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Abstract. Hausdorff operators (Hausdorff summability methods) appeared long ago
aiming to solve certain classical problems in analysis. Modern theory of Hausdorff
operators started with the work of Siskakis in complex analysis setting and with the
work of Liflyand-Móricz in the Fourier transform setting. In this paper a survey of the
main results on Hausdorff operators in various settings is given. Many open problems
in the subject are formulated.

1 Introduction

The main goal of this survey paper is to give a picture of the status of a modern topic
which links old and classical notions of Hausdorff summability with modern theories of
Hardy spaces as well as with other related spaces. To make the picture comprehensive,
we are going to briefly overview all the main constituents of this topic. These and the
relations between them look as follows.

Hausdorff summability of number series ⇐⇒ (little) moment problem
⇓

Hausdorff summability of Fourier series
⇓

Hausdorff summability of power series ⇐⇒ Hardy spaces, BMO, ...
⇓

Hausdorff summability of Fourier transforms ⇐⇒ Hardy spaces, BMO, ...
⇓ ⇓

One-dimensional case Multidimensional case

The history of what is called Hausdorff summability methods goes back to 1917
when Hurwitz and Silverman in [47] studied a family of methods (see Section 2 below)
within the classical framework of summability of number series where regularity (con-
sistency) and comparison of various methods are the main goal. However, a “genuine"
history had started with the paper [42] in 1921, in which Hausdorff not only rediscov-
ered the same summability methods but enriched their study by associating them with
the famous and important moment problem for a finite interval. Under the popularity
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of summability theory in those times and later period, Hausdorff methods took their
place and continued to be of interest. Let us mention some sources where enough
attention is paid to them, like the monographs [41], [83], [67], and [9] - unfortunately
never translated, or a survey paper [25]. We will give a brief overview of this topic in
Section 2 with the emphasis on the connection to the moment problem. Certain details
and proofs are omitted there but the picture as a whole seems to be clear enough, both
on its own and as a starting point for consequent study.

We would like to mention that many applications of Hausdorff summability were
made to Fourier series in one and several dimensions (just a couple of random examples:
[45, 31, 63, 80, 36]); we will not touch this topic here, mostly because it has nothing
in common with Hardy spaces so far.

What did affect the situation, rather than the Hausdorff summability of Fourier
series, was the Hausdorff summability of power series of analytic functions, which
started with the work of Siskakis [73] on composition operators and the Cesàro means
in Hp spaces and his nice short proof for H1 in [74]. General Hausdorff summability
was not considered in [23] and [24] for analytic functions in Hardy spaces (as well as in
some other spaces) until after [60] had appeared. We fill that giving a clear picture of
this subject is a must, to what Section 3 is devoted. The last and pretty big amount
of this section is devoted to the multidimensional case, more precisely to recent results
in [4], where the estimates for Hausdorff operators are obtained as an application of a
new approach to the theory of Hardy spaces for several complex variables.

The next natural step was an extension of the results from [73, 74] to the Fourier
transform setting on the real line. It was done in [28] and in a slightly different manner
in [35]. Moreover, it was [28] that inspired Móricz and the author to try a more general
averaging than the Cesàro (Hardy) one. The paper [60] opened, in a sense, a new stage
in the study of Hausdorff summability. Besides the mentioned progress it inspired in the
analytic functions setting, it also led to a number of new open problems, first of all in
several dimensions. This growing interest in these problems was mainly connected not
with the type of summability itself - it had already been actually known (see, e.g., [32]
or [27]), but with involving various more sophisticated spaces than Lp in consideration,
first of all Hardy spaces, and, correspondingly, different techniques. In Section 4 we
discuss the initial proof in [60] and certain related problems.

A natural passage from dimension one to several dimensions was made almost in
parallel. The paper [61] was written immediately after [60]. Then other papers followed,
[56] is pretty recent. In Section 5, a key point is Theorem 5.2 from [58]. In that section
we discuss various definitions of Hardy spaces and, correspondingly, various existing
and possible proofs of the boundedness of Hausdorff operators on Hardy spaces. In the
end of the section we give some results for BMO.

In Section 6 we present a collection of open problems. The number of open problems
corresponding to the multidimensional case is larger than that for other sections and
subsections, and similarly their discussion is more detailed.

Thus, there are two main “personages" in these notes: Hausdorff summability and
Hardy space, both in various settings and versions. Their interplay is the main feature
of this work. Of course, there are “personages" of less importance, at least in our
scenario; for instance, [55], [48] or [69] are random examples of such type, though quite
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representative. On the other hand, the topic actively runs its natural course. To wit,
let us mention [17], where the use of atomic approach, like in [58], to the boundedness of
the Hausdorff operator in the local Hardy space h1 is undertaken. This type of spaces
is rather important (see [33] or [19]), and the results of that paper are apparently
the first attempt to develop a theory of Hausdorff operators in h1. The authors also
deal with the Herz type spaces (see also [15]). Also, estimates for commutators of
multidimensional Hausdorff operators begin to attract attention, see, e.g., [13].

Correspondingly, it was not our aim to give a complete list of references, we give
only those immediately involved in the study. Many others can be found in the papers
referred to.

In what follows a � b means a ≤ Cb, with C being an absolute constant in this
and any other occurrence. In our study we are not interested in explicit indication of
these constants. If a constant depends on certain parameters, they will be indicated as
subscripts, like Cp. Correspondingly, a � b means a ≤ C1b and b ≤ C2a with different
constants C1 and C2.

2 Hausdorff summability of number series

The Hausdorff means, the Cesàro means among them, are known long ago in connection
with summability of number series. Let us briefly describe this subject. We follow the
nice way it is presented in [83, Ch. III] (see also [25]).

Let the sequence s0, s1, s2, ... be represented by the infinite matrix S in which it
is the first column, while the rest of the entries are zeros. Similarly, the sequence
t0, t1, t2, ... is represented by the matrix T. Explicitly,

S =


s1 0 0 ...
s2 0 0 ...
s3 0 0 ...
. . . ...
. . . ...

 and T =


t1 0 0 ...
t2 0 0 ...
t3 0 0 ...
. . . ...
. . . ...

 .

Let M be the infinite diagonal matrix with the sequence µ0, µ1, µ2, ... as its diagonal
entries:

M =


µ1 0 0 ...
0 µ2 0 ...
0 0 µ3 ...
. . . ...
. . . ...

 .

Let, finally,
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R =


1 0 0 0 0 ...
1 −1 0 0 0 ...
1 −2 1 0 0 ...
1 −3 3 −1 0 ...
. . . . . ...
. . . . . ...


be the difference matrix. The latter, with the entries rmn = (−1)n

(
m
n

)
for n =

0, 1, 2, ...,m, and zeros otherwise, is self-reciprocal, that is, R = R−1. The reason for
the term difference matrix becomes clear if one observes that

∞∑
n=0

rmnsn =
m∑
n=0

(−1)n
(
m

n

)
sn = ∆ms0,

with ∆sk = sk − sk+1 and ∆m = ∆(∆m−1).
Now, given a matrix A = (amn), m, n = 0, 1, 2, ..., the operation

T = AS (2.1)

transforms the matrix S into T or, if we consider only the first columns of S and T,
the sequence {sn} into the sequence {tn}. Then the sequence {sn} is summable by the
matrix A to the sum s if the sequence {tn} is defined by (2.1) and if

lim
m→∞

tm = s. (2.2)

More explicitly, this means that all series

tm =
∞∑
n=0

amnsn, (2.3)

where m = 0, 1, 2, ..., and the numbers amn are the entries of the matrix A, converge
and (2.2) holds.

One of the basic examples is that when

A =


1 0 0 0 ...

1/2 1/2 0 0 ...
1/3 1/3 1/3 0 ...
. . . . ...
. . . . ...

 ,

then
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tm =
s0 + s1 + · · ·+ sm

m+ 1
,

which leads to the Cesàro summability.
A method of summability is called regular (the term consistent is used sometimes)

if every convergent sequence is summable by it to the actual limit of the sequence.
We are now in a position to define Hausdorff summability.

Definition 2.1. The matrix A is a Hausdorff matrix corresponding to the sequence
{µn}, n = 0, 1, 2, ..., if A = RMR−1.

It is easily seen that multiplication of Hausdorff matrices is commutative.
What is important is to determine which sequences {µn} lead to regular Hausdorff

matrices. The celebrated Toeplitz theorem is a natural tools to test this.

Theorem 2.1. Summability by the matrix A is regular if and only if a constant K
exists such that

∞∑
n=0

|amn| < K, m = 0, 1, 2, ...; (2.4)

lim
m→∞

amn = 0, n = 0, 1, 2, ...; (2.5)

lim
m→∞

∞∑
n=0

amn = 1. (2.6)

Before applying this theorem to the Hausdorff summability method we first find
the Hausdorff matrix in terms of the given sequence {µn}. By definition,

T = RMR−1S. (2.7)

We wish to determine the elements amn so that (2.7) will be of the form (2.3). Em-
ploying the identity

(
m

j

)(
j

n

)
=

(
m

n

)(
m− n

j − n

)
for n ≤ j ≤ m, we get

amn =

(
m

n

)
∆m−nµn

for n = 0, 1, ...,m, and zero otherwise. This is the necessary and sufficient condition
for the matrix A to correspond to the sequence {µn}.

With this and Theorem 2.1 in hand, we are in a position to obtain a criterion for
regularity of the Hausdorff method.
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Theorem 2.2. The Hausdorff summability method corresponding to the sequence {µn}
is regular if and only if

µn =

∫ 1

0

tndµ(t), n = 0, 1, ..., (2.8)

where the function µ is of bounded variation in (0, 1), µ(0) = µ(0+) = 0, and µ(1) = 1.

To prove this criterion, we have only to apply Theorem 2.1 to the matrix A. To show
that the main condition (2.4) reduces to the boundedness of variation needs certain
efforts, which lead to the fact that conditions (2.5) and (2.6) of Theorem 2.1 become,
respectively,

lim
m→∞

(
m

n

)∫ 1

0

tn(1− t)m−ndµ(t) = 0, n = 0, 1, 2, ...,

and

lim
m→∞

∫ 1

0

dµ(t) = 1,

from which the rest of the conditions is easily derived.
It was, in fact, the study of the summability of divergent series which led Hausdorff

to investigation of the (little) moment problem: given a sequence {µn}, under what
conditions it is possible to determine a function µ(t) of bounded variation in (0, 1) such
that (2.8) holds. Such {µn} is called a moment sequence. The solution is as follows: the
necessary and sufficient condition for {µn} to be a moment sequence is that a constant
K exists such that for amn =

(
m
n

)
∆m−nµn

m∑
n=0

|amn| < K, m = 0, 1, 2, ....

It might be of interest to consider various multidimensional generalizations of this
subject, with respect to various types of ordering the elements of the series, or in other
words with respect to various types of summation. Certain partial results do exist (see,
e.g., [1]), but to the best of our knowledge the topic is not generalized in full.

3 Hausdorff summability of power series

It was the analytic functions setting where connections of Hardy spaces as well as
certain related ones to Hausdorff summability historically came into play. We follow
the way the subject and relevant results are given in [73, 74, 23, 24]. We first give all
needed prerequisites.



Hausdorff operators on Hardy spaces 107

3.1 Hardy spaces

Let D = {z ∈ C : |z| < 1} be the unit disk in the complex plane C. For 1 ≤ p <∞
the Hardy space Hp is the space of all analytic functions f : D → C such that

‖f‖Hp = sup
0<r<1

(∫ 2π

0

|f(reiθ)|p dθ
2π

)1/p

<∞.

With this norm Hp is a Banach space (and Hilbert for p = 2). If 1 ≤ p ≤ q <∞ then
H1 ⊃ Hp ⊃ Hq. Functions f ∈ Hp possess boundary values (non-tangential limits)
f(eiθ) which are p-integrable on ∂D. Identifying f with its boundary function provides
an isometric embedding of Hp into Lp(∂D), the norm in the latter will be denoted by
‖ · ‖p. If f ∈ Hp then for z ∈ D

|f(z)| ≤ 21/p ‖f‖p
(1− |z|)1/p

,

see [20, p. 36].
For each function f(z) =

∑∞
n=0 anz

n ∈ H1, Hardy’s inequality (see, e.g., [20, p.
48]) holds true

∞∑
n=0

|an|
n+ 1

≤ π||f ||H1 . (3.1)

Every analytic function a(z) : D → D, that is, mapping the unit disk into itself,
induces a bounded composition operator

Waf(z) = f(a(z))

on the Hardy space Hp; see [20, p. 29]. In addition, if b(z) is a bounded analytic
function on D then the weighted composition operator

Wa,bf(z) = b(z)f(a(z))

is bounded on Hp as well.

3.2 The Cesàro means for power series

The Cesàro means for power series from the Hardy space H1 in the unit disk were
considered by Siskakis. Such Cesàro means are constructed by replacing the coefficients
ak in the expansion
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f(z) =
∞∑
k=0

akz
k,

with f ∈ H1, by their Hardy transform

1

k + 1

k∑
p=0

ap,

which results in

Cf(z) =
∞∑
k=0

(
1

k + 1

k∑
p=0

ap

)
zk. (3.2)

An elegant proof of the boundedness of the corresponding operator on H1 is given in
[74]. It relies on the following Hardy-Littlewood result (see [39]). For 0 < r < 1 and
f ∈ H1, we denote by

Mq(f ; r) =

(
1

2π

∫ 2π

0

|f(rteiθ)|q dθ
)1/q

the integral means on |z| = r of an analytic f.

Lemma 3.1. If f ∈ H1 and q > 1, then

∫ 1

0

Mq(f ; s)(1− s)−1/qds ≤ Cq‖f‖H1 ,

where the constant Cq depends only on q.

It is worth mentioning that the proof from [74] is applicable to Hp for no p except
p = 1.More general approach is used in [73] but we stop the discussion here and proceed
to the general Hausdorff means of which the Cesàro means is a (simple) partial case.

3.3 The Hausdorff means for power series

Later, already after appearance of the paper [60], general Hausdorff matrices were
considered in [23] (for a continuation, see [24]) as follows.

Let, as in the previous section, ∆ be the forward difference operator defined on scalar
sequences µ = (µn)

∞
n=0 by ∆µn = µn − µn+1 and ∆kµn = ∆(∆k−1µn) for k = 1, 2, ....

with ∆0µn = µn.
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Setting

cn,k =

(
n

k

)
∆n−kµk, k ≤ n,

we define the Hausdorff matrix H = Hµ with generating sequence µ to be the lower
triangular matrix with the entries

Hµ(i, j) =

{
0, i < j

ci,j, i ≥ j
.

It induces two operators on spaces of power series; they are formally given by

Hµf(z) = Hµ

(
∞∑
n=0

anz
n

)
=

∞∑
n=0

(
n∑
k=0

cn,kak

)
zn,

which is obtained by letting the matrix Hµ to act on the Taylor coefficients of f, and

Aµf(z) = Aµ

(
∞∑
n=0

anz
n

)
=

∞∑
k=0

(
∞∑
n=k

cn,kan

)
zk,

which is obtained by letting the transposed matrix Aµ = H∗
µ to act on the Taylor

coefficients of f. Such a matrix Aµ is called a quasi-Hausdorff matrix. The convergence
of the power series Aµf is more delicate than that of Hµf. However, it is clear that
if f is a polynomial then Aµf is also a polynomial. If the space under investigation
contains polynomials, we may ask whether Aµ extends to a bounded operator on the
whole space.

An important special case of such matrices occurs when µn is the moment sequence
of a finite (positive) Borel measure µ on (0, 1] :

µn =

∫ 1

0

tndµ(t), n = 0, 1, ....

In this case for k ≤ n

cn,k =

(
n

k

)
∆n−k

∫ 1

0

tk dµ(t)

=

(
n

k

)∫ 1

0

[tk −
(
n− k

1

)
tk+1 + ...+ tn] dµ(t)

=

(
n

k

)∫ 1

0

tk(1− t)n−kdµ(t).
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All this becomes more transparent if one recalls the structure and properties of the
Hausdorff means from the previous section.

It follows from the work of Hardy [40] that if the measure µ satisfies

∫ 1

0

t−1/pdµ(t) <∞,

then Hµ determines a bounded linear operator

Hµ : {an} → {An}, An =
n∑
k=0

cn,kak, n = 0, 1, ...,

on the sequence space lp, 1 < p <∞, whose norm is exactly the last integral.
Various choices of the measure µ give rise to well known classical matrices. For

example, when µ is the Lebesgue measure one has the Cesàro matrix. Indeed, since

n∑
k=0

(
n

k

)∫ 1

0

tk(1− t)n−kdt =

∫ 1

0

dt = 1,

it suffices to prove that all cn,k are equal to each other in this case. Integrating by
parts, we obtain

(
n

k + 1

)∫ 1

0

tk+1(1− t)n−k−1dt =

(
n

k + 1

)
k + 1

n− k

∫ 1

0

tk(1− t)n−kdt.

Since

(
n

k + 1

)
k + 1

n− k
=

(
n

k

)
,

we have cn,k+1 = cn,k, which completes the proof.

3.4 Hausdorff matrices and composition operators

The study of the Hausdorff means for analytic functions is based on relating them
with certain families of composition operators. The latter under certain conditions, as
we have seen above, bring us into the Hardy space.

For t ∈ (0, 1] and z ∈ D the two families of mappings of the disk into itself

φt(z) =
tz

(t− 1)z + 1
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and

ψt(z) = tz + 1− t,

and the family of bounded functions on D

wt(z) =
1

(t− 1)z + 1

are used to construct composition operators associated with Hausdorff matrices.
We define then

Sµf(z) =

∫ 1

0

wt(z)f(φt(z)) dµ(t).

The integral is finite. There is also a need in the integral

Tµf(z) =

∫ 1

0

f(ψt(z)) dµ

for those analytic functions f and points z for which it is defined.

Lemma 3.2. Let µ be a finite positive Borel measure on (0, 1] and let f be analytic in
D. Then the power series Hµf(z) absolutely converges in D and Hµf(z) = Sµf(z) for
every z ∈ D.

The following trivial lemma is a counterpart of Lemma 3.2 for Aµf. The reason

the two lemmas are different both in formulation and assertion is that
∞∑
n=k

cn,kan may

diverge.

Lemma 3.3. Let µ be a finite positive Borel measure on (0, 1]. Then for each polynomial
f the function Aµf(z) is also a polynomial and Aµf(z) = Tµf(z) for every z ∈ D.

These give one a possibility to derive a criterion for the boundedness of the Hausdorff
means on H1.

Theorem 3.1. Let µ be a finite positive Borel measure on (0, 1]. Then Hµ : H1 → H1

is a bounded operator if and only if

L1 =

∫ 1

0

(
1 + ln

1

t

)
dµ(t) < +∞. (3.3)

In this case ||Hµ||H1 � L1.
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The idea of the proof is as follows. Since Hµ = Sµ, we have

‖Sµ‖H1 ≤
∫ 1

0

1

2π

∫ 2π

0

|wt(eiθ) f(φt(e
iθ)| dθ dµ(t).

Fixing t ∈ (0, 1], we estimate the inner integral

A(t) =

∫ π

−π

1

|1− (1− t)eiθ|

∣∣∣∣f( teiθ

1− (1− t)eiθ

)∣∣∣∣ dθ2π
and obtain the desired bound.

As for the necessity, let Hµ be bounded on H1. Observing that

Hµ(1)(z) =
∞∑
n=0

∫ 1

0

(1− t)n dµ(t) zn

and using Hardy’s inequality (3.1), we get

∫ 1

0

(
1 + ln

1

t

)
dµ(t) �

∫ 1

0

1

1− t
ln

1

t
dµ(t).

From this

∫ 1

0

(
1 + ln

1

t

)
dµ(t) �

∫ 1

0

1

1− t
ln

1

t
dµ(t)

�
∞∑
n=0

1

n+ 1

∫ 1

0

(1− t)n dµ(t) � ‖Hµ(1)‖H1 � ‖Hµ‖H1 ,

as required.
In a similar manner one can prove (see [23] and [24])

Theorem 3.2. Let µ be a finite positive Borel measure on (0, 1]. Then Aµ : H1 → H1

defines a bounded operator if and only if

||Aµ||H1 =

∫ 1

0

t−1 dµ(t) < +∞.

In this case Aµf = Tµf for every f ∈ H1.

We mention that in the cited papers conditions were given and proved not only for
H1 but for all Hp, 1 ≤ p <∞, with corresponding dependence on p (in the case of H∞

conditions are also found and look different from those for p <∞).
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Theorem 3.3. Let µ be a finite positive Borel measure on (0, 1]. If 1 < p ≤ ∞, then
Hµ : Hp → Hp is a bounded operator if and only if

||Hµ||Hp→Hp =

∫ 1

0

t1/p−1dµ(t) <∞. (3.4)

If 1/p+1/p′ = 1, then, under the above conditions, Hµ : Hp → Hp and Aµ : Hp′ →
Hp′ are adjoint.

Theorem 3.4. Let µ be a finite positive Borel measure on (0, 1] and 1 ≤ p <∞. Then
Aµ : Hp → Hp defines a bounded operator if and only if

||Aµ||Hp→Hp =

∫ 1

0

t−1/p dµ(t) < +∞. (3.5)

Furthermore, Aµ is bounded on H∞ if and only if

lim
n→∞

lnn

∫ 1

0

(1− t)ndµ(t) = 0. (3.6)

In this case

||Aµ||H∞→H∞ = µ(0, 1].

3.5 Multidimensional Hardy spaces

The above one-dimensional results are generalized to several dimensions in [14], the
first multidimensional generalization, where the sole case of the polydisk is considered,
while the spaces are Hp, 1 ≤ p <∞.

In [4], these results are extended to Hardy spaces on a rather wide class of domains
– the Reinhardt domains. Sufficient conditions for the boundedness of Hausdorff type
operators turn out to be necessary for a smaller subclass of domains, still quite wide.
Of course, the polydisk is among them.

The approach is different from that in dimension one in [23, 24] and in several di-
mensions in [14], where estimates of special composition operators ensured the desired
results. The point is that estimating (and sometimes even finding) such composi-
tion operators might be an extremely difficult task in the multivariate setting. The
approach in [4] is based on an inductive argument (see Main Lemma below) where
one-dimensional results can be directly applied.

Hardy classes of holomorphic functions of several complex variables are usually
defined on bounded domains D ⊂ Cn as follows. If the boundary ∂D is smooth, then
the class Hp(D) consists of the functions f holomorphic in D such that
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lim
ε→0

∫
∂D

|f(z − ενz)|pdσ(z) <∞, (3.7)

where νz is the external unit normal vector to ∂D at the point z, and dσ(z) is an
element of the (2n − 1)-dimensional surface ∂D (see, e.g., [76, 51]). However, the
definition for the polydisk Un = {z : |zj| < 1, j = 1, ..., n} usually differs from the
general definition and is defined by the following condition instead of (3.7)

lim
r→1

∫
Tn

|f(rz)|p
∣∣∣dz1

z1

· · · dzn
zn

∣∣∣ <∞, (3.8)

where Tn = {z : |zj| = 1, j = 1, ..., n} and 0 < r < 1 (see, e.g., [70, 14]).
Let us consider bounded complete Reinhardt domains D ⊂ Cn. They appear nat-

urally as domains of convergence of multidimensional power series

∑
|α|≥0

cαz
α, (3.9)

where z = (z1, ..., zn) ∈ Cn and α = (α1, ..., αn), with all αj nonnegative integers. Here
zα = zα1

1 ...zαn
n and |α| = α1 + ... + αn. We now define the Hardy class Hp(D) to be

that of all functions f(z) holomorphic in D and satisfying

lim
r→1−

∫
∂Dr

|f(z)|pdσ(z) <∞, (3.10)

where 0 < r < 1, Dr = rD is the r-th homothety of D, and dσ(z) is an element of
the (2n − 1)-dimensional surface ∂Dr. Since the integral (3.10) can be representable
by integrating first over the circles ` ∩ ∂Dr, where each ` is a complex line passing
through the origin, and then by integrating over the set of such lines with respect
to the corresponding positive measure, it is also a non-decreasing function of r. This
explains why the usual limit is used in (3.10) instead of the upper limit; by the way,
the usual limit can analogously be written in (3.8) in place of the upper limit.

Let us consider the family of parallel complex lines

mk = {z = (z1, ..., zk−1, t, zk+1, ..., zn), t ∈ C} (3.11)

crossing the domain D. The intersection of each of these lines with D is a disk. For
0 < r < 1, let us consider the set

⋃
{mk}

(mk ∩ ∂Dr). (3.12)

We will say that the domain D is k-tame if the limit as r → 1− of the set (3.12) is
exactly the whole ∂D. For example, the ball {z : |z| < 1}, where |z| = (|z1|2 + ... +
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|zn|2)1/2, is a k-tame domain for each k, 1 ≤ k ≤ n, while the polydisk Un is not k-tame
for any k. However, it is true for Un that

lim
r→1−

⋃
1≤k≤n

⋃
{mk}

(mk ∩ ∂Dr) = ∂D. (3.13)

There is a need to define additional types of Reinhardt domains. First, we will call
the domain D quasi-tame if (3.13) holds true.

Lemma 3.4. Every bounded complete Reinhardt domain is quasi-tame.

Further, a complete bounded Reinhardt domain D is called k-cylindric, 1 ≤ k ≤ n,
if D ⊂ {z : |zk| < ρ} for some ρ > 0, and ∂D contains a piece of the hyper-surface
Γk(ρ) = {z : |zk| = ρ}, that is, Γk(ρ) ∩ {z : (z1, ..., zk−1, zk+1, ..., zn) ∈ R} ⊂ ∂D, where
R is a domain in Cn−1.

If f ∈ Hp(D), then in almost every section D ∩ α this function will have angular
boundary values on the boundary of this section, that is, on the circle. Therefore,
boundary values of f almost everywhere on ∂D can be understood in the sense of
(2n− 1)-dimensional measure. We will denote these boundary values by f as well.

Theorem 3.5. If 0 < p <∞, then

||f ||pp =

∫
∂D

|f(ζ)|p dσ(z)

and

lim
r→1−

∫
∂D

|f(rζ)− f(ζ)|p dσ(z) = 0.

This theorem immediately yields

Corollary 3.1. If f ∈ Hp(D) and 0 < p <∞, then for ζ ∈ ∂D

lim
r→1−

||f(rζ)− f(ζ)||p = 0,

and polynomials are dense in Hp(D).

We first consider the case when 0 < p <∞.

Main Lemma for 0 < p < ∞. Let D be a bounded complete Reinhardt domain,
k-tame with k being a fixed integer, 1 ≤ k ≤ n. For a function f holomorphic in D to
belong to the class Hp(D), it is necessary and sufficient that

1) for almost all complex lines mk the restriction of the function f to the disk
mk ∩D = Qk belongs to the Hardy class Hp(Qk)
and
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2) the function f is Lp summable on ∂D, that is,

∫
∂D

|f(z)|p dσ(z) <∞. (3.14)

Here we understand the values f(z), z ∈ ∂D, as angular boundary values on the
circles mk ∩ ∂D which by 1) exist almost everywhere for almost all mk, that is, almost
everywhere on ∂D.

Lemma 3.5. Let D be a bounded complete Reinhardt domain. For a function f holo-
morphic in D to belong to the class Hp(D), it is necessary and sufficient that condition
2) holds true and condition 1) in Main Lemma holds true for all k, 1 ≤ k ≤ n.

Contrary to many other situations, here the case p = ∞ is easier and less restrictive.

Main Lemma for p = ∞. Let D be a bounded complete Reinhardt domain and k
be a fixed integer, 1 ≤ k ≤ n. For a function f holomorphic in D to belong to the class
H∞(D), it is sufficient that

1) for almost all complex lines mk, the restriction of the function f(z) to the disk
mk ∩D = Qk belongs to the Hardy class H∞(Qk)
and

2) the function f is L∞(∂D), that is,

ess sup∂D |f(z)| = B <∞; (3.15)

and it is necessary that
1′) for all complex lines mk the restriction of the function f to Qk belongs to the

Hardy class H∞(Qk)
and

2′) there holds

sup
∂D

|f(z)| = B <∞. (3.16)

For a function f holomorphic in D to belong to the class H∞(D), it is necessary
and sufficient that 2) holds true and 1′) holds true for all mk.

3.6 Hausdorff operators for multidimensional power series

Let us consider a natural multidimensional analogue of the Hausdorff type operators
by defining it on power series (3.9), representing functions holomorphic in D, as

(Hµf)(z) =
∑
|α|≥0

(∑
β≤α

n∏
j=1

hαj ,βj
(µj)cβ

)
zα (3.17)
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for the Hausdorff operator, while for the quasi-Hausdorff operator

(Aµf)(z) =
∑
|α|≥0

(∑
β≥α

n∏
j=1

hαj ,βj
(µj)cβ

)
zα, (3.18)

where β ≤ α and β ≥ α means that βj ≤ αj and βj ≥ αj, respectively, for all
j = 1, ..., n. Here, as above in dimension one, hαj ,kj

(µj) =
(
αj

kj

)
∆αj−kjµj(kj), kj ≤ αj,

with µj(kj) being the moment sequence of a finite (positive) Borel measure µj on (0, 1] :

µj(kj) =

∫ 1

0

tkjdµj(t), kj = 0, 1, ....

In this case for kj ≤ αj

hαj ,kj
(µj) =

(
αj
kj

)∫ 1

0

tkj(1− t)αj−kjdµj(t).

The extension of the one-dimensional Hausdorff operators to several dimensions in this
way has first been suggested in [14].

While (3.17) is well defined for p ≤ ∞, for (3.18) the definition is correct when
p <∞.

Various choices of the measures µj give rise to the well-known classical matrices.
For example, when all µj are the Lebesgue measures one has the multidimensional
Cesàro matrix, of the classical form in the case when D is the polydisk.

We also mention that (3.17) can be considered as a repeated one-dimensional Haus-
dorff operator in each of the n variables. This feature is pivotal in the proofs of the
following results.

We will consider sufficient and necessary conditions for the boundedness of Haus-
dorff type operators on Hardy spaces separately, since they coincide only on a special
subclass of Reinhardt domains.

As often happens, sufficient conditions hold true for a wider class of objects. We
will start with results of maximal generality. By Hµk

:= (Hµk
)(zk) we will denote the

operator Hµk
with respect to the k-th variable zk with all other variables fixed; the

same for Aµk
.

Theorem 3.6. Let a complete bounded Reinhardt domain D be k-tame. The Hausdorff
operator Hµk

is bounded on Hp(D) for 1 < p <∞ provided that

∫ 1

0

s1/p−1dµk(s) <∞ (3.19)

and for p = 1 provided that

∫ 1

0

(1 + ln(1/s)) dµk(s) <∞. (3.20)
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Theorem 3.7. Let a complete bounded Reinhardt domain D be k-tame. The quasi-
Hausdorff operator Aµk

is bounded on Hp(D) for 1 ≤ p <∞ provided that

∫ 1

0

s−1/pdµk(s) <∞. (3.21)

Corollary 3.2. Let D be a bounded complete Reinhardt domain D, k-tame for all k,
1 ≤ k ≤ n. Then the Hausdorff operator Hµf is bounded in Hp(D) for 1 < p < ∞
provided that

n∏
k=1

∫ 1

0

s1/p−1dµk(s) <∞, (3.22)

and for p = 1 provided that

n∏
k=1

∫ 1

0

(1 + ln(1/s)) dµk(s) <∞. (3.23)

The Hausdorff operator Aµf is bounded in Hp(D) for 1 ≤ p <∞ provided that

n∏
k=1

∫ 1

0

s−1/pdµk(s) <∞. (3.24)

Corollary 3.3. Let D be a bounded complete Reinhardt domain. Then the Hausdorff
operator Hµf is bounded in Hp(D) for 1 < p < ∞ provided (3.22) holds and for
p = 1 provided (3.23) holds, while the Hausdorff operator Aµf is bounded in Hp(D) for
1 ≤ p <∞ provided (3.24) holds.

Let us consider an interesting particular case of the polydisk Un. Corollary 3.3
concerns the Hardy class Hp

1 (Un), when the integral over the whole boundary ∂D is
involved. However, in the study of boundary properties of holomorphic functions in
the polydisk, the Hardy class Hp

2 (Un) used is defined by means of the integral (3.8). It
can be shown that Hp

1 (Un) is wider than Hp
2 (Un) when p < ∞. However, for p = ∞

these classes coincide, since maximum of the absolute value of a function holomorphic
in the polydisk is attained on its skeleton Tn.

It turns out that sufficient conditions for the boundedness of Hausdorff type oper-
ators are also necessary for a smaller class of Reinhardt domains, the above defined
k-cylindric domains.

Theorem 3.8. Let a complete bounded Reinhardt domain D be k-cylindric. If an
operator Hµk

is bounded in Hp(D), 1 < p < ∞ (p = 1 respectively), then (3.19) holds
true ((3.20) for p = 1, respectively).

Theorem 3.9. Let a complete bounded Reinhardt domain D be k-cylindric. If an
operator Aµk

is bounded in Hp(D), 1 < p <∞, then (3.21) holds true.
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As above, extending the assumed restriction to all k yields a general result, this
time necessary.

Corollary 3.4. If a complete bounded Reinhardt domain D is k-cylindric for all k,
1 ≤ k ≤ n. Then the condition (3.22) (or, relatively, (3.23)) is necessary for the
boundedness of Hµ in Hp(D) when 1 < p <∞ (or, correspondingly, when p = 1).

The necessary condition for the boundedness of Aµ when 1 ≤ p <∞ is (3.24).

And, finally, let us give, as a corollary, a very special partial result earlier obtained
in [14] for a smaller Hardy class.

Corollary 3.5. If a domain D is the polydisk, then the condition (3.22) (or, relatively,
(3.23)) is necessary and sufficient for the boundedness of Hµ in Hp(D) when 1 < p <∞
(or, correspondingly, when p = 1).

In conclusion, the necessary and sufficient condition for the boundedness of Aµ

when 1 ≤ p <∞ is (3.24).

Since the version of the Main Lemma for p = ∞ is less restrictive, so is its applica-
tion to Hausdorff operators as well.

Theorem 3.10. Let D be a complete bounded Reinhardt domain. The Hausdorff op-
erator Hµk

is bounded on H∞(D) if and only if

∫ 1

0

s−1dµk(s) <∞. (3.25)

We are now in a position to present the multidimensional result in full generality.

Corollary 3.6. Let D be a bounded complete Reinhardt domain. Then the Hausdorff
operator Hµf is bounded in H∞(D) if and only if

n∏
k=1

∫ 1

0

s−1dµk(s) <∞. (3.26)

To summarize the obtained results, sufficient results for the boundedness of Haus-
dorff operators on Hardy spaces turn out to be necessary for a smaller class of Rein-
hardt domains. For the polydisk necessary and sufficient conditions exist, which were
obtained earlier for a smaller Hardy class. On the other hand, for the unit ball in Cn

only sufficient conditions are known.

4 Hausdorff operators on the real line

We have now arrived at consideration of Hausdorff operators in the Fourier transform
setting. We first study a bundle of problems in dimension one, on the real axis. We
will further go on to those in several dimensions.
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4.1 Preliminaries

We recall that the Fourier transform f̂ of a (complex-valued) function f in L1(R)
is defined by

f̂(t) :=

∫
R
f(x)e−itxdx, t ∈ R,

while its Hilbert transform f̃ is defined by

f̃(x) :=
1

π
(P.V.)

∫
R
f(x− u)

du

u

=
1

π
lim
δ↓0

∫ ∞

δ

{f(x− u)− f(x+ u)}du
u
, x ∈ R.

As is well known, this limit exists for almost all x in R, and the real Hardy space H1(R)
is defined to be

H1(R) := {f ∈ L1(R) : f̃ ∈ L1(R)},

endowed with the norm

‖f‖H1 := ‖f‖L1 + ‖f̃‖L1 , where ‖f‖L1 :=

∫
R
|f(x)| dx.

This space is a Banach algebra under point-wise addition, scalar multiplication, and
convolution.

The identity

(f̃)∧(t) = (−i signt)f̂(t), t ∈ R, (4.1)

is valid for all f in H1(R) and plays an important role in the sequel.
For example, it implies immediately that if f ∈ H1(R), then f̂(0) = 0 (this mean

zero property was first pointed out in [52]) and, by the uniqueness of Fourier transform,
almost everywhere

(f̃)∼(t) = −f(t). (4.2)

In particular, if f ∈ H1(R), then f̃ ∈ H1(R) and

‖f̃‖H1 = ‖f‖H1 .



Hausdorff operators on Hardy spaces 121

A question here is how (f̃)∧ is defined. As often happens, the distributional ap-
proach is the most general and natural. If we introduce an appropriate principal value
distribution, then the Fourier transform (f̃)∧ can be defined as a tempered distribution
in such a way that (4.1) holds true.

In the previous section, we have considered Hardy spaces of analytic functions in
the unit disk. Let us briefly discuss how these two cases are related to each other.
First, let us consider Hardy spaces in the upper half-plane instead of those in the unit
disk. Both settings are related via a conformal mapping. The Hardy space H1(C+) of
analytic functions F (z) in the upper half-plane C+ = {z ∈ C : Rez > 0} is defined by
the condition

‖F‖H1 = sup
y>0

∫
R
|F (x+ iy| dx <∞.

This space is complete with respect to the indicated norm. It is known that each such
F has a finite limit

lim
y→0+

F (x+ iy) = f(x) + ig(x)

almost everywhere on the real axis; in addition, the real-valued functions f and g
belong to the space L1(R). Moreover, g(x) = f̃(x). On the other side, it is known that
if f is a real-valued function in L1(R) such that its Hilbert transform f̃ also belongs to
L1(R), then f(x) + if̃(x) coincides with the limit values as y → 0+ of some function
F (z) = F (x+ iy) ∈ H1(C+) almost everywhere in R.

4.2 Definition and basic properties

The Hausdorff operator H generated by a function ϕ in L1(R) as introduced in [60],
can be defined both directly and via the Fourier transform. The latter reads as follows:

(Hf)∧(t) = (Hϕf)∧(t) :=

∫
R
f̂(tx)ϕ(x) dx, t ∈ R, (4.3)

where f is also in L1(R). The existence of such a function Hf in L1(R) is established
in the proof of Theorem 4.1. In fact, one can find a close definition already in [41,
Ch.XI, 11.18], along with its summability properties. Later on the Hausdorff mean (of
a Fourier-Stieltjes transform) was studied on L1(R) in [27] (see also [32]).

We note that if ϕ(x) := χ(0,1)(x), the indicator function of the unit interval (0, 1),
then (4.3) is of the following form:

(Hf)∧(t) :=

∫ 1

0

f̂(tx)dx =
1

t

∫ t

0

f̂(u)du, t 6= 0.
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In this case, H is the well-known Cesàro operator; its properties were studied in [28].
The objective is to determine the Fourier analytic properties of H on the Hardy

space. One of the points is as follows. Since, generally speaking, the inverse formula

f(x) = (2π)−1

∫
R
f̂(t)eixtdt

does not take place for f ∈ L1(R) as well as for f ∈ H1(R), it is expected that

∫
R

(Hf )̂ (y)eixydy (4.4)

behaves better and characterizes f properly, in a sense.
But first we establish two properties, so essential that without them further study

is meaningless.

Theorem 4.1. If ϕ ∈ L1(R), then the Hausdorff operator H = Hϕ : L1(R) → L1(R)
is bounded and

‖Hϕ‖ = sup
‖f‖L1(R)≤1

‖Hϕ‖L1(R) ≤ ‖ϕ‖L1(R). (4.5)

The proof of this result comes as a by-product of the following theorem, in which
additional facts are contained. But before this we need an auxiliary result in which
equivalent representations for (Hf)∧ are given.

Lemma 4.1. If f and ϕ both belong to L1(R), and Hf is defined in (4.3), then

(Hf)∧(t) =
1

|t|

∫
R
f̂(u)ϕ(u/t) du, t 6= 0, (4.6)

and

(Hf)∧(t) =

∫
R
f(u)ϕ̂(tu) du, t ∈ R. (4.7)

The proof is routine: integrate by substitution and make use of Fubini’s theorem.

Theorem 4.2. The function Hf defined, for x ∈ R, by

Hf(x) =

∫
R

f(t)

|t|
ϕ
(x
t

)
dt (4.8)

is in L1(R) and satisfies (4.3).

In fact, (4.8) can be considered as a direct definition of the Hausdorff operator, the
argument around (4.4) is one of the basic reasons to define it via the Fourier transform;
of course, it might also be convenient technically.
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4.3 Boundedness of the Hausdorff operator on the Hardy space

Let us now proceed to the boundedness of the Hausdorff operator on the Hardy
space.

Theorem 4.3. If ϕ ∈ L1(R), then the Hausdorff operator H = Hϕ : H1(R) → H1(R)
is bounded.

The first proof in [60] is not the only one and is probably not the best possible.
But it leads to another interesting problem and is of interest by itself. We need two
auxiliary well known results (cf. [44, §3.6]).

Lemma 4.2. If f ∈ L1(R) is such that

f̂(t) = 0 for t < 0, (4.9)

then f ∈ H1(R).

The symmetric counterpart of this lemma says that if f ∈ L1(R) is such that
f̂(t) = 0 for t > 0, then f ∈ H1(R).

Lemma 4.3. If f ∈ H1(R), then there exist two functions f1 and f2, both in H1(R)

such that f = f1 + f2, and f̂1(t) = 0 for t < 0, while f̂2(t) = 0 for t > 0.

Now, the proof of Theorem 4.3 is based on these auxiliary results and the closed
graph theorem.

Once more, this proof does not seem to be the strongest one. For example, it
provides no bound for the norm of the operator, or more precisely, does not state a
strong type boundedness inequality. Any multidimensional proof given below provides
that in dimension one as well. However, as is mentioned, the above proof leads to an
interesting problem we will study in the next subsection.

4.4 Commuting relations

The mentioned problem reads as follows. Two operators were studied above: the
Hausdorff operator and the Hilbert transform, for what ϕ ∈ L1(R) the two operators
commute. The next theorem answers this question.

Theorem 4.4. Assume ϕ ∈ L1(R).
(i) We have

(Hϕf)∼ = Hϕf̃ for all f ∈ H1(R) (4.10)

if and only if
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ϕ(x) = 0 for almost all x < 0. (4.11)

(ii) We have

(Hϕf)∼ = −Hϕf̃ for all f ∈ H1(R)

if and only if

ϕ(x) = 0 for almost all x > 0. (4.12)

Lemma 4.2 is used in the proof; in addition we need one more auxiliary result.

Lemma 4.4. Let 0 < δ < a/2 and let

gδ,a(t) :=


t/δ for 0 ≤ t < δ,

1 for δ ≤ t ≤ a− δ,

(a− t)/δ for a− δ < t ≤ a,

0 for t < 0 or t > a.

Then gδ,a ∈ L̂1(R), that is, gδ,a is the Fourier transform of an integrable function.

This technical lemma might be useful in many problems of harmonic analysis.

4.5 The case p < 1

Before proceeding to the case of the Hardy spaces Hp with p < 1, which in many
respects is rather similar to H1, let us make certain observations. There is a rather
simple result for the Hausdorff operator in Lp, 1 ≤ p ≤ ∞. For these p, Minkowski’s
inequality in the integral form gives

∥∥∥∥∫ ∞

0

|t−1f(t−1x)ϕ(t)| dt
∥∥∥∥
Lp

x

≤
∫ ∞

0

t−1‖f(t−1x)‖Lp
x
|ϕ(t)| dt

=

∫ ∞

0

t−1+1/p‖f‖Lp |ϕ(t)| dt = Aϕ,p‖f‖Lp ,

where

Aϕ,p =

∫ ∞

0

t−1+1/p|ϕ(t)| dt. (4.13)

From this inequality, we see that, if 1 ≤ p ≤ ∞ and Aϕ,p < ∞, then (4.8) gives a
well-defined bounded linear operator Hϕ in Lp.
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If f ∈ Hp with 0 < p < 1, then f̂ is a continuous function satisfying

|f̂(ξ)| ≤ Cp‖f‖Hp |ξ|1/p−1

(see, e.g., [77, Chapt. III, § 5.4, p. 128]), and hence

∫ ∞

0

|f̂(tξ)ϕ(t)| dt ≤
∫ ∞

0

Cp‖f‖Hp |tξ|1/p−1|ϕ(t)| dt = CpAϕ,p‖f‖Hp |ξ|1/p−1, (4.14)

where Aϕ,p for 0 < p < 1 is given by (4.13) as well. Hence, if 0 < p < 1, Aϕ,p < ∞,
and f ∈ Hp, then the right-hand side of (4.3) gives a continuous function of ξ ∈ R that
is uniformly of O(|ξ|1/p−1) and, hence, the tempered distribution Hϕf is well-defined
through (4.3). Thus, including also the case p = 1 as mentioned above, we give the
following definition.

Definition 4.1. If 0 < p ≤ 1 and ϕ is a measurable function on (0,∞) with Aϕ,p <∞,
then we define the continuous linear mapping Hϕ : Hp → S ′ by (4.3).

Kanjin [50] proved the following theorem.

Theorem 4.5. Let 0 < p < 1 and M = [1/p−1/2]+1. Suppose that Aϕ,1 <∞, Aϕ,2 <
∞, and suppose that ϕ̂ is a function of class C2M on R with supξ∈R |ξ|M |ϕ̂(M)(ξ)| <∞
and supξ∈R |ξ|M |ϕ̂(2M)(ξ)| <∞. Then the Hausdorff operator Hϕ is a bounded operator
in Hp.

This theorem contains assumptions on ϕ̂. The proof is based on a more or less
regular atomic decomposition.

In the case where ϕ(t) = α(1 − t)α−1 for 0 < t < 1 and ϕ(t) = 0 otherwise, the
operator Hϕ = Cα is called the Cesàro operator of order α. Giang and Móricz [28]
proved that the Cesàro operator C1 is bounded in the Hardy space H1 (of course,
this also follows by Theorem 4.3). Kanjin [50] proved that the Cesáro operator Cα is
a bounded operator in Hp provided α is a positive integer and 2/(2α + 1) < p < 1.
Kanjin proved this result by using Theorem 4.5. Later on, it was proved in [65] that the
Cesáro operator Cα is a bounded operator in Hp for every α > 0 and every 0 < p < 1.
The proof is based on the ideas elaborated in [65] and uses the one-dimensional version
of the modified atomic decomposition for Hp given in [64].

Definition 4.2. Let 0 < p ≤ 1 and let M be a positive integer. For 0 < s < ∞, we
define Ap,M(s) as the set of all those f ∈ L2 for which f̂(ξ) = 0 for |ξ| ≤ s−1 and
‖f̂ (k)‖L2 ≤ sk−1/p+1/2 for k = 0, 1, · · · , M . We define Ap,M as the union of Ap,M(s)
over all 0 < s <∞.

Lemma 4.5. Let 0 < p ≤ 1 and M be a positive integer satisfying M > 1/p − 1/2.
Then there exists a constant cp,M , depending only on p and M , such that the following
statements hold.
(1) ‖f(· − x0)‖Hp ≤ cp,M for all f ∈ Ap,M and all x0 ∈ R;
(2) Every f ∈ Hp can be decomposed as
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f =
∞∑
j=1

λjfj(· − xj), (4.15)

where fj ∈ Ap,M , xj ∈ R, 0 ≤ λj <∞, and( ∞∑
j=1

λpj

)1/p

≤ cp,M‖f‖Hp ,

and the series in (4.15) converges in Hp. If f ∈ Hp ∩ L2, then this decomposition can
be made so that the series in (4.15) converges in L2 as well.

This lemma is given in [64, Lemma 2] except for the assertion on the L2 convergence.
A complete proof of part (2) of the lemma can be found in [65, § 3].

In a recent paper [59] the following generalizations of [65] are obtained.

Theorem 4.6. Let 0 < p < 1, M = [1/p−1/2]+1, and let ε be a positive real number.
Suppose ϕ is a function of class CM on (0,∞) such that

|ϕ(k)(t)| ≤ min{tε, t−ε}t−1/p−k for k = 0, 1, . . . , M.

Then Hϕ is a bounded linear operator in Hp.

Theorem 4.7. Let 0 < p < 1, M = [1/p − 1/2] + 1, and let ε and a be positive real
numbers. Suppose ϕ is a function on (0,∞) such that suppϕ is a compact subset of
(0,∞), ϕ is of class CM on (0, a) ∪ (a,∞), and

|ϕ(k)(t)| ≤ |t− a|ε−1−k for k = 0, 1, . . . , M.

Then Hϕ is a bounded linear operator in Hp.

In this section we have given not all possible results and arguments. On the contrary,
we present here only those specific for dimension one and not taking place or unclear
for higher dimensions. One of the reasons is that more general approaches in the next
section lead to results which, being taken in dimension one, clearly supplement those
from the present section. No doubt that any interested reader can easily recognize such
results.

5 Hausdorff operators on Euclidean spaces

In the multidimensional case the situation is, as usual, more complicated. The Cesàro
means in [30] and the Hausdorff means in [61] were considered in dimension two only
for the so-called product Hardy space H11(R × R) (the simplest partial case, see the
corresponding subsection below):

(Hϕf)(x) =

∫
R2

ϕ(u)

|u1u2|
f

(
x1

u1

,
x2

u2

)
du.
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In [82] these and related results were slightly extended. Necessary and sufficient con-
ditions for fulfillment of the commuting relations were also obtained in [62] for this
simple situation. The case of usual Hardy space H1(R2) and moreover H1(Rn) seemed
to be unsolvable by the used method.

In [7] the problem was solved but for a “strange" Hausdorff type operator

(Hµf)(x) =

∫
R
|u|−nf

(x
u

)
dµ(u), (5.1)

where x ∈ Rn, defined by one-dimensional averaging. This looks either not quite
natural for the multivariate case or at least not giving most general results.

Below, we present a more natural generalization of (4.8) and conditions sufficient
for the boundedness of such a naturally defined Hausdorff type operator taking H1(Rn)
into H1(Rn).

5.1 Definition and basic properties

We define the Hausdorff type operator by

(Hf)(x) = (HΦf)(x) =

∫
Rn

Φ(u)f
(
xA(u)

)
du,

where A = A(u) = (aij)
n
i,j=1 =

(
aij(u)

)n
i,j=1

is the n × n matrix with the coefficients
aij(u) being measurable functions of u. This matrix may be singular on at most a set of
measure zero; xA(u) is the row n-vector obtained by multiplying the row n-vector x by
the matrix A(u). As an example, we mention that the corresponding Cesàro operator
is given by

Φ(u)| detA−1(u)| = χ{| detA−1(u)|≤1}(u).

A similar definition of the Hausdorff operator was given in [12] (the only difference is
that in [12] as well as in [66] the transformation H is considered to be a row vector and
thus f(A(u)x) stands in place of f(xA(u)); moreover, in [66] only diagonal matrices A
with the diagonal entries equal to one another are studied), along with the following
basic properties. Comparing the introduced definition with (5.1), one sees that it is
possible to take u ∈ Rm for any 1 ≤ m ≤ n, with subsequent m-dimensional averaging.

Let Φ satisfy the condition

‖Φ‖LA
=

∫
Rn

|Φ(u) detA−1(u)| du <∞,

or, for similarity with the one-dimensional case, ϕ(u) = Φ(u) detA−1(u) ∈ L1(Rn). As
in the one-dimensional case, before proceeding to the Hardy space, one must be sure
in the L1 boundedness of the corresponding Hausdorff operator.
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Lemma 5.1. The operator Hf is bounded taking L1(Rn) into L1(Rn) provided Φ ∈ LA.
Furthermore, there holds

‖Hf‖L1(Rn) ≤ ‖Φ‖LA
‖f‖L1(Rn).

The proof follows by applying Fubini’s theorem and by substituting xA(u) = v (or
x = vA−1(u)).

If we again recall the discussion around (4.4), we shall realize that it is quite im-
portant to have an explicit formula for the Fourier transform of Hf via the Fourier
transform of f. First, let us define the latter as

f̂(u) =

∫
Rn

f(x)e−i<u,x>dx,

where < u, x >= u1x1 + ...+ unxn. For an integrable function f its Fourier transform
is well defined. Let BT be transposed to the matrix B.

Lemma 5.2. Let f ∈ L1(Rn) and Φ ∈ LA. The Fourier transform of Hf is represented
by the formula

(Hf )̂ (y) =

∫
Rn

Φ(u) | detA−1(u)| f̂
(
y(A−1)T (u)

)
du.

It is worth mentioning that in dimension one a sort of symmetry takes place for f
and ϕ in various representations of the Hausdorff operator (see Lemma 4.1 from the
previous section). It turns out that this is an accidental circumstance, meaningless for
several dimensions.

We can easily find the adjoint operator H∗ as the one satisfying, for appropriate
(“good") functions f and g,

∫
Rn

(Hf)(x)g(x) dx =

∫
Rn

(H∗g)(x)f(x) dx. (5.2)

It is defined (compare with [12] and [66]) as

(H∗f)(x) = (H∗
Φ,Af)(x) =

∫
Rn

Φ(u)| detA−1(u)| f(xA−1(u)) du.

This operator is also of Hausdorff type. Indeed, it actually can be written as Hψ,Bf,
where ψ(u) = Φ(u)| detA−1(u)| and B = A−1(u). Therefore the conditions for its
boundedness readily follow from those for the initial operator.

The key ingredient in one of the proofs is Lemma 5.4 (see below) on the behavior
in u of the BMO-norm of f(xA(u)). This also allows us to get conditions for the
boundedness of both operators in BMO(Rn).

A different approach directly yields the bound for the H1 norm of f(xA(u)), it is
given in Lemma 5.3 below.
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5.2 Real Hardy spaces in several dimensions

There are various definitions of Hardy spaces. Since each may become the one that
helps to ensure the sharpness, we will give few of them.

Let ψ be a real-valued differentiable function on Rn which satisfies:

(i) |ψ(x)| � (1 + |x|)−n−1, |∇ψ(x)| � (1 + |x|)−n−1,

(ii)

∫
Rn

ψ(x)dx = 0.

Write ψt(x) = ψ(x/t)t−n, t > 0. Given a function f with

∫
Rn

|f(x)|(1 + |x|)−n−1dx <∞,

define the Lusin area integral Sψf by

Sψf(x) =

(∫
Γ(x)

|f ∗ ψt(y)|2
dy dt

tn+1

)1/2

,

where Γ(x) is the cone {(y, t) : |y − x| < t}.
Given any Schwartz function η with

∫
η 6= 0, define the non-tangential maximal

function by

Mηf(x) = sup
t>0

|f ∗ ηt(x)|.

Classical results due to Ch. Fefferman and Stein (see [21]) state that

‖f‖H1 � ‖Mηf‖L1 � ‖Sψf‖L1 . (5.3)

Let us outline how an eventual proof of the boundedness of the Hausdorff operator
could make use of the above definitions. By Fubini’s theorem,

∫
Rn

ηt(ξ)dξ

∫
Rn

Φ(u)f
(
(y − ξ)A(u)

)
du

≤
∫

Rn

|Φ(u)|du
∣∣∣ ∫

Rn

f
(
(y − ξ)A(u)

)
ηt(ξ)dξ

∣∣∣.
Substituting ξA(u) = v, we obtain

∫
Rn

f
(
(y − ξ)A(u)

)
ηt(ξ)dξ

=

∫
Rn

f(yA(u)− v)η t

| det A−1(u)|1/n

(
vA−1(u)

| detA−1(u)|1/n

)
dv.
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Hence, if

vA−1(u)

| detA−1(u)|1/n
= v

for all v, then

Mη(HΦf)(y) ≤ H|Φ|(Mηf)(y).

All this looks straitforward and natural, nevertheless it is not clear how to continue
these calculations to derive something essential. We only wish to mention that in
dimension one we can definitely obtain a proof of the boundedness of the Hausdorff
operator on the Hardy space in this way, as well as the bound for the norm.

To overcome the difficulties of the multivariate case, we will make use of the other
three definitions.

1. A very natural is the one via the Riesz transforms, n singular integral operators,
as an analogue of the one-dimensional definition based on the unique singular operator
- the Hilbert transform. The jth, j = 1, 2, ..., n, Riesz transform can be defined either
explicitly

Rjf(x) =
Γ(n/2 + 1/2)

πn/2+1/2

∫
Rn

uj
|u|n+1

f(x− u) du,

or via the Fourier transform

R̂jf(x) = i
xj
|x|
f̂(x).

For n = 1 this is just the Hilbert transform. It is well known (see, e.g., [75, Ch.VII, §
3]) that

‖f‖H1(Rn) � ‖f‖L1(Rn) +
n∑
j=1

‖Rjf‖L1(Rn) =
n∑
p=0

∫
Rn

|Rpf(x)| dx,

where R0f ≡ f. This definition could be perfect if clear conditions for commuting of
the Hausdorff operator and Riesz transforms existed. Unfortunately, no such results
exist unless A is a diagonal matrix. Nevertheless, we will use this definition along with
the others.

2. The definition using an atomic decomposition of the Hardy space proved to be
very effective (see, e.g., [18]). We will give and apply the simplest version of an atomic
decomposition. Let a denote an atom (more precisely, (1,∞, 0)-atom), a function with
compact support:

supp a ⊂ B(x0, r); (5.4)
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which satisfies the following size condition (L∞ normalization)

‖a‖∞ ≤ 1

|B(x0, r)|
; (5.5)

and the cancellation condition

∫
Rn

a(x) dx = 0. (5.6)

Here B(x0, r) denotes the ball of radius r centered at x0.
It is well known that

‖f‖H1 ∼ inf

{∑
k

|ck| : f(x) =
∑
k

ckak(x)

}
, (5.7)

where ak are the above described atoms.
3. The dual space approach (see, e.g., [21]) is also one of the most effective and

important. It employs the standard 1 procedure of linearizing the norm

‖h‖H1(Rn) = sup
‖g‖∗≤1

∣∣∣ ∫
Rn

h(x)g(x) dx
∣∣∣, (5.8)

where g is taken to be infinitely smooth and with compact support 2 and the semi-norm
‖g‖∗ is that in BMO :

‖g‖∗ = sup
Q

inf
c

1

|Q|

∫
Q

|g(x)− c| dx,

where Q is a ball, |Q| is its Lebesgue measure, and the supremum is taken over all such
balls.

5.3 Main result

We denote

‖B‖1 = ‖B(u)‖1 = max
j

(|b1j(u)|+ ...+ |bnj(u)|),

1Very often, like in [21], to prove that no other linear functionals exist except those “standard"
becomes a challenging task

2Such family of functions endowed with the BMO norm is known as V MO; however some authors
call V MO a different space while the present one they call CMO, see, e.g., [10]
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where bnj are the entries of the matrix B, to be the operator `-norm. We will say that
Φ ∈ L1

B if

‖Φ‖L1
B

=

∫
Rn

|Φ(u)| ‖B(u)‖n1du <∞.

The following result in [56] ensures the boundedness of Hausdorff type operators in
H1(Rn) for general matrices A.

Theorem 5.1. The Hausdorff operator Hf is bounded on the real Hardy space H1(Rn)
provided that Φ ∈ L1

A−1 , with

‖Hf‖H1(Rn) ≤ ‖Φ‖L1
A−1

‖f‖H1(Rn). (5.9)

The proof using duality arguments is based on (5.8). The difference in conditions
Φ ∈ LA−1 and Φ ∈ L1

A−1 seems to be quite natural. The main case when they coincide
is that where A is a diagonal matrix with equal entries on the diagonal - this is the
subject of [66]. In [56] and then in [57] the problem of the sharpness of Theorem 5.1
was posed. The proof of the following slightly less restrictive condition is based on an
atomic decomposition of H1(Rn). We will discuss and compare both results afterwards.

Let ‖B‖2 = max|x|=1 |BxT |, where | · | denotes the Euclidean norm. It is known
(see, e.g., [46, Ch. 5, 5.6.35]) that this norm does not exceed any other matrix norm.
We will say that Φ ∈ L2

B if

‖Φ‖L2
B

=

∫
Rn

|Φ(u)| ‖B(u)‖n2du <∞.

The following result is true.

Theorem 5.2. The Hausdorff operator Hf is bounded on the real Hardy space H1(Rn)
provided that Φ ∈ L2

A−1 . Furthermore,

‖Hf‖H1(Rn) � ‖Φ‖L2
A−1

‖f‖H1(Rn). (5.10)

The proof is based on estimates of the multiple of transformed atoms. As is men-
tioned above, the obtained condition (5.10) is weaker that (5.9) but of course still more
restrictive than (5.1). It is weaker in the sense that the ‖ · ‖2 matrix norm is smaller
than any other matrix norm. On the other hand, all norms in the finite-dimensional
space are equivalent. However, having the ‖ · ‖2 matrix norm as a bound is not mean-
ingless, since otherwise the problem of a sharp constant, more precisely, its dependence
on the dimension, the so-called Goldberg’s problem (see, e.g., [34]) may appear.
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5.4 BMO estimates

Analyzing the proof in [58], one can see that the main point is the following result.

Lemma 5.3. Let F (x, u) = f(xB(u)). Then

‖F (·, u)‖H1 � ‖B−1(u)‖n2 ‖f‖H1 , u ∈ Rn.

The obtained estimate might be of interest by itself. Similarly, One of the advan-
tages of the duality proof in [56] is the following lemma.

Lemma 5.4. Let F (x, u) = f(xB(u)). Then

‖F (·, u)‖∗ ≤ ‖B(u)‖n| detB−1(u)|‖f‖∗, u ∈ Rn.

With this lemma as a tool in hand, we can obtain results on the boundedness
of Hausdorff type operators in BMO(Rn), that is, both Hausdorff operator and its
adjoint. The interested reader can easily formulate corresponding results or see it in
[56].

5.5 Product Hardy spaces

We will now proceed to sufficient conditions for the boundedness of Hausdorff type
operators in the product Hardy space H1

m(Rn) = H1(Rn1× ...×Rnm), n1 +n2 + ...+nm.
Trivially, H1

1 (Rn) = H1(Rn). These spaces are of interest and importance in certain
problems of Fourier Analysis (see, e.g., [22], [29]).

No conditions for the boundedness of Hausdorff operators on such spaces as general
as those for H1(Rn) are known. The main restriction is posed on matrices A. Let

A(u) = A1(u)⊕ ...⊕ Am(u)

be block diagonal with square matrices (blocks) Aj be (almost everywhere) non-singular
nj × nj matrices and with zero entries off the blocks. Such matrices are by no means
artificial and are of importance in various subjects (see, e.g., [46]).

All the information we need on H1
m one can find in one source [81]. We give it

immediately. For an appropriate function f, first of all for a tempered distribution f,
the Riesz operators Rj1,...,jm , jp = 0, 1, ..., np; p = 1, 2, ...,m, are defined at x ∈ Rn by

(Rj1,...,jmf)∧(x) =

(
m∏
p=1

(
i
xn1+...+np−1+jp

|x(p)|

))
f̂(x),

where
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x(p) = (xn1+...+np−1+1, ..., xnp) ∈ Rnp .

Of course, R0,...,0f = f. There hold

‖Rj1,...,jmf‖H1
m
� ‖f‖H1

m
(5.11)

and

‖f‖H1
m
�

m∑
p=1

np∑
jp=0

‖Rj1,...,jmf‖L1 . (5.12)

The next result can immediately be derived from Theorem 5.2.

Theorem 5.3. If the matrix A is block diagonal as above, then the Hausdorff operator
Hf is bounded on the real Hardy space H1

m provided that

‖Hf‖H1
m
≤ Cn,m

∫
Rn

|Φ(u)|
m∏
p=1

1∑
jp=0

∆jp
p (u) du <∞,

where

∆jp
p (u) =

{
| detA−1

p (u)|, jp = 0,

||A−1
p (u)||np

2 , jp = 1.

Of course, this theorem covers the main result in [61]; the latter is just the simplest
partial case. Unfortunately, no condition exists for a general matrix A to ensure the
boundedness of the Hausdorff operator on the product Hardy space. However, block
diagonal matrices have the advantage that each block naturally transforms only the
corresponding group of variables not touching the others.

In [16] Hausdorff operators are studied on the product Besov spaces and on the
local product Hardy space.

6 Open problems

Like some people who start reading detective stories from the final pages, not being
patient enough to wait for the end of investigation, some may start from this section in
order to learn about the prospects of the topic and to get food for thought immediately.
In this section we overview open problems on Hausdorff operators in various settings.
Some of them have, to a certain extent, already been mentioned in the text. In fact,
the paper [57] is devoted to open problems in the topic, however, certain progress has
been made during the passed time.
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6.1 Power series

We formulate certain open problems that naturally arise from the above scrutiny
in Section 3.

a) Multivariate versions of the results in Section 3.
Till recently the only known direct generalization was given [14], where the above

results were extended in the simplest, product-wise way to the case of the polydisk in
Cn. In [4] much more is obtained by new characterization of Hardy spaces on Reinhardt
domains. However, much is still can be done. For instance, boundedness of the quasi-
Hausdorff operators in H∞ is proved in a much more sophisticated way in dimension
one (see [24]) and is open in several dimensions. For the unit ball in Cn only sufficient
conditions are known, find necessary ones.

We note that very recently the results of [4] have been extended to much wider
classes of domains in Cn by Aizenberg, Vidras and the author in [5].

It is worth mentioning [8], where the Cesàro means are studied in the upper half-
plane. As in the other settings, it may give rise to further study of more general
Hausdorff operators.

b) Study partial sums of (3.2) as well as of its generalization for the Hausdorff and
maybe quasi-Hausdorff matrices.

c) Find an example of a function (power series) NOT in H1 for which the Hausdorff
means or even the Cesàro means are in H1; the same, of course, for the quasi-Hausdorff
means.

6.2 Fourier transform setting

In this subsection we overview open problems on Hausdorff operators in the Fourier
transform setting both in one and several dimensions.

a) The main one reads as follows:
Given a Hausdorff operator (or even the Cesàro means), construct a counterexample

of a function in L1 but not in H1 whose value taken by this Hausdorff operator is in
H1 (compare with c) from the previous subsection).

b) Prove (or disprove) the sharpness of the obtained condition for the boundedness
of the Hausdorff operator on H1(Rn).

c) The same - similarly or instead - for BMO.
d) Find other (based on different definitions of H1(Rn)) proofs of the boundedness

of the Hausdorff operator on H1(Rn); with the same condition or maybe a BETTER
one.

e) Find conditions for commuting relations in H1(Rn) (see Subsection 4.4 and the
beginning of Section 5).

f) As we have seen above, the scale of spaces very similar to H1 is that of Hp for
p < 1. However, they differ much both in results and methods. The boundedness of
the Cesàro means on Hp(R) for all 0 < p < 1 was proved in [65].
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Find conditions for the boundedness of the Hausdorff operators in Hp for p < 1 in
the multidimensional case.

6.3 Partial integrals

We know from Lemma 5.2 that

(Hf )̂ (y) =

∫
Rn

Φ(u) | detA−1(u)| f̂
(
y(A−1)T (u)

)
du,

where (A−1)T is the transpose of A−1.
Taking

∫
|x|≤N

(Hf )̂ (y)ei〈x,y〉dy,

we arrive at

HNf(x) =

∫
Rn

Φ(u)| detA−1| du
∫

Rn

f(v) dv

∫
|y|≤N

e−i〈x−vA
−1(u),y〉dy.

The last integral is well known (see, e.g., [78, Ch.IV, § 3]), and we get

(2πN)−
n
2HNf(x)

=

∫
R2n

Φ(u)| detA−1| f(v) |x− vA−1(u)|−
n
2 Jn

2
(N |x− vA−1(u)|) du dv,

where Jn
2

is the Bessel function of order n
2
, with f either in L1 or in H1. In dimension

one it looks extremely simple: with ϕ ∈ L1

Hϕ
Nf(x) =

∫
R2

ϕ(u)f(t)
sinN(x− ut)

x− ut
du dt.

A group of problems related to this is as follows.

a) Study HNf or maybe H∗
Nf = supN |HNf |.

b) Find the rate - in N - of approximation to f by HNf, almost everywhere, or in
L1 or H1 norm.
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6.4 More problems

Certain possible problems worth being studied become apparent in discussions dur-
ing the conference in Istanbul, 2006, first of all with O. Martio.

One of them is to consider general singular operators rather than those defined by
the Hilbert or Riesz transforms.

We mention also the question the author was asked after his talk at that conference
about compactness of Hausdorff operators.

Back to the BMO proof of the boundedness of the Hausdorff operator on H1(Rn),
instead of studying relation between theBMO norms of f(xA(u)) and f(x) (see Lemma
5.4) one can try the same for f(Fx(u)) where Fx(u) is a general family of mappings.
A natural assumption on this family is to preserve BMO. In this context f(xA(u)) is
a partial case when the mapping is linear. The latter definitely preserves BMO, and
the only point in the above study was to figure out the bounds.

But the problem of preserving BMO is already solved in general case: necessary
and sufficient conditions are given by P. Jones [49] (see also [6]) in dimension one and
by Gotoh [38] in the multivariate setting; see also [10].

This leads to the study of a very general Hausdorff operator

(HΦ,Ff)(x) =

∫
Rn

Φ(u)f
(
Fx(u)

)
du.

All the above problems for such operators not only were never studied but even simplest
initial results for them, such as Lemma 5.2, face essential difficulties. Considerable
amount of them come from the unavoidable necessity to make use of implicit function
theorems.
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[11] G. Brown, F. Móricz, The Hausdorff and the quasi Hausdorff operators on the spaces Lp, 1 ≤
p < ∞, Math. Inequal. Appl. 3 (2000), 105–115.
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