{114 n € Fop € [1,00).

Since each Arens algebra L¥(M, ), u € F, is a complete locally convex topological
x-algebra in S(M) from the above definition one easily obtains the following

Theorem 3.1. (Mjy,t) is a complete locally convex topological x-algebra.

Definition 3.1. The topological x-algebra M; is called the finite tracial algebra with
respect to the von Neumann algebra M.

Remark 3.1. Finite tracial algebras present examples of so called GW*-algebras in
the sense of [10].

Recall (see [10]) that a topological x-algebra (A,t4) is called a GW*-algebra, if A
has a W*-subalgebra B with (1 + z*z)~! € B for all z € A and the unit ball of B is
t 4-bounded.

The finite tracial algebra M; is a GW*-algebra. Since M C My, it is sufficient to
show that the unit ball in M is t-bounded in Mj.

Let z € M, ||z]|ooc < 1. For p € F and 1 < p < 00, we have

1
lzlly = 1]y < llzllellLlly < p(1)>,

ie. [[z[|t = |lo1]h < u(l)% for all x € M, ||z||ooc < 1. This means that the unit ball of
M is t-bounded in My. Therefore My is a GW*-algebra.

Although the algebra My contains M, it is a rather small algebra, since it is con-
tained in all L,(M, p) for all p > 1 and fn.f. traces p1 on M. The following result gives
necessary and sufficient conditions for M; to coincide with M.

Theorem 3.2. For a finite von Neumann algebra M the following conditions are equiv-
alent

(i) My = M;
(1) M is a finite sum of homogeneous type I,,n € N, von Neumann algebras.

The proof of this theorem consists of several auxiliary proposition which are inter-
esting on their own. Let us start with the commutative case.

Proposition 3.1. Let M be a von Neumann algebra with a faithful normal trace and
Z be its center. Then the center of the algebra M, coincides with Z, i.e. Z(My) = Z.
In particular, if M is abelian, then My = M.
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Proof. Let M be a von Neumann algebra with a faithful normal finite trace 7, and

7(1) = 1.
Consider x € Z(My), z > 0 and let x = [ Adey be the spectral resolution of z.

0
Since x € Z(My) and M C My, we have that ey € Z for all A € R. Passing if necessary
to the element €1 + x, we may suppose without loss of generality that e; = 0.
For n € N set

Pn = €(n41)2 — €p2

Yy = Zn2pn'

neN

and

Since xp, > n?p, for all n € N, we have that 0 <y < x, and hence y € M;.
Let
F={neN:t,=1(p,) #0}

and
h = Z P € Z(S(M)).
nGF
Since
\/ Pn = \/ €(n+1)2 — 6n2) = Z(e(n+1)2 - enQ) = €(m+1)2 — €1 = €(m41)2 T 1,
n=1 n=1

one has that -
\/ pn = 1.
n=1

Therefore there exists h~' € S(M). Further we have

ie. he L'(M,1).
Put u(-) = 7(h-). Since y € My, it follows that y € L'(M, u). Therefore, u(y) < oco.
On the other hand,

h"J:Zn pnz pn—z P

ner nGF

and thus

ply) =lhy) = 3" el = 30 =S 1= |,
neF " neF " ner
where F' is the cardinality of the set F. Since u(y) < oo, this implies that F' is a finite
set. Let k = max{n :n € F'}. Then 7(p,) = 0 for all n > k, and since 7 is faithful, we
have that p, = 0 for all n > k, i.e. €412 = €,2. As e,2 T 1, we have that e,2 = 1 for
all n > k. This means that 0 < z < (k+ 1)?1, i.e. z € Z. m
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Proposition 3.2. Let M be a type I,,n € N, von Neumann algebra. Then My = M.

Proof. By |12, Ch. V, Theorem 1.27| the von Neumann algebra M of type I,, (n € N)
can be represented as M = Z ® B(H,), where Z is the center M and H,, is the n-
dimensional Hilbert space. Put Fz = {7|z : 7 € F}. Therefore by Proposition 3.1 we

obtain
M= () (L= () () L(Z e B(H,) =

pE[l,00) TEF p€[l,c0) neFz

=1 () NL(Zw |eBH,)=

pE[1l,00) pEF

— Z;® B(H,) = Z ® B(H,) = M.
m

Proposition 3.3. Let M be a finite von Neumann algebra which is isomorphic to

the direct sum of an infinite number of homogeneous type I, (n € N) von Neunamm
algebras. Then My # M.

Proof. Suppose that M = Z?e i My, where K is an infinite subset of N, and M}, is a
homogeneous type I, von Neumann algebra.
Since the set K is infinite, there exists a sequence {k,} C K such that k, > 2" for
all n € N. We have that
My, = Zy, @ B(Hy,),

where Zj, is the center of Mj, and
N, =1, ® B(H,) C M,

Therefore the algebra M contains a subalgebra *-isomorphic to the algebra N =
ne N

Hence, without loss of generality we may assume that M = ZneN N, where N,, =

B(Hzn) is the algebra of all 2" x 2" matrices over C. On each N,, we consider the unique

tracial state (i.e. normalized f.n.f. trace) u, and define on M the following f.n.f. trace

= Z 27" (),

neN
where x = Z?SeN Z,. Then every f.n.f. trace g on M has the form
p(x) = 7(hz) = Z 27" pin (A ) = 22_nanﬂn(xn)v
neN neN
where

h = Zh Zanl e Li(M,71),

neN neN

le. a, >0, neN, Y 27", < 0.
neN
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Take a minimal projection p,, in each N, = B(Hs»). Then p,(p,) = 1/2™.
Consider the unbounded element z = Y np, in S(M)\ M and let us prove that
x € My. For every f.n.f. trace i on M one has that

M(xp) = Z 2_no~/n,un(nppn) = Z 2—nannp2—n < 00,

neN neN

because 2" < 1 for sufficiently large n € N. Therefore x € L,(M, p) for all p > 1
and every f.n.f. trace p € F, ie. x € Mjy. O

Proposition 3.4. Let M be a type 1, von Neumann algebra with a fn.f. trace T.
Then My # M.

Proof. Suppose that the trace 7 is normalized, i.e. 7(1) = 1, and denote by & the
canonical center-valued trace on M. Since M is of type I[;, there exists a projection
p1 such that

p1~1—pi.
Therefore from ®(p;) + ®(p;) = ®(1) = 1 and ®(p;) = ®(p;) we obtain that
1
B(p) = B(p}) = 51
Suppose that we have constructed mutually orthogonal projections py, po, ..., p, in
M such that 1
D(pr) = ﬁlak =1,n.

Set e, = >_ pp. Then ®(et) = 2%1. Now take a projection p,; < e+ such that
k=1

1
Pn+1 ™~ €, — Pn+1,

i.e.

1
P(pnt1) = ontl 1.

In this manner we obtain a sequence {p,}nen of mutually orthogonal projections
such that

on
It is clear that 7(p,) = 7(®(p,)) = 2—1n, n e N.
From - - -
. n
Sl = St = 30 <o
n=1 n=1 n=1
it follows that the element z = > np, belongs to L,(M, ), and it is unbounded, i.e.
n=1

On the other hand, for an arbitrary central element h € Li(M,7), h > 0, and n € N
we have

rlhn) = 7(@(0pn)) = 700(pn)) = 7 () = 57
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Therefore for an arbitrary f.n.f. trace p on M with Eil—'l; = h we have

n=1 n=1

pu(|x|P) = 7(2P) = 7(ha?) =7 (thppn) = ZnPT(hnpn) =7(h) Z Z—: < 00,

ie. € L,(M,pu) for all p> 1 and every f.n.f. trace p. Therefore z € My \ M. O

Proof of Theorem 3.2. The implication (i) = (ii) follows by Propositions 3.3 and 3.4,
while (i7) = (i) follows by Propositions 3.2. O
Now let us describe continuous linear functionals on the space (My,t).

Theorem 3.3. Given any p € F, 1 < q¢ < oo, and a € Ly(M,p) the functional
o(x) = p(za), x € My, is a continuous linear functional on (Mg, t). Conversely for
any continuous linear functional ¢ on (Mg, t) there exist p € F, 1 < ¢ < oo and
a € L,(M,pn) such that

o(x) = p(za), v € M.
Proof. Let pe F, 1< q < o0, a€ Ly(M,u). Put
z)

o) = p(za), v € M;.
1

Take p € R such that ]l) 7= 1. Since

|0a(@)| = [u(za)] < llallgllly

for all z € My, one has that ¢, is a continuous linear functional on (M, ).
Conversely, let ¢ be a continuous linear functional on (M, t). By [14, Corollary 1,
P. 43] there exist p € F, 1 < p < 00, ¢ > 0, such that

|o(@)] < clllly

for all x € My. Since M C My and M is || - [[4-dense in L,(M,7), the functional ¢ can
be uniquely extended onto L, (M, p1). By [13, Theorem 4.4] there exists a € L,(M, p),

1..1_
ptg= 1 such that
p(x) = p(za)
for all z € L,(M, p). In particular,
p(x) = p(za)
for all x € My, ie. p = ¢,. 0

If the von Neumann algebra M is a factor then it has a unique (up to a scalar
multiple) f.n.f. trace p. In this case the finite tracial algebra M/ coincides with the
Arens algebra L (M, 1) and the topology t merges to the topology t* generated by the
system of norms {|| - ||#},>1. The following theorem describes the general case where
this phenomenon occurs.

Recall some notions of the theory of linear topological spaces. Let E be a locally
convex linear topological space. An absolutely convex absorbing set in F is called a
barrel. If each barrel in F is a neighborhood of zero, then F is said to be a barreled
space.

It is known [14, Theorem 2, P. 200| that every reflexive locally convex space is
barreled.



On a certain class of operator algebras and their derivations 89

Theorem 3.4. Let M be a finite von Neumann algebra and suppose that F # 0 is the
famaly of all f.n.f. traces on M. The following conditions are equivalent:

(1) My = L“(M,p) for some (and hence for all) € F;
(11) (My,t) is metrizable;
(111) (My,t) is reflexive;

(iv) the center Z of M is finite-dimensional, i.e. M = > M;, where all M; are I,-
i=1
factors or I1;-factors.

Proof. Suppose that Z is finite-dimensional. Then M is a finite direct sum of factors
M;, i = 1,m, for each factor M, the algebras (M;); and L¥(M;, u1;) coincide, and the
topology t; is the same as t£*. Therefore

Mf = <Z MZ) = Z(Ml)f = ZLM(MH:U%) - LW(M7 M)?
f =1

i=1 =1

where pp =Y " € F,ie. My = L“(M,p).

Now since the topology t* on the Arens algebra L“(M, ) is metrizable [2], it follows
that ¢ = t# is also metrizable.

It is known [1] that for finite traces p the Arens algebra (L¥(M, u), ") is reflexive
and hence (My,t) is also reflexive. Therefore (iv) implies (¢), (44) and (i77).

(i) = (iv). Suppose that My = L¥(M, ) for an appropriate ;1 € F. Then there
exists a sequence of mutually orthogonal projections {p,} in Z such that p, # 0 for
all n € N. Since the trace yu is finite, one has that > pu(pr) < oo and hence there is a

k=1
subsequence {ny : k € N} such that u(p,,) < 2% for all k.

Set .
k=1

For p > 1 we have

o o0 1
pllal’) = D K plpe) = Y k7o < oo,
k=1 k=1

and hence x € L¥(M, u) = M.

On the other hand, z is a central element in My and Proposition 3.1 implies that
x € Z(My) = Z C M. But it is clear that the element x is unbounded, i.e. x € M.
The contradiction shows that Z is finite-dimensional.

(i1) = (iv). Suppose that (My,t) is metrizable. By Theorem 3.1 it is complete and
hence it is a Fréchet space. In particular the center of M; which coincides with Z; is
also a Fréchet space. By Proposition 3.1, Zy = Z and hence Z is a Fréchet space with
respect to the induced topology t; = t|z.

Consider the identity mapping

(2] Mloe) = (Z:12),
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where || - ||« is the operator norm on Z. From the inequalities
[zl < Gyl

(where C¥! is an appropriate constant for each p > 1, u € F) it follows that the mapping
I is continuous. Since (Z,t) is a Fréchet space, by the Banach theorem on the inverse
operator (see [14, Chapter II, Section 5|) we obtain that the inverse mapping

17V (Ztz) = (Z,] - [lo)

is also continuous. This means that for some p € [1,00) and an appropriate u € F
there exists a constant K/’ such that

[2lloe < K7 l2]l} (3.1)

for all x € Z (see |14, Theorem 1, P. 42]).

Now suppose that dim Z = oo. There exists a sequence {p,} of projections in Z
such that p, T 1, pp # Png1. Thus py # 0, p(py) — 0, ie. |[py |4 — 0. From the
inequality (3.1) we obtain that ||p}|l. — O.

On the other hand, ||p}|lc = 1. This contradiction implies that Z is finite-
dimensional.

(i1i) = (iv). Suppose that M/ is reflexive. Then the center Z(M;) = Z is also
reflexive as a closed subspace of a reflexive space. The set

B={zeZ:|zllw <1}

is a barrel in (Z,t) and since Z is reflexive, we have that B is a neighborhood of zero
in Z. Therefore there exist p > 1, p € F and € > 0 such that

{reZ: |z <efCB

1.e.
[]|oe < e HlllY

for all x € Z. From this as above it follows that Z is finite-dimensional. O

Remark 3.2. In the von Neumann algebra M the operator topology is stronger than
the topology t, t is stronger than t*, and t" is stronger than each L,-norm topology for
any p > 1.

4 Derivations on finite tracial algebras

Derivations on unbounded operator algebras, in particular on various algebras of mea-
surable operators affiliated with von Neumann algebras, appear to be a very attractive
special case of general unbounded derivations on operator algebras.

Let A be an algebra over the complex number. A linear operator D : A — A is
called a derivation if it satisfies the identity D(xy) = D(z)y + xD(y) for all z,y € A
(Leibniz rule). Each element a € A defines a derivation D, on A given as D,(z) =
axr — za, x € A. Such derivations D, are said to be inner derivations.
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In [4] we have investigated and completely described derivations on the algebra
LS(M) of all locally measurable operators affiliated with a type I von Neumann algebra
M and on its various subalgebras. Recently the above conjecture was also confirmed
for the type I case in the paper [7] by a representation of measurable operators as
operator valued functions. Another approach to similar problems in AW *-algebras of
type I was suggested in the recent paper [8].

In the paper [3] we have proved the spatiality of derivations on the non commutative
Arens algebra L¥(M, 1) associated with an arbitrary von Neumann algebra M and a
faithful normal semi-finite trace 7. Moreover if the trace 7 is finite then every derivation
on L¥(M,T) is inner.

In this section we prove that each derivation on a finite tracial algebra is inner.

The following result is an immediate corollary of [5, Proposition 3.6].

Lemma 4.1. Let M be a von Neumann algebra with a faithful normal trace 7. Given
any derivation D : M — L*(M, ) there exists an element a € L¥(M, 1) such that

D(z) = ax — za, v € M.
Further we need also the following assertion from |7, Proposition 6.17].

Lemma 4.2. Let A be a *-subalgebra of LS(M) such that M C A and A is solid (that
is, if v € LS(M) and y € A satisfy |x| < |y|, then v € A). If w € LS(M) is such
that [w,x] € A for all x € A, then there exists w1 € A such that |w,z| = [wy,z] for all
x € A

The main result of this section is the following theorem.

Theorem 4.1. Let M be a von Neumann algebra with a faithful normal finite trace 7.
If AC L¥(M,T) is a solid x-subalgebra such that M C A, then every derivation on A
18 Inner.

Proof. Since A C L¥(M,7), by Lemma 4.1 there exits an element a € L¥(M, 1) such
that
D(z) = ax — za, x € M. (4.1)

Let us show that in fact
D(z) = ax — za for all z € A. (4.2)

Consider z € A,z > 0. Then (1 +z)™' € M. As D(1) = 0, by the Leibniz rule it
follows that for each invertible b € A one has

D(b) = —bD(b~1)b.

Therefore
D(z)=D(1+2)=—-1+2z)D(1+2) ") (1 +x).

On the other hand, since (1 + z)~! € M equality (4.1) implies that

D(1+z) Y =al+2)" = (1+2) a
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Therefore

—(14+2)D(1+2) Y1 +z)=—A+2)a(l+2)" —(1+2)"a)(1+2) =
=—(1+2)a+a(l+2)=ar—za,

le.
D(z) =ax —za, x € A, x> 0.

Since each element from A is a finite linear combination of positive elements, we
obtain equality (4.2) for arbitrary x € A.

Now since A is a solid x-subalgebra in L“(M, 7) containing A, Lemma 4.2 implies
that the element a implementing the derivation D may be chosed from the algebra A,
ie.

D(z)=ar —za,x € A

for an appropriate a € A. 0

Since the algebra My is a solid *-subalgebra of L“(M, 7) and contains M, we obtain
the following result.

Corollary 4.1. If M is a von Neumann algebra with a faithful normal trace, then
every derwation on My is inner.
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