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Abstract. In the paper we answer the question when in �nite dimensions �nite unions
and intersections of closed half-spaces are shifts of sets stable under shrinkings or
dilatations and give explicit descriptions of the kernels of such sets.

1 Introduction
Convex closed sets stable under shrinkings and dilatations play an important role in the
theory of optimization (see, for example, [1, 2]). Investigation of non-convex sets with
these properties and their shifts has been begun by A.M. Rubinov and his co-authors
(see [4] and references therein). Our interest in these sets (called further star-shaped
and co-star-shaped respectively) and the choice of research methods are due to the fact
that in �nite dimensions they can be represented as intersections of some collections
of �nite unions of closed half-spaces. It is of interest to obtain veri�able criteria for
a set to be a star-shaped or a co-star-shaped one and give an explicit description of
its kernel or co-kernel respectively. In the paper such criteria and descriptions of the
kernels are given for �nite unions and intersections of closed half-spaces.

The paper consists of three sections. In Theorem 2 of Section 2 we give a neces-
sary condition for a �nite union of star-shaped sets to be also star-shaped. Applying
Theorem 2 to �nite unions of closed half- spaces we obtain in Theorem 3 of Section
3 that these sets are star-shaped if and only if they are strongly star-shaped. From
this result it follows (Theorem 4) that a �nite union of closed half-spaces is strongly
co-star-shaped if and only if it di�ers from Rn. A necessary condition for a convex set
to be co-star-shaped is given in Corollary 3 of Section 2. In Theorem 6 of Section 3 we
show that for a polyhedral set it is also su�cient.

2 Preliminaries
Let Rn be the n-dimensional Euclidean space. Throughout the paper we shall denote
the inner product of vectors a and x by 〈a, x〉, the closure, the interior and the boundary
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of a set A ⊂ Rn by Ā, intA and bdA respectively, the ray {λx : λ ≥ 0} by Lx, the
closed ball with center x0 and radius r by B[x0, r]. If A ⊂ Rn is convex, then riA is
its relative interior, dimA is its dimention and 0+A is its recession cone. The convex
cone generated by a nonempty set C ⊂ Rn and the a�ne hull of C will be denoted by
coC, a�C respectively. For a natural number p we shall write i ∈ 1 : p if i is natural
and i ≤ p.

De�nition 1. Let A be a nonempty subset of Rn, x0 ∈ Rn. We call the set A star-
shaped at the point x0, if

{tx0 + (1− t)x : 0 ≤ t ≤ 1, x ∈ A} ⊂ A.

The set of all points at which A is star-shaped is called the kernel of A and denoted by
kernA. If 0 ∈ kernA, then A is called radiant.

It is not di�cult to see that the set kernA is convex. So we can characterize
convex sets as star-shaped ones which coincide with their kernels. Since the algebraic
operations in Rn are continuous, the kernel of a closed star-shaped set is also closed.
The totality of all star-shaped sets is stable under shifts and

kern (ω0 + A) = ω0 + kernA. (1)

for a star-shaped set A and a point ω0 ∈ Rn.
De�nition 2 ([6]). A closed proper set A ⊂ Rn is called strongly star-shaped at the
point x0 if x0 ∈ intA and for each x ∈ Rn, x 6= 0 the ray x0 + Lx does not intersect
the boundary bdA of the set A more than once.

The set of all points at which A is strongly star-shaped is denoted by kern∗A and
called the lower kernel of A. If 0 ∈ kern∗A, then A is called strongly radiant.

A strongly radiant set A can be characterized (see [6]) as a closed radiant set whose
gauge

µA(x) = inf{λ > 0 : x ∈ λA} (x ∈ Rn)
is a real-valued continuous function.

A closed convex set A is strongly star shaped if and only if (see [3]) intA 6= ∅.
Herewith kern∗A = intA.

It has been proved in [6] that

(x0 ∈ kern∗A, x ∈ A, λ ∈ [0, 1)) =⇒ ((1− λ)x0 + λx ∈ intA), (2)

whence it follows that a strongly star-shaped set is star-shaped and regularly closed
(see [7]).

The totality of all strongly star-shaped sets is also stable under shifts and (1) is
also valid for lower kernels.

Proposition 1 ([10]). Let A ⊂ Rn be a closed proper set. If kern∗A 6= ∅, then it is
convex and

kern∗A ⊂ kernA ⊂ kern∗A. (3)
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Corollary 1. Let A be strongly star-shaped. Then

kern∗A = kernA and ri (kern∗A) = ri (kernA).

If dim(kernA) = n, then (see [4]) the set A is strongly star-shaped at each point of
int (kernA). The set A = {(x1, x2) ∈ R2 : |x2| ≤ |x1|−1} gives an example of a strongly
star-shaped set whose kernel has no interior points.

De�nition 3. Let B be a nonempty subset of Rn, u ∈ Rn. We call the set B co-star-
shaped at the point u if

(x ∈ B, λ ≥ 1) =⇒ (u+ λ(x− u) ∈ B). (4)

The set of all points at which B is co-star-shaped is called the co-kernel of B and
denoted by kern∞B. If 0 ∈ kern∞B, then B is called co-radiant.

In [5] the set kern∞B is de�ned as the totality of points u ∈ Rn \B such that (4)
takes place and a set B with nonempty kern∞B is called star-shaped with respect to
in�nity

We can characterize a�ne sets as convex ones which coincide with their co-kernels.

Proposition 2 ([10]). If B 6= Rn is co-star shaped, then kern∞B ⊂ (Rn \ B̄) ∪ bdB.

Proposition 3 ([10]). The co-kernel kern∞B of a co-star-shaped set B is convex. It
is closed if B is closed.

There exist non-a�ne co-star-shaped sets which contain their co-kernels. For ex-
ample, the set B = {(x, 0) ∈ R2 : x ∈ R} ∪ {(0, x) ∈ R2 : x ∈ R} enjoys this property
(kern∞B = {0}).
Proposition 4 ([10]). Let a co-star-shaped set B 6= Rn be such that

(u1 6= u2, u1, u2 ∈ bdB) =⇒ (∃λ ∈ (0, 1) : λu1 + (1− λ)u2 /∈ bdB),

and kern∞B contains more than one element. Then kern∞B \B 6= ∅.
The totality of all co-star-shaped sets is stable under shifts and

kern∞ (ω0 +B) = ω0 + kern∞B. (5)

for a co-star-shaped set B and a point ω0 ∈ Rn.
Proposition 5. A nonempty closed convex set C ⊂ Rn is co-star-shaped if and only if
there exists ω ∈ Rn such that C ⊂ ω + 0+C.

Proof. Necessity. Let C be co-star-shaped at the point ω, x ∈ C. We have ω+m(x−
ω) = zm ∈ C for all natural m whence it follows that x − ω = lim

m→∞
1
m
zm ∈ 0+C and

thereby C ⊂ ω + 0+C.
Su�ciency. Let C ⊂ ω + 0+C, x ∈ C, λ ≥ 1. We have x − ω ∈ 0+C, λ − 1 ≥ 0

whence it follows that ω+λ(x−ω) = x+(λ−1)(x−ω) ∈ C. Hence C is co-star-shaped
at the point ω. ¤
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Corollary 2. A nonempty closed convex set C ⊂ Rn is co-radiant if and only if
C ⊂ 0+C.

Corollary 3. If a nonempty closed convex set C ⊂ Rn is co-star shaped, then dimC =
dim 0+C.

Proof :Let a ∈ C, ω ∈ kern∞C. We have a+0+C ⊂ C ⊂ ω+0+C whence the equality
dimC = dim 0+C follows.

Remark 1. If the dimension of a nonempty closed convex set C coincides with the
dimention of its recession cone, then the set C is not generally speaking co-star-shaped.
Indeed, let C = {(x, y) ∈ R2 : x > 0, y ≤ lnx}. Then 0+C = {(x, y) ∈ R2 : x ≥ 0, y ≤
0}, dimC = dim 0+C = 2. At the same time there does not exist ω ∈ R2 such that
C ⊂ ω + 0+C and according to Proposition 5 the set C is not co-star-shaped.

De�nition 4 ([5]). A nonempty closed set B ⊂ Rn is called strongly co-star-shaped at
the point u if
1) u /∈ B;
2) ((u+Lx)∩B 6= ∅) =⇒ (u+Lx)∩B contains at least two points and (u+Lx)∩bdB
consists of exactly one point.

The set of all points at which B is strongly co-star-shaped is denoted by kern∗B
and called the upper kernel of B. If 0 ∈ kern∗B, then B is called strongly co-radiant.

A strongly co-radiant set B can be characterized (see [5]) as a closed co-radiant set
whose co-gauge

νB(x) = sup{λ > 0 : x ∈ λB} (x ∈ Rn)
is a real-valued nonzero continuous function.

In [5] strongly co-star-shaped sets are called strongly star-shaped with respect to
in�nity.

If B is strongly co-star-shaped, then (see [5])

(u ∈ kern∗B, x ∈ B, λ > 1) =⇒ (u+ λ(x− u) ∈ intB). (6)

Therefore a strongly co-star-shaped set is co-star-shaped and regularly closed.
The totality of all strongly star-shaped sets is also stable under shifts and (5) is

valid for upper kernels.

Proposition 6 ([10]). Let B ⊂ Rn be a nonempty closed set. If kern∗B 6= ∅, then it
is convex and

kern∗B ⊂ kern∞B ⊂ kern∗B.

Corollary 4. Let B be a strongly co-star-shaped set. Then

kern∗B = kern∞B and ri (kern∗B) = ri (kern∞B).

Proposition 7 ([4, 10]). Let B 6= Rn be a closed co-star-shaped set. If int (kern∞B) 6=
∅, then B is a strongly co-star-shaped set and herewith int (kern∞B) ⊂ kern∗B.
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There exist strongly star-shaped sets whose upper kernels have no interior points.
For example, the strongly co-star-shaped set {(x1, x2) ∈ R2 : |x2| ≥ |x1|−1} enjoys this
property.

Let A ⊂ Rn. We put C r A = Rn \ A. If the set A is regularly closed, then C r A is
the complement of the set A in the Boolean algebra of regularly closed subsets of Rn.
Therefore C r (C r A) = A (see [7]).
Theorem 1 ([5]). 1) If A ⊂ Rn is strongly star-shaped, then C r A is strongly co-star-
shaped and kern∗A = kern∗ C r A;
2) If B ⊂ Rn is strongly co-star-shaped, then C r B is strongly star-shaped and
kern∗B = kern∗ C r B.

Let A ⊂ Rn, A 6= ∅. We put
rcA = { lim

i→∞
λiωi : λi ↓ 0, ωi ∈ A}

The cone rcA is called the recession cone of the set A. The recession cone of the set
A coincides with the recession cone of its closure Ā. If A is a strongly star-shaped
set, then rc(C r A) = C r (rcA) (see [9]). If A is a convex closed set, then (see [3])
rcA = 0+A. This equality justi�es the use of the term recession cone for the cone rcA.
Theorem 2. Let A1, · · · , Ap be strongly star-shaped sets,

A =

p⋃
i=1

Ai 6= Rn.

Suppose that the recession cones rcAi (i = 1, · · · , p) are regularly closed and the set A
is star-shaped. Then

p⋂
i=1

(Rn \ rcAi) 6= ∅.

Proof. Let x0 ∈ kernA. Then the nonempty open set Rn \A is co-star-shaped at the
point x0. Let u0 ∈ Rn \ A and r > 0 be such that B[u0, r] ⊂ Rn \ A. We have, for
i ∈ 1 : p,

x0 +
⋃

λ≥1

λ(−x0 +B[u0, r]) ⊂ Rn \ A ⊂ Rn \ Ai,

whence it follows that
B[−x0 + u0, r] ⊂ rc(Rn \ Ai) = rcRn \ Ai = rc(C r Ai) = C r (rcAi).

Hence −x0 + u0 ∈ int (C r (rcAi)) = Rn \ rcAi. ¤

3 Finite unions and intersections of closed half-spaces
The intersection A of a �nite collection of closed half-spaces is convex and thereby it is
star-shaped. It is strongly star-shaped if and only if the corresponding open half-spaces
have a common point. Herewith kern∗A is the intersection of these open half-spaces.
While studying �nite unions of closed half-spaces we need the explicit description of
the interiors of such sets.
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Lemma 1 ([8]). Let

Ã =

p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi} 6= Rn.

Then
int

(
p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi}
)

=

p⋃
i=1

{x ∈ Rn : 〈ai, x〉 < µi}.

Theorem 3. Let
Ã =

p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi} 6= Rn.

The following conditions are equivalent:
1)Ã is star-shaped;
2)

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 > 0} 6= ∅;
3)Ã is strongly star-shaped.

If Ã is star-shaped, then

∅ 6=
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi} ⊂ kern Ã, (7)

∅ 6=
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 < µi} ⊂ kern∗ Ã. (8)

If herewith
p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi} 6=
p⋃
i=1
i6=ī

{x ∈ Rn : 〈ai, x〉 ≤ µi} (9)

for each ī ∈ 1 : p, then

kern∗ Ã =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 < µi}, (10)

kern Ã =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi}. (11)

Proof. 1) −→ 2). Let Ai = {x ∈ Rn : 〈ai, x〉 ≤ µi}. The implication follows by
Theorem 2.
2) −→ 3). Let x0 ∈

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 > 0}. It is obvious that −tx0 ∈
p⋂
i=1

{x ∈

Rn : 〈ai, x〉 < µi} for t large enough and thereby
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 < µi} 6= ∅. Let

ω ∈
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 < µi}, x ∈ Ã, λ ∈ [0, 1). Then 〈aī, x〉 ≤ µī for some ī ∈ 1 : p
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whence it follows that (1− λ)ω + λx ∈ {x ∈ Rn : 〈aī, x〉 < µī} ⊂ int Ã. Therefore Ã is
strongly star-shaped at the point ω.
3) −→ 1) A strongly star-shaped set is a star-shaped one.

Let Ã be star-shaped. (8) follows from the proof of implications 1) −→ 2) −→ 3).
Applying Corollary 1 and (8) we obtain

∅ 6=
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi} =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 < µi} ⊂ kern∗ Ã = kern Ã,

that is (7) holds true. Suppose now that (9) holds true. To prove (10) we show that
for each i0 ∈ 1 : p there exists xi0 ∈ Rn such that 〈ai0 , xi0〉 = µi0 and 〈ai, xi0〉 > µi for
i ∈ 1 : p, i 6= i0. Indeed, let for example i0 = 1. According to (9)

p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi} 6=
p⋃
i=2

{x ∈ Rn : 〈ai, x〉 ≤ µi}.

Next
p⋃
i=1

{x ∈ Rn : 〈ai, x〉 < µi} 6=
p⋃
i=2

{x ∈ Rn : 〈ai, x〉 < µi}

whence it follows that
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≥ µi} 6=
p⋂
i=2

{x ∈ Rn : 〈ai, x〉 ≥ µi}.

Therefore there exists x̄ ∈ Rn such that 〈ai, x̄〉 ≥ µi for i ∈ 2 : p and 〈a1, x̄〉 < µ1. Let
x0 ∈ Rn \ Ã. Then 〈ai, x0〉 > µi for all i ∈ 1 : p. Therefore there exists t ∈ (0, 1) such
that 〈a1, tx̄+ (1− t)x0〉 = µ1. Herewith 〈ai, tx̄+ (1− t)x0〉 > µi for i ∈ 2 : p.

Let now ω ∈ kern∗ Ã. According to Lemma 1 and (4) λω + (1 − λ)x1 ∈ int Ã =
p⋃
i=1

{x ∈ Rn : 〈ai, x〉 < µi} for λ ∈ (0, 1]. If λ is small enough, then 〈ai, λω+(1−λ)x1〉 >
µi for i ∈ 2 : p. Therefore 〈a1, λω + (1 − λ)x1〉 < µ1 for this λ. Hence 〈a1, ω〉 < µ1.
The inequalities 〈ai, ω〉 < µi for i ∈ 2 : p are proved in the same way and we obtain
(10). Then (11) follows by Corollary 1. ¤

Remark 2. The example of the set

Ã = {(x1, x2) : −x1 ≤ 0} ∪ {(x1, x2) : −x2 ≤ 0} ∪ {(x1, x2) : −x1 − x2 ≤ −1}
and ω = (1/4, 1/4) ∈ kern∗ Ã ⊂ kern Ã show that in the general case the inclusions in
(7) and (8) are strict.

Corollary 5. Let vectors a1, · · · , ap be linearly independent and µ1, · · · , µp be arbitrary
numbers. Then the set Ã =

p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi} is strongly star-shaped. Herewith

kern∗ Ã =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 < µi}, kern Ã =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi}.
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Proof. There exist vectors b1, · · · , bp such that

〈ai, bj〉 =

{
1, if i = j,

0, otherwise.
(12)

Let b = b1 + · · · + bp. Then 〈ai, b〉 = 1 for all i. If λ > p
maxµi
i=1

, then λb /∈
p⋃
i=1

{x ∈ Rn :

〈ai, x〉 ≤ µi}. Therefore by Theorem 3 the set Ã is strongly star-shaped.
Let ī ∈ 1 : p. Putting t̄i = µī, ti = µi + 1 for i ∈ 1 : p, i 6= ī, b̃ =

p∑
i=1

tibi we have

b̃ ∈
p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi}, b̃ /∈
p⋃
i=1
i6=ı̄

{x ∈ Rn : 〈ai, x〉 ≤ µi}.

Therefore equalities (10) and (11) hold true. ¤

Proposition 8. Let
p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi} 6= Rn.

The equality
p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi} =

q⋃
j=1

{x ∈ Rn : 〈bj, x〉 ≤ νj} (13)

takes place if and only if

co {(ai, µi)pi=1}+ {(0, µ) : µ ≤ 0} = co {(bj, νj)qj=1}+ {(0, µ) : µ ≤ 0}. (14)

Proof. According to Lemma 1 (13) takes place if and only if
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≥ µi} =

q⋂
j=1

{x ∈ Rn : 〈bj, x〉 ≥ νj}. (15)

(15) is equivalent to the fact that each inequality 〈bj, x〉 ≥ νj is a corollary of the system
of inequalities 〈ai, x〉 ≥ µi (i ∈ 1 : p), and each inequality 〈ai, x〉 ≥ µi is a corollary
of the system of inequalities 〈bj, x〉 ≥ νj (j ∈ 1 : q). Applying the Minkowski-Farkas
theorem (see [3]) we infer that (15) takes place ifand only if

(bj, νj) ∈ co {(ai, µi)pi=1}+ {(0, µ) : µ ≤ 0} (j ∈ 1 : q) (16)

and
(ai, µi) ∈ co {(bj, νj)qj=1}+ {(0, µ) : µ ≤ 0} (i ∈ 1 : p). (17)

(16) and (17) hold true if and only if (14) takes place. ¤
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Corollary 6. (9) takes place if and only if
(aī, µī) /∈ co {(ai, µi)pi=1,i6=ī}+ {(0, µ) : µ ≤ 0} (̄i ∈ 1 : p). (18)

Proof. (9) takes place if and only if
co {(ai, µi)pi=1,i6=ī}+ {(0, µ) : µ ≤ 0} 6= co {(ai, µi)pi=1}+ {(0, µ) : µ ≤ 0} (19)

for each ī ∈ 1 : p. Since (aī, µī) ∈ co {(ai, µi)pi=1}+ {(0, µ) : µ ≤ 0}, (18) implies (19).
If (aī, µī) ∈ co {(ai, µi)pi=1,i 6=ī} + {(0, µ) : µ ≤ 0} for some ī ∈ 1 : p, then

{(ai, µi)pi=1,i6=ī} ⊂ co {(ai, µi)pi=1}+ {(0, µ) : µ ≤ 0}, whence it follows that

co {(ai, µi)pi=1,i 6=ī}+ {(0, µ) : µ ≤ 0} = co {(ai, µi)pi=1}+ {(0, µ) : µ ≤ 0} (̄i ∈ 1 : p).

Therefore (19) implies (18). ¤
Theorem 4. A set

Ω =

p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi}.

is strongly co-star-shaped if and only if it is a proper subset of Rn. Herewith

kern∗ Ω =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 > µi}.

Proof. Necessity. Let Ω be strongly co-star-shaped. Then according to De�nition 4 of
a strongly co-star-shaped set Ω is a proper subset of Rn and by Lemma 1 intΩ =

p⋃
i=1

{x ∈

Rn : 〈ai, x〉 < µi}. By Theorem 1 the set C r Ω = Rn\ intΩ =
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≥ µi}
is a strongly star-shaped set and kern∗ Ω = kern∗ (C r Ω). But

kern∗ (C r Ω) =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 > µi}.

Su�ciency. Let Ω be a proper subset of Rn. According to Lemma 1

intΩ =

p⋃
i=1

{x ∈ Rn : 〈ai, x〉 < µi}.

Hence Ω is regularly closed. Then

C r Ω =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≥ µi}

is a nonempty regularly closed subset of Rn. Therefore

int (C r Ω) = Rn \ Ω =

p⋂
i=1

{x ∈ Rn : fi(x) > µi}) 6= ∅,

and thereby C r Ω is strongly star-shaped. Since Ω = C r (C r Ω), the set Ω is strongly
co-star-shaped by Theorem 1. ¤

By Theorem 4 and Corollary 4 we obtain
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Corollary 7. A set

Ω =

p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi}.

is co-star-shaped. If Ω 6= Rn, then

kern∞ Ω =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≥ µi}.

Theorem 5. A nonempty set

V =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi} 6= ∅,

is co-star-shaped if and only if
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≥ ci} 6= ∅, where ci = sup
x∈V

〈ai, x〉 (i ∈ 1 : p). (20)

If V is co-star-shaped, then

kern∞ V =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≥ ci}. (21)

If
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi} 6=
p⋂
i=1
i6=ī

{x ∈ Rn : 〈ai, x〉 ≤ µi}, (22)

for each ī ∈ 1 : p, then the set V is co-star-shaped if and if
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≥ µi} 6= ∅. (23)

If V is co-star-shaped and (22) takes place, then

kern∞ V =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≥ µi}, (24)

Proof. Necessity. Let u ∈ kern∞ V, x ∈ V, λ > 1; i ∈ 1 : p. Since u + λ(x − u) ∈ V
we have 〈ai, u〉 + λ〈ai, x − u〉 ≤ µi. Dividing by λ and letting λ tend to ∞ we obtain
〈ai, x〉 ≤ 〈ai, u〉. Therefore ci = sup

x∈V
〈ai, x〉 ≤ 〈ai, u〉 whence it follows that kern∞ ⊂

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≥ ci}. Hence (20) takes place.

Su�ciency. Let (20) take place, u ∈
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≥ ci}, x ∈ V . We have
〈ai, x〉 ≤ ci ≤ 〈ai, u〉 and therefore

〈ai, u+ λ(x− u)〉 = 〈ai, x〉+ (λ− 1)〈ai, x− u〉 ≤ µi (i ∈ 1 : p, λ ≥ 1).



144 A.P. Shveidel

Hence
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≥ ci} ⊂ kern∞ V,

and (21) is proved.
Let now (22) take place. Then ci = µi for all i ∈ 1 : p. Indeed, let, for example,

i = 1. Then there exists x̃ ∈ Rn such that 〈a1, x̃〉 > µ1 and 〈ai, x̃〉 ≤ µi for i ∈ 2 : p.
Let x0 ∈ V . Then 〈ai, x0〉 ≤ µi for i ∈ 1 : p. If 〈a1, x0〉 = µ1, then c1 = µ1. If
〈a1, x0〉 < µ1 there exists t ∈ (0, 1) such that 〈a1, tx̃ + (1 − t)x0〉 = µ1. Herewith
〈ai, tx̃ + (1 − t)x0〉 ≤ µi for i ∈ 2 : p. Hence tx̃ + (1 − t)x0 ∈ V and we again obtain
c1 = µ1. Therefore V is co-star-shaped if and only if (23) holds true and (24) follows
from (21). ¤

Theorem 6. A nonempty polyhedral set V ⊂ Rn is co-star-shaped if and only of
dimV = dim 0+V .

Prroof. The necessity follows from Corollary 3. To prove the su�ciency we represent
the polyhedral set V in the form

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≤ ci} 6= ∅, where ci = sup
x∈V

〈ai, x〉 (i ∈ 1 : p),

and consider two cases.
Case 1: dimV = n. Then

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 < 0} = int 0+V 6= ∅ and thereby there
exists ω0 ∈ Rn such that 〈ai, ω0〉 ≥ ci for all i ∈ 1 : p. According to Theorem 5 the set
V is co-star-shaped.
Case 2: dimV < n. Let I(V ) and I(0+V ) be sets of indices of constraints that are
binding for all points of V or 0+V respectively:

I(V ) = {i ∈ 1 : p : 〈ai, x〉 = ci ,∀x ∈ V },

I(0+V ) = {i ∈ 1 : p : 〈ai, x〉 = 0 , ∀x ∈ 0+V }.

Since dimV < n we have I(V ) 6= ∅. If I(V ) = {1, · · · , p}, then ∅ 6= V ⊂
p⋂
i=1

{x ∈
Rn : 〈ai, x〉 ≥ ci} and by Theorem 5 the set V is co-star-shaped. Let now I(V ) 6=
{1, · · · , p}. We have I(V ) = I(0+V ). Indeed, let i0 ∈ I(V ), x ∈ V x′ ∈ 0+V . Then
x+x′ ∈ V . Hence ci0 = 〈ai0 , x+x′〉 = ci0 + 〈ai0 , x′〉 whence it follows that 〈ai0 , x′〉 = 0.
Thus I(V ) ⊂ I(0+V ). To prove the inverse inclusion we consider a maximal linearly
independent subset {ai1 , · · · , aik} of the set {ai : i ∈ I(V )}. Since I(V ) ⊂ I(0+V ) and
dimV = dim 0+V we have ai = λ

(i)
1 ai1 + · · · + λ

(i)
k aik for each i ∈ I(0+V ). Then for

x ∈ V and i ∈ I(0+V ) we obtain 〈ai, x〉 = λ
(i)
1 ci1 + · · ·+ λ

(i)
k cik that is I(0+V ) ⊂ I(V ).

Let z ∈ a�V . Then 〈ai, z〉 = ci for all i ∈ I(V ). There exists ω0 ∈ 0+V such
that 〈ai, ω0〉 < 0 for all i ∈ J = {1, · · · , p} \ I(V ). Consider ω = z − λω0 with
λ > max

i∈J
〈ai,z〉−ci
〈ai,ω0〉 . Then 〈ai, z − λω0〉 = ci for i ∈ I(V ) and 〈ai, z − λω0〉 > ci for i ∈ J .

Hence by Theorem 5 the set V is co-star-shaped. ¤
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Theorem 7. A nonempty polyhedral set

V =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 ≤ µi}

is strongly co-star-shaped i�
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 < 0} 6= ∅. Herewith

kern∗ V ⊃
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 > µi}.

If (22) takes place, then

kern∗ V =

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 > µi}.

Proof. Necessity. Let V be strongly co-star-shaped. According to Theorem 1 the set

C r V = Rn \ intV =

p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≥ µi}

is a proper strongly star-shaped subset of Rn and kern∗ V = kern∗ C r V . By Theorem
3 we have

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 < 0} 6= ∅, (25)

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 > µi} ⊂ kern∗ V,

and
p⋂
i=1

{x ∈ Rn : 〈ai, x〉 > µi} = kern∗ V , if for each ī ∈ 1 : p

p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≥ µi} 6=
p⋃
i=1
i6=ī

{x ∈ Rn : 〈ai, x〉 ≥ µi}. (26)

The latter occurs i� for each ī ∈ 1 : p

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 < µi} 6=
p⋂
i=1
i6=ī

{x ∈ Rn : 〈ai, x〉 < µi} for all ī ∈ 1 : p. (27)

Under condition (25) we obtain (27) from (22).
Su�ciency. Let

p⋂
i=1

{x ∈ Rn : 〈ai, x〉 < 0} 6= ∅. According to Theorem 3 a proper

subset U =
p⋃
i=1

{x ∈ Rn : 〈ai, x〉 ≥ µi} of Rn is strongly star-shaped. By Lemma 1

intU =
p⋃
i=1

{x ∈ Rn : 〈ai, x〉 > µi}, therefore by Theorem 1 the set V = Rn \ intU =

C r U is strongly co-star-shaped. ¤
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Corollary 8. A nonempty polyhedral set V is strongly co-star-shaped if and only if
dim(0+V ) = n.

The author is indebted to an anonymous referee for his valuable comments.
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