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Abstract. In an explicit quantitative and often precise manner, we construct the ho-
mogeneous Hölder homeomorphisms and study the approximation of uniformly contin-
uous mappings by the Hölder-Lipschitz ones between the pairs of abstract and concrete
metric and (quasi) Banach spaces including, in particular, Banach lattices, general non-
commutative Lp-spaces, the classes IG and IG+ of independently generated spaces (for
example, non-commutative-valued Bochner-Lebesgue spaces) and anisotropic Sobolev,
Nikol’skii-Besov and Lizorkin-Triebel spaces of functions on an open subset or a class
of domains of an Euclidean space defined with underlying mixed Lp-norms in terms of
differences, local approximations by polynomials, wavelet decompositions and systems
of closed operators, such as holomorphic functional calculus and Fourier multipliers of
smooth Littlewood-Paley decompositions. Our approach also allows to treat both the
finite (as in the initial and/or boundary value problems in PDE) and infinite lp-sums
of these spaces, their duals and “Bochnerizations”. Many results are automatically ex-
tended to the setting of the function spaces with variable smoothness, including the
weighted ones. The sharpness of the approximation results, shown for the majority of
the pairs under some mild conditions and underpinning the corresponding sharpness of
the Hölder continuity exponents of the homogeneous homeomorphisms, indicates that
the range of the exponents is often a proper subset of (0, 1], that is the presence of
Tsar’kov’s phenomenon. We also consider the approximation by the mappings taking
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the values in the convex envelope of the range of the original approximated mapping.
The negative results on the absence of uniform embeddings of the balls of some func-
tion spaces, particularly including BMO, VMO, Nikol’skii-Besov and Lizorkin-Triebel
spaces with q = ∞ and their VMO-like separable subspaces, into any Hilbert space
are established. Relying on the solution to the problem of the global Hölder conti-
nuity of metric projections and the existence of the Hölder continuous homogeneous
right inverses of closed surjective operators and retractions onto closed convex subsets,
as well as our results on the bounded extendability of the Hölder-Lipschitz mappings
and re-homogenisation technique, we develop and employ our key explicit quantitative
tools, such as the global (on arbitrary bounded subsets) Hölder continuity of the dual-
ity mapping and Lozanovskii factorisation, the answer to the three-space problem for
the Hölder classification of infinite-dimensional spheres, the Hölder continuous coun-
terpart of the Kalton-Pe lczyńki decomposition method, the Hölder continuity of the
homogeneous homeomorphism induced by the complex interpolation method and such
counterparts of the classical Mazur mappings as the abstract and simple Mazur ascent
and complex Mazur descent. Important role is also played by the study of the local
unconditional structure and other complementability results, as well as the existence
of equivalent geometrically friendly norms.

1 Introduction

This is the first part of the article. The content of the second part is briefly described
below.

While even uniform homeomorphisms of spheres play important role in nonlinear
functional analysis [15], the existence of a homogeneous Hölder homeomorphism be-
tween two spaces permits, for example, to transfer counterexamples [49], group action,
homogeneous Hölder group structures (see Theorems 5.14− 5.16 below), entropy and
non-compactness estimates, or topological results [40] used in PDE from one space
into another. It can be especially convenient when one of the spaces is as well stud-
ied as the Hilbert space. In turn, the knowledge of the Hölder regularity exponents
allows to “measure the Hölder closedness" of pairs of non-isomorphic spaces to each
other and to approximate uniformly continuous mappings by Hölder-Lipschitz ones.
In the setting of infinite-dimensional spaces, the latter research direction goes back to
A.F. Timan [59], while the decisive contribution (including even the approximation of
set-valued mapping) was made by S.V. Konyagin and I.G. Tsar’kov [39, 62, 63, 64, 65]
(see Sections 10 and 11 for more details).

Namely, I.G. Tsar’kov [39, 62, 63, 64, 15] had considered the pairs (X, Y ), where
X ∈ {Lp, lp}p∈[1,∞] or a metric space, and Y ∈ {Lq, lq}q∈[1,∞] or a superreflexive space.
He discovered an interesting phenomenon: f can be arbitrary well-approximated in
C(BX , Y ) (BX is the unit ball in X) by an α-Hölder function if, and only if, α ∈
(0,min(p, 2)/max(q, 2)]. In the case of a metric X and a superreflexive Y , he used
the Frechet extension theorem and embedding into l∞(BX), along with the existence
of 1/p-Hölder retractions from l∞ onto the bounded closed convex subsets of a p-
uniformly convex space. Moreover, he reduced the case of the pairs of the Lebesgue
and lp-spaces to the case of the pair (l2, l2) by means of studying and employing the
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Hölder-Lipschitz regularity of the classical Mazur mapping and, eventually, utilising
Kirszbraun’s extension theorem.

Hölder classification and approximation problems are very strongly related: the
sharpness of the latter can lead to the sharpness of the former (see Sections 6.2 and
11).

There are seven essentially different classifications (equivalence relations) of Banach
spaces by:

1) isomorphisms (preserving the linear structure and topology);
2) continuous homeomorphisms (preserving the topology);
3) isometries (preserving the metric);
4) local isomorphisms (preserving the linear structure and topology of finite-

dimensional subspaces);
5) uniform homeomorphisms (preserving the uniform structure);
6) uniform homeomorphisms of spheres (preserving the uniform structure and ho-

mogeneity);
7) Hölder homeomorphisms of spheres (preserving the uniform structure in a strong

quantitative sense and homogeneity).
Using the notation X

i∼ Y for the ith equivalence relation between Banach spaces,
one can conclude that the relations (1, 3, 4, 5) are too discrete, while the second is
too synthetic. Indeed, it was established by Banach himself that lp and Lp are not
isomorphic for p 6= 2, while M.I. Kadets [38] proved that all separable Banach spaces
are (continuously) homeomorphic. In turn, S. Mazur and S. Ulam [47] discovered
that every isometry of two Banach spaces is a composition of a translation and a
linear isometry. The classification by local isomorphisms generated by the partial order
relation of λ-finite representability (see Definition 2.3) attracted the most attention
thanks to its close ties with the Rademacher type and cotype and the super-properties
of Banach spaces. While X 4∼ X∗∗ (principle of local reflexivity) and lp

4∼ Lp([0, 1]),
different Rademacher types or cotypes yield lp 6

4∼ lq for p 6= q (p, q ∈ [1,∞)). The fifth
classification appeared to be even more discrete than the forth: M. Ribe [55] showed
that X 5∼ Y implies X 4∼ Y , while W.B. Johnson, J. Lindenstrauss and G. Schechtman
[36] have observed that, if a Banach space X is uniformly homeomorphic to lp for
p ∈ (1,∞), then it is isomorphic to lp. Moreover, lp 6

5∼ Lp for p ∈ (0,∞)\{2} according
to J. Bourgain [21] (case p ∈ [1, 2)), E. Gorelik [34] (p ∈ (2,∞)) and A. Weston [69]
(p ∈ (0, 1]). (See also [15].)

The most balanced sixth classification was established by E. Odell,
Th. Schlumprecht in their celebrated work [49]. Substituting 6∼ with 7∼ in their
result on the classification of the Banach lattices, we obtain Theorem 6.2 below,
meaning that 6∼ and 7∼ coincide on the class of Banach lattices. The investigation
of the properties of the more quantitative seventh classification has begun with the
introduction of the Mazur transform by S. Mazur [46], and is also the first main task
of this article.

It is well-known since the 19th century that a (uniformly) continuous function
f ∈ C = C ([a, b]) for [a, b] ⊂ (−∞,∞) can be arbitrary well-approximated in C ([a, b])
by smooth functions, such as S.N. Bernstein polynomials (Weierstrass theorem), Fejer
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trigonometric polynomials and Steklov averages

fε(x) =
1

ε

x+ε∫
x

f̃(τ)dτ,

where f̃ is the extension of f to R by the constants f(a) and f(b). Steklov’s approach is
suitable for both finite and infinite interval [a, b] and provides very convenient explicit
estimates in terms of the modulus of continuity (of the first order in C)

ω(ε, f) = sup
|x−y|≤ε

|f(x)− f(y)| : ‖f − fε‖C ≤ ω(ε, f), ‖fε‖Lip ≤ ω(ε, f)/ε

and
fε ([a, b]) ⊂ f ([a, b])

for ε > 0.
As the second main task, we study the counterparts of this result in the setting

of uniformly continuous functions from a bounded subset A of a metric or a (quasi)
Banach space X into a (quasi) Banach space Y for abstract and particular pairs (X,Y ),
where X and Y satisfy certain natural additional conditions (like being isomorphic or
Lipschitz-homeomorphic to “better” abstract spaces). In particular, both X and Y is
allowed to be either contained or isomorphic to an arbitrary space from the union of
our six Γ-groups of the classes of the specific parameterised spaces described below.

In fact, our approaches also permit to treat the pairs with X and/or Y taken to
be lp-sums of function spaces (that can correspond to the spaces naturally appearing
in some boundary, or initial value problem), function spaces with variable smoothness
(including weighted spaces) investigated by O.V. Besov [19], spaces with dominating
derivatives and both the duals and lp-sums of the spaces mentioned above. The basic
groups of the function spaces we are dealing with include anisotropic Nikol’skii-Besov
and Lizorkin-Triebel spaces of functions on an open subset of Rn that are defined in
terms of either averaged differences, or local polynomial approximation, or wavelet
decompositions, or systems of closed operators with underlying mixed Lp-norms (see
subsection 2.1). Particular examples of the classes defined in terms of the systems
of closed operators are Nikol’skii-Besov and Lizorkin-Triebel spaces defined in terms
of the Fourier multipliers of the smooth Littlewood-Paley decompositions considered
by S.M. Nikol’skii, P.I. Lizorkin and H. Triebel [48, 61] (including Lizorkin – Triebel
spaces; see Remarks 2.4 and 10.3). The group Γ1 includes also the duals of these
function spaces. The classical information about function spaces is in [58, 22, 48, 20,
61, 29, 37, 52, 35, 60, 19]. In the setting of function spaces, it appears quantitatively
relevant to the problem that the domain of the definition of functions may satisfy the
C-flexible λ-horn condition due to O.V. Besov [18].

The first step towards the application of the quantitative methods based on the
quasi-Euclidean approach developed in [5, 7, 9, 12] is the choice, if necessary, of a
geometrically-friendly equivalent norm in a space under consideration. Thus, in Sec-
tion 2 we define and divide into six Γ-groups all the parameterised spaces under con-
sideration, describe subfamilies of equivalent norms on some of them and relations
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between different classes of space and provide a quantitative description of their asym-
metric uniform convexity and uniform smoothness. A large class of auxiliary IG-spaces,
including, in particular, lp-sums of Lp-spaces with mixed norm (and other IG-spaces),
was introduced, studied and employed in [5, 6, 7, 9, 12]. The class IG+ extends IG
including also the lp-sums and “Bochnerizations” of the Lebesgue and sequence spaces
of functions (possibly, on a discrete set) with values in noncommutative Lp-spaces [53].

Section 3 contains the elementary properties of the Hölder-Lipschitz mappings and
the auxiliary results (including some involving the matter of sharpness) on the exis-
tence of either ordinary or Hölder continuous (globally on arbitrary bounded subsets)
homogeneous inverses for closed linear surjections between Banach spaces. We also
introduce the notions related to the Hölder equivalence of spheres of abstract spaces.
Moreover, Lemma 3.2 constitutes the answer to the three-space problem for our classi-
fication 7∼, while Theorem 3.4 is the Hölder continuous counterpart of the N. Kalton’s
nonlinear version of A. Pe lczyńki’s decomposition method.

Section 4 contains the definitions and properties of our relatively abstract but occa-
sionally sharp key explicit quantitative tools: the global (on arbitrary bounded subsets)
Hölder continuity of the duality mapping and Lozanovskii factorisation and the Hölder
continuity of the homogeneous homeomorphism induced by the complex interpolation
method. The latter mapping and its uniform continuity are due to M. Daher [28] and
N.J. Kalton [15].

In Section 5, we employ the latter key abstract tool and develop a re-homogenisation
technique to construct and study our counterparts of the Mazur mapping that we call
abstract and simple Mazur ascents and complex Mazur descent. Their compositions
appear to be the Hölder homeomorphisms between the spheres of the pairs of compati-
ble IG0+-spaces that are sharp in the setting of the IG0-spaces and occasionally sharp
in the setting of the IG0+-spaces.

Section 6 contains the main results of the paper on the homogeneous Hölder home-
omorphisms in a form that permits to trace the constants. We start with complete
description of the Banach lattices that are in one equivalence class with the Hilbert
spaces and proceed by employing our abstract and constructive tools from Sections
4 and 5 to provide quantitative Hölder classification of the spheres of all the spaces
under consideration with respect to the spheres of the Hilbert spaces, including also
some spaces that are not equivalent to a Hilbert space. Indeed, relying on the so-
lution to Smirnov’s problem due to P. Enflo [32] and our results [3, 4, 11] on the
finite representability of c0 in (anisotropic) BMO(G), VMO(G), BMO(G) ∩ L∞(G),
VMO∩L∞(G), Nikol’skii-Besov and Lizorkin-Triebel spaces, as well as their VMO-like
subspaces, we show that the unit balls of these spaces cannot be uniformly embedded
into any separable or nonseparable Hilbert space.

In Section 7, we introduce commutative homogeneous Hölder group structures (com-
patible with the norm and the existing linear structure) on all our spaces under con-
sideration, even on those that do not admit any C∗-algebra structure.

Section 8 contains various results related to complementability of subspaces of ab-
stract and specific Banach spaces, including the existence of certain complemented
subspaces, that are employed either directly in the second group of the main results
in Section 8, or via some key auxiliary results that are either our counterpart of the
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Kalton-Pe lczyńki decomposition method in Section 3, or the presence of Tsar’kov’s
phenomenon (our main sharpness tool) in Section 11.

Section 9 comprises, in an explicit and quantitative form relying on the asymmetric
uniform convexity and smoothness and Markov type and cotype, the basic auxiliary
properties of abstract and specific Hölder-Lipschitz mappings employed in our ap-
proaches to the second main task of the article: globally Hölder-continuous retractions
and metric projections onto closed convex subsets of Banach spaces and the bounded
extendability of the Hölder-Lipschitz mappings between Banach spaces.

The second group of the main results that are on the approximation of uniformly
continuous mappings is situated in Section 10, where we utilise all our key tools devel-
oped in the previous sections, as well as the sharpness tools from Section 11. We first
establish the approximation results in abstract and semi-abstract settings of mappings
from metric, quasi-Banach and IG-spaces into quasi-Banach and IG-spaces, and, then,
apply some of these results, as well as our other tools, to treat the approximation of the
uniformly continuous mappings between the pairs of either abstract Banach lattices,
or our Γ-groups of the specific spaces under consideration.

In Section 11, we benefit from some uniform complementability results given in
Section 8 (see also [11]) by detecting the presence of Tsar’kov’s phenomenon for the
majority of the pairs of the specific spaces under consideration.

The numbering of the equations is used sparingly. Since the majority of references
inside every logical unit are to the formulas inside the unit, equations are numbered
independently inside every proof of a corollary, lemma and theorem, or a definition
(if there are any numbered formulas). The name of the corresponding logical unit does
not accompany the number of the formula in the references from inside this unit.

2 Definitions, designations and basic properties

Let N be the set of the natural numbers; N0 = N ∪ {0}; In = [1, n] ∩ N for n ∈
N and Im =

∏n
i=1 Imi

for m ∈ Nn; for α, β ∈ Nn
0 , assume that α ≤ β means the

partial order relation generated by the coordinate order relations; max(α, β) = min{γ :
γ ≥ α, γ ≥ β}; Rn is the n-dimensional Euclidean space with the standard basis
〈e1, . . . , en〉, x = (x1, . . . , xn) =

∑n
1 xie

i = (xi); xmin := mini xi and xmax := maxi xi.
Let p′ be the conjugate to p ∈ [1,∞]n, i.e. 1/p′i + 1/pi = 1 (1 ≤ i ≤ n).
For A ⊂ Nn

0 , let |A| designate the number of the elements of A; for α ∈ Nn
0 ,

Âα = {β : β ∈ Nn
0 , β ≤ α}; Â =

⋃
α∈A

Âα.

In what follows, one can assume γa = ((γa)1, . . . , (γa)n) ∈ (0,∞)n and |γa| =
∑n

1 (γa)i =
n to be fixed.

For x, y ∈ Rn, t > 0, let [x, y] be the segment in Rn with the ends x and y;
xy = (xiyi), ty = (tyi); x/y =

(
xi

yi

)
for yi 6= 0, and t/γa =

(
t

(γa)i

)
. Assuming |x|γa =

max1≤i≤n |xi|1/(γa)i , we have

|x+ y|γa ≤ cγa (|x|γa + |y|γa) .
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For E ⊂ Rn and b ∈ Rn, let

|E|γa = inf
x∈E
|x|γa , x± bE = {y : y = x± bz, z ∈ E}

and
Gt = {x : x ∈ G, |x− ∂G|γa > t}

for an open G ⊂ Rn.

Definition 2.1. For m ∈ N, h > 0, γ ∈ R, x ∈ Rn, assume that ∆m
i (h)f(x) is the

difference of the function f of the mth order with the step h in the direction of ei at
the point x, and

∆m
i (h,E)f(x) =

{
∆m
i (h)f(x) for [x, x+mhei] ∈ E,

0 for [x, x+mhei] /∈ E,

δmi,a(t, x, f, E)γ =

 1∫
−1

∣∣∆m
i (t(γa)iu,E)f(x+ γt(γa)iu)

∣∣a du
1/a

.

Sometimes, in the absence of ambiguity, we use a shorter form δmi,a(t, x, f) instead of
δmi,a(t, x, f, E)γ.

If φ is an integrable function on a Lebesgue-measurable set E ⊂ Rn, and |E| is the
Lebesgue measure, then φE = |E|−1

∫
E
φ dx. Assume Q0 = [−1, 1]n. For v ∈ R+ and

x ∈ Rn, we say that Qv(x) = x + vγaQ0 is the parallelepiped of the γa-radius v with
the centre x; χE is the characteristic function of E, and Θ = χ(0,∞) : R → {0, 1} is
Heaviside’s Θ–function.

For p ∈ (0,∞), q ∈ (0,∞], a (countable) index set I, and a quasi-Banach space A,
let lq(I, A) and l∞(I, A) be, correspondingly, the (quasi) Banach spaces of all sequences
α = {αk}k∈I ⊂ A with the finite quasi-norms

‖α|lq(I, A)‖ :=

(∑
k∈I

‖αk‖qA

)1/q

<∞ and ‖α|l∞(I, A)‖ := sup
k∈I
‖αk‖A.

Assume also that c0(I, A) is the closure in l∞(I, A) of all α ∈ AI with the finite support
set {k ∈ I : αk 6= 0}. More generally, for n ∈ N and r ∈ (0,∞]n, let lr (In, A) be the
(quasi) Banach space of all sequences α = {αk}k∈In ⊂ A with the finite quasi-norm

lr (In, A) := lrn
(
I,
(
lrn−1 . . . (lr1(I, A ) . . . ))︸ ︷︷ ︸

n brackets

.

For the sake of brevity, we also use the notation

lr (In) = lr (In,Rn) , c0(I) = c0 (I,Rn) and lr = lr(Nn).

For p ∈ (0,∞], let L∗p = L∗p(R+) be the (quasi) normed space of all functions f
measurable on R+ with the finite (quasi) norm

‖f |L∗p(R+)‖ :=

(∫
R+

|f(t)|pdt/t
)1/p

for p <∞ or ‖f |L∗∞(R+)‖ := ‖f |L∞(R+)‖.
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For G ⊂ Rn and f : G→ R by means of f : Rn → R, we designate the function

f(x) :=

{
f(x), for x ∈ G,
0, for x ∈ Rn \G.

For p ∈ (0,∞]n, let Lp(G) be the space of all measurable functions f : G → Rn with
the finite mixed quasi-norm

‖f |Lp(G)‖ =

∫
R

∫
R

. . .

∫
R

|f |p1 dx1

p2/p1

. . .


pn/pn−1

dxn


1/pn

,

where, for pi = ∞, one understands
(∫

R |g(xi)|pi dxi
)1/pi as ess supxi∈R |g(xi)|. The

classical quantitative geometry of these spaces had been studied for a long time (see,
for example, [45]).

For a measurable space (Ω, µ), an ideal (symmetric) space Y = Y (Ω) and a Banach
space X, let Y (Ω, X) be the space of the Bochner-measurable functions f : Ω 7→ X
with the finite (quasi)norm

‖f |Y (Ω, X)‖ := ‖‖f(·)‖X |Y (Ω)‖ .

If another measure ν, absolutely continuous with respect to µ with the density dν
dµ

= ω,
is used instead of µ, the corresponding space is denoted by Y (G,ω,X).

For example, Lp(Rn, lq) with p, q ∈ [1,∞] is the Banach space of the measurable
function sequences f = {fk}∞k=1 with the finite norm ‖‖{fk(·)}k∈N| lq‖|Lp(Rn)‖.

For s ∈ Nn, ς ∈ [1,∞), p ∈ [1,∞]n and an open G ⊂ Rn, let the Sobolev space
W s
p (G) = W s

p (G)ς be the Banach space of the measurable functions f defined on G
and possessing the Sobolev generalised derivatives Dsi

i f and the finite norm

‖f |W s
p (G)‖ς := ‖f |Lp(G)‖ς + ‖f |wsp(G)‖ς = ‖f |Lp(G)‖ς +

n∑
i=1

‖Dsi
i f |Lp(G)‖ς .

Definition 2.2. For p ∈ (0,∞)n, q ∈ (0,∞) and n ∈ N, let ltp,q = ltp,q(Zn × J) be
the quasi-Banach space of the sequences {ti,j}j∈Ji∈Zn with J ∈ {N0,Z} endowed with the
(quasi) norm

‖{ti,j}|ltp,q‖ :=

∥∥∥∥∥∥
{∑
i∈Zn

ti,jχFi,j

}
j∈J

∣∣∣∣∣∣Lp(Rn, lq(J))

∥∥∥∥∥∥ ,
where {Fi,j}j∈Ji∈Zn is a fixed nested family of the decompositions {Fi,j}i∈Zn of Rn into
unions of congruent parallelepipeds {Fi,j}i∈Zn satisfying

∪i∈ZnFi,j = Rn, |Fi,j ∩ Fk,j| = 0 for every j ∈ J, i 6= k,

and either |Fi0,j0 ∩ Fi1,j1| = 0, or Fi0,j0 ∩ Fi1,j1 = Fi0,j0 for every i0, i1 and j0 > j1. We
shall assume that this system regular in the sense that the length of the kth side lk,j of
the parallelepipeds {Fi,j}i∈Zn of the jth decomposition (level) satisfies

clb
−j(λa)k ≤ lk,j ≤ cub

−j(λa)k for k ∈ In
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for some positive constants cl, cu and b > 1. Let also the 0-level parallelepipeds
{Fi,0}i∈Zn be of the form Qt(z).

For a parallelepiped F ∈ {Fi,j}j∈Ji∈Zn or F = Rn, by means of ltp,q(F ) we designate
the subspace of ltp,q(Zn × J) defined by the condition: ti,j = 0 if Fi,j 6⊂ F .

The symbol ltp,q denotes either ltp,q(Zn × J) or ltp,q(F ).

The space ltp,q is isometric to a complemented subspace of Lp(Rn, lq), while its dual
lt∗p,q is isomorphic to ltp′,q′ for p, q ∈ (1,∞) (see section 8).

Remark 2.1. To motivate a definition of anisotropic Nikol’skii-Besov and Lizorkin-
Triebel spaces in terms of the coordinates of wavelet decompositions, we need to intro-
duce the notion of the non-stationary multiresolution analysis of multivariable wavelets
and provide the characterisations (equivalent norms) of some anisotropic Nikol’skii-
Besov and Lizorkin-Triebel spaces of functions defined on Rn in terms of these decom-
positions as has been done in [8] in exactly the sam setting. Since our approach does
not need all this information, we simply mention the properties of these spaces that
we shall employ.

Let us assume that anisotropic Nikol’skii-Besov and Lizorkin-Triebel spaces
Bs
p,q(Rn)w and Lsp,q(Rn)w for s∗ ∈ R, q ∈ (1,∞) and p ∈ (1,∞)n endowed with the

wavelet norms are such sequence spaces that there are isometries IB,s and IL,s depend-
ing only on s that make them isometric, correspondingly, to the space lq(N, lp) and a
1-complemented subspace of ltp,q (Zn × J, lq(Mmax)) described by the zero values of the
coordinates with the indexes from a subset R ⊂ Zn×J×IMmax with Zn×J×{1}∩R = ∅,
where Mmax + 1 = supj∈J

∏n
k=1

lk,j

lk,j+1
(see Definition 2.2). Here the intersection con-

dition assures that the subspace isomorphic to Lsp,q(Rn)w contains a 1-complemented
(isometric) copy of ltp,q.

For (quasi) Banach spaces X and Y , C(X, Y ) and L(X, Y ) are the classes of the
closed and the bounded linear operators correspondingly. For C ≥ 1, we say that a
subspace Y of a (quasi) Banach space X is C-complemented (in X) if there exists a
projection P onto Y satisfying ‖P |L(X)‖ ≤ C.

For B ⊂ X, let co(B) and co(B) be the convex envelope and the closed convex
envelope of B in X correspondingly. Let also

SX = {x ∈ X : ‖x‖X = 1} and BX = {x ∈ X : ‖x‖X ≤ 1}

be the unit sphere and the unit ball of a Banach space X.
The bi-linear form representing the duality between a (quasi) normed space A and

A∗ = L(A,R) is written as

(A∗, A) 3 (f, x) 7→ 〈f, x〉 = f(x).

For an operator T from X into Y , let D(T ), KerT and ImT be its domain, kernel
and image correspondingly.

Definition 2.3. Let X,Y be (quasi) Banach spaces and λ ≥ 1. Then the Banach-
Mazur distance dBM(X, Y ) between them is equal to ∞ if they are not isomorphic and
is, otherwise, defined by

dBM(X, Y ) := inf{‖T‖ · ‖T−1‖ : T : X
onto−→ Y, KerT = 0}.
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The space X is λ-finitely represented in Y if for every finite-dimensional subspace
X1 ⊂ X,

inf{dBM(X1, Y1) : Y1 is a subspace of Y } = λ.

If λ is equal to 1, then X is simply said to be finitely represented in Y .
It is said that Y contains almost isometric copies of X (or contains X almost

isometrically) if
inf{dBM(X, Y1) : Y1 is a subspace of Y } = 1.

We also say that X is λ-isomorphic to Y if there exists an isomorphism T : X ↔ Y
with ‖T |L(X, Y )‖‖T−1|L(Y,X)‖ ≤ λ.

Metric spaces X and Y are C-Lipschitz homeomorphic if there exists an invertible
homeomorphism φ ∈ H1(X, Y ) satisfying

‖φ|H1(X, Y )‖ · ‖φ−1|H1(Y,X)‖ ≤ C.

For r ∈ [1,∞], a finite or countable set I and a set of quasi-Banach spaces {Xi}i∈I ,
let its lr-sum lr(I, {Ai}i∈I) be the space of the sequences x = {xi}i∈I ∈

∏
i∈I Xi with

the finite norm

‖x|lr(I, {Ai}i∈I)‖ :=

(∑
i∈I

‖xi‖rAi

)1/r

.

For γa ∈ (0,∞)n and s ∈ [0,∞), let A∗s = {α : α ∈ Nn
0 , (α, γa) ≤ s}.

For z ∈ Rn and v > 0, assume that τzf(x) = f(x − z) and σvf(x) = f(v−γax).
For a finite A ⊂ Nn

0 , let PA be the space of the polynomials of the form
∑

α∈A cαx
α

with {cα}α∈A ⊂ R. For a ∈ [1,∞]n, let pA ∈ L(La(Q0),PA) be a certain projector
onto PA. To insure the translation invariance of PA, we shall always assume that
A = Â. Recall that, for a Banach space X and its subspace Y ⊂ A, X/Y denotes their
quotient or factor space.

Definition 2.4. For a ∈ [1,∞]n, let pA,v,z = τz ◦ σv ◦ pA ◦ σ−1
v ◦ τ−1

z .
For ε > 0, a ∈ (0,∞]n, let πA,v,z : La(Qv(z))→ PA be an operator of the best

La-approximation satisfying

‖f − πA,v,zf |La(Qv(z))‖ = min
g∈PA

‖f − g|La(Qv(z))‖, f ∈ La(Qv(z)).

For G ⊂ Rn, f ∈ La,loc(G), v > 0 and a ∈ (0,∞]n, we define the D-functionals

Da(v, x, f,G,A) :=

{
‖f |La(Qv(x))/PA‖v−(γa,1/a), if Qv(x) ⊂ G,
0 otherwise

and

Da(v, x, f,G, pA) :=

{
‖f − pA,v,x|La(Qv(x))‖v−(γa,1/a), if Qv(x) ⊂ G,
0 otherwise.

Remark 2.2. ([1, 2]) Let us note that

‖f − πA,v,xf |La(Qv(x))‖ � ‖f − pA,v,x|La(Qv(x))‖ � ‖f |La(Qv(x))/PA‖
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uniformly in v and x.
It is interesting to note that, while switching from one D-functional to another pro-

vides only an equivalent norm, the geometric properties under consideration will depend
on the parameters only, remaining identical. The same is true regarding switching to
another projector in the definition of the second D-functional.

2.1 Classes of spaces of Nikol’skii-Besov and Lizorkin-Triebel
types

Above we have already considered Sobolev spaces and Nikol’skii-Besov and
Lizorkin-Triebel spaces endowed with the wavelet norms. Let us define several more
classes of spaces of Nikol’skii-Besov and Lizorkin-Triebel types. In these definitions,
we use a parameter ς ∈ (0,∞], which is essential in the study of the geometric prop-
erties of function spaces but not the topological (isomorphic) ones (we have equivalent
(quasi) norms for different ς ∈ (0,∞]). It will normally be omitted for the sake of
simplicity. If its presence and value should be emphasized, we say that the space under
consideration is endowed with the ς-product norm, or, just, the ς-norm, and/or
add ς as a subindex. For a seminormed (homogeneous) space x(G) of functions defined
on G ⊂ Rn and an ideal space Y (G), we assume that its intersection x(G) ∩ Y (G) is
endowed with the ς-norm too:

‖f |x(G) ∩ Y (G)‖ς := ‖f |Y (G)‖ς + ‖f |x(G)‖ς .

Moreover, we shall always assume the parameter ς to be equal to one of the other pa-
rameters or its components of x(G) and Y (G) except for the smoothness or anisotropy
components.

We start with the spaces defined in terms of the averaged (shifted) axis-directional
differences. While the study of these norms and their equivalence with the other norms
was one of the primary tasks of, for example, [2] (including the setting of arbitrary open
subsets G), we shall refrain from the usage of the results of this type here in order to
cover the sets of the parameters not covered by the equivalence results, and because
the geometric constants depend on the specific equivalent norm chosen.

Let Pri be the orthogonal projector on the ith axis in Rn, and, for any y ∈
(I − Pri)(G),

Ini(y) := (I − Pri)−1(y) ∩G = {x ∈ G : x = y + tei, t ∈ R}.

Definition 2.5. For an ideal space Y = Y (G), p ∈ (0,∞]n, q ∈ (0,∞], r > 0, s ∈
(0,∞), s/γa < m ∈ Nn

0 , a ∈ (0,∞]n, γ ≥ 0, and an open set G ⊂ Rn, by means
of bsY,q,a(G), we designate the (quasi) semi-normed space of the measurable functions
f ∈ Lai,loc(Ini(y), dxi) for a.e. y ∈ (I − Pri)(G) with the finite (quasi) semi-norm

‖f |bsY,q,a(G)‖ς :=
n∑
i=1

 ∞∫
0

∥∥δmi
i,ai

(t, ·, f, Grt)γ|Y (G)
∥∥q t−qs dt

t

ς/q

. (1)
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By means of
◦
bsY,∞,a(G), we designate the subspace of bsY,∞,a(G) of the functions satisfying

the condition limt→0

∥∥δmi
i,ai

(t, f, Grt)γ|Y (G)
∥∥ t−s = 0;

Bs
Y,q,a(G) := bsY,q,a(G) ∩ Y (G) and

◦
B
s
Y,∞,a(G) =

◦
b
s
Y,∞,a(G) ∩ Y (G).

We designate the completions of these spaces by means of the same symbols whenever
they appear not to be complete.

Note that bsp,q,a(G) := bsLp,q,a
(G), and, for γ = 0, one has Bs

p,q,1(G) = Bs
p,q(G) [20].

Definition 2.6. For an ideal space Y = Y (G), p ∈ (0,∞]n, q ∈ (0,∞], r > 0, s ∈
(0,∞), s/γa < m ∈ Nn

0 , a ∈ (0,∞]n, γ ∈ R, and an open set G ⊂ Rn, by means
of lsp,q,a(G), we designate the (quasi) semi-normed space of the measurable functions
f ∈ Lai,loc(Ini(y), dxi) for a.e. y ∈ (I − Pri)(G) with the finite (quasi) semi-norm

‖f |lsY,q,a(G)‖ς :=
n∑
i=1

∥∥∥∥∥∥∥
 ∞∫

0

(
δmi
i,ai

(t, ·, Grt, f)γ
)q
t−qs

dt

t

1/q
∣∣∣∣∣∣∣Y (G)

∥∥∥∥∥∥∥
ς

. (2)

By means of
◦
lsY,∞,a(G), we designate the subspace of lsY,∞,a(G) of the functions satisfying

the condition

lim
τ→0

∥∥∥∥∥ sup
t∈(0,τ)

δmi
i,ai

(t, ·, f, Grt)γt
−s

∣∣∣∣∣Y (G)

∥∥∥∥∥ = 0,

or, that is equivalent for Y = Lp with p ∈ (0,∞)n due to the Lebesgue and Levi
theorems, satisfying lim

t→0
δmi
i,ai

(t, x, f,Grt)γt
−s = 0 for a.e. x;

LsY,q,a(G) := lsY,q,a(G) ∩ Y (G) and
◦
L
s
Y,∞,a(G) =

◦
l
s
Y,∞,a(G) ∩ Y (G).

We designate the completions of these spaces by means of the same symbols whenever
they appear not to be complete.

Note that lsp,q,a(G) := lsLp,q,a
(G), and, for γ = 0, one has Lsp,q(G) = Lsp,q,1(G) [20].

Let us define the anisotropic local approximation spaces of Nikol’skii-Besov and
Lizorkin-Triebel type in terms of the D-functional as follows.

Definition 2.7. For p ∈ (0,∞]n, q ∈ (0,∞], a ∈ (0,∞]n, s ∈ (0,∞), D = D̂ ⊂
Nn

0 , |D| < ∞ and an ideal space Y = Y (G) by means of b̃s,DY,q,a(G) and l̃s,DY,q,a(G), we
designate, correspondingly, the anisotropic (quasi) semi-normed space of the functions
f ∈ La,loc(G) with the finite (quasi) semi-norm

‖f |̃bs,DY,q,a(G)‖ :=

(∫ ∞

0

‖t−sDa(t, ·, f, G,D)|Y (G)‖q dt
t

) 1
q

, b̃s,Dp,q,u(G) := b̃s,DLp,q,u
(G), and

‖f |l̃s,DY,q,a(G)‖ :=

∥∥∥∥∥
(∫ ∞

0

(t−sDa(t, ·, f, G,D))q
dt

t

) 1
q

∣∣∣∣∣Y (G)

∥∥∥∥∥ , l̃s,Dp,q,u(G) := l̃s,DLp,q,u
(G).
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Assume also that

B̃s,D
Y,q,a(G) = b̃s,DY,q,a(G) ∩ Y (G) and L̃s,DY,q,a(G) = l̃s,DY,q,a(G) ∩ Y (G).

By means of
◦

b̃ s,DY,∞,a(G), we designate the subspace of b̃s,DY,∞,a(G) of the functions f
satisfying the condition

lim
t→0
‖Da(t, ·, f, G,D)|Y (G)‖ t−s = 0.

By means of
◦

l̃s,DY,∞,a(G), we designate the subspace of l̃s,DY,∞,a(G) of the functions f satis-
fying the condition

lim
τ→0

∥∥∥∥∥ sup
t∈(0,τ)

Da(t, ·, f, G,D)t−s

∣∣∣∣∣Y (G)

∥∥∥∥∥ = 0,

or, that is equivalent for Y = Lp with p ∈ (0,∞)n due to the Lebesgue and Levi
theorems, satisfying

lim
t→0
Da(t, ·, f, G,D)t−s = 0 for a.e. x.

We designate the completions of these spaces by means of the same symbols whenever
they appear not to be complete.

Let us note that BMOγa(G) = b̃
0,A∗0
∞,∞,1(G) and VMOγa(G) =

◦

b̃
0,A∗0
∞,∞,1(G).

Definition 2.8. Under the conditions of Definitions 2.5 − 2.7, we say that bsY,q,a(G)

(Bs
Y,q,a(G)), lsY,q,a(G) (LsY,q,a(G)), b̃s,DY,q,a(G) (B̃s,D

Y,q,a(G)), or l̃s,DY,q,a(G) (L̃s,DY,q,a(G)) is com-
patible with its underlying space Y (G) if, for some C > 0 and every t > 0, one has,
respectively, (∫ ∞

t

‖τ−sδmi
i,ai

(τ, ·, Grτ , f)γ|Y (G)‖qdτ/τ
)1/q

≤ Ct−s‖f |Y (G)‖,

∥∥∥∥∥
(∫ ∞

t

(τ−sδmi
i,ai

(τ, ·, Grτ , f)γ)
qdτ/τ

)1/q
∣∣∣∣∣Y (G)

∥∥∥∥∥ ≤ Ct−s‖f |Y (G)‖,

(∫ ∞

t

‖τ−sDa(τ, ·, f, G,D)|Y (G)‖qdτ/τ
)1/q

≤ Ct−s‖f |Y (G)‖, or∥∥∥∥∥
(∫ ∞

t

(τ−sDa(τ, ·, f, G,D))qdτ/τ

)1/q
∣∣∣∣∣Y (G)

∥∥∥∥∥ ≤ Ct−s‖f |Y (G)‖.

Generalized Minkowski inequality implies that we, particularly, have the compati-
bility for s > 0 and Y = Lp with amax ≤ pmin in the case of any Nikol’skii-Besov, or
Lizorkin-Triebel space under the consideration.

We assume all the non-homogeneous spaces under consideration to be compatible
with their underlying ideal spaces.
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Remark 2.3. a) It was shown by O.V. Besov that, when an open G ⊂ Rn is a domain
satisfying the flexible λ-horn condition (a class that is strictly larger than the class of
extension domains) and s > 0, Bs

p,q,1(G) = Bs
p,q(G) [20], where the latter space is the

original Nikol’skii-Besov space endowed with the norm where the ordinary differences
(or Lp-moduli of continuity) are replacing the averaged differences. The counterpart
of this result for Lsp,q(G) was established in [2] for s/λa > 1 = (1, . . . , 1).

b) Let us note that in the presence of the compatibility we obtain equivalent norms
in the nonhomogeneous Nikol’skii-Besov and Lizorkin-Triebel spaces defined above by
substituting the integration

∫∞
0

in their seminorms with the integration
∫ h

0
for any

fixed h > 0.

To incorporate the definitions of function spaces in terms of the entire functions
of exponential type due to S.M. Nikol’skii [48] and in terms of more general smooth
Littlewood-Paley decompositions studied by P.I. Lizorkin and H. Triebel (including
Lizorkin-Triebel spaces F s

p,q) [61], as well as spaces defined in terms of a holomor-
phic functional calculus, we define a very large class of abstract Nikol’skii-Besov and
Lizorkin-Triebel spaces that possesses quite a few interesting geometric properties even
in its full generality, not mentioning the coincidence of the former space with the cor-
responding spaces in Definitions 2.2, 2.5− 2.7 above with admissible a (see Definition
2.8 below) and, for example, G = Rn.

Definition 2.9. Let G ⊂ Rn, p ∈ [1,∞]n, q, ς ∈ [1,∞], s ∈ R, b > 1 and F =
{Fk}k∈N0 ⊂ C(Lp(G)) be a system of closed operators satisfying

f ∈ Lp(G) and Fkf = 0 for k ∈ N0 ⇒ f = 0.

By means of Bs
p,q,F(G) and Lsp,q,F(G), we designate, respectively, the Banach spaces

of functions defined on G with the finite norms

‖f |Bs
p,q,F(G)‖ς = ‖f |Lp(G)‖ς +

(∑
k∈N0

bksq‖Fkf |Lp(G)‖q
)ς/q

,

‖f |Lsp,q,F(G)‖ς = ‖f |Lp(G)‖ς +

∥∥∥∥∥∥
(∑
k∈N0

bksq|Fkf(·)|q
)1/q

∣∣∣∣∣∣Lp(G)

∥∥∥∥∥∥
ς

.

Remark 2.4. a) S.M. Nikol’skii [48] has defined functions spaces employing the
anisotropic Fourier multipliers Fk : f 7−→ φ(bkλ·) ∗ f , where φ and, thus, Fkf are func-
tions of exponential type. These spaces appeared to be global approximation spaces
by the entire functions of exponential type, or the meeting place of the theorems of
S. Bernstein and Jackson type.

b) The Nikol’skii-Besov spaces Bs
p,q(Rn) and Lizorkin-Triebel spaces F s

p,q(Rn) (see
[61]) are defined in terms of various more general smooth Littlewood-Paley decom-
positions (Fourier multipliers), than those with compact Fourier transforms, making
them (together with their restrictions Bs

p,q(G) and F s
p,q(G) on G) some of the most

popular particular cases of Bs
p,q,F(G) and Lsp,q,F(G) and their subspaces. This setting

includes the case of the spiral/parabolic anisotropy due to Caldéron and Torchinski [25]
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Unfortunately, this remarkably well-developed framework does not cover, for example,
Nikol’skii-Besov and Lizorkin-Triebel spaces defined on an non-extension domain, re-
quiring work with classical spaces endowed with intrinsic norms [20, 17].

c) Under the conditions of the last definition, let also Ω ⊂ C be open with b−kΩ ⊂ Ω
for k ∈ N0, g ∈ H∞(Ω) (bounded holomorphic function on Ω), and let A ∈ C(Lp(G))
admit the bounded H∞(Ω) functional calculus

H∞(Ω) 3 h 7→ h(A) ∈ L(Lp(G)) with ‖f(A)|L(Lp(G))‖ ≤ ‖f |H∞(Ω)‖.

Assuming that Fk = g(b−kA), we obtain the Nikol’skii-Besov and Lizorkin-Triebel
spaces Bs

p,q,F(G) and Lsp,q,F(G) defined in terms of the bounded H∞-calculus.

Definition 2.10. We say that the parameter a is admissible or in the admissible
range for Y ∈ Γ1 if either

Y ∈
{
Bs
p,q,a(G), Lsp,q,a(G), bsp,q,a(G), lsp,q,a(G)

}
and s > (γa(1/p− 1/a))max, or

Y ∈
{
B̃s,A
p,q,a(G), L̃s,Ap,q,a(G), b̃s,Ap,q,a(G), l̃s,Ap,q,a(G)

}
and s > (γa, 1/p− 1/a), or

Y ∈
{
Bs
p′,q′,a′(G)∗, Lsp′,q′,a′(G)∗, bsp′,q′,a′(G)∗, lsp′,q′,a′(G)∗

}
and s > −(γa(1/p− 1/a))max, or

Y ∈
{
B̃s,A
p′,q′,a′(G)∗, L̃s,Ap′,q′,a′(G)∗, b̃s,Ap′,q′,a′(G)∗, l̃s,Ap′,q′,a′(G)∗

}
and s > −(γa, 1/p− 1/a).

The C-flexible λ-horn condition was introduced by O.V. Besov [18] to solve the
problem of complex and real interpolation of Nikol’skii-Besov and Lizorkin-Triebel
spaces defined on an irregular domain.

Definition 2.11. ([18]) Let λ = γa (see the beginning of section 2). A domain G ⊂ Rn

satisfies the C-flexible λ–horn condition if, for some δ0 ∈ (0, 1] and T ∈ (0,∞), and
for every x ∈ G, there exists a path

ρ(tλ) =
(
ρ1(t

λ1 , x), . . . , ρn(tλn , x)
)

= ρ(tλ, x), t ∈ [0, T ]

with the properties:
a) ρi(u, x) is continuous in x on G, absolutely continuous in t on [0, T λi ] for every

i ∈ In, |ρi′t(x, t)| ≤ 1 for x ∈ G and a.e. t ∈ [0, T λi ], and ρ(0, x) = 0.
b) For V (λ, x, δ0) =

⋃
t∈(0,T ]

[ρ(tλ) + tλδλ0Q0], one has x+ V (λ, x, δ0) ⊂ G.
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Remark 2.5. a) The admissibility of a for Y , when it is not a dual space, is closely
related to the cases when we do not need to take the completion in Definitions 2.5−2.7.

b) The results presented in this article, excluding some related to sharpness, hold
for the classes of function spaces of Nikol’skii-Besov and Lizorkin-Triebel type (and
there duals, subspaces, factor-spaces and finitely represented spaces) with variable
smoothness (including the weighted spaces) which are defined by substituting the power
ts in the definitions of the corresponding spaces in with a more general function ω(t, x)
(see [19]).

c) The same is true for the spaces with dominating derivatives and lp-sums of the
spaces under consideration.

d) The classical Nikol’skii-Besov and Lizorkin-Triebel spaces defined in terms of
the differences (used instead of the a-averaged differences in the definition of Bs

p,q,a(G)
and Lsp,q,a(G)) have the same properties (dealt with in this paper) as Bs

p,q(Rn)w and
Lsp,q(Rn)w on almost all occasions when G satisfies the C-flexible λ-horn condition (see
Definition 2.11).

e) The Besov Bs
p,q(Rn) (note that the original Nikol’skii-Besov spaces Bs

p,q(G) de-
fined in terms of differences are denoted by the same symbol) and Lizorkin – Triebel
F s
p,q(Rn) spaces (see [48, 61]) defined in terms of Littlewood-Paley decomposition are

particular cases of Bs
p,q,F(G) and Lsp,q,F(G) and their quotients (because, for example,

F s
p,q(G) is the image of the restriction operator with quotient norm). From the point of

view of the results presented here, they have the same properties (including sharpness)
as the spaces discussed in d).

2.2 Function spaces as subspaces of auxiliary spaces

In this subsection we show that the second (if not the first) major idea standing
behind the introduction of the Sobolev spaces in [58], besides the generalised functions
and generalised derivatives, still makes a lot of sense for various Nikol’skii-Besov and
Lizorkin-Triebel spaces.

It is possible to classify all the function spaces of Nikol’skii-Besov, Lizorkin-Triebel
and Sobolev types defined above into two categories: homogeneous (semi-normed)
spaces and normed spaces.

Given a linear topological space W , a (quasi) Banach space Y and an injective
linear operator A : W ⊃ D(A) → Y , let zA,Y be the completion of the linear space
{x ∈ W : Ax ∈ Y } endowed with the (quasi) norm ‖x|zA,Y ‖ := ‖Ax‖Y . If KerA 6= {0}
is closed, we use W/KerA instead of W . We note that, according to this definition,
zA,Y is isometric to the closure ImA

Y of the image of A in Y .
Given ς ∈ (0,∞], (quasi) Banach spaces X and Y and a closed linear operator

A : X ⊃ D(A) → Y , let ZA,X,Y = ZA,X,Y,ς be the (quasi) Banach linear space
DX(A) = D(A) ∩X endowed with the (quasi) norm

‖x|ZA,X,Y ‖ς := ‖x‖ςX + ‖Ax‖ςY .

Note that the completeness of ZA,X,Y is equivalent to the closedness of A.
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In what follows we shall often deduce some properties of the spaces zA,Y and ZA,X,Y
from the corresponding properties of the spaces Y and the lς-sum lς(I2, {X, Y }) respec-
tively.

The following auxiliary operators introduced in [3] are the particular choices of A
corresponding to the spaces

Bs
p,q,a(G), B̃s,A

p,q,a(G), Lsp,q,a(G), L̃s,Ap,q,a(G), bsp,q,a(G), b̃s,Ap,q,a(G),

lsp,q,a(G), l̃s,Ap,q,a(G), Bs
p,q,F(G), Lsp,q,F(G).

Definition 2.12. For s ≥ 0, a ∈ (0,∞]n, A ∈ Nn
0 , |A| < +∞, let

Υt,z,A =

{
t−sQA,1,0 ◦ σ−1

t ◦ τ−1
z for Qt(z) ⊂ G,

0 for Qt(z) 6⊂ G,

where QA,1,0 : La(Q1(0))→ La(Q1(0))/PA is the quotient map.

Ξi,t,z = t−sτ−1
γu ◦∆mi

i (u,Gkt)) ◦ σ−1
t ◦ τ−1

z .

Let us designate, by means of ΥB̃ and ΥL̃, the operators

ΥB̃ : b̃s,Ap,q,a(G) −→ L∗q (R+, Lp (G,La(Q1(0))/PA)) ,

ΥL̃ : l̃s,Ap,q,a(G) −→ Lp (G,L∗q (R+, La(Q1(0))/PA)) ,

where
ΥL̃ = ΥB̃ = {Υt,z,A}t∈R+

z∈G .

And by means of ΞB and ΞL, we designate the operators

ΞB : bsp,q,a(G) −→
n∏
i=1

L∗q (R+, Lp (G,Lai
([−1, 1]))) ,

ΞL : lsp,q,a(G) −→
n∏
i=1

Lp (G,L∗q (R+, Lai
([−1, 1]))) ,

where
ΞL = ΞB = {Ξi,t,z}i∈Inz∈G, t∈R+

.

In the case of Bs
p,q,F(G) and Lsp,q,F(G), the corresponding closed operator A is

defined by
A : f 7→ {Fkf}k∈N0 .

2.3 Independently generated spaces

The purpose of this subsection is to introduce a wide class of auxiliary spaces
containing not only almost all the auxiliary spaces related to the function spaces defined
above but also the Lebesgue spaces with mixed norm and lp-sums of various spaces that
can naturally appear, for example, in initial and boundary value problems in linear and
non-linear PDE.
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Definition 2.13. Independently generated spaces
Let S be a set of ideal (quasi-Banach) spaces, such that every element Y ∈ S is either
a sequence space Y = Y (I) with a finite or countable I, or a space Y = Y (Ω), where
(Ω, µ) is a measure space with a countably additive measure µ without atoms.

By means of the leaf growing process (step) from some Y ∈ S, we shall call the
substitution of Y with:
(Type A) either Y (I, {Yi}i∈I) for some {Yi}i∈I ⊂ S if Y = Y (I), or
(Type B) Y (Ω, Y0) for some Y0 ∈ S if Y = Y (Ω).

Here the quasi-Banach space Y (I, {Yi}i∈I) is the linear subset of
∏

i∈I Yi of the
elements {xi}i∈I with the finite quasi-norm

‖{xi}i∈I |Y (I, {Yi}i∈I)‖ := ‖{‖xi‖Yi
}i∈I‖Y .

Note that a type B leaf (i.e. of the form Y = Y (Ω)) can grow only one leaf of its
own.

We shall also refer to either {Yi}i∈I , or Y0 as to the leaves growing from Y , which
could have been a leaf itself before the tree growing process. Let us designate by means
of IG(S) the class of all spaces obtained from an element of S in a finite number of
the tree growing steps consisting of the tree growing processes for some or all of the
current leaves.

Thus, there is a one-to-one correspondence between IG(S) and the trees of the
finite depth with the vertices from S, such that every vertex of the form Y (I) has at
most I branches and every vertex of the form Y (Ω) has at most one branch. The tree
corresponding to a space X ∈ IG(S) is designated by T (X). The appearance of the
space forming the root of T (X) is counted as the first step of the tree-growing process.
The minimal number of steps necessary to “grow" X is designated by Nmin(X).

The set of all vertices (elements of S) of the tree corresponding to some X ∈ IG(S)
will be denoted by means of V(X).

We shall always assume that the generating set S of IG(S) is minimal in the sense
that there does not exist a proper subset Q ⊂ S, such that S ⊂ IG(Q).

If the set S includes only the spaces described by (different) numbers of parameters
from [1,∞] and X ∈ IG(S), we assume that I(X) is the set of all the parameters of
the spaces at the vertices of the tree T corresponding to X and

pmin(X) := inf I(X) and pmax(X) := sup I(X).

For the sake of brevity, we also assume that

IG := {X ∈ IG(lp, Lp, ltp,q, lt
∗
p′,q′) : [pmin(X), pmax(X)] ⊂ (1,∞)},

IG0 := {X ∈ IG(lp, Lp) : [pmin(X), pmax(X)] ⊂ (1,∞)}.

We say that two IG-spaces are of the same tree type if their trees are congruent and
the spaces at the corresponding vertices are both either lp-spaces, or Lp(Ω)-spaces on
two measure spaces (Ω, µ0) and (Ω, µ1) with their (non-negative) measures µ0 and µ1

being absolutely continuous with respect to σ-additive and σ-finite a measure µ on Ω,
or ltp,q-spaces, or lt∗p,q-spaces.
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It is convenient to think about the parameters of the spaces with the same tree type in
terms of the parameter functions p : P → [1,∞] defined on the same parameter position
set P = V(X) (here we slightly abuse the notation in the sense that the vertices that
are ltr,q and lt∗r,q are multiplied to cover all their parameters, or that the value of p on
them is multi-dimensional with the vector operations as in the beginning of this section)
determined by T and the spaces at its vertices.

For an IG-space X and some parameter functions p : P → [1,∞] defined on the
same parameter position set P = V(X) as the function pX describing X, we shall
denote by Xp the IG-space with the same tree T (X) and the parameter function p.

Every IG space X can be interpreted as a space of functions defined on some set
Ω = Ω(X) that is obtained by (repeated) combinations of the operations of taking sums
and Cartesian products from a family of measurable spaces and index sets.

We also assume that an abstract Lp is an IG space with I(Lp) = {p}.
Let us also define the class IG+. A space X belongs to IG+ if it is either in IG,

or obtained from a space X− ∈ IG by means of the leaf growing process, in the course
of which some leaves (or just one leaf) of X− have grown some new leaves from

{Sp, Snp , Lp(M, τ)}n∈N
p∈(1,∞),

where (M, τ) is a semifinite von Neumann algebra (defined below in subsection 2.4).
The set of the parameters p of these “last noncommutative leaves" is included into I(X)
and they are part of the corresponding tree T (X). Let also

IG0+ = {Y ∈ IG+ : Y− ∈ IG0}.

Remark 2.6. a) As shown [41] for q > 1, every Banach lattice X (as a set) can be
endowed with the new addition x⊕ y =

(
x1/p + y1/p

)p and multipliction by the scalars
α � x = α|α|q−1x for x, y ∈ X and α ∈ R to become the Banach lattice X(q) with the
norm ‖x‖X(q) := ‖x‖1/qX that is lattice-q-convex in the sense∥∥∥(|x|q ⊕ |y|q)1/q

∥∥∥q
X(q)
≤ ‖x‖q

X(q) + ‖y‖q
X(q) for x, y ∈ X(q)

(equivalent to ‖|x| + |y|‖X ≤ ‖x‖X + ‖y‖X for x, y ∈ X). Moreover, the identity
mapping φq : X −→ X(q), x 7−→ x behaves exactly as the Mazur mapping Mq :
L1(Ω) −→ Lq(Ω), f 7−→ f |f |q−1 [15] (see Theorem 6.1 below).

b) Interpreting an IG-space X with the parameter function p as a Banach function
space (and a Banach lattice), we observe that its q-convexification X(q) is isometric to
the IG-space Xqp with the natural addition and multiplication by the scalars. Section 5
is dedicated to the detailed study of the Mazur mappingMq : X −→ Xqp, f 7−→ f |f |q−1

and its generalisations

Remark 2.7. a) We shall deal with the set {lp, Lp, ltp,q, lt∗p′,q′}, where lp, Lp, ltp,q and
lt∗p′,q′ designate, respectively, the classes {lp(I)}p∈[1,∞], {Lp(Ω)}p∈[1,∞], where (Ω, µ)
is a measure space with a countably additive and not purely atomic measure µ,
{ltp,q}n∈N,q∈[1,∞]

p∈[1,∞]n and {lt∗p′,q′}
n∈N,q∈[1,∞]
p∈[1,∞]n .

b) The subclass of lp-spaces can formally be excluded from the definition of the
class IG because lp is isometric to ltp,p = lt∗p,p but is left there for the sake of technical
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convenience. The subclass of lt∗p,q-spaces is included to make IG closed with respect to
passing to dual spaces.

c) The Lebesgue or sequence spaces with mixed norm and the lp-sums of them are
particular elements of IG(lp, Lp).

2.4 Noncommutative spaces

Definition 2.14. Let M be a von Neumann algebra, and M+ be its positive part
(cone). A trace on M is a map τ : M+ → [0,∞] satisfying

a) τ(x+ y) = τ(x) + τ(y) for every x, y ∈M+ (additivity);
b) τ(λx) = λτ(x) for every λ ∈ [0,∞) and x ∈M+ (positive homogeneity);
c) τ(u∗u) = τ(uu∗) for every u ∈M.

If a function φ : M+ → [0,∞] satisfies all the properties of the trace except for c),
then it is called weight. The trace τ (weight φ) is said to be:
normal if supα τ(xα) = τ (supα xα) for every bounded increasing net {xα} ⊂ M+,
semifinite if for every non-zero x ∈ M+ there exists a non-zero y ∈ M+ satisfying
y ≤ x and τ(y) <∞,
faithful if τ(x) = 0 implies x = 0, and
finite if τ(1) <∞ (without loss of generality one assumes τ(1) = 1).

A von Neumann algebra M is said to be semifinite (finite) if it admits a normal
semifinite (finite) faithful (n. s.(f.) f.) trace. Let also |x| = (x∗x)1/2 for x ∈M.

Every von Neumann algebra admits a normal semifinite faithful weight. The ways
of defining a general noncommutative Lp(M) = Lp(M, φ) for a von Neumann algebra
M with a normal semifinite faithful weight φ are described in [53]. We provide the
definition of Lp(M, φ) when φ is a normal semifinite faithful trace.

Definition 2.15. Let M be a semifinite algebra, and x ∈ M+. The support supp x
is the least projection in M satisfying px = x (or, equivalently, xp = x). Assume
also that S is the linear span of the set S+ of all x ∈ M+ with τ(supp x) < ∞. For
p ∈ (0,∞) and x ∈ S, let the min(p, 1)-norm of x be defined by

‖x‖p = τ (|x|p)1/p .

The corresponding noncommutative Lebesgue space Lp(M, τ) is the closure of S with
respect to ‖ · ‖p; L∞(M, τ) is M endowed with the operator norm.

The linear manifold S is a w∗-dense ∗-subalgebra of M. A trace τ admits a con-
tinuous extension to S and, hence, to L1(M, τ).

Examples 2.1. [30] Let H1, H2 be Hilbert spaces and p ∈ [1,∞). The Schatten-
von Neumann class Sp = Sp(H1, H2) is the Banach space of all compact operators
A ∈ L(H1, H2) with the finite norm

‖A‖Sp = ‖A|Sp(H1, H2)‖ :=
(
tr(A∗A)p/2

)1/p
.
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The class S∞(H1, H2) is the space of all compact operators with the norm inherited
from L(H1, H2). The trace of a projector P , τ(P ) = tr(P ) = dim(ImP ) corresponds
to the counting measure and

Sp(H1, H2) = Lp (L(H1, H2), tr) and Sp = Sp(H1, H1) for dim(H1) =∞.

This trace is normal, semifinite and faithful. When dim(H1) = dim(H2) = n <∞, the
elements of the Schatten-von Neumann classes can be represented by matrixes with a
dense subset of the invertible matrixes, and the trace is finite. In this case we designate
Snp = Sp(H1, H2).

The next theorem from [53] (see also [27]) implies the superreflexivity and, thus,
Radon-Nykodim property of the noncommutative Lebesgue spaces. It also implies that
the spaces from the class IG+ are UMD spaces (see [12] for this and more properties
of IG+ spaces).

Theorem 2.1. ([27], Corollary 7.7 in [53]). Let M be a von Neumann algebra with a
normal semifinite faithful weight φ and p ∈ (0,∞)). Then Lp(M, φ) is a UMD-space.

2.5 Groups of spaces under consideration

For the sake of convenience and brevity we divide the spaces that we will consider
most often into the following 6 numbered groups of spaces. Let J be a convex subset
of [1,∞], and let G be an open subset of Rn for some n ∈ N.

Γ1(J) =
{
Bs
p,q,a(G), B̃s,A

p,q,a(G), Lsp,q,a(G), L̃s,Ap,q,a(G),

bsp,q,a(G), b̃s,Ap,q,a(G), lsp,q,a(G), l̃s,Ap,q,a(G), Bs
p′,q′,a′(G)∗,

B̃s,A
p′,q′,a′(G)∗, Lsp′,q′,a′(G)∗, L̃s,Ap′,q′,a′(G)∗,

bsp′,q′,a′(G)∗, b̃s,Ap′,q′,a′(G)∗, lsp′,q′,a′(G)∗, l̃s,Ap′,q′,a′(G)∗
}
,

where p, a ∈ Jn, q, ς ∈ J , s ∈ (0,∞) and A ⊂ Nn
0 with |A| <∞.

Γ2(J) = {W s
p (G), W s

p′(G)∗ : p ∈ Jn, s ∈ Nn
0}.

Γ3(J) = {Bs
p,q(Rn)w, L

s
p,q(Rn)w, B

s
p′,q′(Rn)∗w, L

s
p′,q′(Rn)∗w : p ∈ Jn, q ∈ J, s ∈ (0,∞)}.

Γ4(J) = {Bs
p,q,F(G), Lsp,q,F(G), Bs

p′,q′,F(G)∗, Lsp′,q′,F(G)∗ : p ∈ Jn, q, ς ∈ J, s ∈ R}.

Γ5(J) = {Lp(M, τ), Sp, S
n
p : p ∈ J},

where (M, τ) is a von Neumannn algebra with a normal semifinite faithful trace τ .
For the sake of further convenience we also assume that G ⊂ Rn if it is not stated

otherwise, and that

Γ0 = IG+ and Γi := Γi ((1,∞)) for i ∈ I5.
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Remark 2.8. a) Note that the idea of §2.2 and the closedness of the IG+-class with
respect to taking lp-sums permit us to cover (in the sense of the applicability of the
results presented) also the lp-sums of the spaces from these groups and their weighted
and variable smoothness counterparts, or the spaces of the same type with dominating
derivatives, as well as the lp-sums of their subspaces, quotients and other related spaces,
that may be convenient to deal with for a particular problem. For example, it could
be an lp-sum of the initial part, boundary part and the right hand side of a partial
differential equation (or ΨDE), or some divergence-free subspace, or a closure of a
linear span and so on. Same weighted variants of the spaces could be of use for the
application of fixed point theorems.
b) The spaces from all groups Γi are reflexive ([12]). In particular, the proof of the
reflexivity of the function spaces under consideration from [2] demonstrates the presence
of UMD property as well. This observation suggests the approach via the variants of
the asymmetric representation of the uniform convexity and smoothness below.

2.6 Asymmetric uniform convexity and smoothness

To be able to obtain explicit estimates of the constants in the following sections,
we need the detailed description of the asymmetric uniform convexity and smoothness
in the following homogeneous form. The description of the background, the full state-
ments including the sharpness, the proofs and various applications can be found in
[9, 12]. More applications are in [5, 6, 7, 10] and below.

Definition 2.16. ([12]). Let X be a Banach space and 2 ∈ [q, p] ⊂ [1,∞].
We say that the space X is (p, hc)-uniformly convex if, for every x, y ∈ X and

µ = 1− ν ∈ (0, 1), we have

µ‖x‖pX + ν‖y‖pX ≥ ‖µx+ νy‖pX + hc(µ)µν‖y − x‖pX .

We say that the space X is (q, hs)-uniformly smooth if, for every x, y ∈ X and
µ = 1− ν ∈ (0, 1), we have

µ‖x‖qX + ν‖y‖qX ≤ ‖µx+ νy‖qX + hs(µ)µν‖y − x‖qX .

Having in mind the non-improvable estimates

max (‖µx+ νy‖X , ‖x− y‖X/2) ≤ max(‖x‖X , ‖y‖X) and

µ‖x‖X + ν‖y‖X ≤ ‖µx+ νy‖X + 2µν‖x− y‖X ,
valid for every Banach space X, we shall refer to them as to (∞, 1)-uniform convexity
and (1, 1)-uniform smoothness respectively for the sake of the convenience, explained in
the proof of Theorem 3.15, a) in [12] (see also [9]) and the preservation of the duality.

To formulate the main theorems of this section determining the (p, hc)-uniform
convexity and (q, hs)-uniform smoothness, we define two functions. For s, t ∈ (1,∞)
and µ ∈ [0, 1/2], let

ωc(µ, s, t) =

{
(s− 1)22−t for s ≤ 2,
ψs(µ)2s−t for s ≥ 2;
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ωs(µ, s, t) =

{
(ψs(µ))

t−1
s−1 2

s−t
s−1 for s ≤ 2,

(s− 1)t−122−t for s ≥ 2,

where

ψs(µ) =
1 + (zs(µ))s−1

(1 + zs(µ))s−1
and

zs(µ) =


positive root of νzs−1 − µ = (νz − µ)s−1 for s 6= 2 and µ 6= 0,
positive root of (s− 2)zs−1 + (s− 1)zs−2 = 1 for s 6= 2 and µ = 0,
1 for s = 2.

Theorem 2.2. ([9, 12]). Let 1 − ν = µ ∈ [0, 1], and let X be either a subspace or a
quotient of a space Y ∈ IG, or finitely represented in Y with [pmin(Y ), pmax(Y )]∪{2} ⊂
[r, q] ⊂ (1,∞). Then, for f, g ∈ X, we have

a) ‖µf + νg‖qX + µνωc(min(µ, ν), pmin(Y ), q)‖f − g‖qX ≤ µ‖f‖qX + ν‖g‖qX ;

b) µ‖f‖rX + ν‖g‖rX ≤ ‖µf + νg‖rX + µνωs(min(µ, ν), pmax(Y ), r)‖f − g‖rX .

Remark 2.9. a) The finite representability of lpmin(Y ) and/or lpmax(Y ) in Y ∈ IG is
relatively easy to check. The “worst" cases may look like lp0(N, {lpi

(Ini
)}i∈N) for some

unbounded {ni}i∈N ⊂ N with infi∈N0 pi 6∈ {pi}i∈N0 and/or supi∈N0
pi 6∈ {pi}i∈N0 .

b) The sharpness of the range for rs is important, for example, for estimating the atomic
Lyapunov and Kadets constants in Corollary 5.4 and Theorem 5.17 in [12] and for the
variety of results in section 6 and section 7 in [12] (see also [9]).

Before presenting the next theorem describing the (q, hc)-uniform convexity
and (r, hs)-uniform smoothness properties of noncommutative Lebesgue spaces (ex.
Schatten-von Neumann classes), we recall that, for s, t ∈ [1,∞], one has

ωc(1/2, s, t) = (min(s, 2)− 1) 22−t;

ωs(1/2, s, t) = (max(s, 2)− 1)t−1 22−t.

The midpoint case µ = ν = 1/2 of the next theorem was considered by Dixmier
[31] in 1953, Simon [56] in 1987 and Ball, Carlen and Lieb [14] in 1994. Namely (for
µ = 1/2), the cases of both Part a) with p = q ∈ [2,∞] and Part b) with p = r ∈ [1, 2]
were treated in [31, 56], while the cases of both Part a) with p = r ∈ [1, 2] and Part b)
with p = q ∈ [2,∞] were considered in [14].

Theorem 2.3. ([9, 12]). Let 1 − ν = µ ∈ [0, 1], r, q ∈ [1,∞] and p ∈ (1,∞), and let
X be either a subspace or a quotient of Y ∈ {Lp(M, τ), Sp}, or finitely represented in
Y , where (M, τ) is a von Neumannn algebra with a normal semifinite faithful weight
τ . Assume also that {p, 2} ⊂ [r, q]. Then, for f, g ∈ X, we have

a) ‖µf + νg‖qX + µνωc(1/2, p, q)‖f − g‖qX ≤ µ‖f‖qX + ν‖g‖qX ;

b) µ‖f‖rX + ν‖g‖rX ≤ ‖µf + νg‖rX + µνωs(1/2, p, r)‖f − g‖rX .
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Theorem 2.4. ([9, 12]). Let 1 − ν = µ ∈ [0, 1], and let X be either a subspace or a
quotient of a space Y ∈ IG+, or finitely represented in Y with [pmin(Y ), pmax(Y )]∪{2} ⊂
[r, q] ⊂ (1,∞). Then, for f, g ∈ X, we have

a) ‖µf + νg‖qX + µνωc(1/2, pmin(Y ), q)‖f − g‖qX ≤ µ‖f‖qX + ν‖g‖qX ;

b) µ‖f‖rX + ν‖g‖rX ≤ ‖µf + νg‖rX + µνωs(1/2, pmax(Y ), r)‖f − g‖rX .

Remark 2.10. To illustrate the reason for the sharpness of some constants in Theorems
2.2 − 2.7, let us notice, in particular, that the space lp(A) with A =

∏n
i=1Ai and

p ∈ (1,∞)n for ∪ni=1Ai ⊂ N, we necessarily have |Ai| > 1. Otherwise, it would be just
the space lp̄

(∏j 6=i
j∈In Ai

)
with the corresponding p̃ ∈ (1,∞)n−1.

Theorem 2.5. ([9, 12]). Let G ⊂ Rn, p, a ∈ (1,∞)n, q, ς ∈ (1,∞), s ∈ (0,∞) and

[min(pmin, q, amin, 2),max(pmax, q, amax, 2)] ⊂ [rs, rc] ⊂ (1,∞).

Assume also that

Y ∈
{
Bs
p,q,a(G), B̃s,A

p,q,a(G), Lsp,q,a(G), L̃s,Ap,q,a(G),

bsp,q,a(G), b̃s,Ap,q,a(G), lsp,q,a(G), l̃s,Ap,q,a(G), Bs
p′,q′,a′(G)∗,

B̃s,A
p′,q′,a′(G)∗, Lsp′,q′,a′(G)∗, L̃s,Ap′,q′,a′(G)∗, bsp′,q′,a′(G)∗, b̃s,Ap′,q′,a′(G)∗, lsp′,q′,a′(G)∗, l̃s,Ap′,q′,a′(G)∗

}
,

and X is either a subspace, or a quotient, or almost isometrically finitely represented
in Y . Then

a) the space X is (rc, hc)-uniformly convex and (rs, hs)-uniformly smooth with
hc(µ) = ωc(µ,min(pmin, q, amin), rc) and hs(µ) = ωs(µ,max(pmax, q, amax), rs) for some
µ ∈ [0, 1].

b) If a is admissible for Y that is (βc, hc)-uniformly convex with hc(µ) > 0 for some
µ ∈ (0, 1) and (βs, hs)-uniformly smooth with hs(µ) for some µ ∈ (0, 1), then

[min(pmin, q, 2),max(pmax, q, 2)] ⊂ [βs, βc].

Theorem 2.6. ([9, 12]). Let Y ∈ {W s
p (G), W s

p′(G)∗} for G ⊂ Rn, p ∈ (1,∞)n,
ς ∈ (1,∞), s ∈ Nn

0 and

[min(pmin, 2),max(pmax, 2)] ⊂ [rs, rc] ⊂ (1,∞).

Assume also that X is either a subspace, or a quotient, or almost isometrically finitely
represented in Y . Then
a) the space X is (rc, hc)-uniformly convex and (rs, hs)-uniformly smooth with hc(µ) =
ωc(µ, pmin, rc) and hs(µ) = ωs(µ, pmax, rs) for µ ∈ [0, 1].
b) If Y is (βc, hc)-uniformly convex with hc(µ) > 0 for some µ ∈ (0, 1) and (βs, hs)-
uniformly smooth with hs(µ) <∞ for some µ ∈ (0, 1), then

[min(pmin, 2),max(pmax, 2)] ⊂ [βs, βc].
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Theorem 2.7. ([9, 12]). Let Y ∈ {Bs
p,q(Rn)w, L

s
p,q(Rn)w, B

s
p′,q′(Rn)∗w, L

s
p′,q′(Rn)∗w} for

G ⊂ Rn, p ∈ (1,∞)n, q, ς ∈ (1,∞), s ∈ (0,∞) and

[min(pmin, q, 2),max(pmax, q, 2)] ⊂ [rs, rc] ⊂ (1,∞).

Assume also that X is either a subspace, or a quotient, or almost isometrically finitely
represented in Y . Then
a) the space X is (rc, hc)-uniformly convex and (rs, hs)-uniformly smooth with
hc(µ) = ωc(µ,min(pmin, q), rc) and hs(µ) = ωs(µ,max(pmax, q), rs) for µ ∈ [0, 1].
b) If Y is (βc, hc)-uniformly convex with hc(µ) > 0 for some µ ∈ (0, 1) and (βs, hs)-
uniformly smooth with hs(µ) <∞ for some µ ∈ (0, 1), then

[min(pmin, q, 2),max(pmax, q, 2)] ⊂ [βs, βc].

Theorem 2.8. ([9, 12]). Let Y ∈ {Bs
p,q,F(G), Lsp,q,F(G), Bs

p′,q′,F(G)∗, Lsp′,q′,F(G)∗} for
G ⊂ Rn, p ∈ (1,∞)n, q, ς ∈ (1,∞), s ∈ R. Assume also that

[min(pmin, q, 2),max(pmax, q, 2)] ⊂ [rs, rc] ⊂ (1,∞),

and X is either a subspace, or a quotient, or almost isometrically finitely represented
in Y . Then the space X is (rc, hc)-uniformly convex and (rs, hs)-uniformly smooth with
hc(µ) = ωc(µ,min(pmin, q), rc) and hs(µ) = ωs(µ,max(pmax, q), rs) for µ ∈ [0, 1].

Remark 2.11. a) For some combinations of the parameters (and parameter functions),
sharper estimates for the midpoint (µ = 1/2) uniform convexity and smoothness con-
stants ωs(1/2, ·, ·) and ωc(1/2, ·, ·) (and, thus, also the Rademacher type and cotype
constants for all the spaces under consideration) for all the groups of spaces under
consideration are established in subsection 4.6 of [12] (see also [9]).
b) Let us note that ωs(µ, s, t) is non-decreasing in µ, and ωc(µ, s, t) is non-increasing in
µ thanks to Theorem 4.13 from [12] (see also [9]).

3 Hölder-Lipschitz mappings: basic mappings and properties.
Part I

In this section we introduce some notation and auxiliary mappings, discuss the basic
properties of Hölder-Lipschitz mappings and investigate, in an explicit quantitative
manner, our such new tools as the homogeneous Hölder-smooth right inverses of closed
(linear) surjections and the Hölder-smooth version of the Kalton-Pe lczyńki decomposi-
tion approached by means of solving the three-space problem for homogeneous Hölder
homeomorphisms of Banach spaces.

3.1 Hölder-Lipschitz mappings and related parameters

Definition 3.1. For a metric space X, x, y ∈ X, B ⊂ X and a bounded A ⊂ X, let
dX(x, y) be the distance between x and y and dX(y,B) = infz∈B dX(y, z). Assume also
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that the Chebyshev radius of A relative to B and the asymmetric error of A relative to
B are, correspondingly,

r(A,B) = rX(A,B) = inf
x∈B

sup
y∈A

dX(x, y) and æ(A,B) = sup
y∈A

inf
x∈B

dX(x, y).

For the sake of brevity, let also

rX(A, x) = rX(A, {x}) and rX(A) = rX(A,X).

The diameter of the set A is

d(A) = sup
x,y∈A

dX(x, y) = sup
x∈A

rX(A, x).

Note that rX({x}, B) = dX(x,B).
The next definition provides an important example of a metric space.

Definition 3.2. Let X be a metric space and B ⊂ X. The metric space H(B) is the
set of all closed bounded subsets of B endowed with the Hausdorff metric

dH(F,G) = max (æ(F,G),æ(G,F )) = max

(
sup
x∈F

dX(x,G), sup
y∈G

dX(y, F )

)
for F ∪G ⊂ B.

The (closed) ε-neighborhood Fε of a subset F ⊂ X in X is {x ∈ X : dX(x, F ) ≤ ε}.

Note that, if A and B are subsets of a normed space X and r > 0, then

dX(Ar) = dX(A) + 2r and rX(Ar, B) = rX(A,B) + r.

Definition 3.3. Assume that X and Y are metric spaces and α ∈ (0, 1].
For f : X → Y , its (first order) modulus of continuity on a subset A ⊂ X is defined
by

ω(t, f, A) = sup {dY (f(x), f(y)) : x, y ∈ A, dX(x, y) < t} for t > 0;

ω(t, f) = ω(t, f,X).

The mapping f is uniformly continuous on A if

ω(t0, f, A) <∞ for some t0 > 0 and lim
t→0

ω(t, f, A) = 0.

By means of Hα(X,Y ), we designate the family of all mappings f : X → Y
satisfying:

‖f |Hα(X, Y )‖ := sup {dY (f(x), f(y)) /dX(x, y)α : x, y ∈ X, x 6= y}

= sup
t>0

ω(t, f,X)

tα
<∞.

Note that Hα(X, Y ) is a seminormed space if Y is a (complete) linear metric space,
and that f ∈ Hα(X, Y ) is a Hölder (Lipschitz for α = 1) mapping.
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Remark 3.1. If X is a convex subset of a normed space endowed with the inherited
metric, Y is a metric space, and f : X → Y with a finite ω(t0, f,X) for some t0 > 0,
then f is Lipschitz for large distances: for every d > 0,

ω(t, f) ≤ 2ω(d, f)t/d for t ≥ d.

Therefore, we will primarily be interested in the dependence on d ∈ (0,∞) of the
constant cα and the smoothness parameter α in

ω(t, f) ≤ cαt
α for t < d.

Corollary 3.1. a) Let X, Y, Z be metric spaces and φ ∈ Hα(X,Y ), ψ ∈ Hβ(Y, Z).
Then one has

‖ψ ◦ φ|Hαβ(X,Z)‖ ≤ ‖φ|Hα(X, Y )‖β‖ψ|Hβ(Y, Z)‖.

b) If X is a bounded metric space with the diameter d = dX(X) and ∅ 6= [β, α] ⊂ (0, 1],
then the norm of the embedding Hα(X, Y ) ↪→ Hβ(X, Y ) is equal to dα−β.
c) If X and Y are normed spaces, a bounded F ∪G ⊂ X, and A ∈ L(X,Y ), then

dH(Y ) (A(F ), A(G)) ≤ ‖A|L(X, Y )‖dH(X)(F,G) and r (A(F ), A(G))

≤ ‖A|L(X, Y )‖r(F,G).

Retractions, metric projections and homogeneous inverses of linear operators be-
tween Banach spaces are important examples of Hölder mappings dealt with in Sections
3.2 and 9.

Definition 3.4. Let X and Y be (quasi) Banach spaces and α, β ∈ (0, 1]. We say
that the unit spheres SX and SY are (α, β)-Hölder homeomorphic, or that X and Y

are homogeneously (α, β)-Hölder homeomorphic, and write X
(α,β)←→ Y if there exists a

homeomorphism φ : SX ↔ SY satisfying

φ ∈ Hα(SX , Y ) and φ−1 ∈ Hβ(SY , X).

The (positive) homogeneous extensions ‖x‖Xφ (x/‖x‖X) and ‖y‖Y φ−1 (y/‖y‖Y ) will be
designated by φ and φ−1 as well. Let also

α(X, Y ) = sup
{
α ∈ (0, 1] : X

(α,β)←→ Y for some β ∈ (0, 1]
}
.

For example, the properties of the classical Mazur mapping [46, 69] mean that

Lp
min( p

q
,1),min( q

p
,1)

←→ Lq.
As in the case of the uniform homeomorphisms of unit spheres (see subsection 9.1

in [15]), it is easier to check an equivalent condition.

Lemma 3.1. Let X and Y be Banach spaces and α, β ∈ (0, 1]. Then X
(α,β)←→ Y

if, and only if, there exists a (positive) homogeneous bijective and surjective mapping
ψ : X ↔ Y satisfying ψ ∈ Hα(BX , Y ) and ψ−1 ∈ Hβ(BY , X).
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The proof of Lemma 3.1. The necessity of the condition is clear since (the homoge-
neous extension of) φ from Definition 3.4 can be taken as such ψ. The same argument
that leads to the boundedness of a continuous linear operator provides the boundedness
of ψ and ψ−1 on the spheres (i.e. ‖ψ(x)‖X/‖x‖X ∈ [c, C] ⊂ (0,∞) for x ∈ X \ {0}).
Thus, Corollary 3.1, a) and the estimate ‖π|H1(Z \σBZ , Z)‖ ≤ 2/σ for π : z → z/‖z‖Z
and a normed Z imply the sufficiency.

Remark 3.2. Corollary 3.1, a) provides the transitivity: if X
(α0,β0)←→ Y and Y

(α1,β1)←→ Z,

then X
(α0α1,β0β1)←→ Z.

3.2 Homogeneous right inverses: regularity and sharpness

In different branches of mathematics, one needs to find a solution of an equation of
the form Ax = y with a closed operator A from a quasi-Banach space X onto a quasi-
Banach space Y , while the solution is not unique. Moreover, the solution x is better
depend continuously on y and possess the norm that either minimal, or comparable to
it. For example, A could consist of both the linear partial (pseudo) differential operator
and the initial and/or boundary value trace operators, and every solution operator is
a right inverse to A. The next theorem from [5, 12] shows that a linear or Liptschitz
right inverse to A does not always exist.

Theorem 3.1. ([12, 5]). Let X be a Banach space. Then the following properties are
equivalent.

a) The space X is isomorphic to a Hilbert space.
b) For every bounded linear operator A from X onto a Banach space Y , there exists

its right inverse B ∈ L(Y,X).
c) For every closed linear operator A from D(A) ⊂ X onto a Banach space Y , there

exists its right inverse B ∈ L(Y,X).
d) The space X is reflexive, and for every bounded linear operator A from X onto

a Banach space Y , there exists its right inverse B, that is Lipschitz on Y and B0 = 0.
e) The space X is reflexive, and for every closed linear operator A from D(A) ⊂ X

onto a Banach space Y , there exists its right inverse B, that is Lipschitz on Y and
B0 = 0.

The last theorem relies on the deep result due to Lindenstrauss and Tzafriri [42]
that the only Banach spaces possessing only complemented subspaces are those that
are isomorphic to the Hilbert spaces (see also Theorem 7.1 below). It was shown by
Skaletskiy [57], that, if X has a uniform normal structure, then there exists a bounded
homogeneous right inverse B that is uniformly continuous on every bounded subset of
Y (see also [54, 15]). Moreover, Tsar’kov [66] had proven that, whenever the kernel
of a surjective A ∈ L(X, Y ) is reflexive, the existence of the linear (bounded) right
inverse to A is equivalent to the existence of a Lipschitz right inverse defined on a
neighborhood of the origin of Y . He had also provided a counterexample showing that
a surjective A ∈ L(X, Y ) does not even have to possess a uniformly continuous right
inverse without additional restrictions.
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This subsection is devoted to the existence of the right homogeneous (but non-
additive) inverses for the closed linear surjective operators from a (p, hc)-uniformly
convex (and, possibly, (q, hs)-uniformly smooth) Banach space X onto a Banach space
Y that are also Hölder-regular mappings on bounded subsets of Y .

It appears that the ordinary continuity can be characterised in therm of Vlasov’s
condition. Let us recall that a Banach space X is said to satisfy Vlasov’s condition
[68] (see also Theorem 9.2) if every subsequence {xk}k∈N ⊂ X with ‖xn‖X = 1 for
every n, satisfying the condition limk→∞ f(xk) = 1 for some f ∈ X∗ with ‖f‖X∗ = 1,
is convergent in X.

Theorem 3.2. ([12]). Let X and Y be (quasi) Banach spaces, and let X be isomorphic
to a Banach space Z satisfying Vlasov’s condition and dBM(X,Z) ≤ d. Then, for
every (linear) closed surjective operator A from D(A) ⊂ X onto Y , their exists a
homogeneous right-inverse operator B : Y → X satisfying

A ◦B = I, Bλx = λBx and sup
y∈BY

‖By‖X ≤ d‖Ã−1|L(Y, X̃)‖.

The following results are extracts from the corresponding results in [12] (their coun-
terparts in [5] are less precise in the general setting but still lead to the same numerical
estimates for the spaces under consideration). According to Theorem 6.16 from [12],
the Hölder-Lipschitz regularity exponent of the homogeneous right inverse given in
the next theorem and corollary are sharp for X ∈ IG+ under the restriction that,
if pmin(X) < 2, X (Y ) contains isometric 1-complemented copies of {lpk

}k∈N with
pk ∈ I(X) for every k ∈ N and limk→∞ pk = pmin(X), and, if pmax(X) > 2, X con-
tains isometric 1-complemented copies of {lqk}k∈N with qk ∈ I(X) for every k ∈ N and
limk→∞ qk = pmax(X).

Theorem 3.3. ([5, 12]). For 2 ∈ [q, p] ⊂ (1,∞), let X and Y be quasi-Banach spaces,
and let X be isomorphic to a (p, hc)-uniformly convex and (q, hs)-uniformly smooth
Banach space Z with dBM(X,Z) < d. Assume that A is a closed linear surjective
operator from D(A) ⊂ X onto Y , and that a bounded F ⊂ Y and

cc = sup
µ∈(0,1/2]

(1− µ)hc(µ) and cs = inf
µ∈(0,1/2]

(1− µ)1−qhc(µ).

Then there exists a homogeneous right-inverse operator B : Y → X satisfying A◦B =
I,

Bλx = λBx, sup
y∈BY

‖By‖X ≤ d‖Ã−1|L(Y, X̃)‖,

‖By −Bx‖X

≤ d‖Ã−1|L(Y, X̃)‖

‖y − x‖Y +

(
pcs

qc
1+q/p
c

)1/p(
‖x‖qY + csc

−q/p
c ‖y − x‖qY

)1/q−1/p‖y − x‖q/pY


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for every x, y ∈ Y and

‖B|Hq/p(F,X)‖

≤ d‖Ã−1|L(Y, X̃)‖

d(F )1−q/p +

(
pcs

qc
1+q/p
c

)1/p(
r(F, {0})q + csc

−q/p
c d(F )q

)1/q−1/p

 ,

where
X̃ = X/KerA and Ã : X̃ → Y is defined by the canonical factorisation A = Ã◦QKerA.

If, in addition, p = q = 2, then we also have

‖B|Hq/p(Y,X)‖ ≤ d‖Ã−1|L(Y, X̃)‖

(
1 +

c
1/2
s

cc

)
.

Moreover, if X is a (p, hc)-uniformly convex and a (q, hs)-uniformly smooth Banach
space itself, one takes d = 1 in these estimates and ‖By‖X = min {‖x‖X : Ax = y} for
y ∈ Y .

Corollary 3.2. Under the conditions of Theorem 3.3, one has

‖B|Hq/p(F,X)‖

≤ dr(F, {0})1−q/p‖Ã−1|L(Y, X̃)‖

21−q/p +

(
pcs

qc
1+q/p
c

)1/p(
1 + csc

−q/p
c 2q

)1/q−1/p

 .

Using also ‖I|L(l1, lq)‖ = 1 for q ≥ 1 and d(F ) ≤ 2r(F, 0), we obtain the important
estimates in Section 4.

3.3 Hölder-smooth Kalton-Pe lczyńki decomposition and three-
space problem

The three-space problem for a property A of a Banach space X is the relation be-
tween X possessing A and both its subspace Z and its quotient X/Z possessing A.
In our setting, A means the existence of a homogeneous Hölder homeomorphism (or a
Hölder homeomorphism extended by homogeneity) with a given Banach space Y (es-
pecially a Hilbert Y = H). A natural technical question is the validity of the principle
of “two policemen” for A: knowing that Y is a subspace or quotient of a Banach space
X possessing A, and Z possessing A is a subspace or a quotient of Y , can one conclude
that Y is possessing A? To answer this question in the setting of the uniformly continu-
ous homeomorphisms of spheres, Nigel J. Kalton [15] found an abstract approach in the
style of the Pe lczyńki decomposition method for complemented subspaces in the linear
setting, leading to the uniform classification of spheres of wide classes of spaces (see
[15]). In this subsection, we develop its counterpart in the Hölder-continuous setting.

The next two lemmas are our sharpened versions of Lemmas 9.10 and 9.9 from
[15]. The first lemma solves the three-space problem for homogeneous Hölder homeo-
morphisms of uniformly convex and smooth Banach spaces in an explicit quantitative
manner.
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Lemma 3.2. For 2 ∈ [q, p] ⊂ (1,∞), let X be a quasi-Banach space isomorphic to a
Banach space Y that is (p, hc)-uniformly convex and (q, hs)-uniformly smooth. Assume
also that Z ⊂ X is a subspace. Then one has

X
(q/p,q/p)←→ Z ⊕X/Z.

The proof of Lemma 3.2. Let QZ : X → X/Z be the quotient map. Theorem
3.3 and Corollary 3.2 provide us with its right homogeneous inverse operator BZ ∈
Hq/p(BX/Z , X) and

‖BZ |Hq/p(BX/Z , X)‖ ≤ C = 21−q/p +

(
pcs

qc
1+q/p
c

)1/p(
1 + csc

−q/p
c 2q

)1/q−1/p
, (1)

cc = sup
µ∈(0,1/2]

(1− µ)hc(µ) and cs = inf
µ∈(0,1/2]

(1− µ)1−qhs(µ).

Then the mapping φZ : X −→ Z ⊕X/Z defined by φZ : x 7−→ (x−BZ (QZx) , QZx)
is (positive) homogeneous and

φZ ∈ Hq/p (BX , Z ⊕X/Z) . (2)

Moreover, it has the inverse

φ−1
Z : Z ⊕X/Z −→ X : (y, z) 7−→ y +BZ(z) with φ−1

Z ∈ H
q/p
(
BZ⊕X/Z , X

)
. (3)

The combination of (2) and (3) is what is claimed in the lemma.

The proof of Part b) of the next lemma is a typical application of Corollary 5.3 and
Lemma 5.4 in combination with Lemma 5.2 (Hölder inequality). Its variations with
different combinations of the homogenization and smoothness can be found in Lemma
5.5. The main conclusion is that the β-homogenization defines the summability and
can worsen the smoothness.

Lemma 3.3. Let X, Y,X1, Y1 be Banach spaces, α, β, α1, β1 ∈ (0, 1] and p ∈ [1,∞].
Then

a) X
(α,β)←→ Y and X1

(α1,β1)←→ Y1 imply X ⊕X1
(min(α,α1),min(β,β1))←→ Y ⊕ Y1;

b) X
(α,β)←→ Y implies lp(N, X)

(α,β)←→ lp(N, Y ).

The proof of Lemma 3.3. Part a) is an immediate consequence of the definition. To
establish Part b), we assume that φ : X → Y is a homogeneous homeomorphism

realizing X
(α,β)←→ Y and construct its point-wise extension

ψ = φ⊗ Ilp : {xi} 7−→ {φ(xi)}. For x, y ∈ Blp(N,X) and i ∈ N, we have

‖φ(yi)− φ(xi)‖Y ≤ ‖φ|Hα(BX , Y )‖
(
‖xi‖1−αX + ‖yi‖1−αX

)
‖yi − xi‖αX . (1)

Hence, Lemma 5.2 and the triangle inequality for lp/(1−α)(N, X) imply

‖ψ(y)− ψ(x)|lp(N, Y )‖ ≤ 21−α‖φ|Hα(BX , Y )‖‖yi − xi‖αX . (2)

We finish the proof by changing the roles of X and Y (and φ and φ−1) and applying
Lemma 3.1.
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Theorem 3.4. For 2 ∈ [q, p] ⊂ (1,∞) and a (p, hc)-uniformly convex and (q, hs)-
uniformly smooth Banach space X, let Y be either a subspace or a quotient of X, and
let Z be either a subspace or a quotient of Y . For α, β, α1, β1 ∈ (0, 1] and a Hilbert
space H, assume that

X
(α,β)←→ H and Z

(α1,β1)←→ H.

Then we have

Y
(δ,δ)←→ H for δ = αβα1β1(q/p)

4.

Moreover, δ = αβα1β1(q/p)
2 if either Z is a complemented subspace, or a quotient

with respect to a complemented subspace of Y , or Y is a complemented subspace, or a
quotient with respect to a complemented subspace of X. One also has δ = αβα1β1 if
they both have these properties.

The proof of Theorem 3.4. Considering finite sums as l2-sums, we have the isometries
H = H ⊕H = l2(N, H) and l2(N, Y ) = l2(N, Y )⊕ Y . Thanks to Lemmas 3.2 and 3.3,
they imply the following chain of Hölder homeomorphisms

Y
(q/p,q/p)←→ Z ⊕ Z1

(α1,β1)←→ H ⊕H ⊕ Z1
(β1,α1)←→ H ⊕ Z ⊕ Z1

(q/p,q/p)←→ H ⊕ Y = l2(N, H)⊕ Y
(β,α)←→ l2(N, X)⊕ Y (q/p,q/p)←→ l2(N, Y1)⊕ l2(N, Y )⊕ Y (q/p,q/p)←→ l2(N, X)

(α,β)←→ l2(N, H) = H,

where Z1 = Y/Z if Z is a subspace of Y , or Z = Y/Z1, and also Y1 = X/Y if Y is a
subspace of X, or Y = X/Y1. We finish the proof in the general case by employing
the transitivity property in Remark 3.2. The complementability means the (linear)
Lipschitz version of Lemma 3.2.

4 Homogeneous Hölder homeomorphisms: abstract ap-
proaches

4.1 Duality mapping: quantitative monotonicity and Hölder
regularity

In this section, we provide an explicit quantitative description of the Hölder reg-
ularity and monotonicity of the duality mapping that is the simplest homogeneous
Hölder homeomorphism available even in the setting of classes of spaces without the
local unconditional structure (such as Sp and many noncommutative Lp-spaces) or nice
complex interpolation properties.

Let us recall that the duality mapping JX : SX → SX∗ is correctly defined by
〈JXx, x〉 = 1 in the case of a smooth X thanks to the Hahn-Banach theorem. It has
its natural inverse J−1

X = JX∗ if X is also strictly convex and reflexive.
The following lemma, describing the monotonicity of the duality mapping in a

quantitative manner, is a particular case of Part a) of Lemma 4.1 in [12] (see also [9])
combined with the quantitative duality of our notions of smoothness and convexity
established in Theorem 4.5 in [12] (with two different proofs).
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Lemma 4.1. ([9, 12]). For 2 ∈ [q, p] ⊂ (1,∞), let X be a (p, hc)-uniformly convex
and (q, hs)-uniformly smooth Banach space and x, y ∈ SX with fx, fy ∈ SX∗ satisfying
〈fx, x〉 = 〈fy, y〉 = 1. Then we have

sup
µ∈(0,1)

hc(µ)‖x− y‖p/p ≤ 〈fx − fy, x− y〉 and

(
inf

µ∈(0,1)
hs(µ)

)1−q′

‖fx − fy‖q
′
/q′ ≤ 〈fx − fy, x− y〉.

‖fx − fy‖X∗ ≤ pp′p/p
′
inf

µ∈(0,1)
hs(µ)‖x− y‖p−1

X ≤ pep/e inf
µ∈(0,1)

hs(µ)‖x− y‖p−1
X .

Moreover, the corresponding relation holds if X is either (p, hc)-uniformly convex, or
(q, hs)-uniformly smooth.

We reformulate an immediate corollary to this lemma in terms of the following
explicit estimates for the Hölder noms of the duality mapping. Theorems in subsection
2.6 provide explicit expressions for the quantities in brackets in terms of the parameters
of the spaces from the groups Γi.

Theorem 4.1. For 2 ∈ [q, p] ⊂ (1,∞), let X be a (p, hc)-uniformly convex and (q, hs)-
uniformly smooth Banach space and JX : SX → SX∗ the duality mapping. Then we
have X

(q−1,p′−1)←→ X∗ with J−1
X = JX∗,∥∥JX |Hq−1(SX , SX∗)

∥∥ ≤ q′q/q
′
inf

µ∈(0,1)
hs(µ) and

∥∥∥J−1
X |H

(p−1)−1

(SX∗ , SX)
∥∥∥ ≤ pp

′/p

(
sup
µ∈(0,1)

hc(µ)

)(1−p)−1

.

One has a related uniform bound max
(
q′q/q

′
, pp

′/p
)
< e2/e < e.

Remark 4.1. Let us note that the exponents of the Hölder regularity can be the
same as with the constructive approach. For example, the duality map for the pair of
Lebesgue spaces (Lp, Lp′) is just the Mazur map mp−1, and either mp−1 or its inverse
is Lipschitz.

4.2 Lozanovskii factorisation: quantitative Hölder-regular ver-
sion

In this subsection, we rely on Theorem 4.1 and Lemma 4.1 from the preceding
subsection to establish, in an explicit quantitative manner, the Hölder regularity of the
Lozanovskii factorisation mapping introduced and studied in [43, 44] (see [15, 26, 49, 33]
for more references and related applications), that had become the major tool of study
in the uniform setting thanks to E. Odell and Th. Schlumprecht [49].

The following theorem contains strengthened versions of Lemma 9.5 and Corollary
9.6 from [15] where the same mapping was shown to be a uniform homeomorphism.
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Theorem 4.2. For 2 ∈ [q, p] ⊂ (1,∞), let X be a (p, hc)-uniformly convex and (q, hs)-
uniformly smooth Banach space that is also a lattice. Then there exist Lozanovskii
mappings LX : X → L1(E, µ) and LX∗ : X∗ → L1(E, µ) for some measure space
(E, µ) that are correctly defined and realise the equivalences

X
(q−1,1/p)←→ L1(E, µ)

(1/q′,p′−1)←→ X∗.

Moreover, we also have the estimates∥∥LX |Hq−1(SX , SL1(E,µ))
∥∥ ≤ 22−q + q′q/q

′
inf

µ∈(0,1)
hs(µ),

∥∥L−1
X |H

1/p(SL1(E,µ), SX)
∥∥ ≤ (2p)1/p

(
sup
µ∈(0,1)

hc(µ)

)−1/p

, and

∥∥∥L−1
X∗|H1/q′(SL1(E,µ), SX∗)

∥∥∥ ≤ (2q′)1/q′
(

inf
µ∈(0,1)

hs(µ)

)1/q

.

One has a related uniform bound max
(
q′q/q

′
, (2q′)1/q′ , (2p)1/p

)
< e2/e < e.

Remark 4.2. Let us note that the exponents of the Hölder regularity provided for
L−1
X are sharp for X = Lp for p ≥ 2.

The proof of Theorem 4.2. According to the representation theorem for the lattices
(see [41, 15]), X and X∗ are (linearly) isometric to some Banach function or sequence
spaces on a measure space (Ω, µ) with 〈h, x〉 =

∫
Ω
h(t)x(t)dµ(t) for h ∈ X∗ and x ∈ X.

It is known (for example, see the proof of Theorem 9.7 and subsection 9.6 in [15]) that
the mapping

LX : X −→ L1(Ω, µ) : x 7−→ |x(t)|JXx(t) (L)

is the uniform homeomorphism of the unit spheres but we only need to know that
it is a homeomorphism of dense subsets (such as the union of the finite-dimensional
subspaces spanned by simple functions). The “onto" property for the restrictions onto
the finite-dimensional subspaces follows from the continuity (particularly, the Hölder
estimates) and the Brouwer theorem (the argument from [23, 15]). Thus, we only
establish the estimates for the Hölder norms assuming that ‖ · ‖1 is the L1(E, µ)-norm.

Let x, y ∈ SX , f = LXx = |x|JXx ∈ SL1(E,µ), g = LXy = |y|JXy ∈ SL1(E,µ) and
‖f − g‖1 = ε. Assume that G = {t ∈ E : x(t)y(t) > 0} and

h = χG
x

|x|
min(|f |, |g|). (1)

Comparing |f | + |g| with |f − g| on G and E \ G, we see that ‖h‖1 = 1 − ε/2. For
λ > 2, let

Bλ =

{
t ∈ G :

x(t)

y(t)
+
y(t)

x(t)
≥ λ

}
and Dλ = G \Bλ. (2)

The lattice properties also suggest that |x|, |y| ∈ SX and |JXx|, |JXy| ∈ SX∗ meaning
〈|JXx|, |y|〉 ≤ 1, 〈|JXx|, |y|〉 ≤ 1, and

2 ≥ 〈|JXx|, |y|〉+ 〈|JXy|, |x|〉 ≥
∥∥∥∥h(xy +

y

x

)∥∥∥∥
1

≥ 2‖h‖1 + (λ− 2) ‖χBλ
h‖1 . (3)
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Therefore, comparing with the norm of h, we see that

‖χBλ
h‖1 ≤ ε/(λ− 2) and ‖χDλ

h‖1 ≥ 1− ε/2− ε/(λ− 2). (4)

Now remembering the definition of Dλ, we deduce from (4) that

〈|JXx|, |y|〉+ 〈|JXy|, |x|〉 ≥ 〈χDλ
JXx, y〉+ 〈χDλ

JXy, x〉 ≥

≥
∥∥∥∥χDλ

h

(
x

y
+
y

x

)∥∥∥∥
1

≥ 2 ‖χDλ
h‖1 ≥ 2− ε λ

λ− 2
. (5)

Combined with the first inequality in (3), this gives us

∣∣〈χD̄λ
JXx, y

〉∣∣+
∣∣〈χD̄λ

JXy, x
〉∣∣ ≤ ε

λ

λ− 2
, (6)

where D̄λ = E \Dλ. Now (5) and (6) naturally imply the key estimate

〈JXx, y〉+ 〈JXy, x〉 ≥ 2− 2ε
λ

λ− 2
, (7)

where we take the limit λ→∞ and obtain

〈JXx− JXy, x− y〉 ≤ 2ε. (8)

Combining (8) with Lemma 4.1, we arrive at the desirable estimates for the Hölder
norms of L−1

X and L−1
X∗ . To finish the proof, we deduce the first estimate of the theorem

from Theorem 4.1, the triangle inequality and the representation

LXx− LXy = (|x| − |y|) JXx+ |y| (JXx− JXy) :

‖LXx− LXy‖1 ≤ ‖x− y‖X + ‖JXx− JXy‖X∗ ≤
(

22−q + q′q/q
′
inf

µ∈(0,1)
hs(µ)

)
‖x− y‖q−1

X .

4.3 Homogeneous Hölder homeomorphisms via complex inter-
polation method

Relying on the results on the Hölder continuity of homogeneous inverses from Sec-
tion 3.2, we employ the complex interpolation method to construct the Hölder-smooth
homeomorphisms between the spheres of couples of Banach spaces from the classes
closed with respect to the complex interpolation and establish their Hölder continuity
with explicit estimates and occasionally sharp exponents. As an example, we apply
our results to the scale of the noncommutative Lp(M, τ), where M is asemifinite von
Neumann algebra. Further applications are in Sections 5.2 and 6.2.

Let the boundary ∂S of the strip S = {z ∈ C : Rez ∈ [0, 1]} consist of ∂Sj = {z ∈
C : Rez = j} for j = 0, 1.



42 S.S. Ajiev

Definition 4.1. ([24]). Let Ā = (A0, A1) be a compatible pair of Banach spaces,
p ∈ [1,∞) and Rez ∈ (0, 1). The symbol Fp(z) = Fp(z, Ā) denotes the completion of
F = F(Ā) in the lp-sum lp

(
{0, 1}, {Lp (∂Sj, ωz,j, Aj)}j∈{0,1}

)
of the weighted Aj-valued

Lebesgue-Bochner spaces Lp (∂Sj, ωz,j, Aj) (with respect to the Lebesgue measure on the
lines {∂Sj}) for j = 0, 1, where the weights {ωz,j}1j=0 correspond to the (probability)
harmonic measure on ∂S (see [16]):

ωz,j(τ) =
eπ(Imz−τ) sin(πRez)

sin2(πRez) + (cos(πRez)− eπ(ij+Imz−τ))
2 for j=0,1.

The next lemma is Proposition I.2 in [15].

Lemma 4.2. ([24, 15]). Let (A0, A1) be a compatible pair, θ ∈ (0, 1) and p ∈ [1,∞).
Then one has

‖x‖Ā[θ]
= inf

{
‖f‖Fp(θ) : f(θ) = x

}
.

The next lemma is a slight variation of Proposition I.3 in [15]. There is only
one difference in the proof: one uses the strict convexity of Aj and A∗j (thanks to
V.L. Shmul’yan’s duality) instead of the uniform convexity assumed in [15].

Lemma 4.3. Let (A0, A1) be a compatible pair, θ ∈ (0, 1) and p ∈ [1,∞). Assume also
that both A0 and A1 are reflexive. Then, for every x ∈ Ā[θ], there exists gx ∈ Fp(θ)
satisfying ‖x‖Ā[θ]

= ‖gx‖Fp(θ). Moreover, if both A0 and A1 are also strictly convex,
the bijection Jp,θ : x 7→ gx is correctly defined and ‖gx‖Aj

= ‖x‖Ā[θ]
a.e on ∂Sj for

j = 0, 1. If, in addition, both A0 and A1 are smooth, then ‖gx(z)‖Ā[Rez]
= ‖x‖Ā[θ]

for
every z with Rez ∈ (0, 1).

The following theorem is the Hölder counterpart of Theorem 9.12 in [15] due to
M. Daher [28] and N.J. Kalton [15].

Theorem 4.3. Let (A0, A1) be a compatible pair, θ, η ∈ (0, 1), 2, r ∈ [q, p] ⊂ (1,∞) and
a bounded A ⊂ Ā[θ]. Assume also that the lr-sum Y = lr

(
{0, 1}, {Lr([0, 1], Aj)}j∈{0,1}

)
is (p, hc)-uniformly convex, and the mapping mθ,η : Ā[θ] → Ā[η] is defined by
mθ,ηx = gx(η), where gx = Jr,θx with Jr,θ from Lemma 4.3. Then mθ,η is a homo-
geneous Hölder homeomorphism of Ā[θ] and its unit sphere onto Ā[η], its unit sphere
respectively, satisfying m−1

θ,η = mη,θ,

‖mθ,ηy −mθ,ηx‖Ā[η]
≤ ‖y − x‖Ā[θ]

(1 + (p/cc)
1/p) + (p/cc)

1/p‖y − x‖1/p
Ā[θ]
‖x‖1/p

′

Ā[θ]

for every x, y ∈ Ā[θ] and

‖mθ,η|H1/p(A, Ā[η])‖ ≤ r(A, 0)1/p′
(

21/p′ + p1/pc−1/p
c 31/p′

)
.

Moreover, if Y is also (q, hs)-uniformly smooth, then we also have

‖mθ,ηy −mθ,ηx‖Ā[η]
≤

(pc1+p/q
s

qc
2+q/p
c

)1/p

+ 1

 ‖y − x‖Ā[θ]
+

(
pcs

qc
1+q/p
c

)1/p

‖y − x‖q/p
Ā[θ]
‖x‖1−q/p

Ā[θ]
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for every x, y ∈ Ā[θ], and

‖mθ,η|Hq/p(A, Ā[η])‖ ≤ r(A, 0)1−q/p

21−q/p +

(
pcs

qc
1+q/p
c

)1/p(
1 + csc

−q/p
c 2q

)1/q−1/p

 .

The constants cc and cs are defined by

cc = sup
µ∈(0,1/2]

(1− µ)hc(µ) and cs = inf
µ∈(0,1/2]

(1− µ)1−qhs(µ).

The proof of Theorem 4.3. Note that Zr,θ = lr
(
{0, 1}, {Lr(∂Sj, ωθ,j, Aj)}j∈{0,1}

)
is iso-

metric to lr
(
{0, 1}, {Lr([0, 1], Aj)}j∈{0,1}

)
. We provide the proof in the case of Zr,θ

that is both (p, hc)-uniformly convex and (q, hs)-uniformly smooth. When Zp,θ is only
(p, hc)-uniformly convex, one uses the counterparts of Theorem 3.3 and Corollary 3.2
from [12] (Theorems 6.9 and 6.10 there) with slightly better constant cc than in [5]. The
mapping mθ,η is the composition Rr,η ◦ Iθ,η ◦ Jr,θ, where Rr,η : Fr(η)→ Ā[η], f 7→ f(η)
and Iθ,η : Fr(θ) → Fr(η), f 7→ f are the restriction and identity mappings respec-
tively. The former is linear with the norm 1 thanks to Lemma 4.2. While the latter
is linear with the norm dominated by maxj=0,1 ‖ωη,j/ωθ,j|L∞(∂Sj)‖1/r, we need its re-
striction to the image Jr,η(Ā[θ]) of Jr,η only, where it is isometric. In turn, Jr,η itself is
exactly the homogeneous inverse dealt with in Theorem 3.3 and Corollary 3.2 because
it provides the unique minimal norm pre-image according to Lemmas 4.3 and 4.2. The
application of Corollary 3.1, a) provides the desirable estimate of the Hölder seminorm.
Since Zr,θ and Zr,η are isometric (just different weights), Zr,η is both (p, hc)-uniformly
convex and (q, hs)-uniformly smooth, and the mappings Jr,η and mη,θ are well-defined
and possesses the same properties as Jr,θ and mθ,η. To see that mη,θ = m−1

θ,η, we note
that, thanks to Lemma 4.3, gx also satisfies

‖gx(mθ,ηx)‖Ā[η]
= ‖mθ,ηx‖Ā[η]

= ‖gx‖Fr(η)

and minimises the Zr,η-norm. The uniqueness means that gx = Jr,θx = Jr,ηmθ,ηx
finishing the proof.

As seen from the results in subsection 2.6, one or both of the parameters p and q
in Theorem 4.3, can be strictly worse than the convexity and smoothness parameters
of both Ā[θ] and Ā[η] leading, for instance, to worse Hölder-Lipschitz regularity than
the one provided by the Mazur mappings (see subsection 5.1) even in the setting of
Lebesgue spaces. The following corollary addresses this problem.

Corollary 4.1. Under the conditions of Theorem 4.3, assume that {(θk, ηk)}k∈N is a
decreasing system of open subintervals of [0, 1] with

∩k∈N(θk, ηk) = [min(θ, η),max(θ, η)] .

Let also, for every k ∈ N, the lr-sum Yk = lr
(
{0, 1}, {Lr([0, 1], Ā[θk]), Lr([0, 1], Ā[ηk])

)
be

(pk, hck)-uniformly convex for a non-increasing {pk}k∈N ⊂ [2,∞) with p0 = limk→∞ pk
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and limk→∞ cck = cc0. Then mθ,η is a homogeneous Hölder homeomorphism of Ā[θ] and
its unit sphere onto Ā[η], its unit sphere respectively, satisfying m−1

θ,η = mη,θ,

‖mθ,ηy −mθ,ηx‖Ā[η]
≤
(
1 + (p0/cc0)

1/p0
)
‖y − x‖Ā[θ]

+ (p0/cc0)
1/p0‖y − x‖1/p0

Ā[θ]
‖x‖1/p

′
0

Ā[θ]

for every x, y ∈ Ā[θ], and

‖mθ,η|H1/p0(A, Ā[η])‖ ≤ r(A, 0)1/p′0

(
21/p′0 + p0

1/p0c
−1/p0
c0 31/p′0

)
.

Moreover, if Yk is also (qk, hsk)-uniformly smooth for a non-decreasing {qk}k∈N ⊂ (1, 2]
with q0 = limk→∞ qk and limk→∞ csk = cs0, then we have

‖mθ,ηy −mθ,ηx‖Ā[η]
≤

(p0c
1+p0/q0
s0

q0c
2+q0/p0
c0

)1/p0

+ 1

 ‖y − x‖Ā[θ]

+

(
p0cs0

q0c
1+q0/p0
c0

)1/p0

‖y − x‖q0/p0
Ā[θ]
‖x‖1−q0/p0

Ā[θ]

for every x, y ∈ Ā[θ] and

‖mθ,η|Hq0/p0(A, Ā[η])‖

≤ r(A, 0)1−q0/p0

21−q0/p0 +

(
p0cs0

q0c
1+q0/p0
c0

)1/p0(
1 + cs0c

−q0/p0
c0 2q0

)1/q0−1/p0

 .

For k ∈ N, the constants cck and csk are defined by

cck = sup
µ∈(0,1/2]

(1− µ)hck(µ) and csk = inf
µ∈(0,1/2]

(1− µ)1−qkhsk(µ).

The proof of Corollary 4.1. According to the reiteration theorem for complex method
(see [16]), Ā[θ] and Ā[η] are interpolation spaces for the pairs (Ā[θk], Ā[ηk]) for k ∈ N. By
re-scaling we see that switching from the pair (A0, A1) to (Ā[θk], Ā[ηk]) in the definition
of Ā[θ] and Ā[η] corresponds to switching from the construction on the strip S = {z ∈
C : Rez ∈ [0, 1]} to the same construction on the strip Sk = {z ∈ C : Rez ∈
[θk, ηk]}. Relying on Lemma 4.3, we note that the restriction of gx = Jr,θx defined on S
onto Sk satisfies the same minimisation properties as a member of Fr

(
λk, (Ā[θk], Ā[ηk])

)
(for λk defined by the re-scaling λk = (θ − θk)/(ηk − θk) transforming Sk onto S)
and, thus, coincides with Jr,λk

x (re-scaled to Sk). This observation shows that the
homeomorphism mθ,η : Ā[θ] → Ā[η] does not depend on the interpolation pair that
was used to construct it, or, that is equivalent, on the strip Sk used to construct the
mapping. We finish the proof by taking the limit k → ∞ in the estimates given in
Theorem 4.3.

The interpolation properties of the noncommutative Lp-spaces were established by
V. I. Ovchinnikov [50, 51].
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Theorem 4.4. ([50, 51]). LetM be a semifinite von Neumann algebra with an n. s. f.
trace τ , p0, p1 ∈ [1,∞], θ ∈ (0, 1) and 1/p = (1− θ)/p0 + θ/p1. Then

a) (Lp0(M, τ), Lp1(M, τ))[θ] = Lp(M, τ) (isometry);

b) (Lp0(M, τ), Lp1(M, τ))θ,p = Lp(M, τ) (isomorphism).

Combining Corollary 4.1 with Theorems 2.4 and 4.4, we obtain the following re-
markable homeomorphism.

Theorem 4.5. Let M be a semifinite von Neumann algebra with an n. s. f. trace
τ , a bounded A ⊂ Lp(M, τ), p, q ∈ (1,∞), rc = max(p, q, 2), rs = min(p, q, 2) and
α = rs/rc. Then there exists a homogeneous Hölder homeomorphism

mp,q : Lp(M, τ)←→ Lq(M, τ),

that is also a homeomorphism of the unit spheres of these spaces, satisfying m−1
p,q = mq,p,

‖mp,q|Hα(A,Lq(M, τ))‖ ≤ r(A, 0)1−α

(
21−α +

(
rccs
rsc1+αc

)1/rc(
1 + csc

−α
c 2rs

)1/rs−1/rc

)
,

‖mp,qy −mp,qx‖q ≤

(rcc1+1/α
s

rsc2+αc

)1/rc

+ 1

 ‖y − x‖p+( rccs
rsc1+αc

)1/rc

‖y − x‖αp‖x‖1−αp

for every x, y ∈ Lp(M, τ), where cc = ωc(1/2, rs, rc) and cs = ω(1/2, rc, rs) (see sub-
section 2.6) and ‖ · ‖r = ‖ · |Lr(M, τ)‖ for r ∈ {p, q}.

Remark 4.3. Note that, in the case 2 ∈ [p, q], the Hölder regularity of mp,q between
the noncommutative Lp-spaces is the same as the regularity of the Mazur mapping
between the corresponding Lebesgue spaces.

The proof of Theorem 4.5. Let us choose A0 = Lp0(M, τ), A1 = Lp1(M, τ) and r = 2
in Theorem 4.3 and Corollary 4.1 with p, q ∈ (p0, p1). Since the class IG+ contains
the l2-sum Zp0,p1 = l2 ({0, 1}, L2([0, 1], A0), L2([0, 1], A1)), we apply Theorem 2.4 to
establish the (rc, ωc(1/2, rs, rc))-uniform convexity and the (rs, ω(1/2, rc, rs))-uniform
smoothness of Zp0,p1 . According to Theorem 4.4, Lp(M, τ) = Ā[θ] and Lq(M, τ) = Ā[η]

for some θ, η ∈ (0, 1). We choose the mapping mθ,η as our homeomorphism. We
take the limits p0 → min(p, q, 2) and p1 → max(p, q, 2) in Corollary 4.1 finishing the
proof.

5 Homogeneous Hölder homeomorphisms: constructive ap-
proach

In this section, we develop a general homogenisation technique to construct our coun-
terparts of the classical Mazur mapping between the compatible pairs (i.e. with the
common tree) of IG0([1,∞)), IG0+ and IG+ spaces. They appear to be homogeneous
Hölder-Lipschitz homeomorphisms with occasionally sharp exponents of the Hölder
continuity.
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5.1 Simple Mazur ascent and complex Mazur descent: IG0 set-
ting

Let us define the simplest generalizations of the classical Mazur map [46] that we
study and employ to construct more involved variants.

Definition 5.1. For β ≥ 1, a measure space Ω, an index set I, Banach spaces
X and {Xi}i∈I and appropriate ideal spaces Yj(Ω) and Yj(I) for j ∈ {0, 1}, we
define the X-valued Mazur descents Mβ,X : Y0(Ω, X) → Y1(Ω, X) and Mβ,{Xi} :
Y0 (I, {Xi}) → Y1 (I, {Xi}) and the homogeneous X-valued Mazur descents mβ,X :
Y0(Ω, X)→ Y1(Ω, X) and mβ,{Xi} : Y0 (I, {Xi})→ Y1 (I, {Xi}) as:

Mβ,X : f(τ) 7−→ ‖f(τ)‖β−1
X f(τ), mβ,X : f(τ) 7−→

(
‖f(τ)‖X

‖f |Y0(Ω, X)‖

)β−1

f(τ),

Mβ,{Xi} : f(i) 7−→ ‖f(i)‖β−1
Xi

f(i) and mβ,{Xi} : f(i) 7−→
(

‖f(i)‖Xi

‖f |Y0 (I, {Xi}i∈I) ‖

)β−1

f(i).

For X = R and β ∈ (0, 1), we also define the (simple) Mazur ascent Mβ,a and the
homogeneous (simple) Mazur ascent mβ,a by means of

Mβ,a : f(τ) 7−→ |f(τ)|β−1f(τ) and mβ,a : f(τ) 7−→
(
|f(τ)|
‖f |Y0(Ω)‖

)β−1

f(τ).

We also use the same notation when Ω is discrete. One also assumes that all these
mappings send origin to origin.

The next lemma reveals the basic Hölder-Lipschitz regularity properties of the
vector-valued Mazur descents and simple Mazur ascents.

Lemma 5.1. For p, q ∈ [1,∞), β = p/q > 0, a measure space Ω, an index set I,
smooth Banach spaces X and {Xi}i∈I , let Mβ,X , mβ,X , Mβ,{Xi} and mβ,{Xi} for β ≥ 1
and Mβ,a and mβ,a for β < 1 be the Mazur mappings from Definition 5.1. Then one
has

a)
∥∥Mβ,X |H1(A,Lq(Ω, X))

∥∥ ≤ βr(A, 0)β−1 for A ⊂ Lp(Ω, X);

b)
∥∥mβ,X |H1(Lp(Ω, X), Lq(Ω, X))

∥∥ ≤ 2β − 1;

c)
∥∥Mβ,{Xi}

∣∣H1(A, lq (I, {Xi}i∈I))
∥∥ ≤ βr(A, 0)β−1 for A ⊂ lp (I, {Xi}i∈I) ;

d)
∥∥mβ,{Xi}

∣∣H1(lp (I, {Xi}i∈I) , lq (I, {Xi}i∈I))
∥∥ ≤ 2β − 1;

e)
∥∥Mβ,a|Hβ(Lp(Ω), Lq(Ω))

∥∥ ≤ 21−β;

f)
∥∥mβ,a|Hβ(A,Lq(Ω))

∥∥ ≤ (1 + 21−β) r(A, 0)1−β for A ⊂ Lp(Ω).

The operators in a)− f) remain bounded if X and {Xi}i∈I are not smooth.

The proof of Lemma 5.1. Let D be the Gâteaux derivative. Since the smoothness of X
is equivalent to the Gâteaux differentiability of ‖·‖X , we use the Lagrange and Lebesgue
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theorems to compute the Gâteaux derivatives of Mβ,X and mβ,X at f ∈ Lp(Ω, X) with
an increment h ∈ Lp(Ω, X):

DMβ,X(f)h(τ) = (β−1)‖f(τ)‖β−2
X 〈gf (τ), h(τ)〉f(τ)+‖f(τ)‖β−1

X h(τ) for a. e. τ ∈ Ω and

Dmβ,X(f)h(τ) = (β − 1)
‖f(τ)‖β−2

X 〈gf (τ), h(τ)〉f(τ)

‖f |Lp(ω,X)‖β−1
+
‖f(τ)‖β−1

X h(τ)

‖f |Lp(ω,X)‖β−1
+

+ (1− β)
‖f(τ)‖β−1

X 〈ḡf , h〉f(τ)

‖f |Lp(ω,X)‖β
for a. e. τ ∈ Ω, (1)

where gf (τ) ∈ X∗ is defined by 〈gf (τ), f(τ)〉 = ‖f(τ)‖X and ḡf (τ) =
‖f(τ)‖p−1

X ‖f |Lp(ω,X)‖−pgf (τ). Applying the triangle and Hölder inequalities (1/q =
β/p and 1/q − 1/p = (β − 1)/p) to (1), we obtain

‖DMβ,X(f)h|Lq (Ω, X)‖ ≤ β ‖f |Lp (Ω, X)‖β−1 ‖h|Lp (Ω, X)‖ and

‖Dmβ,X(f)h|Lq (Ω, X)‖ ≤ (2β − 1) ‖h|Lp (Ω, X)‖ , (2)

implying Parts a) and b. In the same manner one checks the validity of c) and d).
To establish e), let us note that the triangle and Hölder inequalities provide the

estimates

|Mβ,af(τ)−Mβ,ag(τ)| ≤ |Mβ,a(f − g)(τ)| for f(τ)f(τ) ≥ 0 and
|Mβ,af(τ)−Mβ,ag(τ)| ≤ 21−β |Mβ,a(f − g)(τ)| for f(τ)g(τ) < 0. (3)

because of the invariance

‖Mβ,af |Lq(Ω)‖ = ‖f |Lp(Ω)‖β. (4)

The homogeneity ‖φ(λ·)|Hα‖ = λα‖φ|Hα‖, φ : Z0 ⊂ A→ Z1 of the Hölder seminorm
implies

‖φ|Hα(A,Z1)‖ ≤ ‖φ|Hα(BZ0 , Z1)‖r(A, 0)1−α. (5)

Assume that ‖y‖X ≤ ‖x‖X = 1 and a homogeneous φ1(x) = ‖x‖1−αX φ(x), where
‖φ|Hα(BX , Y )‖ = C with φ(BX) ⊂ BY . Then the triangle inequality implies, for
x, y ∈ BX ,

‖φ1(x)− φ1(y)‖Y ≤ ‖φ(x)− φ(y)‖Y + (1− ‖y‖1−αX )‖φ(y)‖Y ≤ C‖x− y‖αX+

+ (‖x‖X − ‖y‖X) ≤ C‖x− y‖αX + (‖x‖X − ‖y‖X)1−α ‖x− y‖αX ≤ (C + 1)‖x− y‖αX .

The last estimates show that e) and f) hold too. To finish the proof we note that
Corollary 5.3 and Lemma 5.4 below imply similar estimates with worse bounds in the
case of non-smooth spaces (see the proof of Theorem 5.2).

The preceding lemma stands behind our following definition of the complex Mazur
descent and simple Mazur ascent between IG0-spaces.
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Definition 5.2. Let X ∈ IG0 = IG ∩ IG ({Lr, lr : r ∈ (1,∞)}) with the parameter
function pX : P = V(X) → [1,∞) defined on the vertices of the corresponding tree
T (X). Thus, a “leaf" Zj ∈ T (X), grown at the kth step of the “tree-growing" process
and corresponding to j ∈ P , is either LpX(j)(Ω) for a measure space Ω, or lpX(j)(I)
for an index set I. Together with all the “leaves" originating from Zj during the later
steps, it is Z̃j of the form of either

LpX(j)(Ω,W ), or lpX(j) (I, {Wi}i∈I) ,

where W and {Wi}i∈I are Banach spaces from IG0 themselves.
For α ≥ 1, by means of mj,α : X −→ Xp̄j

, where pX(l) = p̄j(l) for j 6= l ∈ P
and p̄j(j) = p(j)/α, we designate the mapping induced by mα,W if Zj = Lp(j)(Ω), or
mα,{Wj} if Zj = lp(j)(I), changing only the Z̃j-component of every f ∈ X. (Recall that
Xp̄j

is an IG0-space with the same tree as X but different parameter position function
p̄j.)

Assume that β : P → [1,∞) and Y ∈ IG0 with T (Y ) = T (X) and pY = pX/β.
Let the complex Mazur descent mβ : X → Y , be the composition

mβ =
∏
j∈P

mj,β(j).

Assume that γ ∈ (0, 1) and Z ∈ IG0 with pZ = pX/γ. Let the simple Mazur ascent
mβ : X → Z, be the mapping

mγ,a : f 7−→
(
|f |
‖f‖X

)γ−1

f.

The correctness of this definition is discussed in the next remark and theorem.

Remark 5.1. For the sake of the future usage and the matter of correctness, let us
note the following algebraic properties of the Mazur mappings defined above.

a) mj,αml,β = ml,βmj,α and mj,αmj,β = mj,αβ for i, j ∈ P, α, β ≥ 1;

b) mβmγ = mγmβ = mβγ for β, γ : P → [1,∞);

c) mβmα,a = mα,amβ = I for α ∈ (0, 1] and constant β : P → {1/α};
d) both mβ and mγ,a preserve the IG0 − norms.

Theorem 5.1. Let X, Y ∈ IG0 with the same parameter position set P , A ⊂ X and
β = pX/pY . Then we have

a) ‖mβ|H1(X, Y )‖ ≤ ‖2β − 1|L∞(P )‖Nmin(X) if β : P → [1,∞);

b) ‖mα,a|Hα(A, Y )‖ ≤
(
1 + 21−α) r(A, 0)1−α if β : P → {α} and α ∈ (0, 1].

The proof of Theorem 5.1. Part b) follows immediately from Part f) of Lemma 5.1
applied to the last “leaves” of X and followed by the multiple usage of the identity (4)
from the proof of Lemma 5.1.
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To establish a), we represent mβ as a finite product of the products of the groups
of mj,β(j) dealing with the “leaves grown” during one and the same step of the “tree-
growing” process creating X. Indeed, assume that X is created in Nmin(X) steps, and
the “leave” Pk appeared during the kth step of the process. Then Parts b) and d) of
Lemma 5.1 provide us with the estimates∥∥∥∏

j∈Pk

mj,βj

∥∥∥
H1
≤ sup

j∈Pk

(2β(j)− 1) ≤ ‖2β − 1|L∞(P )‖ for k ∈ INmin(X)

leading to a) with the aid of Corollary 3.1, a).

Corollary 5.1. Let X,Y ∈ IG0([1,∞)) have the same tree T (X) = T (Y ) (and, thus,
common P ). Then

X
(α,β)←→ Y with α = inf

i∈P

{
pX(i)

pY (i)
, 1

}
, β = inf

i∈P

{
pY (i)

pX(i)
, 1

}
.

The exponent α is sharp in the following cases:
a) pX ≥ pY ;
b) pmin(Y ) ∈ [pmin(X), 2] and there exists {ik} ∈ P satisfying limk→∞ pX(ik) = pmin(X)
and limk→∞ pY (ik) = pmin(Y );
c) pmax(X) ∈ [2, pmax(Y )] and there exists {ik} ∈ P satisfying limk→∞ pX(ik) = pmax(X)
and limk→∞ pY (ik) = pmax(Y ).

The proof of Corollary 5.1. If α = 1, we take the homeomorphism φ = mu with u =
pX/pY and use the representation φ−1 = m1/uβmβ,a (see Lemma 5.1, Theorem 5.1 and
Corollary 3.1, a)) to establish φ ∈ H1(X, Y ) and φ−1 ∈ Hβ(BY , X). Switching X and
Y covers the case β = 1. If α, β < 1, we take

φ = mu/αmα,a and φ−1 = m1/uβmβ,a (1)

Theorem 5.1 and Corollary 3.1, a) provide the smoothness exponents. Eventually we
deduce the sharpness in a), b) and c) from Theorem 11.1.

Corollary 5.2. Let X ∈ IG0([1,∞)). Then (for the constant function: 2̄ : P → {2})

X
(α,β)←→ H = X2̄ with sharp α = min(pmin(X), 2)/2, β = 2/max(pmax(X), 2).

5.2 Abstract Mazur ascent and complex Mazur descent: IG0+

setting

The next lemma is the Hölder inequality for IG-spaces. Since IG-spaces are lattices
of functions, the operation of the pointwise product is well-defined for the functions
from the IG-spaces with the same tree. It can be interpreted as the Hölder inequality
for convexifications of a lattice (see Remark 2.6, a)). Recall that, for a parameter
function q : P → (1,∞) defined on the same same parameter position set P as the
parameter function pX of X ∈ IG+, the space Xq is the space with the same tree as
X and the parameter function q.
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Lemma 5.2. Let X ∈ IG with the parameter function p = pX and α ∈ (0, 1). Then
we have

‖fg|X‖ ≤ ‖f |X p
1−α
‖1−α‖g|X p

α
‖α.

Let us define the abstract Mazur ascent mapping between IG0+ spaces.

Definition 5.3. For X ∈ IG0+ with the parameter position set P , let Pll be the set
of the last leaves of T (X), and let P = P− ∪ Pnc be the decomposition into the union
of the parameter position set P− of X− (from which X was created by “growing" the
noncommutative leaves) and its part Pnc corresponding to the noncommutative spaces
that are some of the last leaves from {Zi}i∈Pll

, where every Zi has the parameter p(i).
Thus, every f ∈ X is defined on some set Ω = Ω(X) and takes values in ∪i∈Pll

Zi.
Assume that q : P → (1,∞), β ∈ (0,∞), 1 < inf {p(i), q(i) : i ∈ Pnc, p(i) 6= q(i)}

and
α = α(X, q) = inf

{
1,

min (p(i), q(i), 2)

max (p(i), q(i), 2)
: i ∈ Pnc, p(i) 6= q(i)

}
.

For every i ∈ Pnc and mp(i),q(i) provided by Theorem 4.5, let Mp(i),q(i),β,a be the β-
homogenisation of mp(i),q(i) defined by

Mp(i),q(i),β,a : x 7−→ ‖x‖βZi
mp(i),q(i)

(
x

‖x‖Zi

)
. (Aa1)

Now let the abstract Mazur ascent mapping Mp,q,β,Aa be defined, for every ω ∈ Ω and
i = i(ω), by the relation

(Mp,q,β,Aaf) (ω) = Mp(i),q(i),β,a (f(ω))

if p(i) 6= q(i) and Zi is noncommutative, defined by the relation

(Mp,q,β,Aaf) (ω) = Mp(i),q(i),β,a (f(ω)) = ‖f(ω)‖β−1
Zi

f(ω) (Aa2)

on the corresponding noncommutative leaf Zi if p(i) = q(i), and defined as the classical
Mazur ascent or simple descent (see Definition 5.1)

(Mp,q,β,Aaf) (ω) = Mβ,a (f(ω)) (Aa3)

on the corresponding last leaf Zi if it is “commutative” (not noncommutative).
We shall also define the homogeneous abstract Mazur ascent mapping

mp,q,β,Aa : f 7−→ ‖f‖1−βX Mp,q,β,Aaf for X ∈ X. (aa)

We also continue to use the notation mu for the complex Mazur descent acting on the
“commutative" vertices of X (i.e. on the vertices of X−).

Remark 5.2. The abstract ingredient of the proof of Lemma 5.1, f) shows that, for
β ∈ (0, 1], one has∥∥mp,q,β,Aa|Hβ(BX , Y )

∥∥ ≤ 1 +
∥∥Mp,q,β,Aa|Hβ(BX , Y )

∥∥ .
The corresponding re-homogenisation (or β-homogenisation) is the subject of Corollary
5.3 and Lemma 5.4. Together with Theorem 4.5, they also imply

M−1
p,q,β,Aa = Mq,p,1/β,Aa and m−1

p,q,β,Aa = mq,p,1/β,Aa.
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Lemma 5.3. For Banach spaces X and Y with the unit spheres SX and SY and
β ∈ (0, α] ⊂ (0, 1], let φ ∈ Hα(SX , Y ). Assume also that ψ ∈ Hβ ((0,∞),R) satisfying
0 ≤ ψ(t) ≤ Cψt

β for t ∈ (0,∞) and

φψ : X −→ Y, x 7−→ ψ (‖x‖X)φ

(
x

‖x‖X

)
, φψ(0) = 0.

Then we also have

‖φψ|Hβ(X,Y )‖ ≤
∥∥ψ|Hβ ((0,∞),R)

∥∥ ‖φ|C(SX , Y )‖+ Cψ2α‖φ|Hα(SX , Y )‖.

Moreover, φψ(X) = Y if φ(SX) = SY and ψ ((0,∞)) = (0,∞), and also

φ−1
ψ (y) = ψ−1(‖y‖Y )φ−1

(
y

‖y‖Y

)
if φ−1 and ψ−1 exist.

The proof of Lemma 5.3. Let us start by noting that

‖φ|Hβ(SX , Y )‖ ≤ 2α−β‖φ|Hα(SX , Y )‖. (1)

For x, y ∈ X with ‖x‖X ≥ ‖y‖X , we use the representation

φψ(x)−φψ(y) = φ

(
y

‖y‖X

)
(ψ(‖x‖X)− ψ(‖y‖X))+ψ(‖x‖X)

(
φ

(
x

‖x‖X

)
− φ
(

y

‖y‖X

))
(2)

and the observation (used, particularly, in [5])∥∥∥∥ x

‖x‖X
− y

‖y‖X

∥∥∥∥
X

≤ ‖x− y‖X
‖x‖X

+
‖x‖X − ‖y‖X
‖x‖X

≤ 2

‖x‖X
‖x− y‖X , (3)

helping us with estimating the Y -norm of the second summand in (2) in the view of
(1), to conclude with
‖φψ(x)− φψ(y)‖Y

≤
(∥∥ψ|Hβ ((0,∞))

∥∥ ‖φ|C(SX , Y )‖+ Cψ2β‖φ|Hβ(SX , Y )‖
)
‖x− y‖βX

≤
(∥∥ψ|Hβ ((0,∞))

∥∥ ‖φ|C(SX , Y )‖+ Cψ2α‖φ|Hα(SX , Y )‖
)
‖x− y‖βX ,

where we have also used the triangle inequality in X. Using the polar decomposition
Y = SY × (0,∞)) in X and Y , one finishes the proof.

Corollary 5.3. For Banach spaces X and Y with the unit spheres SX and SY and
β ∈ (0, α] ⊂ (0, 1], let φ ∈ Hα(SX , Y ) and

φβ : X −→ Y, x 7−→ ‖x‖βXφ
(

x

‖x‖X

)
, φβ(0) = 0.

Then we also have

‖φβ|Hβ(X, Y )‖ ≤ ‖φ|C(SX , Y )‖+ 2α‖φ|Hα(SX , Y )‖.

Moreover, φβ(X) = Y if φ(SX) = SY , and

φ−1
β (y) = ‖y‖1/βY φ−1

(
y

‖y‖Y

)
if φ−1 exists.
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Lemma 5.4. For Banach spaces X and Y with the unit spheres SX and SY , α ∈ (0, 1]
and β ∈ (0,∞), let φ ∈ Hα(SX , Y ) and

φβ : X −→ Y, x 7−→ ‖x‖βXφ
(

x

‖x‖X

)
, φβ(0) = 0.

Then we also have

‖φβ|Hmin(α,β)(BX , Y )‖ ≤ max(β, 1)2(min(β,1)−α)+‖φ|C(SX , Y )‖+ 2α‖φ|Hα(SX , Y )‖.

Moreover, φβ(X) = Y if φ(SX) = SY , and

φ−1
β (y) = ‖y‖1/βY φ−1

(
y

‖y‖Y

)
if φ−1 exists.

The proof of Lemma 5.4. The case β ∈ (0, α] is Corollary 5.3. For x, y ∈ X with
1 ≥ ‖x‖X ≥ ‖y‖X , we use either the fact that X is a linear metric space with the
metric ‖x− y‖β for β ∈ (α, 1], or the Lagrange theorem for β > 1 to obtain

‖x‖βX−‖y‖
β
X ≤ max(β, 1)‖x‖(β−1)+

X ‖x−y‖min(β,1)
X ≤ 2min(β,1)−α max(β, 1)‖x−y‖αX . (1)

This estimate, along with the representation (2) and relation (3) from the proof of
Lemma 5.3 with ψ(t) = tβ, implies the estimate for the Hα-norm of φβ sought for. The
proof is finished by using the polar representation in X and Y .

The next lemma demonstrates the roles playing by the homogenisation parameter β
and the smoothness α for the boundedness of basic Mazur mappings on the model case
of the Bochner-Lebesgue spaces: the lower homogenisation provides global regularity
at the expense of, possibly, worse smoothness, while upper homogenisation preserves
the smoothness.

Lemma 5.5. For p, q ∈ [1,∞], let (E, µ) be a measure space with countably additive
µ, and X a Banach space. Under the conditions of Lemma 5.4, let β = p/q and

ψβ : Lp(E,X) −→ Lq(E, Y ), f(τ) 7−→ φβ (f(τ)) for a.e. τ ∈ E.

Then we have

a)
∥∥ψβ|Hβ (Lp(E,X), Lq(E, Y ))

∥∥ ≤ ‖φ|C(SX , Y )‖+ 2α‖φ|Hα(SX , Y )‖ if β ∈ (0, α];

b)
∥∥ψβ|Hα

(
BLp(E,X), Lq(E, Y )

)∥∥
≤ max(β, 1)2β+min(β,1)−2α‖φ|C(SX , Y )‖+ 2β‖φ|Hα(SX , Y )‖
if β ∈ (α,∞).

The proof of Lemma 5.5. Let f, g ∈ Lp(E,X). In the case of Part a), we just take
Lq-norm of the both sides of the following estimate provided by Corollary 5.3:

‖ψβf(τ)− ψβg(τ)‖Y ≤ (‖φ|C(SX , Y )‖+ 2α‖φ|Hα(SX , Y )‖) ‖f(τ)− g(τ)‖βX . (1)
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In the case of Part b), we have from Lemma 5.4

‖ψβf(τ)− ψβg(τ)‖Y ≤
(
max(β, 1)2min(β,1)−α‖φ|C(SX , Y )‖+ 2α‖φ|Hα(SX , Y )‖

)
× (‖f(τ)‖X + ‖g(τ)‖X)β−α ‖f(τ)− g(τ)‖αX , (2)

and assume also that f, g are in the unit ball of Lp(E,X). Applying Lemma 5.2 with
X = Lq(E) and the parameter α/β (Hölder inequality) and the triangle inequality for
Lp(E) to (2), we obtain

‖ψβf − ψβg|Lq(E, Y )‖ ≤
≤ 2β−α

(
max(β, 1)2min(β,1)−α‖φ|C(SX , Y )‖+ 2α‖φ|Hα(SX , Y )‖

)
‖f − g|Lp(E,X)‖α,

(3)

finishing the proof.

The following theorem describes the Hölder smoothness of the abstract Mazur as-
cent mapping that forms the complete system of the Hölder homeomorphisms of the
spheres of IG0+ spaces in composition with the complex Mazur descent (see Remark
5.3, c)).

Theorem 5.2. Let X, Y ∈ IG0+ ([1,∞)) be spaces with the same tree T (X) = T (Y ),
β > 0 and pX(i) = βpY (i) for i ∈ P \ PI and PI = {i ∈ Pnc : pX(i) = pY (i)}. Assume
also that

1 < inf
i∈Pnc\PI

{pX(i), pY (i)} and 1/α =

{∥∥∥ max(pX ,pY ,2)
min(pX ,pY ,2)

∣∣∣ l∞(Pnc \ PI)
∥∥∥ if PI 6= Pnc,

1 if PI = Pnc
.

Then m−1
pX ,pY ,β,Aa

= mpY ,pX ,1/β,Aa and there exists a constant C depending on
{pX(i), pY (i)}i∈Pnc\PI

and β, such that

‖mpX ,pY ,β,Aa|Hmin(α,β)(BX , Y )‖ ≤ C.

Remark 5.3. a) Theorem 5.2 is naturally extended (with the same bounds) to the
setting of IG(S)+ classes, where S is the class of Banach function and sequence lattices,
while the noncommutative leaves are still noncommutative Lp-spaces with the set of
exponents strictly separated from 1 and ∞.

b) The results involving the complex Mazur descent (applied to X− of X ∈ IG0+)
are transferred to the setting of IG0+ spaces without any changes.

c) Note that in the degenerated case, when the parameters of all noncommutative
leaves of X and Y coincide (PI = Pnc), the construction in the proof of Theorem
5.2 gives the inverse of the complex Mazur descent m1/β with the constant descent
parameter 1/β (naturally acting on the vertices of X−) if β ∈ (0, 1) and the descent
itself (that is simple this time) if β > 1.

d) The major advantage of Theorem 5.2 is that α depends only on the parameters
of the noncommutative spaces that we want to change. Further reduction to β permits
to change also the extreme “commutative” parameters.
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The proof of Theorem 5.2. The identity follows from Corollary 5.3 and Theorem 4.5.
For f, g ∈ X and ω ∈ Ω = Ω(X) = Ω(Y ), let f(ω), g(ω) ∈ Zi for some i ∈ Pnc,
where Zi = LpX(i)(Mi, τi). Then the corresponding mapping mpX(i),pY (i) from Theorem
4.5 maps Zi onto the corresponding leaf LpY (i)(Mi, τi) of Y and satisfies, for αi =
min(p(i), q(i), 2)/max(p(i), q(i), 2) ≥ α and Ci > 0 (provided in Theorem 4.5)∥∥mp(i),q(i)

∣∣Hαi
(
BZi

, LpY (i)(Mi, τi)
)∥∥ ≤ Ci. (1)

Let us start with the case β ∈ (0, α]. Applying Corollary 5.3 to (1) if pX(i) 6= pY (i),
or to the identity mapping (with Ci = 1) if pX(i) 6= pY (i), we see that

‖Mp(i),q(i),β,af(ω)−Mp(i),q(i),β,ag(ω)‖q(i) ≤ (1 + 2αiCi)‖f(ω)− g(ω)‖βp(i) (2)

for all noncommutative leaves i ∈ Pnc. If, in turn, Zi (i ∈ Pll) is a leaf that is not
noncommutative, then Mp(i),q(i),β,a is just the classical Mazur map Mα,a (see Lemma
5.1, e)), and one has

‖Mp(i),q(i),β,af(ω)−Mp(i),q(i),β,ag(ω)‖q(i) ≤ 21−β‖f(ω)− g(ω)‖βp(i). (3)

The explicit expressions for Ci given in Theorem 4.5 and the definition of IG0+ class
imply the uniform boundedness

sup
i∈Pll

{21−β, 1 + 2αiCi, 3} = C <∞.

Now we combine the relations (1), (2) and (3) (with the common C) and finish the
proof for β ∈ (0, α] by means of the multiple usage of the identity

‖|h|α‖p/α = ‖h‖αp for p ∈ (0,∞]. (4)

Assume now that β > α and f, g ∈ BX . Keeping in mind Theorem 4.5, we apply
Lemma 5.4 to (1) if pX(i) 6= pY (i), or to the identity mapping (with Ci = 1 and αi = 1)
if pX(i) 6= pY (i), we see that

‖Mp(i),q(i),β,af(ω)−Mp(i),q(i),β,ag(ω)‖q(i) ≤

≤
(
max(β, 1)2min(β,1)−αi + 2αiCi

) (
‖f(ω)‖p(i) + ‖g(ω)‖p(i)

)β−αi ‖f(ω)− g(ω)‖αi

p(i) ≤

≤
(
max(β, 1)2min(β,1)−αi + 2αiCi

) (
‖f(ω)‖p(i) + ‖g(ω)‖p(i)

)β−α ‖f(ω)− g(ω)‖αp(i) (5)

for all noncommutative leaves i ∈ Pnc. If, in turn, Zi (i ∈ Pll) is a leaf that is not
noncommutative, thenMp(i),q(i),β,a is just the classical Mazur map (see the scalar-valued
case of Lemma 5.1, e)), and one has

‖Mp(i),q(i),β,af(ω)−Mp(i),q(i),β,ag(ω)‖q(i) ≤

≤ max(β, 1)2(1−β)+
(
‖f(ω)‖p(i) + ‖g(ω)‖p(i)

)(β−1)+ ‖f(ω)− g(ω)‖min(β,1)
p(i) ≤

≤ max(β, 1)2(1−β)+
(
‖f(ω)‖p(i) + ‖g(ω)‖p(i)

)β−α ‖f(ω)− g(ω)‖αp(i) (6)



Hölder analysis and geometry on Banach spaces. Part I 55

Theorems 4.5 and 2.4 (2.3) demonstrate the uniform boundedness of the constants in
(5) and (6). Hence we apply the Hölder inequality

∥∥uβ−αvα|Z∥∥ ≤ ∥∥∥uβ|Z pZβ

β−α

∥∥∥1−α
β
∥∥∥vβ|Z pZβ

α

∥∥∥α
β

from Lemma 5.2 for the space Z ∈ IG0, whose tree T (Z) is the subtree of Y obtained
from T (Y ) by eliminating (not “growing”) all the last leaves with pZ being the restriction
of pY , the identity (4) and the triangle inequality for X to establish the key estimate

‖MpX ,pY ,β,Aaf −MpX ,pY ,β,Aag‖Y ≤ C (‖f‖X + ‖g‖X)β−α ‖f − g‖αX . (7)

To finish the proof with the aid of (7), we apply Lemma 5.4 to the restriction of
MpX ,pY ,β,Aa onto the unit sphere SX to obtain

‖mpX ,pY ,β,Aa|Hα(BX , Y )‖ ≤ max(β, 1)2(min(β,1)−α)+ + 2βC.

Corollary 5.4. Let X, Y ∈ IG0+([1,∞)) have the same tree T (X) = T (Y ) (and, thus,
common P ) and PI = {i ∈ Pnc : pX(i) = pY (i)}. Assume also that

1 < inf
i∈Pnc\PI

{pX(i), pY (i)} and αnc = inf

{
1,

min (pX(i), pY (i), 2)

max (pX(i), pY (i), 2)
: i ∈ Pnc \ PI

}
.

Then we have

X
(α,β)←→ Y with α = inf

i∈P

{
pX(i)

pY (i)
, 1, αnc

}
.

The exponent α is sharp in the following cases:
a) pX ≥ pY and Pnc = PI ;
b) 2 ∈ {pX(i), pY (i)} and pX(i) ≤ pY (i) for every i ∈ Pnc and either

(i) pmin(Y ) ∈ [pmin(X), 2] and there exists {ik} ∈ P satisfying limk→∞ pX(ik) =
pmin(X) and limk→∞ pY (ik) = pmin(Y ), or

(ii) pmax(X) ∈ [2, pmax(Y )] and there exists {ik} ∈ P satisfying limk→∞ pX(ik) =
pmax(X) and limk→∞ pY (ik) = pmax(Y ).

The proof of Corollary 5.4. With respect to X− and Y−, it is conducted exactly as the
proof of Corollary 5.1: the abstract Mazur ascent parameter is chosen to, at least,
elevate all the (commutative) pX(i) above pY (i) and, then, adjust with the aid of
the appropriate complex (but Lipschitz) Mazur descent. The only difference is that
changing the parameters pX(i) of those noncommutative leaves that have to be changed
(i.e. i ∈ Pnc \ PI) may require the further decrease in the abstract Mazur ascent
parameter. Moreover, we need to start with the abstract Mazur ascent if any of the
noncommutative parameters pX(i) need to be changed (even to be decreased). The
sharpness follows from Theorem 11.1.

Theorem 6.7 extends the following immediate corollary.
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Corollary 5.5. Let X ∈ IG0+([1,∞)) with 1 < inf {pX(i) : i ∈ Pnc \ PI} if Pnc 6= PI
and

αnc = inf

{
1,

min (pX(i), 2)

max (pX(i), 2)
: i ∈ Pnc \ PI

}
.

Then we have

X
(α,β)←→ H = X2̄ with α = min(pmin(X)/2, 1, αnc) and β = min(2/pmax(X), 1, αnc).

The parameters α and/or β are sharp if, respectively, αnc ≥ pmin(X)/2 and/or αnc ≥
2/pmax(X).
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