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Abstract. We consider the minimization problems of obstacle type

min

{∫
Ω

|Du|2dx : u ≥ ψε on P, u = 0 on ∂Ω

}
,

as ε → 0. Here Ω is a bounded domain in Rn, ψε is a periodic function of period
ε, constructed from a fixed function ψ, and P ⊂⊂ Ω is a subset of the hyper-plane
{x ∈ Rn : x · η = 0}. We assume that n ≥ 3 and that the normal η satisfies a generic
condition that guarantees certain ergodic properties of the quantity

#
{
k ∈ Zn : P ∩ {x : |x− εk| < εn/(n−1)}

}
.

Under these hypotheses we compute explicitly the limit functional of the obstacle
problem above, which is of the type

H1
0 (Ω) 3 u 7→

∫
Ω

|Du|2dx+

∫
P

G(u)dσ.

1 Preliminaries and main result

1.1 Introduction of the problem

We consider an obstacle problem in a domain Ω ⊂ Rn for n ≥ 3. The obstacle is the
restriction to a hyper-plane of a rescaled, periodically extended function. The given
data in the problem is as follows.

1. A bounded domain Ω in Rn, n ≥ 3, i.e. a bounded, open, connected subset of
Rn.

2. A continuous function ψ with compact support in the ball B1/2 = {x ∈ Rn : |x| <
1/2}.

3. A hyper-plane Π = {x ∈ Rn : x · η = 0} with the unit normal η = (η1, . . . , ηn)
such that ηn 6= 0.
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Note that for any E ⊂ Rn, P := E ∩ Π can be represented as

P = {(x′, αx′) : x′ ∈ H}, (1.1)

where x′ = (x1, . . . , xn−1), x = (x′, xn),

H = projRn−1P

and
α = (α1, . . . , αn−1), αi =

−ηi
ηn

.

Let Qε = (−ε/2, ε/2), and for any k ∈ Zn, let Qk
ε = Qε + εk. Similarly, Bk

rε denotes
the ball of radius rε and center εk, i.e. Bk

rε = Brε + εk. Starting with a function ψ we
construct the oscillating function ψε, given by

ψε(x) =

{
ψ(a−1

ε (x− εk)), if x ∈ Qk
ε ∩ Π,

−∞, otherwise, (1.2)

where
aε = εn/(n−1). (1.3)

Remark 4. From the definition of ψε it can be seen that ψε(x) > −∞ if and only if

x ∈ {aε{y : ψ(y) > −∞}+ εk} ∩ Π, for some k ∈ Zn.

For this reason it needs to be determined how often Π intersects a neigbourhood of size
comparable to aε of the lattice points {εk}k∈Zn . This is possible in dimensions n ≥ 3,
using the theory of uniform distribution of sequences. In general, this is possible when
aε is not “too small”. When n = 2 we would have to choose a much smaller aε, due to
the logarithmic nature of the fundamental solution of the Laplacian. For this reason
we cannot include the two-dimensional case.

For any Borel subset B of Ω and u ∈ H1
0 (Ω), set

Fψε(u,B) =

{
0, if u ≥ ψε q.e. on B,
∞, otherwise, (1.4)

where q.e. means quasi everywhere, i.e. everywhere except for a set of zero capacity.
Note that B 7→ Fψε(u,B) depends only on B ∩ Π. Our main goal is to determine the
asymptotic behaviour, as ε→ 0, of minimizers of the functional

Jε(u) =

∫
Ω

|Du|2dx+ Fψε(u,B). (1.5)

1.2 The notion of Γ-convergence

Definition 1.1 (Γ-convergence). A sequence of functionals Jε on a topological space
V is said to Γ-converge to the functional J0 if the following hold for all v ∈ V :
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(i) whenever vε → v in V ,
J0(v) ≤ lim inf

ε→0
Jε(vε),

(ii) there exists a sequence {vε}ε such that vε → v in V and

J0(v) ≥ lim sup
ε→0

Jε(vε).

The functional J0 is called the Γ-limit of Jε.

Remark 5. It follows easily by this definition that if Jε Γ-converges to J0, if vε ∈ V
is such that infV Jε(v) = Jε(vε) and if vε → v0 in V , then J0(v0) = infV J0(v). Indeed,
J0(v0) ≤ lim infε→0 Jε(vε) by (i), and for any other v ∈ V , there exists, according to
(ii), a sequence {v̄ε}ε converging to v in V such that J0(v) ≥ lim supε→0 Jε(v̄ε). Since
Jε(vε) ≤ Jε(v̄ε), J0(v0) ≤ lim infε→0 Jε(vε) ≤ lim supε→0 Jε(v̄ε) ≤ J0(v), which proves
the claim.

Next we quote a theorem of De Giorgi, Dal Maso and Longo from [4]. It is a
compactness result for quadratic functionals of obstacle type and states that there
is a representation theorem for the Γ-limits of these functionals. The compactness
part of the theorem is valid for obstacle functionals for which there exists a sequence
uε ∈ H1

0 (Ω) such that both Jε(uε) and ‖uε‖H1
0 (Ω) are bounded. This will be true if we

assume that the set B in (1.4) is compactly contained in Ω. For the formulation below
we refer to Attouch and Picard [1].

Theorem 1.1 ([4]). There is a rich family R of Borel subsets of Ω such that for every
B ∈ R satisfying B ⊂⊂ Ω, the sequence of functionals

Jε(u) =

∫
Ω

|Du|2dx+ Fψε(u,B) (1.6)

has a subsequence that Γ-converges to

J0(u) =

∫
Ω

|Du|2dx+

∫
B
f(x, u)dµ+ ν(B), (1.7)

where µ and ν are positive Radon measures, µ ∈ H−1(Ω) and f(x, u) is convex and
monotone non-increasing with respect to u.

Remark 6. It may be assumed that ν = 0, c.f. [1], Theorem 4.1. We refer to [1] for the
definition of a rich family of Borel sets. However, we would like to point out that a rich
family R of the Borel sets of Ω is dense in the Borel sets, in the sense that for any Borel
sets A,B such that A ⊂ intB, there exists E ∈ R such that A ⊂ intE ⊂ E ⊂ intB.

1.3 Main theorem

Next we define the functional that is the Γ-limit of Jε in (1.5). For any λ ∈ R, let

ψλ(x) =

{
ψ(x), x ∈ {P + λη},
−∞, otherwise, (1.8)
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and set

gλ(t) = min

{∫
Rn

|Dv|2dx : v − t ∈ D1,2(Rn), v ≥ ψλ q.e. on Rn

}
, (1.9)

where t is any real number and

D1,2(Rn) = {v ∈ L2∗(Rn) : Dv ∈ L2(Rn)}, 1

2∗
=

1

2
− 1

n
.

Theorem 1.2. Let Π = {x ∈ Rn : x · η = 0}. Then the following holds for almost
every η ∈ Sn−1. There is a rich family R of Borel subsets of Ω such that for every
B ∈ R satisfying B ⊂⊂ Ω, the family of functionals

Jε(u,B) =

∫
Ω

|Du|2dx+ Fψε(u,B)

Γ-converges in the weak topology of H1
0 (Ω) to

J0(u,B) =

∫
Ω

|Du|2dx+

∫
Π∩B

(∫
R
gλ(u(x))dλ

)
dσ(x). (1.10)

In particular, the family of minimizers uε of Jε converges weakly in H1
0 (Ω) to the

minimizer u of J0.

In the right-hand side of (1.10), σ denotes the surface measure on Π.

1.4 Related results

In the paper [6] a problem similar to the present one was considered. In [6] the obstacle
is given by

ψχ
Πε
,

where ψ is a fixed function and χΠε is the characteristic function of the intersection Πe

of the a hyper-plane Π and the set ⋃
k∈Zn

{aεT + εk},

where T is a fixed subset of the unit ball. Thus in both problems the obstacle is
defined on the intersection between the hyperplane Π and a neighborhood of size aε of
the lattice points {εk}k∈Zn . It is a crucial part of the problem to estimate the number
of lattice points at a given distance from a subset of Π. For the necessary results in
this direction, which come from the theory of uniform distribution, we refer to [6].

However, a main difference between the present problem and that of [6] is that
the obstacle in (1.2) varies on a much smaller scale, of size aε. For this reason the
techniques used in [6] (essentially those developed in [2]) are not fit to deal with this
problem. Instead we use the methods of [3], which are more adapted to the situation
at hand.
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2 Proofs

We start by establishing some continuity properties of a certain approximation of the
function gλ in (1.9), that appears naturally in the proof of Theorem 1.2.

Lemma 2.1. Let

gλR(t) = min

{∫
BR

|Dv|2dx : v − t ∈ H1
0 (BR), v ≥ ψλ q.e. on BR

}
. (2.1)

Assume that |ψ| ≤ A and that ψ has the modulus of continuity ρ hence

|ψ(x)− ψ(y)| ≤ ρ(|x− y|).

Then limR→∞ gλR(t) = gλ(t), for any 2 ≤ R0 < R1 ≤ ∞ and any λ ∈ R

|gλR1
(t)− gλR2

(t)| ≤ C(A− t)2
+(R2−n

0 −R2−n
1 ), (2.2)

and for sufficiently small δ > 0

|gλ+δ
R (t)− gλR(t)| ≤ C1(A− t)2

+((R− δ)2−n −R2−n) + C2ρ(δ), (2.3)

where C,C1, C2 depend only on n.

Proof. We may assume that t ≤ A, for otherwise gλR(t) = 0. Let Kλ and Kλ
R be the

set of constraints appearing in the definition of gλ and gλR respectively. That is,

Kλ =
{
v − t ∈ D1,2(Rn), v ≥ ψλ q.e. on Rn

}
and

Kλ
R =

{
v − t ∈ H1

0 (BR), v ≥ ψλ q.e. on BR

}
.

Since Kλ
R0
⊂ Kλ

R1
⊂ Kλ for R0 < R1, we immediately obtain gλ(t) ≤ gλR1

(t) ≤ gλR0
(t).

The claim limR→∞ gλR(t) = gλ(t) follows by the fact that the space C∞
c (Rn) of all

infinitely continuously differentiable functions is dense in D1,2(Rn).
Fix a smooth cut-off function ζ with compact support in B2 such that ζ ≡ 1 on B1.

Then (A− t)ζ + t ∈ Kλ
R for any R ≥ 2, λ ∈ R and any t ≤ A. Thus

gλR(t) ≤ (A− t)2

∫
B2

|Dζ|2dx ≤ C(A− t)2
+. (2.4)

Let v ∈ Kλ and vR ∈ Kλ
R satisfy the equalities∫

Rn

|Dv|2dx = gλ(t),

∫
BR

|DvR|2dx = gλR(t).

To estimate v − vR we construct a barrier h that is the solution to ∆h = 0 in Rn \B1,
h − t ∈ D1,2(Rn) and h = A on B1. In Rn \ B1, h − v is harmonic, on B1, h − v ≥ 0
and h − v → 0 at infinity. It follows from the maximum principle that v ≤ h in Rn.
The function h is spherically symmetric and has the explicit expression

h(r) = (A− t)r2−n + t,
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for r > 1, where r = |x|. It follows that

v(x) ≤ (A− t)R2−n + t on Rn \BR.

Thus
v̂R = max

(
t, v − (1− ζ)(A− t)R2−n)

belongs to Kλ
R. Hence

gλR(t) ≤
∫
BR

|Dv̂R|2dx

≤
∫
BR

|Dv|2 dx+ 2(A− t)R2−n
∫
BR

DζDvdx+ ((A− t)R2−n)2

∫
BR

|Dζ|2dx

≤ gλ(t) + 2(A− t)R2−n‖Dζ‖L2(BR)

√
gλ(t) + ((A− t)R2−n)2

∫
BR

|Dζ|2dx.

Hence we obtain, using (2.4),

|gλ(t)− gλR(t)| ≤ C(A− t)2R2−n. (2.5)

If 2 < R0 < R1, we find in a similar way that

vR1 ≤ hR1 = (A− t)
r2−n −R2−n

1

1−R2−n
1

+ t on BR1 \B1,

and that

v̂R0 = max

(
t, vR1 − (1− ζ)(A− t)

R2−n
0 −R2−n

1

1−R2−n
1

)
belongs to Kλ

R0
. From this we obtain the estimate

|gλR1
(t)− gλR2

(t)| ≤ C(A− t)2(R2−n
0 −R2−n

1 ). (2.6)

Next we prove the continuity with respect to λ. For any γ > 0 there exists a δ > 0
(δ = ρ−1(γ)) such that

ψλ(x+ δη)− γ < ψλ+δ(x) ≤ ψλ(x+ δη) + γ.

Let
hR =

r2−n −R2−n

1−R2−n ,

for r = |x| > 1, hR = 1 on B1. Let vλR−δ ∈ Kλ
R−δ satisfy

∫
BR−δ

|DvλR−δ|2dx = gλR−δ.
Then wR(x) = vλR−δ(x+ δη) + γhR(x) belongs to Kλ+δ

R . Hence,

gλ+δ
R (t) ≤

∫
BR

|DwR|2dx

=

∫
BR

|DvλR−δ(x+ δη)|2dx+ γ2

∫
BR

|DhR|2dx+ 2γ

∫
BR

DhRDv
λ
R−δdx

≤ gλR(t) + C(A− t)2((R− δ)2−n −R2−n)

+ γ2

∫
BR

|DhR|2dx+ 2γ‖DvλR−δ‖L2(BR)‖DhR‖L2(BR).
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It is easy to check that
∫
BR
|DhR|2dx is bounded uniformly in R. In fact, as R → ∞,∫

BR
|DhR|2dx → cap(B1), the capacity of the unit ball. By interchanging the roles of

gλ+δ
R (t) and gλR(t) we obtain a lower bound on gλ+δ

R (t)− gλR(t). Thus for any γ > 0, we
have (assuming γ < 1)

|gλ+δ
R (t)− gλR(t)| ≤ C1(A− t)2((R− δ)2−n −R2−n) + C2γ. (2.7)

Proof of Theorem 1.2. Let wkε be the solution to

min

{∫
Qk

ε

|Dw|2dx : w ≥ ψε q.e. on Qk
ε , w = t on Qk

ε \Bk
ε/2

}
. (2.8)

The following definition will be important in the sequel. In order to simplify notation
we set P = Π ∩ B.

Definition 2.1. Let λkε be the unique real number such that

Qk
ε ∩ P = Qε ∩ {P + λkεη} (mod ε), if Qk

ε ∩ P 6= ∅.

If Qk
ε ∩ P = ∅ we set λkε = ∞.

Let y = x− εk. Then

y + εk ∈ Qk
ε ∩ P ⇐⇒ y ∈ Qε ∩ {P + λkεη}.

Thus ∫
Qk

ε

|Dwkε |2dx

= min

{∫
Qε

|Dw|2dx : w ≥ ψλ
k
ε
ε q.e. on Qε, w = t on Qε \Bε/2

}
,

where ψλ
k
ε
ε is ψε with P + λkεη in place of P . Clearly, wkε = t if ψλ

k
ε
ε ≤ t. In particular,

wkε = t if Qk
ε ∩ (Ω ∩ P ) = ∅. Let z = a−1

ε y. Then, noting that aεz = y ∈ Qε ∩ {P +
λkεη} ⇐⇒ z ∈ Qε/aε ∩ {P + (λkε/aε)η},∫

Qk
ε

|Dwkε |2dx = min

{
an−2
ε

∫
Qε/aε

|Dw|2 dx : w ≥ ψλ
k
ε/aε q.e. on Qε/aε ,

and w = t on Qε/aε \Bε/2aε

}
.

Let Rε = ε/2aε. The choice of aε implies that limε→0Rε = ∞. Since w − t has its
support in BRε and ψλk

ε/aε = −∞ outside B1 ⊂ BRε , we have

min

{
an−2
ε

∫
Qε/aε

|Dw|2 dx : w ≥ ψλ
k
ε/aε q.e. on Qε/aε ,

and w = t on Qε/aε \Bε/2aε

}
=
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= min

{
an−2
ε

∫
BRε

|Dw|2 dx : w ≥ ψλ
k
ε/aε q.e. on BRε ,

and w − t ∈ H1
0 (BRε)

}
= an−2

ε g
λk

ε/aε

Rε
(t).

It is clear that ψλk
ε/aε ≡ −∞ for sufficiently small ε > 0 if aε = o(λε). Choose λ0 < λ1

such that B1 ∩ {P + λη} = ∅ if λ 6∈ [λ0, λ1]. Let δ > 0 be a small number such that
λ1 = λ0 +Mδ for some positive integer M , and let λj = λ0 + jδ. Now set λε,j = aελj
and let

Iε,j = {Qε ∩ {P + λη} : λε,j ≤ λ ≤ λε,j+1},
Ikε,j = {Iε,j + εk}, k ∈ Zn.

Let Aε,j be the number of k ∈ Zn for which P and Ikε,j have non-empty intersection.
This is precisely the number of k = (k′, kn) such that εkn and αεk′ belong to the same
cube Qk

ε , and λkε ∈ Iε,j, where we use the notation in (1.1). Let

Pε = {k ∈ Zn : Qk
ε ∩ P 6= ∅}.

Thus, if
Kε,j = {k ∈ Pε : λkε ∈ Iε,j},

then
Aε,j = #Kε,j.

It was proven in [6], Lemma 5.2.2, that for a.e. η ∈ Sn−1,

Aε,j = |P |δaε
εn

+ o(aεε
−n). (2.9)

To make the statement more precise we introduce

Nε = #{k′ ∈ Zn−1 ∩ projRn−1ε−1P}.

Then, since the intersection of P and Ikε,j is completely determined by the value of εαk′
at the point (εk′, αεk′) ∈ P , we have

Aε,j = #
{
k′ ∈ Zn−1 ∩ projRn−1ε−1P : αk′/Z ∈ [pj, pj + δaε/(ηnε)]/Z

}
,

where pj is chosen in such a way that

P ∩ Ikε,j 6= ∅ if and only if αk′/Z ∈ [pj, pj + δaε/(ηnε)]/Z.

Note that the distance δaε in η (normal) direction between two planes, corresponds to
the distance δaε/ηn in en direction between these planes. Using tools from the theory
of uniform distribution mod 1, it can be shown that∣∣∣∣Aε,jNε

− δaε
εηn

∣∣∣∣ = o(εs), for any s ∈ (0, 1).
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This implies (2.9) since aε/ε ≥
√
ε for n ≥ 3. Define wε by wε = wkε on Qk

ε . Since
wkε = t on ∂Bk

rε , wε ∈ H
1(Ω) and, noting that wkε ≡ t if k 6∈ Kε,j for some j,∫

Ω

|Dwε|2dx =
M∑
j=0

∑
k∈Kε,j

∫
Ω

|Dwkε |2dx (2.10)

=
M∑
j=0

∑
k∈Kε,j

an−2
ε

(
g
λk

ε/aε

Rε
(t)− g

λj

Rε
(t)
)

+
M∑
j=0

an−2
ε Aε,j g

λj

Rε
(t). (2.11)

Since |λkε/aε − λj| ≤ δ when k ∈ Kε,j, we have for such k that∣∣∣gλk
ε/aε

Rε
(t)− g

λj

Rε
(t)
∣∣∣ ≤ C1(A− t)2

+((Rε − δ)2−n −R2−n
ε ) + C2ρ(δ) =: E(ε, δ),

by (2.3) in Lemma 2.1. Hence the first term in (2.11) is bounded by

M∑
j=0

Aε,ja
n−2
ε E(ε, δ) ≤ C

M∑
j=0

|P |δa
n−1
ε

εn
E(ε, δ) ≤ C|P |E(ε, δ), (2.12)

where we used (2.9), the fact that an−1
ε /εn = 1 by the choice of aε in (1.3) and that

M = 1/δ. The right hand side of (2.12) clearly tends to zero as ε, δ → 0 in any order.
The term an−2

ε Aε,j g
λj

Rε
(t) converges to |P |δgλj(t) as ε→ 0. Hence,∫

Ω

|Dwε|2 dx =
M∑
j=0

∑
k∈Kε,j

∫
Ω

|Dwkε |2dx = O(ρ(δ)) +
M∑
j=0

Aε,jg
λj

Rε
(t)

→
M∑
j=0

δ|P |gλj(t),

as ε→ 0. Letting δ → 0, we obtain∫
Ω

|Dwε|2dx =
∑
k

∫
Ω

|Dwkε |2dx→ |P |
∫ λ1

λ0

gλ(t)dλ. (2.13)

The next step is to show that wε ⇀ t in H1(Ω). Since wε− t ∈ H0(B
k
ε/2), Poincare’s

inequality implies that ∫
Bk

ε/2

|wkε − t|2dx ≤ ε

∫
Bk

ε/2

|Dwkε |2dx.

Indeed, the Poincare constant for a ball of radius R does not exceed R. Thus∫
Ω

|wε − t|2dx =
∑
k

∫
Bk

ε/2

|wkε − t|2dx (2.14)

≤ ε
∑
k

∫
Bk

ε/2

|Dwkε |2dx = ε2

∫
Ω

|Dwε|2 dx. (2.15)
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By (2.13) {wε}ε is bounded in H1
0 (Ω) and hence has a weakly convergent subsequence.

From (2.14)-(2.15) it follows that every weakly convergent subsequence must converge
to t, thus the entire sequence {wε}ε converges weakly to t.

By Theorem 1.1, Jε(u) =
∫

Ω
|Du|2dx+Fψε(u,B) has a subsequence that Γ-converges

to a functional of the type J0(u) =
∫

Ω
|Du|2dx +

∫
B f(x, u)dµ. We will prove that for

each t ∈ R, ∫
B
f(x, t)dµ = σ(Π ∩ B)

∫
R
gλ(t)dλ. (2.16)

Let us show that the theorem follows by (2.16). Due to (2.16) and the fact that the
family of sets R 3 B is dense in the Borel subsets of Ω, f(x, t)dµ is a measure on
Π, absolutely continuous with respect to σ. Hence f(x, t)dµ = h(x, t)dσ for some
h(x, t) ∈ L1

loc(Π, σ). But∫
Π∩B

h(x, t)dσ = σ(Π ∩ B)

∫
R
gλ(t)dλ

for all t ∈ R and all B ∈ R implies that h is independent of x, thus h(x, t) = h(t) =∫
gλ(t)dλ.
We now prove (2.16). Choose v ∈ C∞

c (Ω) such that v = t in a neighbourhood of B.
Let

vε(x) =

{
wε(x), if x ∈ B,
v(x), if x ∈ Ω \ B. (2.17)

Then clearly vε ⇀ v in H1(Ω). According to Definition 1.1 (i),∫
Ω

|Dv|2dx+

∫
B
f(u, x)dµ =

∫
Ω\B

|Dv|2dx+

∫
B
f(t, x)dµ

≤ lim inf
ε→0

∫
Ω

|Dvε|2dx =

∫
Ω\B

|Dv|2dx+ σ(B ∩ Π)

∫
R
gλ(t)dλ.

It remains to prove that∫
B
f(x, t)dµ ≥ σ(B ∩ Π)gλ(t)dλ. (2.18)

Let zε be a sequence given by Definition 1.1 (ii), i.e. zε ⇀ v and lim supε Jε(zε) ≤ J0(v).
By (i) in the same definition, we have limε→0 Jε(zε) = J0(v). Since v is bounded we
may assume that zε is bounded. To see this we assume that |v| ≤ C and claim that

z̄ε = min(z+
ε , 2C)−min(z−ε , 2C) ⇀ v.

Indeed, z̄ε is uniformly bounded in H1(Ω) and therefore has a weak limit in this space.
Moreover, ∫

Ω

|z̄ε − v|2dx =

∫
Ω\{|zε|>2C}

|zε − v|2dx−
∫
{zε>2C}

|2C − v|2dx

−
∫
{zε<−2C}

| − 2C − v|2dx.
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Since zε → v strongly in L2(Ω) and∫
Ω

|zε − v|2dx ≥ C2measure({|zε| > 2C}),

measure({|zε| > 2C}) → 0 and hence z̄ε → v strongly in L2(Ω). Additionally,∫
Ω

|Dz̄ε|2dx ≤
∫

Ω

|Dzε|2dx,

which implies, again by (i) in Definition 1.1,

lim
ε→0

Jε(z̄ε) = J0(v) =

∫
Ω\B

|Dv|2dx+

∫
B
f(t, x)dµ.

Thus if we let vε be the function given by (2.17), (2.18) follows if we prove
limε→0

∫
Ω
|Dvε|2dx ≤ limε→0

∫
Ω
|Dzε|2dx,

for all zε ∈ H1
0 (Ω) such that zε ≥ ψε,

zε ⇀ v and supε>0 ‖zε‖L∞ <∞.
(2.19)

By the convexity of the functional v 7→
∫

Ω
|Dv|2dx, we have∫

Ω

|Dzε|2 − |Dvε|2dx ≥ 2

∫
Ω

Dvε(Dzε −Dvε)dx (2.20)

= 〈−∆vε, zε − vε〉 =

∫
Ω\B

−∆v(zε − v)dx+
∑
k

〈−∆wkε , zε − wkε 〉, (2.21)

where the sum is taken over

{k ∈ Zn : Π ∩ B ⊂ {aε{y : ψ(y) > −∞}+ εk} (⊂ Bk
aε/2)}.

The first term in (2.21) goes to zero since v ∈ C∞
c (Ω) and zε ⇀ v. The Laplacian of

wkε consists of two measures µkε and νkε such that

−∆wε = µkε − νkε ,

where

νkε (E) = −
∫
E∩Qk

ε

∂wkε
∂n

dS,

and
suppµkε ⊂ {wkε = ψε} ⊂ Bk

aε
, (2.22)

which follows by the fact that wkε solves (2.8) (see [5]). By (2.22) and the fact that
zε ≥ ψε it follows that∫

Qk
ε

(zε − wkε )dµ
k
ε =

∫
Qk

ε

(zε − ψε)dµ
k
ε +

∫
Qk

ε

(ψε − wkε )dµ
k
ε

=

∫
Qk

ε

(zε − ψε)dµ
k
ε ≥ 0.
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It remains to show that
lim
ε→0

∑
k

∫
Qk

ε

(zε − wkε )dν
k
ε = 0.

Let W k
ε solve

min

{∫
Qk

ε

|DW |2dx : W − t ∈ H1
0 (Bk

ε/2) and W ≥ maxψ = A on Bk
aε

}
.

Since W k
ε = wkε on ∂Bk

ε/2, W
k
ε ≥ wkε on Bk

aε
and W k

ε and wkε are harmonic in Bk
ε/2 \Bk

aε
,

we get W k
ε ≥ wkε in Bk

ε/2 from the maximum principle, hence

−∂W
k
ε

∂n
≥ −∂w

k
ε

∂n
on ∂Bk

ε/2.

Thus if we let

ν̂kε (E) =

∫
∂Bk

ε/2
∩E
−∂W

k
ε

∂n
dS,

and set ν̂ε =
∑

k ν̂
k
ε , νε =

∑
k ν

k
ε , then ν̂ε ≥ νε. In [6] (see the proof of Lemma 2.0.8

therein) it was shown that

lim
ε→0

∫
Ω

(hε − h)dν̂ε = 0, (2.23)

whenever hε ⇀ h in H1
0 (Ω) and supε>0 ‖hε‖L∞ < ∞. Since νε ≤ ν̂ε, it follows that

(2.23) holds for νε after writing (hε − h) = (hε − h)+ − (hε − h)−. This proves (2.19).
Since the Γ-limit J0 does not depend on the particular Γ-convergent subsequence, the
entire sequence Jε Γ-converges to J0.
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