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Abstract. In the paper we answer the question when in finite dimensions finite unions
and intersections of closed half-spaces are shifts of sets stable under shrinkings or
dilatations and give explicit descriptions of the kernels of such sets.

1 Introduction

Convex closed sets stable under shrinkings and dilatations play an important role in the
theory of optimization (see, for example, [1, 2|). Investigation of non-convex sets with
these properties and their shifts has been begun by A.M. Rubinov and his co-authors
(see [4] and references therein). Our interest in these sets (called further star-shaped
and co-star-shaped respectively) and the choice of research methods are due to the fact
that in finite dimensions they can be represented as intersections of some collections
of finite unions of closed half-spaces. It is of interest to obtain verifiable criteria for
a set to be a star-shaped or a co-star-shaped one and give an explicit description of
its kernel or co-kernel respectively. In the paper such criteria and descriptions of the
kernels are given for finite unions and intersections of closed half-spaces.

The paper consists of three sections. In Theorem 2 of Section 2 we give a neces-
sary condition for a finite union of star-shaped sets to be also star-shaped. Applying
Theorem 2 to finite unions of closed half- spaces we obtain in Theorem 3 of Section
3 that these sets are star-shaped if and only if they are strongly star-shaped. From
this result it follows (Theorem 4) that a finite union of closed half-spaces is strongly
co-star-shaped if and only if it differs from R". A necessary condition for a convex set
to be co-star-shaped is given in Corollary 3 of Section 2. In Theorem 6 of Section 3 we
show that for a polyhedral set it is also sufficient.

2 Preliminaries

Let R™ be the n-dimensional Euclidean space. Throughout the paper we shall denote
the inner product of vectors a and x by (a, =), the closure, the interior and the boundary
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of a set A C R" by A, int A and bd A respectively, the ray {\z : A\ > 0} by %, the
closed ball with center xy and radius r by Blzo,r]. If A C R" is convex, then ri A is
its relative interior, dim A is its dimention and 0% A is its recession cone. The convex
cone generated by a nonempty set C' C R™ and the affine hull of C' will be denoted by
co C, aff C' respectively. For a natural number p we shall write ¢ € 1 : p if ¢ is natural
and 7 < p.

Definition 1. Let A be a nonempty subset of R™, xo € R™. We call the set A star-
shaped at the point xg, if

{tro+(1—t)z:0<t<1, ze A} C A

The set of all points at which A is star-shaped is called the kernel of A and denoted by
kern A. If 0 € kern A, then A is called radiant.

It is not difficult to see that the set kern A is convex. So we can characterize
convex sets as star-shaped ones which coincide with their kernels. Since the algebraic
operations in R™ are continuous, the kernel of a closed star-shaped set is also closed.
The totality of all star-shaped sets is stable under shifts and

kern (wop + A) = wy + kern A. (1)
for a star-shaped set A and a point wy € R™.

Definition 2 (|6]). A closed proper set A C R™ is called strongly star-shaped at the
point xo if xog € int A and for each x € R" x # 0 the ray xo + £, does not intersect
the boundary bd A of the set A more than once.

The set of all points at which A is strongly star-shaped is denoted by kern, A and
called the lower kernel of A. If 0 € kern, A, then A is called strongly radiant.

A strongly radiant set A can be characterized (see [6]) as a closed radiant set whose
gauge
pa(z) =inf{\ >0:z€ NA} (z€R")

is a real-valued continuous function.

A closed convex set A is strongly star shaped if and only if (see [3]) int A # 0.
Herewith kern, A = int A.

It has been proved in [6] that

(xg Ekern, A, z € A, A €[0,1)) = ((1 = N)xo+ Az € int A), (2)

whence it follows that a strongly star-shaped set is star-shaped and regularly closed
(see [7]).

The totality of all strongly star-shaped sets is also stable under shifts and (1) is
also valid for lower kernels.

Proposition 1 ([10]). Let A C R™ be a closed proper set. If kern. A # 0, then it is
conver and
kern, A C kern A C kern, A. (3)
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Corollary 1. Let A be strongly star-shaped. Then
kern, A = kern A and ri(kern, A) = ri(kern A).

If dim(kern A) = n, then (see [4]) the set A is strongly star-shaped at each point of
int (kern A). The set A = {(x1,22) € R? : |25 < |z1|7'} gives an example of a strongly
star-shaped set whose kernel has no interior points.

Definition 3. Let B be a nonempty subset of R", u € R™. We call the set B co-star-
shaped at the point u if

(e B, A>1) = (u+ Az —u) € B). (4)

The set of all points at which B 1is co-star-shaped is called the co-kernel of B and
denoted by kerns B. If 0 € kerny B, then B s called co-radiant.

In [5] the set kerny, B is defined as the totality of points u € R™ \ B such that (4)
takes place and a set B with nonempty kern., B is called star-shaped with respect to
infinity

We can characterize affine sets as convex ones which coincide with their co-kernels.

Proposition 2 ([10]). If B # R" is co-star shaped, then kern,, B C (R™\ B) U bd B.

Proposition 3 (|10]). The co-kernel kern. B of a co-star-shaped set B is convex. It
18 closed if B is closed.

There exist non-affine co-star-shaped sets which contain their co-kernels. For ex-
ample, the set B = {(z,0) € R? : z € R} U {(0,2) € R? : z € R} enjoys this property
(kerny,, B = {0}).

Proposition 4 (|10]). Let a co-star-shaped set B # R™ be such that
(w1 # ug, ug,ug € bdB) = (IA € (0,1) : dug + (1 — Nug ¢ bd B),
and kern., B contains more than one element. Then kern., B\ B # 0.

The totality of all co-star-shaped sets is stable under shifts and
kerny, (wo + B) = wo + kerny, B. (5)
for a co-star-shaped set B and a point wy € R".

Proposition 5. A nonempty closed convex set C' C R™ is co-star-shaped if and only if
there exists w € R™ such that C C w+07C.

Proof. Necessity. Let C be co-star-shaped at the point w, x € C. We have w+m(z —
w) = zy € C for all natural m whence it follows that z —w = lim %zm € 07C and

thereby C' C w + 01C.

Sufficiency. Let C Cw+07C, x € C, A > 1. Wehave z —w € 07C, A —1>0
whence it follows that w+A(z—w) = z+(A—1)(x —w) € C. Hence C is co-star-shaped
at the point w. ]
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Corollary 2. A nonempty closed conver set C' C R™ s co-radiant if and only if
CccorcC.

Corollary 3. If a nonempty closed conver set C' C R™ is co-star shaped, then dim C' =
dim 0t C.

Proof :Let a € C, w € kern,, C. We have a+0"C C C' C w+01C whence the equality
dim C' = dim 0% C follows. [

Remark 1. If the dimension of a nonempty closed conver set C' coincides with the
dimention of its recession cone, then the set C' is not generally speaking co-star-shaped.
Indeed, let C = {(x,y) €eR?*: 2 >0, y <Inz}. Then 07C = {(z,y) eR?: 2 >0, y <
0}, dimC = dim0TC = 2. At the same time there does not exist w € R? such that
C Cw+0"C and according to Proposition 5 the set C' is not co-star-shaped.

Definition 4 ([5]). A nonempty closed set B C R™ is called strongly co-star-shaped at
the point u if
1)u ¢ B;
2) (u+Z)NB #0) = (u+%,)NB contains at least two points and (u+-%,)Nbd B
consists of exactly one point.

The set of all points at which B is strongly co-star-shaped is denoted by kern* B
and called the upper kernel of B. If 0 € kern™ B, then B is called strongly co-radiant.

A strongly co-radiant set B can be characterized (see [5]) as a closed co-radiant set
whose co-gauge
vp(x) =sup{\>0:2€ AB} (xz€R")

is a real-valued nonzero continuous function.

In [5] strongly co-star-shaped sets are called strongly star-shaped with respect to
infinity.

If B is strongly co-star-shaped, then (see [5])

(uekern*B, x € B, A>1) = (u+ Az —u) € int B). (6)

Therefore a strongly co-star-shaped set is co-star-shaped and regularly closed.
The totality of all strongly star-shaped sets is also stable under shifts and (5) is
valid for upper kernels.

Proposition 6 ([10]). Let B C R™ be a nonempty closed set. If kern™ B # 0, then it
18 conver and
kern® B C kern., B C kern®™ B.

Corollary 4. Let B be a strongly co-star-shaped set. Then
kern® B = kerny, B and ri(kern® B) = ri(kerny B).

Proposition 7 (|4, 10]). Let B # R" be a closed co-star-shaped set. If int (kerny, B) #
(), then B is a strongly co-star-shaped set and herewith int (kerns, B) C kern® B.
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There exist strongly star-shaped sets whose upper kernels have no interior points.
For example, the strongly co-star-shaped set {(z1,72) € R? : 5] > |z1|7'} enjoys this
property.

Let A C R". We put ¢, A =R"\ A. If the set A is regularly closed, then %, A is
the complement of the set A in the Boolean algebra of regularly closed subsets of R"™.
Therefore €, (¢, A) = A (see [7]).

Theorem 1 (|5|). 1) If A C R"™ is strongly star-shaped, then €, A is strongly co-star-
shaped and kern, A = kern* €, A;

2) If B C R™ is strongly co-star-shaped, then €, B is strongly star-shaped and
kern* B = kern, €, B.

Let ACR™, A+#(. We put
rcA = {lim\w; : \; | 0, w; € A}
The cone rcA is called the recession cone of the set_A. The recession cone of the set
A coincides with the recession cone of its closure A. If A is a strongly star-shaped

set, then rc(%, A) = €, (rcA) (see [9]). If A is a convex closed set, then (see [3])
rcA = 0" A. This equality justifies the use of the term recession cone for the cone rcA.

Theorem 2. Let Ay, -, A, be strongly star-shaped sets,

p
A=A #R"
i=1
Suppose that the recession cones rcA; (1 = 1,--- ., p) are reqularly closed and the set A
1s star-shaped. Then
p
ﬂ(R" \ rcA;) # 0.

i=1
Proof. Let xy € kern A. Then the nonempty open set R™ \ A is co-star-shaped at the
point xg. Let ug € R"\ A and r > 0 be such that Blug,r] C R"\ A. We have, for
1€1:p,
o+ | JAM(—z0 + Blug,7]) € R"\ A C R"\ 4,
A>1

whence it follows that
B[—xz¢ + ug,r] Crc(R"\ A;) =rcR*\ A; =1¢(%, A;) = €, (rcAy).
Hence —xz + ug € int (€, (rc4;)) = R" \ rcA;. O

3 Finite unions and intersections of closed half-spaces

The intersection A of a finite collection of closed half-spaces is convex and thereby it is
star-shaped. It is strongly star-shaped if and only if the corresponding open half-spaces
have a common point. Herewith kern, A is the intersection of these open half-spaces.
While studying finite unions of closed half-spaces we need the explicit description of
the interiors of such sets.
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Lemma 1 ([8]). Let

A= U{x e R": (aj,z) < p;} #R"™

i=1
Then
p p
int (U{x e R": (a;,x) < m}) = U{a: € R": (a;,x) < u;}.
i=1 =1
Theorem 3. Let ,
A= U{x e R": (a;,z) < u;} #R"™
i=1

The following conditions are equivalent:
1)A is star-shaped;

2)'61{95 € R": (a;, ) > 0} # 0;

3)121 is strongly star-shaped.
If A is star-shaped, then

p
0 +# m{x eR"™: (a;,x) < j;} C kern A, (7)
i=1
p ~
0#(HeeR": (ai,x) < i} C kern, A. (8)
i=1
If herewith
p p
Utz € R : (o 2) < i} # | J{e € R : (s, 2) < pus) (9)
= o
for each i € 1:p, then
B p
kern, A= [z € R": (a;, x) < i}, (10)
i=1
B p
kernA = ({z € R" : (a5, z) < i} (11)
i=1

Proof. 1) — 2). Let A; = {x € R" : (a;,2) < p;}. The implication follows by

Theorem 2. )

p
2) — 3). Let 9 € N{z € R": (a;,x) > 0}. Tt is obvious that —txy € [{z €
i=1 =1

1=

p
R™ : (a;,x) < p;} for ¢ large enough and thereby ({z € R™: {(a;, ) < p;} # 0. Let
i=1

p ~ _
we N{x eR": (a;,x) < i}, x € A, A € [0,1). Then (a;, z) < p; for some ¢ € 1 : p
i=1
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whence it follows that (1 — \)w + Az € {z € R : {a5,2) < pz} C int A. Therefore A is
strongly star-shaped at the point w.
3) — 1) A strongly star-shaped set is a star-shaped one.

Let A be star-shaped. (8) follows from the proof of implications 1) — 2) — 3).
Applying Corollary 1 and (8) we obtain

p p
0 +# m{x eR™: (as,z) < pi} = ﬂ{x € R": (a;,x) < ji;} C kern, A = kern A,
i=1 i=1

that is (7) holds true. Suppose now that (9) holds true. To prove (10) we show that
for each ig € 1 : p there exists x;, € R" such that (a;,, x;,) = i, and {(a;, z;,) > u; for
i€1:p,i+#ip. Indeed, let for example iy = 1. According to (9)

U{x eER": (aj,x) < i} # U{:U eR": (aj,z) < p;}.

=2
Next
P P
U{x eR": (aj,x) < i} # U{x eR": (a;,x) < i}
i=1 =2
whence it follows that

ﬂ{x eR": (a;,x) > i} # ﬂ{x eR": (a;,x) > p;}

=2

Therefore there exists Z € R™ such that (a;, 7) > p; for i € 2: p and (a1, 7) < p1. Let
xzo € R"\ A. Then (a;,x9) > p; for all i € 1 : p. Therefore there exists t € (0,1) such
that (a1,tZ + (1 — t)zo) = p1. Herewith (a;, tT 4+ (1 — t)z) > p; for i € 2 : p.

Let now w € kern, A. According to Lemma 1 and (4) Aw + (1 — Nz, € int A =
p

U{z e R": (a;,z) < p;} for A € (0,1]. If X is small enough, then (a;, \w+(1—X)x1) >
i=1

w; for ¢ € 2 : p. Therefore (a;, \w + (1 — N)x1) < py for this A. Hence (a1,w) < .
The inequalities (a;,w) < p; for i € 2 : p are proved in the same way and we obtain

(10). Then (11) follows by Corollary 1. O
Remark 2. The ezample of the set
/I = {(%1,[[’2) =T S 0} U {(l’l,flfg) . —XT9 S 0} U {(l’l,flfg) . —T1 — T2 S —1}

and w = (1/4,1/4) € kern, A C kern A show that in the general case the inclusions in
(7) and (8) are strict.

Corollary 5. Let vectors ay,- - - ,a, be linearly independent and i1, - - - , i, be arbitrary

I
numbers. Then the set A = |J{z € R™: (a;,x) < p;} is strongly star-shaped. Herewith
i=1

p p
kern, A = ﬂ{x eR™: (a;,x) < j;}, kernA = ﬂ{x e R": (a;, z) < u;}.

i=1 i=1



Star-shapedness and co-star-shapedness of finite unions. . . 141

Proof. There exist vectors by, --- , b, such that
1, ifi=j,
CLi,b' = 12
(ai;bs) {O, otherwise. (12)
p
Let b= by +---+b,. Then (a;,b) =1 for all 4. If X > maXk y1;, then b ¢ |J{z € R":
i=1 i=1

(a;,z) < p;}. Therefore by Theorem 3 the set A is strongly star-shaped.
_ o~ p
Let i € 1:p. Putting t; = 3, t; = p; +1forie1:p, i #1i, b= > t;b; we have
=1

7

P P
be U{x eR": (a;,x) <}, b¢ U{x eR": (a;,x) < w;}.
i=1 i=1

1#£7

Therefore equalities (10) and (11) hold true. O
Proposition 8. Let
O{x eR": (a;,z) < p;} #R"™
i=1
The equality
P q
U{x eR": (a;,z) <} = U{x e R": (bj,z) < v} (13)
=1 j=1

takes place if and only if

co{(ai, )iz} + {0, ) - 0 < O} = co{(bj, )i} +{(0,p) : p <O} (14)
Proof. According to Lemma 1 (13) takes place if and only if

P

ﬂ{x eR": (aj,x) > i} = ﬂ{x e R": (bj,z) > v;}. (15)

i=1

(15) is equivalent to the fact that each inequality (b;, z) > v; is a corollary of the system
of inequalities (a;,z) > u; (i € 1 : p), and each inequality (a;,x) > p; is a corollary
of the system of inequalities (b;,x) > v; (j € 1 : q). Applying the Minkowski-Farkas
theorem (see [3]) we infer that (15) takes place ifand only if

(bj,vj) € co{(ai, pi)i—y } +{(0,p) : p <0} (j€1:q) (16)

and
(i, i) € co{(bj,v3)j=a} +{(0, ) - p <O} (i €12 p). (17)
(16) and (17) hold true if and only if (14) takes place. O
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Corollary 6. (9) takes place if and only if
(a3, 117) & co{(ai, pa)i_y izt +{(0, ) p <0} (P €11 p). (18)
Proof. (9) takes place if and only if
co{(ai, pi)i_y izt +{(0, 1) - <0} # co{(as, )iy } +{(0,p) :p < 0p - (19)
for each i € 1 : p. Since (a3, 1) € co{(as, pi)i—y } +{(0, ) : 1 < 0}, (18) implies (19).
If (az, pi) € co{(ai, )iy, ;51 + {(0,1) + p < O} for some @ € 1 : p, then
{(ai, )y 15} € co{(as, pi)izi} +{(0, ) : o < 0}, whence it follows that
co{(ai, p)}_y it +{(0, 1) - pp < O} = co{(as, )iy } +{(0,p) : p <0} (1 € 11 p).
Therefore (19) implies (18). O
Theorem 4. A set )
0= U{x e R": (a;, ) < ;).
is strongly co-star-shaped if and Zorily if it is a proper subset of R™. Herewith

p
kern® Q) = ﬂ{x € R": (a;,x) > u;}.
i=1

Proof. Necessity. Let 2 be strongly co-star-shaped. Then according to Definition 4 of

p
a strongly co-star-shaped set 2 is a proper subset of R” and by Lemma 1 int Q = |J{z €
i=1

p

R™ : (a;, x) < p;}. By Theorem 1 the set ¢, Q2 = R"\int Q@ = (N {zr € R : {a;,x) > u;}
i=1

is a strongly star-shaped set and kern* Q = kern, (¢, 2). But

p
kern, (¢, Q) = ﬂ{x e R": (a;,z) > w}.
i=1
Sufficiency. Let €2 be a proper subset of R". According to Lemma 1

P
int Q = U{:c e R": (a;,x) < i}

i=1

Hence (2 is regularly closed. Then

p
€ Q= [z €R": (a;, x) > i}

=1

is a nonempty regularly closed subset of R™. Therefore
p
int (%, Q) =R"\ Q= [{z €R": fi(z) > m}) # 0,
i=1
and thereby @, () is strongly star-shaped. Since Q = €, (€, (), the set {2 is strongly

co-star-shaped by Theorem 1. U
By Theorem 4 and Corollary 4 we obtain
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Corollary 7. A set

0= U{:E € R": (a;,z) < u;}.

i=1

is co-star-shaped. If Q) £ R™, then

p
kerns, Q0 = ﬂ{m e R": (aj,x) > p;}.

=1

Theorem 5. A nonempty set
p
V= ﬂ{x eR": (a;,x) < i} #0,
i=1
s co-star-shaped if and only if
p
ﬂ{x eR": (a;,x) > ¢;} #0, where ¢; =sup(a;,x) (i €1:p). (20)
i=1 zeV

If V is co-star-shaped, then

p
kerno, V= ({z € R" : (a;, 2) > ¢;}. (21)
i=1
If
p p
ﬂ{x eR": (aj,x) <} # ﬂ{x eR": (a;, x) < w;}, (22)
=1 21;21
for each i € 1: p, then the set V is co-star-shaped if and if
p
(W €R": (a;,z) > p;} # 0. (23)
i=1
If V is co-star-shaped and (22) takes place, then
p
kerno V = ({z € R" : (a;,z) > pi}, (24)
i=1

Proof. Necessity. Let u € kern,, V, x € V, A > 1;i € 1: p. Since u+ ANz —u) € V
we have (a;,u) + MNa;, v —u) < p;. Dividing by A and letting A tend to co we obtain

(a;,x) < (a;,u). Therefore ¢; = sup(a;,z) < (a;,u) whence it follows that kern,, C
zeV

p
N {x € R": (a;,x) > ¢;}. Hence (20) takes place.
i=1

P
Sufficiency. Let (20) take place, v € N{x € R" : (a;,x) > ¢;}, © € V. We have
i=1
(a;,z) < ¢; < {(ai,u) and therefore

{aj,u+ Mz —u)) = (a, )+ (A=1){a,z—u) <p (i€l:p, A>1).
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Hence
p

m{x € R": (a;,z) > ¢;} Ckerny V,

i=1
and (21) is proved.

Let now (22) take place. Then ¢; = p; for all i € 1 : p. Indeed, let, for example,

i = 1. Then there exists & € R"” such that (a,Z) > py and (a;,7) < p; for i € 2 : p.
Let g € V. Then (a;,x0) < p; for i € 1 : p. If {ay,29) = p1, then ¢ = py. If
(ay,x9) < gy there exists ¢t € (0,1) such that (ay,tz + (1 — t)zg) = p1. Herewith
(a;,tT 4+ (1 — t)zo) < p; for i € 2 : p. Hence tZ + (1 — t)zy € V and we again obtain
¢1 = p1. Therefore V' is co-star-shaped if and only if (23) holds true and (24) follows
from (21). O

Theorem 6. A nonempty polyhedral set V. C R™ is co-star-shaped if and only of
dimV =dim0*V.

Prroof. The necessity follows from Corollary 3. To prove the sufficiency we represent
the polyhedral set V' in the form

p
ﬂ{x eR": (a;,x) <¢;} #0, where ¢ =sup(a;,z) (i€1:p),

zeV

and consider two cases.

Case 1: dimV = n. Then ﬂ {z € R": {(a;,z) < 0} =int 0"V # () and thereby there

exists wy € R™ such that (az,w()) > ¢; forall © € 1: p. According to Theorem 5 the set
V' is co-star-shaped.

Case 2: dimV < n. Let I(V) and I(0TV) be sets of indices of constraints that are
binding for all points of V or 0TV respectively:

[< )_{261 p: <a”L7 >_Ci7vxev}7
I0"V)={i€el:p:{a;z)=0,Vz € 0TV}

Since dimV < n we have I(V) # 0. If I(V) = {1,--- ,p}, then 0 # V C ﬂ{xe

R™ : (a;,x) > ¢;} and by Theorem 5 the set V' is co-star-shaped. Let now [(V) #
{1,---,p}. We have I(V) = I(0TV). Indeed, let ig € I(V), x € V 2’ € 0TV. Then
z+a' € V. Hence ¢;, = (a;,, x+2') = ¢;y + <ai0,x’> whence it follows that (a,,,x’) = 0.
Thus I(V) C I(0TV). To prove the inverse inclusion we consider a maximal linearly
independent subset {a;,,--- ,a;,} of the set {a; : z 6 I(V)}. Since I(V) C I(0TV) and
dimV = dim0*V we have a; = APa;, + - + /\ a;, for each i € I(0"V). Then for
z €V and i€ I(0"V) we obtain (a;, z) = )\g)c21 -+ AP that is I(0TV) c I(V).

Let z € affV. Then (a;,2) = ¢; for all ¢ € I(V). There exists wy € 07V such
that (a;,wp) < 0 for all i € J = {1,---,p} \ I(V). Consider w = z — Ay with
A > mauxL Then (a;, z — Awo) = ¢; for i € I(V') and (a;, 2 — Awp) > ¢; for i € J.

cJ (aj,wo) *

Hence by Theorem 5 the set V' is co-star-shaped. U
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Theorem 7. A nonempty polyhedral set

P
V= ﬂ{x e R": (a;,z) < u;}
i=1
p

is strongly co-star-shaped iff (\{x € R™: (a;,x) < 0} # 0. Herewith
i=1

P
kern®V D ﬂ{x e R": (ai, ) > p;}.

=1

If (22) takes place, then

p
kern™V = ﬂ{x e R": (a;, ) > p;}

i=1

Proof. Necessity. Let V' be strongly co-star-shaped. According to Theorem 1 the set

p
CKTV:R”\intV:U{IER":<ai,x> > i}

=1

is a proper strongly star-shaped subset of R" and kern* V' = kern, %, V. By Theorem
3 we have

({z € R": (a;,x) <0} £0, (25)
i=1

ﬂ{x € R": (a;, ) > p;} C kern™V,

i=1

p _
and N{z € R": (a;,x) > p;} = kern" V, if for each i € 1 : p
i=1
P P
e eR": (i, 2) > i} # (o € R : (0, 2) > i} (26)
i=1 i=1
%

The latter occurs iff for each 7 € 1 : p

P P
ﬂ{m € R": (a;,z) < p;} # ﬂ{x € R": {a;,z) < p;} foralli € 1:p, (27)
i=1 i<l

Under condition (25) we obtain (27) from (22).

p

Sufficiency. Let ({x € R™: {(a;,z) < 0} # (. According to Theorem 3 a proper

i=1
p

subset U = [J{zx € R" : (a;,x) > p;} of R™ is strongly star-shaped. By Lemma 1
i=1

p

intU = J{z € R": (a;,x) > u;}, therefore by Theorem 1 the set V =R" \ intU =
i=1

%, U is strongly co-star-shaped. O
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Corollary 8. A nonempty polyhedral set V' is strongly co-star-shaped if and only if
dim(0TV) = n.

The author is indebted to an anonymous referee for his valuable comments.
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