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Abstract. We consider the Cauchy problem for Volterra integro-differential second-
order linear equations which describe an evolution of dynamical systems with infinite
numbers of degrees of freedom taking into account relaxation effects. Existence theo-
rems for strong solutions for three classes of complete integro-differential second-order
equations are obtained.

1 Introduction

In this paper we study the Cauchy problem for the Volterra integro-differential second-
order equation in Hilbert space H of the following form

A
d2u

dt2
+ (F + iG)

du

dt
+Bu+

m∑
k=1

∫ t

0

Gk(t, s)Cku(s)ds = f(t), u(0) = u0, u′(0) = u1.

(1.1)
Such equations describe evolution of dynamical systems with infinite numbers of degrees
of freedom taking into account relaxation effects. The unknown function u = u(t) with
values inH describes the field of system displacements relative to the equilibrium state.
The physical meanings of the operator coefficients in (1.1) are the following. A is a
kinetic energy operator and therefore A = A∗ > 0. Next, B is a potential energy
operator; if the equilibrium state of the system is statically stable, then B = B∗ > 0.
The operator F = F ∗ > 0 takes into account energy dissipation while the operator
G = G∗ describes Coriolis (gyroscopic) forces action. Finally, the integral terms take
into account relaxation effects.

In this paper, A is supposed to be a bounded operator (A ∈ L(H)) and the coef-
ficients F , G, B, Ck are assumed to be unbounded noncommuting operators with the
domains of definition dense in H. These operators are compared by their domains of
definition, that is we consider such classes of equations which have a unique so-called
main operator; it has the narrowest domain of definition compared with the other
operators.
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The investigation of problem (1.1) is based on the methods stated in [2] for the
case A = I, where I is the identity operator. We specify also monograph [6] where
Cauchy problems are investigated for integro-differential and functional equations as
well as corresponding spectral problems for the case when one of coefficients is the
main operator while others are its powers.

The following facts will be essentially used in proving the basic statements of our
paper.
Theorem 1.1. Suppose we are given the following Volterra integral equation of the
second kind

u(t)−
∫ t

0

V (t, s)u(s)ds = f(t), 0 6 t 6 T. (1.2)

Let the following conditions be satisfied:
1◦ the function f with values in Banach space E is continuous in t, i.e.

f ∈ C([0, T ]; E). (1.3)

2◦ the operator-function V (t, s) on the triangle ∆T := {(t, s) : 0 6 s 6 t 6 T} is
strongly continuous in both variables and takes values in L(E), briefly

V (t, s) ∈ SC(∆T ;L(E)). (1.4)

Then problem (1.2) has a unique solution u ∈ C([0, T ]; E), and it is possible to get
this solution by the method of successive approximations.
Theorem 1.2. (see [2, p.16-25]). Let us consider the following Cauchy problem for
Volterra integro-differential first-order equation

du

dt
+ Fu+

m∑
k=1

∫ t

0

Gk(t, s)Cku(s)ds = f(t), u(0) = u0. (1.5)

Let the following conditions be satisfied:
1◦ operator (−F ) is a generator of C0-semigroup;
2◦ f ∈ C1([0, T ]; E);
3◦ u0 ∈ D(F );
4◦ D(Ck) ⊃ D(F ), k = 1,m,
5◦ Gk, ∂Gk/∂t ∈ C(∆T ;L(E)), k = 1,m.
Then problem (1.5) has a unique strong solution on the segment [0, T ], i.e. such

function u, for which all the terms in (1.5) are elements of C([0, T ]; E), and the initial
condition u(0) = u0 is satisfied.

2 Incomplete linear Volterra integro-differential second-order
equations unresolved with respect to the highest derivative

2.1 The Cauchy problem. The first approach

Let H be an arbitrary Hilbert space. We consider the case of the implicit integro-
differential equation of form (1.1) when F = G = 0:

A
d2u

dt2
+Bu+

m∑
k=1

∫ t

0

Gk(t, s)Cku(s)ds = f(t), u(0) = u0, u′(0) = u1. (2.1)
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It should be added here that u is the unknown function, f is a given function, A > 0 is
a positive bounded operator, B = B∗ ≥ 0 is a positive definite operator defined on the
domain D(B) ⊂ H, Gk(t, s) are bounded operator functions acting in H, Ck, k = 1,m,
are unbounded operators defined on the domains D(Ck) ⊂ H.

Remark 1. Let us assume that the operator A acts in the scale of spaces Eα, but not
in H. Let Eα, α > 0, be the domain of definition of the power (A−1)α of the operator
A−1 defined on D(A−1) = R(A) ⊂ H. Then

H = E0, D(A−1) = E1, D(A−1/2) = E1/2, (2.2)

and A−1/2 : Eα/2 → E (α−1)/2 is a bounded operator.

Let us define a strong solution of (2.1) with values in E1/2 = D(A−1/2) taking into
account Remark 1.

Definition 1. We call a function u on the segment [0, T ], with values in E1/2 =
D(A−1/2), a strong solution to Cauchy problem (2.1) if all the following conditions are
satisfied:

1◦ u ∈ C([0, T ];D(A−1/2B));
2◦ u′ ∈ C([0, T ];D(B1/2)), u′′ ∈ C([0, T ]; E−1/2);
3◦ all terms in (2.1) belong to C([0, T ]; E1/2);
4◦ for all t ∈ [0, T ] equation (2.1) is true;
5◦ the initial conditions u(0) = u0, u′(0) = u1 are satisfied.

We note that the conditions

u0 ∈ D(A−1/2B), u1 ∈ D(B1/2), f ∈ C([0, T ];D(A−1/2)) (2.3)

are necessary for the existence of a strong solution with values in D(A−1/2) for problem
(2.1) on the segment [0, T ].

If equation (2.1) has a strong solution with values in E1/2 = D(A−1/2), then the first
term in (2.1) can be rearranged in the equivalent forms taking into account Remark 1:

A
d2u

dt2
=

d2

dt2
(Au) = A1/2 d

2

dt2
(A1/2u) ∈ C([0, T ];D(A−1/2)). (2.4)

Our aim is to find restrictions on the operators B, Ck and the operator-functions
Gk(t, s), k = 1,m, which ensure the existence and uniqueness theorem for a strong
solution with values in D(A−1/2) of problem (2.1).

If we go over to the immediate consideration of problem (2.1), we note that it can
be changed to the equivalent problem for the integro-differential first-order equation in
the orthogonal sum of the spaces H2 := H⊕H. On this way let problem (2.1) have a
strong solution u with values in D(A−1/2). We replace in (2.1) the unknown function
u by the new function v according to the rule A1/2u(t) =: v(t) and act on both parts
of (2.1) by A−1/2 ∈ L(D(A−1/2),H). Then the following Cauchy problem arises

d2v

dt2
+ A−1/2BA−1/2v +

m∑
k=1

∫ t

0

A−1/2Gk(t, s)CkA
−1/2v(s)ds = A−1/2f(t), (2.5)

v(0) = A1/2u0, v′(0) = A1/2u1,
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and all the terms in this equation belong to C([0, T ];H).
Let us introduce the new unknown function w by the relations:

−iB1/2A−1/2v(t) =:
dw

dt
, w(0) = 0. (2.6)

From condition 2◦ of Definition 1 it follows that w ∈ C2([0, T ];H) and

d2w

dt2
+ iB1/2A−1/2dv

dt
= 0, w′(0) = −iB1/2u0. (2.7)

Let us also transform the integral terms in (2.5) by using the formula

v(s) =

∫ s

0

v′(ξ)dξ + v(0)

and change the order of integration. We obtain∫ t

0

A−1/2Gk(t, s)CkA
−1/2

(∫ s

0

v′(ξ)dξ + v(0)

)
ds

=

∫ t

0

(∫ t

ξ

A−1/2Gk(t, s)CkA
−1/2ds

)
v′(ξ)dξ+

∫ t

0

A−1/2Gk(t, s)CkA
−1/2v(0)ds, k = 1,m.

Let us introduce the following notation:

a) Ĝk(t, s):=A
−1/2Gk(t, s)A

1/2, Ĉk:=A
−1/2CkA

−1/2,

Ĝk(t, s)Ĉk=A
−1/2Gk(t, s)CkA

−1/2,
(2.8)

b)
Ǧk(t, s) := A−1/2Gk(t, s), Čk := CkA

−1/2,

Ğk(t, s)C̆k = A−1/2Gk(t, s)CkA
−1/2,

(2.9)

and hereinafter we will consider the two cases corresponding to (2.8) and (2.9).
For case (2.8) with accounting (2.6), (2.7) problem (2.5) is equivalent to the Cauchy

problem for the integro-differential first-order equation of the following form:

dz

dt
+iBz+

m∑
k=1

∫ t

0

Ṽk(t, ξ)C̃kz(ξ)dξ = f̃(t), z(0) = z0 := (A1/2u1;−iB1/2u0)τ , (2.10)

where
z(t) := (v′(t);w′(t))τ ∈ H̃ = H⊕H,

f̃(t) := (A−1/2f(t)−
∑m

k=1

∫ t
0
A−1/2Gk(t, s)Cku

0ds; 0)τ ,
(2.11)

B:=

(
0 A−1/2B1/2

B1/2A−1/2 0

)
,

D(B) :=D(B1/2A−1/2)⊕D(A−1/2B1/2)=R(A1/2B−1/2)⊕R(B−1/2A1/2),
(2.12)

and the operators Ṽk(t, ξ) and C̃k are defined by the formulas

Ṽk(t, ξ) := diag(V̂k(t, ξ); 0), V̂k(t, ξ) :=

t∫
ξ

Ĝk(t, s)ds =

t∫
ξ

A−1/2Gk(t, s)A
1/2ds,

(2.13)
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C̃k := diag(Ĉk; 0), D(C̃k) := D(Ĉk)⊕H, k = 1,m. (2.14)

(Here the symbol (·; ·)τ means the transposition operation, in this case the transposition
operation of a row vector.)

Note that in (2.10) the operator B is self-adjoint and therefore the operator −iB
is a generator of a unitary operator group, and in particular, the generator of the C0-
semigroup. That is why for problem (2.10)-(2.14) the assertions of Theorem 1.2 are
true under the following conditions:

1◦ f̃ ∈ C1([0, T ];H2);
2◦ z0 ∈ D(B);
3◦ D(C̃k) ⊃ D(B), k = 1,m;
4◦ Ṽk, ∂Ṽk/∂t ∈ C(∆T ;L(H2)).
It can be checked immediately that in order to realize these conditions it suffices to

require that in the original problem (2.1) the following conditions are satisfied

u0 ∈ D(A−1/2B), u1 ∈ D(B1/2), f ∈ C1([0, T ];D(A−1/2)), (2.15)

D(B1/2A−1/2) ⊂ D(A−1/2CkA
−1/2), (2.16)

Gk, ∂Gk/∂t ∈ C(∆T ;L(D(A−1/2))), k = 1,m. (2.17)

It should be checked only (see expression for f̃ in (2.11) and condition (2.16)), that
A−1/2Cku

0 ∈ H if u0 ∈ D(A−1/2B). But this fact follows from the relation

A−1/2Cku
0 = (A−1/2CkA

−1/2)(A−1/2BA−1/2)−1(A−1/2Bu0),

if we note that

D(A−1/2BA−1/2) ⊂ D(B1/2A−1/2) ⊂ D(A−1/2CkA
−1/2),

and therefore the operator (A−1/2CkA
−1/2)(A−1/2BA−1/2)−1 is bounded.

Thus, if conditions (2.15)-(2.17) are satisfied, then problem (2.10)-(2.14) has a
strong solution z(t) ∈ C([0, T ];H2), that is why problem (2.5) under the same condi-
tions has a strong solution v(t) too, i.e., it has such a solution when all the terms in
(2.5) belong to C([0, T ];H).

In the view of the aforesaid let us state the following result.

Theorem 2.1. Let conditions (2.15)-(2.17) be held. Then problem (2.1) has a unique
strong solution u(t), 0 6 t 6 T , with values in E1/2 = D(A−1/2).

Proof. In the view of the aforesaid it remains to note that the statement of the theorem
will turn true after an inverse interchange v(t) = A1/2u(t) in (2.5) and applying A1/2 ∈
L(H,D(A−1/2)) on both sides of the obtained equation.

Now let us consider case (2.9). Then problem (2.5) is equivalent to problem (2.10)-
(2.14), where now

Ṽk(t, ξ) := diag(V̌k(t, ξ); 0), V̌k(t, ξ) :=

t∫
ξ

Ǧk(t, s)ds =

t∫
ξ

A−1/2Gk(t, s)ds, (2.18)

C̃k := diag(Čk; 0), D(C̃k) := D(Čk)⊕H, k = 1,m. (2.19)
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Theorem 2.2. Let conditions (2.15) and

D(B1/2A−1/2) ⊂ D(CkA
−1/2), (2.20)

Gk, ∂Gk/∂t ∈ C(∆T ;L(H;D(A−1/2))), k = 1,m, (2.21)

be held. Then problem (2.1) has a unique strong solution u with values in D(A−1/2) on
the segment [0, T ].

Proof. Here, as above, we first prove the existence of a strong solution to the new
problem (2.10)-(2.12), (2.18),(2.19). We obtain this proof by analogy with the proof
of Theorem 1.2 (see [2]), but now taking into account relations (2.18), (2.19). Then
we pass from (2.10)-(2.12), (2.18),(2.19) to problem (2.5), which has a strong solution
v ∈ C([0, T ];H), and return to problem (2.1).

Remark 2. If the operator B = B∗ ≥ 0 is fixed, then conditions (2.20) for the
operators Ck are more generic than (2.16); at the same time conditions (2.17) for the
operator functions Gk(t, s) are less generic than (2.21).

2.2 Cauchy problem. The second approach.

In studying problem (2.1) the second method of approach can be used, which is not
based on the transition to the equivalent problem for two first-order equations, but on
the usage of the theory of operator cosine- and sine-functions (see, for example, [5]).
Here for A = I the following assertion occurs (see [2, p. 67-71]).

Theorem 2.3. Let in problem (2.1) A = I and the following conditions be held

u0 ∈ D(B), u1 ∈ D(B1/2), f ∈ C1([0, T ];H), (2.22)

D(Ck) ⊃ D(B), (2.23)

Gk, ∂Gk/∂t ∈ C(∆T ;L(H)), k = 1,m. (2.24)

Then this problem has a unique strong solution on the segment [0, T ], it means the
existence of a function

u ∈ C([0, T ];D(B)) ∩ C1([0, T ];D(B1/2)) ∩ C2([0, T ];H), (2.25)

for which equation (2.1) and the initial conditions are true (for A = I) for all t ∈ [0, T ].

As above let us transform problem (2.1) to Cauchy problem (2.5) and use the
conditions and assertions of Theorem 2.3 for this problem. Then conditions (2.22)-
(2.24) lead us to the relations

u0 ∈ D(A−1/2B), u1 ∈ D(B1/2), f ∈ C1([0, T ];D(A−1/2)), (2.26)

D(A−1/2BA−1/2) ⊂ D(A−1/2CkA
−1/2), (2.27)

Gk, ∂Gk/∂t ∈ C(∆T ;L(D(A−1/2))), k = 1,m. (2.28)
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Here to obtain (2.26) the following facts are used. Let us introduce a positive
definite (as B ≥ 0, A−1 ≥ 0) self-adjoint operator B̂ := A−1/2BA−1/2, defined on
domain D(B̂) = R(A1/2B−1A1/2) ⊂ H. Then the operator B̂1/2 = (B̂1/2)∗ ≥ 0 exists,
and the operator B1/2A−1/2 can be written in the polar representation (see [1, p. 280-
285])

B1/2A−1/2 = UB̂1/2 = U(A−1/2BA−1/2)1/2, (2.29)

where the operator U according to the properties of B1/2 and A−1/2 is not only a partial
isometry, but a unitary operator acting in H. From this it follows that

D(B̂1/2) = D(B1/2A−1/2), (2.30)

and as in problem (2.5) it must be v′(0) = A1/2u1 ∈ D(B̂1/2), then by taking (2.30)
into account we obtain condition u1 ∈ D(B1/2).

Theorem 2.4. Suppose the conditions (2.26)-(2.28) are satisfied. Then problem (2.1)
has a unique strong solution u with values in D(A−1/2) on the segment [0, T ].

Proof. It follows by the above arguments that if conditions (2.26)-(2.28) are satisfied,
then Cauchy problem (2.5) has a unique strong solution v with values in H on the
segment [0, T ]. Therefore after the inverse change v(t) = A1/2u(t) in (2.5) and applying
A1/2 on the left we arrive at the assertion of the present theorem.

Remark 3. Conditions (2.26)-(2.28), which imply the assertion of Theorem 2.4, are
more generic that conditions (2.15)-(2.17), which imply Theorem 2.1. In fact, it is
obvious that if condition (2.16) is satisfied then

D(A−1/2BA−1/2) ⊂ D(B1/2A−1/2) ⊂ D(A−1/2CkA
−1/2), (2.31)

and (2.27) follows by (2.16). At the same time (2.27) does not imply (2.16).

The next assertion is an analogue of Theorem 2.2 based on the usage of the theory
of operator cosine- and sine-functions.

Theorem 2.5. Let conditions (2.26), (2.21) and also the condition

D(A−1/2BA−1/2) ⊂ D(CkA
−1/2), k = 1,m, (2.32)

be satisfied. Then problem (2.1) has a unique strong solution u with values in D(A−1/2)
on the segment [0, T ].

Proof. This proof is realized similarly to the proof of Theorem 2.3, with the consider-
ation of the conditions of the present theorem. Namely, under these conditions there
exists a unique strong solution v with values in H to problem (2.5), and hence a unique
strong solution u to problem (2.1).

Remark 4. The requirement f ∈ C1([0, T ];D(A−1/2)) in Theorems 2.1-2.2, 2.4-2.5 can
be weakened. It can be replaced by the condition

A−1/2f ∈ W 1
p ([0, T ];H), p > 1, (2.33)
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where

||f ||W 1
p ([0,T ];H) :=

1∑
k=0

(∫ T

0

||f (k)(t)||pHdt
)1/p

.

Indeed, as it is shown by S.Ya. Yakubov in [8] for f ∈ W 1
p ([0, T ];H) Cauchy problem

(1.5) for the differential (not integro-differential) equation has a strong solution u with
values in H. Just that property is used to prove the mentioned theorems.

3 Complete linear Volterra integro-differential second-order
equations unresolved with respect to the highest derivative

3.1 Setting of the problem

Let us consider Cauchy problem (1.1) under the assumption of Section 1, i.e., let us
assume that

0 < A = A∗ ∈ L(H), F = F ∗ ≥ 0, B = B∗ ≥ 0, G = 0, (3.1)

and we will formulate requirements on Gk(t, s) and Ck below. The equation of form
(1.1) is called complete since its main part consists of the terms, which depend on u
and d2u/dt2 as well as on du/dt.

Definition 2. Function u with the values in E1/2 = D(A−1/2) is said to be a strong so-
lution to Cauchy problem (1.1) (G = 0) on the segment [0, T ] if the following conditions
are satisfied:

1◦ u ∈ C([0, T ];D(A−1/2)B);
2◦ u′ ∈ C([0, T ];D(B1/2)) ∩ C([0, T ];D(A−1/2F ));
3◦ u′′ ∈ C([0, T ];D(A−1/2));
4◦ all the terms in equation (1.1) are functions continuous in t belonging to

C([0, T ];D(A−1/2));
5◦ for all t ∈ [0, T ] equation (1.1) is true;
6◦ the initial conditions u(0) = u0, u′(0) = u1 are satisfied.

Note that conditions

u0 ∈ D(A−1/2B), u1 ∈ D(B1/2) ∩ D(A−1/2F ), f ∈ C([0, T ];D(A−1/2))

are necessary for the existence of a strong solution with values in D(A−1/2) for problem
(1.1), (3.1) on the segment [0, T ].

Here again our goal is to find restrictions on the operators F , B, Ck and the
operator-functions Gk(t, s), k = 1,m, which ensure the existence and uniqueness the-
orem for a strong solution with values in D(A−1/2) to problem (1.1).

Let u be a strong solution to problem (1.1) in the sense of Definition 2. Let us
pass (as well as in 2.1) from this problem to the Cauchy problem for the system of
two first-order integro-differential equations. For that we replace in (1.1) the unknown
function u with the new unknown function v according to the rule A1/2u(t) =: v(t)
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and act on both parts of (1.1) by A−1/2 ∈ L(D(A−1/2),H). Then the following Cauchy
problem similar to problem (2.5) arises:

d2v

dt2
+A−1/2FA−1/2dv

dt
+A−1/2BA−1/2v+

m∑
k=1

∫ t

0

A−1/2Gk(t, s)CkA
−1/2v(s)ds = A−1/2f(t),

(3.2)
v(0) = A1/2u0, v′(0) = A1/2u1.

Here all the terms belong to C([0, T ];H).
Let us introduce the new unknown function w according to the formula

−iB1/2A−1/2v =:
dw

dt
, w(0) = 0. (3.3)

As property 2◦ in Definition 2 is satisfied we obtain that d2w/dt2 ∈ C([0, T ];H) and
therefore

d2w

dt2
+ iB1/2A−1/2dv

dt
= 0, w′(0) = −iB1/2A−1/2v(0) = −iB1/2u0. (3.4)

Hence, as well as, in Subsection 2.1, we come to the conclusion that problem (1.1)
is equivalent to the Cauchy problem for the first-order integro-differential equation

dz

dt
+ F0z +

m∑
k=1

∫ t

0

Ṽk(t, ξ)C̃kz(ξ)dξ = f̃(t), (3.5)

z(0) = z0 := (A1/2u1;−iB1/2u0)τ , (3.6)

z(t) := (v′(t);w′(t))τ ∈ H̃ := H⊕H, (3.7)

f̃(t) := (A−1/2f(t)−
m∑
k=1

∫ t

0

A−1/2Gk(t, s)Cku
0ds; 0)τ , (3.8)

F0 :=

(
A−1/2FA−1/2 iA−1/2B1/2

iB1/2A−1/2 0

)
, (3.9)

D(F0) := (D(A−1/2FA−1/2) ∩ D(B1/2A−1/2))⊕D(A−1/2B1/2). (3.10)

Here the operators Ṽk(t, ξ) and C̃k are defined by formulas (2.13), (2.14) when con-
ditions (2.8) are satisfied and by formulas (2.18), (2.19) when conditions (2.9) are
satisfied.

Further investigation of problem (3.5)-(3.10) is based on various of relations between
the domains of definition of operators the B1/2A−1/2 and A−1/2FA−1/2. In the present
paper the following three cases are studied:

1◦ low intensity of energy dissipation:

D(B1/2A−1/2) ⊂ D(A−1/2FA−1/2); (3.11)

2◦ mean intensity of energy dissipation:

D(A−1/2BA−1/2) ⊂ D(A−1/2FA−1/2) ⊂ D(B1/2A−1/2) ⊂ D(F 1/2A−1/2); (3.12)
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3◦ high intensity of energy dissipation:

D(A−1/2FA−1/2) ⊂ D(A−1/2BA−1/2) ⊂ D(B1/2A−1/2). (3.13)

We devote an individual section to each of these cases.

Remark 5. The right inclusion in (3.13) is obvious. To prove the right inclusion in
(3.12) we use the well-known Heinz inequality (see, for example, [4, p. 254]) and the
polar representation for unbounded operators (see [1, p. 280-285]).

Proof. Indeed, operators B̃ := A−1/2BA−1/2 and F̃ := A−1/2FA−1/2, which are defined
on domains

D(A−1/2BA−1/2) = R(A1/2B−1A1/2), D(A−1/2FA−1/2) = R(A1/2F−1A1/2), (3.14)

are self-adjoint and positive definite operators. In addition by (3.12) then D(B̃) ⊂
D(F̃ ), and by Heinz inequality it follows that

D(B̃1/2) ⊂ D(F̃ 1/2). (3.15)

Using the polar representations for these operators, i.e. formulas

B̃1/2 = UBB
1/2A−1/2, F̃ 1/2 = UFF

1/2A−1/2, (3.16)

where UB and UF are unitary operators, we make the conclusion that

D(B̃1/2) = D(B1/2A−1/2), D(F̃ 1/2) = D(F 1/2A−1/2), (3.17)

and the right inclusion in (3.12) is proved.

3.2 The case of low intensity of energy dissipation.

Under condition (3.11) the operator matrix F0 in (3.9) is well defined on the domain
(see (3.10))

D(F0) := D(B1/2A−1/2)⊕D(A−1/2B1/2) = R(A1/2B−1/2)⊕R(B−1/2A1/2). (3.18)

Lemma 3.1. Let condition (3.11) be held. Then the operator F0 defined on domain
(3.18) is an unbounded maximal accretive one:

Re(F0z, z)H2 = (A−1/2FA−1/2v′, v′)H = ||F 1/2A−1/2v′||2H > 0, ∀z ∈ D(F0). (3.19)

There exists the following factorization of this operator

F0 =

(
A−1/2FA−1/2 iA−1/2B1/2

iB1/2A−1/2 0

)
= i

(
I −iA−1/2FB−1/2

0 I

)(
0 A−1/2B1/2

B1/2A−1/2 0

)
,

(3.20)

where A−1/2FB−1/2 is a bounded operator acting in H.
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Proof. Property (3.20) can be checked immediately. It follows by the representation

A−1/2FB−1/2 = (A−1/2FA−1/2)(A1/2B−1/2) = (A−1/2FA−1/2)(B1/2A−1/2)−1 (3.21)

and (3.11) that the operator A−1/2FB−1/2 is bounded. Further, the maximality prop-
erty of F0 follows from the fact that the inverse operator

F−1
0 = −i

(
0 A1/2B−1/2

B−1/2A1/2 0

)(
I iA−1/2FB1/2

0 I

)
(3.22)

is defined on the whole space H̃ = H2.

Corollary 3.1. The operator (−F0) is a generator of C0-semigroup.

The proved facts allow us to use the assertion of Theorem 1.2 to problem (3.5)-(3.9),
(3.18). By this theorem we obtain that if the following conditions are satisfied:

1◦ D(C̃k) ⊃ D(F0), k = 1,m;
2◦ Ṽk, ∂Ṽk/∂t ∈ C(∆T ;L(H2));
3◦ z0 ∈ D(F0);
4◦ f̃ ∈ C1([0, T ];H2);

then problem (3.5)-(3.9), (3.18) has a unique strong solution z on the segment [0, T ].
Let us find such conditions that make properties 1◦-4◦ true. First let the operators

C̃k and the operator-functions Ṽk be defined by formulas (2.13), (2.14), (2.8).
Condition 1◦ leads us to the property

D(B1/2A−1/2)⊕D(A−1/2B1/2) ⊂ D(A−1/2CkA
−1/2)⊕H, k = 1,m,

which holds if
D(B1/2A−1/2) ⊂ D(A−1/2CkA

−1/2), k = 1,m. (3.23)

Further, from requirement 2◦ and formulas (2.13) the following properties follow

V̂k(t, ξ) =

∫ t

ξ

A−1/2Gk(t, s)A
1/2ds, ∂V̂k(t, ξ)/∂t ∈ C(∆;L(H)), k = 1,m.

These properties are true if the following conditions are satisfied

Gk(t, s), ∂Gk(t, s)/∂t ∈ C(∆T ;L(D(A−1/2))), k = 1,m. (3.24)

It is easy to check that requirement 3◦ is equivalent to the conditions

u0 ∈ D(A−1/2B), u1 ∈ D(B1/2). (3.25)

Finally, it can be ascertained that condition 4◦ holds if

f ∈ C1([0, T ];D(A−1/2)). (3.26)

Indeed, in this case A−1/2f ∈ C1([0, T ];H), and all we need is to check that other terms
in (3.8) belong to C1([0, T ];H) too. To check these facts let us represent the integrands
as

A−1/2Gk(t, s)Cku
0 = (A−1/2Gk(t, s)A

1/2)(A−1/2Cku
0).
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Note that by (3.24) A−1/2Gk(t, s)A
1/2 ∈ C1(∆T ;L(H)) and then it suffices to check

that A−1/2Cku
0 ∈ H. But by (3.25) u0 = B−1/2A1/2η0, η0 ∈ H, and then

A−1/2Cku
0 = (A−1/2CkA

−1/2)(A1/2B−1A1/2)η0

= (A−1/2CkA
−1/2)(B1/2A−1/2)−1(B−1/2A1/2η0) ∈ H, (3.27)

since by (3.23) the product of the first and the second factors is a bounded operator,
and the operator B−1/2A1/2 is bounded too.

Theorem 3.1. Suppose that in problem (1.1) conditions (3.1) and (3.23)-(3.26) hold.
Then this problem has a unique strong solution u with values in D(A−1/2) = E1/2 on
the segment [0, T ].

Proof. As was proved above if the conditions of the theorem are satisfied then the
problem (3.5)-(3.9), (3.18) has a unique strong solution z with values in H̃ = H2 on
segment [0, T ]. Turning back by formulas (3.4), (3.3) from (3.5) to problem (3.2) we
make the conclusion that this problem has a unique strong solution v with values in
H on segment [0, T ]. Carrying out in (3.2) an inverse interchange v(t) =: A1/2u(t) and
acting by A1/2 we obtain the assertion of the theorem.

Now we similarly consider another case when the operators C̃k and the operator-
functions Ṽk are defined by formulas (2.18), (2.19), (2.9). Here instead of (3.23), (3.24)
the following conditions arise

D(B1/2A−1/2) ⊂ D(CkA
−1/2), k = 1,m, (3.28)

Gk, ∂Gk/∂t ∈ C(∆T ;L(H,D(A−1/2))), k = 1,m. (3.29)

Not repeating the transformations similar to the derivation of formulas (3.23)-(3.27)
we mention only that here instead of (3.27) the following formula takes place

Cku
0 = CkB

−1A1/2η0 = [(CkA
−1/2)(B1/2A−1/2)−1](B−1/2A1/2η0) ∈ H, k = 1,m,

(3.30)
since conditions (3.28), (3.25) are satisfied.

Theorem 3.2. Suppose that in problem (1.1) conditions (3.1) and (3.28), (3.29),
(3.25), (3.26) hold. Then this problem has a unique strong solution u with values
in D(A−1/2) = E1/2 on the segment [0, T ].

Remark 6. Theorem 3.1 is a generalization of Theorem 2.1, and Theorem 3.2 is a
generalization of Theorem 2.2 when in the investigated integro-differential equation
(1.1) F 6= 0, G = 0.

3.3 The case of high intensity of energy dissipation.

Suppose that in problem (3.5)-(3.10) conditions (3.13) hold, i.e. let us consider
the case of high intensity of energy dissipation. Here the operator matrix F0 is again
defined by formula (3.9) but now

D(F0) = D(A−1/2FA−1/2)⊕D(A−1/2B1/2). (3.31)
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Here, it is useful to replace the unknown function z with the new unknown function
y according to the rule

z(t) = eαty(t), α > 0. (3.32)
Then for the unknown function y we obtain the Cauchy problem

dy

dt
+ Fαy +

m∑
k=1

∫ t

0

W̃k(t, ξ)C̃ky(ξ)dξ = f̃α(t), (3.33)

y(0) = z(0) = (A1/2u1;−B1/2u0)τ , (3.34)

Fα := F0+αI = Fα,1+diag(αI; 0), Fα,1 :=

(
A−1/2FA−1/2 iA−1/2B1/2

iB1/2A−1/2 αI

)
, (3.35)

D(Fα) = D(F0) = D(Fα,1) = D(A−1/2FA−1/2)⊕D(A−1/2B1/2), (3.36)

f̃α(t) := e−αtf̃0(t), W̃k(t, ξ) := e−α(t−ξ)Ṽk(t, ξ), (3.37)

where the function f̃0 is defined by formula (3.8), and Ṽk and C̃k are defined by formulas
(2.13), (2.14) if (2.8) is true and by formulas (2.18), (2.19) if (2.9) is true.

Lemma 3.2. The operator Fα in (3.35),(3.36) is a uniformly accretive operator on
D(Fα), i.e.,

Re(Fαy, y)H2 > α||y||2H2 , ∀y ∈ D(Fα), α > 0. (3.38)

Proof. This fact follows immediately by (3.19) and definition (3.35) of the operator
Fα.

Let us introduce the auxiliary operators:

V := B1/2F−1/2, V + := F−1/2B1/2, D(V +) := D(B1/2). (3.39)

Lemma 3.3. The operators V and V + have the following properties:

V ∈ L(H), V + = V ∗|D(B1/2), V + = V ∗ ∈ L(H). (3.40)

Proof. Let us check first that the operator V is bounded and therefore it is defined on
the whole space H. In fact,

V = B1/2F−1/2 = (B1/2A−1/2)(F 1/2A−1/2)−1,

and the following condition holds

D(F 1/2A−1/2) ⊂ D(B1/2A−1/2). (3.41)

This condition follows by the left inclusion in (3.13), the Heinz inequality and
can be proved exactly in the same way as in Remark 5. Therefore the operator
(B1/2A−1/2)(F 1/2A−1/2)−1 is bounded, i.e., V ∈ L(H).

Let us now take u ∈ D(B1/2), v ∈ H. Then

(V +u, v)H = (F−1/2B1/2u, v)H = (u,B1/2F−1/2v)H = (u, V v)H. (3.42)

Hence, the second property in (3.40) follows. Further, since the operator V is bounded,
V ∗ is bounded too, and V + and V ∗ coincide on the dense in H set D(B1/2). So the
closure by the continuity of the operator V + from D(B1/2) to the whole H coincides
with V ∗.

The following theorem is a corollary of Lemmas 3.2 and 3.3.
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Theorem 3.3. There exist the following factorizations of the operator matrix Fα in
(3.35), defined on domain (3.36):

1◦. in the Schur–Frobenius form,

Fα =

(
I 0

iV F−1/2A1/2 I

)(
A−1/2FA−1/2 0

0 V V + + αI

)(
I iA1/2F−1/2V +

0 I

)
+

(
αI 0
0 0

)
;

(3.43)
2◦. with the symmetric bordering,

Fα =

(
A−1/2F 1/2 0

0 I

)(
I iV +

iV αI

)(
F 1/2A−1/2 0

0 I

)
+

(
αI 0
0 0

)
. (3.44)

The operator Fα can be closed to the maximal accretive operator

F := Fα = F1 + diag(αI; 0). (3.45)

This closure of the operator Fα can be represented:
1◦. in the Schur–Frobenius form,

F =

(
I 0

iV F−1/2A1/2 I

)(
A−1/2FA−1/2 0

0 V V ∗ + αI

)(
I iA1/2F−1/2V ∗

0 I

)
+

(
αI 0
0 0

)
;

(3.46)
2◦. with the symmetric bordering,

F =

(
A−1/2F 1/2 0

0 I

)(
I iV ∗

iV αI

)(
F 1/2A−1/2 0

0 I

)
+

(
αI 0
0 0

)
. (3.47)

The operator F is defined on the domain

D(F) := {y = (y1; y2)
τ : y1 ∈ D(F 1/2A−1/2),

F 1/2A−1/2y1 + iV ∗y2 ∈ D(A−1/2F 1/2)},
(3.48)

by the formula

Fy =

(
A−1/2F 1/2(F 1/2A−1/2y1 + iV ∗y2) + αy1

iB1/2A−1/2y1 + αy2

)
, y ∈ D(F). (3.49)

Proof. Let us first note that if y = (y1; y2)
τ ∈ D(F), then y1 ∈ D(F 1/2A−1/2), and

taking into account (3.41), y1 ∈ D(B1/2A−1/2), i.e. formula (3.49) is well defined.
Further formulas (3.43), (3.44) can be checked immediately on the elements in

D(Fα). The second and the third factors in (3.43) (the first term in the right part) can
be closed by replacing the operator V + by V ∗ ∈ L(H). Consequently the operator F
in (3.46) arises. The first term of F is a product of closed operators having a bounded
inverse, and the second term is obviously a bounded operator. Therefore the range of
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the operator F in (3.46) is the whole space H2, i.e. F is a maximal uniformly accretive
operator which keeps property (3.38) (see, for example, [3, p.109]).

Similarly we can state that the operator F in (3.47) is also a maximal uniformly
accretive operator. Here (in the first term) the bordering factors are unbounded oper-
ators having a bounded inverse and the middle factor after replacing of operator V +

by V ∗, has the following property

Re
( (

I iV ∗

iV αI

)(
y1

y2

)
,

(
y1

y2

) )
H2

> min{1;α2}||y||2, ∀y ∈ H2,

i.e., it is a uniformly accretive operator, and so it has a bounded inverse too.
Let us finally note that formula (3.49) for F follows by representation (3.46) as well

as by (3.47), and can be checked immediately.
Taking into account the properties of the operator F let us consider the following

Cauchy problem

dy

dt
+ Fy +

m∑
k=1

∫ t

0

W̃k(t, ξ)C̃ky(ξ)dξ = f̃α(t), (3.50)

y(0) = (A1/2u1;−iB1/2u0)τ , (3.51)

together with (3.33), (3.34).
Since F is a maximal uniformly accretive operator, the operator (−F) generates a

C0-semigroup. Therefore, by Theorem 1.2, problem (3.50), (3.51) has a unique strong
solution y on the segment [0, T ] if the following conditions are satisfied (in the case
(2.8), (2.13), (2.14)):
1◦ D(C̃k) ⊃ D(F), k = 1,m; (3.52)

2◦ W̃k, ∂W̃k/∂t ∈ C(∆T ;L(H2)); (3.53)

3◦ y(0) ∈ D(Fα) ⊂ D(F); 4◦ f̃α ∈ C1([0, T ];H2). (3.54)

These facts allow us to obtain sufficient conditions of the solvability of problem
(1.1), (3.1) in the case of high intensity of energy dissipation.

Theorem 3.4. Suppose that in problem (1.1) - (3.1) condition (3.13) and the following
conditions are satisfied

u0 ∈ D(A−1/2F ) ⊂ D(A−1/2B), u1 ∈ D(A−1/2F ), f ∈ C1([0, T ];D(A−1/2)),
(3.55)

D(A−1/2CkA
−1/2) ⊃ D(F 1/2A−1/2), k = 1,m, (3.56)

Gk, ∂Gk/∂t ∈ C(∆T ;L(D(A−1/2))), k = 1,m. (3.57)

Then this problem has a unique strong solution u on the segment [0, T ] with values
in D(A−1/2).

Proof. 1) Let us check first that if conditions (3.55)-(3.57) are satisfied, then properties
(3.52)-(3.54) are true.
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Indeed, condition 3◦ here looks like

(A1/2u1;−iB1/2u0)τ ∈ D(A−1/2FA−1/2)⊕D(A−1/2B1/2),

and to make it valid it suffices to make the first and the second conditions in (3.55)
true. In particular, if u0 ∈ D(A−1/2F ), then u0 = F−1A1/2η0, η0 ∈ H, and then

(A−1/2B1/2)(B1/2u0) = (A−1/2BA−1/2)(A−1/2FA−1/2)−1η0 =: Kη0 ∈ H,

so according to the left condition of (3.13) the operator K is bounded.
To make condition 4◦ valid it suffices to suppose that f ∈ C1([0, T ];D(A−1/2)) and

besides (see (3.8), (3.27)),

A−1/2Gk(t, s)Cku
0 = (A−1/2Gk(t, s)A

1/2)(A−1/2Cku
0) ∈ C(∆T ;L(H)),

A−1/2(∂Gk(t, s)/∂t)Cku
0 = (A−1/2∂Gk(t, s)A

1/2)(A−1/2Cku
0) ∈ C(∆T ;L(H)).

Since here according to (3.57) the first factors have this property and u0 = F−1A1/2η0,
η0 ∈ H, then

A−1/2Cku
0 =

[
(A−1/2CkA

−1/2)(F 1/2A−1/2)−1
]
F−1/2A1/2η0 ∈ H,

because according to (3.56) the square bracket is a bounded operator and the operator
F−1/2A1/2 is also bounded .

It can also be checked that formulas (3.37) for W̃k(t, ξ) and formulas (2.13), (2.14),
(3.48) allow us to state that conditions 1◦ and 2◦ hold if properties (3.56), (3.57) are
true.

Thus, if conditions (3.55)-(3.57) hold then problem (3.50), (3.51) has a unique
strong solution y with values in H2 on the segment [0, T ].

2) Relying on this fact, let us prove the assertion of the theorem. Let us rewrite
(3.50), (3.51) as the Cauchy problem for the system of two equations:

dy1

dt
+ A−1/2F 1/2(F 1/2A−1/2y1 + iV ∗y2) + αy1 +

m∑
k=1

∫ t

0

e−α(t−ξ)V̂k(t, ξ)Ĉky1(ξ)dξ

= e−αt(A−1/2f(t)−
m∑
k=1

∫ t

0

Ĝk(t, s)ĈkA
1/2u0ds), y1(0) = A1/2u1; (3.58)

dy2

dt
+ iB1/2A−1/2y1 + αy2 = 0, y2(0) = −iB1/2u0. (3.59)

Here, as has been proved, each term in the equations is a continuous function in t with
values in H.

Note now that problem (3.33), (3.34) can be rewritten as the Cauchy problem
for the system of two equations as well. The second equation is (3.59), and the first
equation according to the definition of operator Fα, is the following:

dy1

dt
+ A−1/2FA−1/2y1 + iA−1/2F 1/2V +y2 + αy1 +

m∑
k=1

∫ t

0

e−α(t−ξ)V̂k(t, ξ)Ĉky1(ξ)dξ
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= e−αt(A−1/2f(t)−
m∑
k=1

∫ t

0

Ĝk(t, s)ĈkA
1/2u0ds), y1(0) = A1/2u1. (3.60)

Let us prove that (under the assumptions of the theorem) if problem (3.58), (3.59)
has a unique strong solution then problem (3.60), (3.59) has a unique strong solution
(y1(t); y2(t))

τ on the segment [0, T ] with values in H2. In other words taking into
account the property V ∗|D(B1/2) = V + = F−1/2B1/2 (Lemma 3.3), in equation (3.58)
the brackets in the second term from the left can be opened and then in (3.60), (3.59)
each term is a continuous function in t with values in H.

By (3.59) it follows that

y2(t) = −i
∫ t

0

e−α(t−s)B1/2A−1/2y1(s)ds+ y2(0). (3.61)

Substituting this relation in the brackets in (3.58), we obtain the function

ϕ(t) := F 1/2A−1/2y1(t)

+
∫ t

0
e−α(t−s)V ∗B1/2A−1/2y1(s)ds+ V ∗B1/2u0 ∈ C([0, T ];D(A−1/2F 1/2)).

(3.62)

Let ϕ and u0 be known. Then we obtain that function y1 is a solution of the Volterra
integral equation

y1(t) +

∫ t

0

e−α(t−s)Ky1(s)ds = ϕ1(t) ∈ C([0, T ];D(A−1/2FA−1/2)), (3.63)

K := A1/2F−1/2V ∗B1/2A−1/2, (3.64)

ϕ1(t) := A−1/2F−1/2ϕ(t)− A1/2F−1/2V ∗B1/2u0. (3.65)

Actually, relying on the inclusions

D(A−1/2F ) ⊂ D(A−1/2B) ⊂ D(B) (3.66)

(see (3.55)), and Lemma 3.3, we obtain that

A1/2F−1/2V ∗B1/2u0 = A1/2F−1/2V +B1/2u0 = A1/2F−1Bu0

= (A1/2F−1A1/2)(A−1/2Bu0) ∈ D(A−1/2FA−1/2), (3.67)

as A−1/2Bu0 ∈ H. As for the first term in (3.65), the property

A1/2F−1/2ϕ(t) ∈ C([0, T ];D(A−1/2FA−1/2)) (3.68)

follows by (3.62).
Thus, relation (3.62) can be considered as a Volterra integral equation of the second

kind in the space

C([0, T ];H(A−1/2FA−1/2)), H(A−1/2FA−1/2) := D(A−1/2FA−1/2), (3.69)

with the norm equivalent to the norm of the graphic:

||y1||H(A−1/2FA−1/2) := ||A−1/2FA−1/2y1||H. (3.70)
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Let us check that the operator K in (3.64) is a linear bounded operator acting in
H(A−1/2FA−1/2). Note for this that if y1 ∈ D(A−1/2FA−1/2) ⊂ D(A−1/2BA−1/2), then
B−1/2A−1/2y1 ∈ D(A−1/2B1/2) ⊂ D(B1/2) and therefore by Lemma 3.3

Ky1 = A1/2F−1/2V ∗B1/2A−1/2y1 = A1/2F−1/2V +B1/2A−1/2y1

= A1/2F−1BA−1/2y1 = (A−1/2FA−1/2)−1(A−1/2BA−1/2)y1 ∈ D(A−1/2FA−1/2), (3.71)

as A−1/2BA−1/2y1 ∈ H.
It follows from the above that K|D(A−1/2FA−1/2) is a bounded operator acting in

H(A−1/2FA−1/2). Then the kernel function K(t, s) := e−α(t−s)K of the integral op-
erator in equation (3.63) is a continuous in t, s operator function with values in
L(H(A−1/2FA−1/2)). Therefore by the known existence and uniqueness theorem for
Volterra integral equations of the second kind (see, for example, [7]) problem (3.63)
has a unique solution y1 ∈ C([0, T ];H(A−1/2FA−1/2)). So in (3.58) in the expression
F 1/2A−1/2y1(t) + iV ∗y2(t) each term belongs to C([0, T ];D(A−1/2F 1/2)), and therefore
the brackets in the second term can be opened. It follows from the above that problem
(3.60), (3.59) has a unique solution

(y1; y2)
τ ∈ C([0, T ];H2). (3.72)

3) Let us turn back from (3.60), (3.59) to original problem (1.1)-(3.1). First, we
pass from (3.33), (3.34) to problem (3.5)-(3.10), then to problem (3.2) and finally to
problem (1.1), (3.1). We obtain that problem (3.2) has on the segment [0, T ] a unique
strong solution v with values in H, since the original problem (1.1), (3.1) has on this
segment a unique strong solution u with values in D(A−1/2).

Remark 7. To prove Theorem 3.4 we use the property D(A−1/2F ) ⊂ D(A−1/2B),
which follows from the relations

R(A1/2F−1A1/2) = D(A−1/2FA−1/2) ⊂ D(A−1/2BA−1/2)

= R(A1/2B−1A1/2) ⊂ D(A−1/2)

after applying operator A−1/2:

A−1/2R(A1/2F−1A1/2) = R(F−1A1/2) = D(A−1/2F ) ⊂ A−1/2R(A1/2B−1A1/2)

= R(B−1A1/2) = D(A−1/2B). (3.73)

Now we consider the case when W̃k and C̃k in (3.33) are defined by formulas (3.37),
(2.18), (2.19), (2.9). Let us formulate without a proof the following result similar to
Theorem 3.4.

Theorem 3.5. Suppose in that problem (1.1) - (3.1) conditions (3.13) and (3.55) are
satisfied, and the following conditions.

D(CkA
−1/2) ⊃ D(F 1/2A−1/2), k = 1,m, (3.74)

Gk, ∂Gk/∂t ∈ C(∆T ;L(H,D(A−1/2))), k = 1,m, (3.75)

are also satisfied.
Then this problem has a unique strong solution u on the segment [0, T ] with values

in D(A−1/2).
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3.4 The case of mean intensity of energy dissipation.

Let us finally consider the case when in problem (3.5)-(3.10) conditions (3.12) hold,
i.e.,

D(A−1/2BA−1/2) ⊂ D(A−1/2FA−1/2) ⊂ D(B1/2A−1/2) ⊂ (F 1/2A−1/2). (3.76)

In this case in the Cauchy problem (3.33)-(3.37) the operator Fα in (3.35) is defined
on D(Fα) in (3.36) again, but it has properties different from the properties of the
operators Fα and Fα = F , arising in Subsection 3.3. Let us note that Lemma 3.2 is
still true. Now instead of Lemma 3.3 we formulate a new assertion.

Let us introduce the operators

Q := B1/2F−1A1/2, Q+ := A1/2F−1B1/2, D(Q+) := D(B1/2), (3.77)

V := B1/2F−1/2, V −1 := F 1/2B−1/2,
D(V ) := R(V −1), R(V ) := D(V −1) = H, (3.78)

V + := F−1/2B1/2, (V +)−1 = B−1/2F 1/2,
D(V +) := D(B1/2), D(V +)−1 := D(F 1/2).

(3.79)

Lemma 3.4. The operators Q, Q+, V и V + have the following properties:

Q ∈ L(H), Q+ = Q∗|D(B1/2), Q+ = Q∗ ∈ L(H), (3.80)

V −1 ∈ L(H), (V +)−1 = (V −1)∗|D(F 1/2), (V +)−1 = (V ∗)−1 = (V −1)∗ ∈ L(H).
(3.81)

Proof. The proof is similar to the proof of Lemma 3.3.
1) Since

Q = B1/2F−1A1/2 = (B1/2A−1/2)(A1/2F−1A1/2) = (B1/2A−1/2)(A−1/2FA−1/2)−1

and the middle inclusion in (3.76) holds, then the operator Q is bounded in H.
2) Let us now take u ∈ D(B1/2) and v ∈ H. Then

(Q+u, v)H = (A1/2F−1B1/2u, v)H = (u,B1/2F−1A1/2v)H = (u,Qv)H,

and therefore properties (3.80) are satisfied.
3) Similarly for V −1, according to the right inclusion in (3.76), we have

V −1 = F−1/2B1/2 = (F 1/2A−1/2)(A1/2B1/2) = (F 1/2A−1/2)(B1/2A−1/2)−1 ∈ L(H).

4) Further let us take u ∈ D(F 1/2) = D((V +)−1) and v ∈ H. Then

((V +)−1u, v)H = (B−1/2F 1/2u, v)H = (u, F 1/2B−1/2v)H = (u, V −1v)H.

From the above it follows that properties (3.81) are valid.
By Lemma 3.4, the operator V := (V −1)−1 is an unbounded operator defined

on the domain D(V ) := R(V −1); respectively V ∗ is also unbounded and D(V ∗) =
R((V ∗)−1) = R((V −1)∗). Moreover R(V ) = R(V ∗) = H.
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Theorem 3.6. Taking into account (3.76) there exists the following factorization of
the operator matrix Fα in (3.35), (3.36)

Fα =

(
I 0
iQ I

)(
A−1/2FA−1/2 0

0 V V + + αI

)(
I iQ+

0 I

)
+

(
αI 0
0 0

)
, (3.82)

where Q, Q+, V и V + are the operators defined by formulas (3.77)-(3.79) and having
the properties described in Lemma 3.4.

The operator Fα can be closed to the maximal accretive operator F which has the
representation

F = Fα =

(
I 0
iQ I

)(
A−1/2FA−1/2 0

0 V V ∗ + αI

)(
I iQ∗

0 I

)
+

(
αI 0
0 0

)
.

(3.83)
The operator F is defined on the domain

D(F) := {y = (y1; y2)
τ ∈ H2 : y1 ∈ D(B1/2A−1/2), y1 + iQ∗y2 ∈ D(A−1/2FA−1/2)}

(3.84)
acting by the formula

Fy =

(
A−1/2FA−1/2(y1 + iQ∗y2) + αy1

iB1/2A−1/2y1 + αy2

)
. (3.85)

Proof. Taking into account(3.77)-(3.79) formula (3.82) can be checked immediately on
the elements in D(Fα). The second and the third factors in (3.82) allow the closures
by replacing operators V + and Q+ by V ∗ and Q∗ respectively. Thus operator (3.83)
appears. The first term here is a product of closed operators having bounded inverses,
and the second term is a bounded operator. Then the range of operator F is the whole
space H2, therefore it is a closed operator. Since after closing Fα inequality (3.38) is
valid for F = Fα, then F is a maximal uniformly accretive operator.

Let us check that formulas (3.84), (3.85) are true. If y ∈ D(F), then by (3.83) it
follows that

Fy =

(
A−1/2FA−1/2(y1 + iQ∗y2) + αy1

iQA−1/2FA−1/2(y1 + iQ∗y2) + (V V ∗ + αI)y2

)
. (3.86)

From the above we obtain that

y1 + iQ∗y2 ∈ D(A−1/2FA−1/2), y2 ∈ D(V V ∗).

Let us take y2 ∈ D(A−1/2B1/2). Then

y2 ∈ D(V V +) = D(B1/2F−1B1/2) = D(QA−1/2B1/2) ⊂ D(B1/2), y2 ∈ D(V V ∗)

and therefore (according to the middle inclusion in (3.76))

Q∗y2 =Q+y2 =A1/2F−1B1/2y2

=(A−1/2FA−1/2)−1(A−1/2B1/2y2)∈D(A−1/2FA−1/2)⊂D(B1/2A−1/2).
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Taking into account the relations QA−1/2FA−1/2 = B1/2A−1/2 in the second row in
(3.86) we obtain that y1 ∈ D(B1/2A−1/2), and this row equals

iB1/2A−1/2y1 −B1/2A−1/2
(
A1/2F−1B1/2y2 + V V +y2 + αy2

)
= iB1/2A−1/2y1 −B1/2F−1B1/2y2 +B1/2F−1B1/2y2 + αy2

= iB1/2A−1/2y1 + αy2, y2 ∈ D(A−1/2B1/2). (3.87)

Since D(A−1/2B1/2) = R(B−1/2A1/2) is dense in H, after closing on elements y2 ∈
D(A−1/2B1/2) we obtain that (3.87) for all y2 ∈ H.

Taking into account the properties of the operator F , let us consider a more generic
Cauchy problem than (3.33)-(3.34) under the assumption (2.13), (2.14), (2.8),

dy

dt
+ Fy +

m∑
k=1

∫ t

0

W̃k(t, ξ)C̃ky(ξ)dξ = f̃α(t), (3.88)

y(0) = (A1/2u1;−iB1/2u0)τ .

Since by Theorem 3.6, the operator (−F) is a generator of the contractive C0-
semigroup, by Theorem 1.2 this problem has a strong solution on the segment [0, T ] if
the following conditions are satisfied:

1◦ D(C̃k) ⊃ D(F), k = 1,m;
2◦ W̃k, ∂W̃k/∂t ∈ C(∆T ;L(H2));
3◦ y0 ∈ D(F);
4◦ f̃α ∈ C1([0, T ];H2).
Let us connect the Cauchy problem for the second-order integro-differential equation

in the space H with (3.88). We call the Cauchy problem

Ad2u
dt2

+ FA−1/2(A1/2 du
dt

+Q∗B1/2u) +
∑m

k=1

∫ t
0
Gk(t, s)Cku(s)ds = f(t),

u(0) = u0, u′(0) = u1,

(3.89)

by the problem associated with the original problem (1.1) under conditions (3.1).

Definition 3. We call a function u on the segment [0, T ] with values in D(A−1/2) ⊂ H
a strong solution of the associated problem (3.89), if all the following conditions are
satisfied:

1◦ u ∈ D(B1/2) и B1/2u ∈ C([0, T ];H);
2◦ A1/2du/dt+Q∗B1/2u ∈ D(A−1/2FA−1/2),
FA−1/2(A1/2(du/dt) +Q∗B1/2u) ∈ C([0, T ];D(A−1/2));
3◦ Au ∈ C2([0, T ];D(A−1/2));
4◦ for all t ∈ [0, T ] equation (3.89) and the initial conditions are true, and all the

terms belong to C([0, T ];D(A−1/2)).

The following fact explains the term associated.
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Lemma 3.5. If the strong solution u to the associated problem (3.89) has the additional
smoothness properties

u ∈ D(B), Bu ∈ C([0, T ];D(A−1/2)), (3.90)

then it is a strong solution to problem (1.1), (3.1) in the sense of Definition 2, i.e. on
the segment [0, T ] and with values in D(A−1/2).

Proof. Indeed, if properties (3.90) are satisfied, then

Q∗B1/2u(t) = Q+B1/2u(t) = A1/2F−1Bu(t) ∈ C([0, T ];D(A−1/2FA−1/2)).

Therefore in (3.89) the brackets in the second term from the left can be opened:

FA−1/2(A1/2du

dt
+ A1/2F−1Bu(t)) = F

du

dt
+Bu,

and here every term belongs to C([0, T ];D(A−1/2)).
Thus, problem (3.89) is a generalization of problem (1.1), (3.1) in the case when

properties (3.90) are not valid.

Theorem 3.7. Suppose the following conditions are satisfied

u0 ∈ D(A−1/2B), u1 ∈ D(A−1/2F ), f ∈ C1([0, T ];D(A−1/2)); (3.91)

D(A−1/2CkA
−1/2) ⊃ D(B1/2A−1/2), k = 1,m; (3.92)

Gk, ∂Gk/∂t ∈ C(∆T ;L(D(A−1/2))), k = 1,m. (3.93)

Then the associated problem (3.89) has on the segment [0, T ] a unique strong solu-
tion (in the sense of Definition 3) with values in D(A−1/2).

Proof. The proof of this theorem is similar to the proof of Theorem 3.4.
1) Let us check that under conditions (3.91)- (3.93) properties 1◦−4◦, which provide

the solvability of Cauchy problem (3.88), are valid
Indeed, it can be checked that under the first and the second conditions (3.91)

property y0 ∈ D(Fα) ⊂ D(F) is true. Further, if f has property (3.91), then f̃α ∈
C1([0, T ];H2), under the condition (see the proof of Theorem 3.4)

A−1/2Gk(t, s)Cku
0, A−1/2(∂Gk(t, s)/∂t)Cku

0 ∈ C(∆T ;L(H)). (3.94)

However if u0 ∈ D(A−1/2B) then u0 = B−1A1/2η0, η0 ∈ H, and therefore

A−1/2Gk(t, s)Cku
0

=(A−1/2Gk(t, s)A
1/2)
[
(A−1/2CkA

−1/2)(B1/2A−1/2)−1
]
(B−1/2A1/2η0)∈C(∆T ;L(H)),

as the first factor belongs to C(∆T ;L(H)), and the second factor according to (3.92)
is bounded, and the operator B−1/2A1/2 is bounded too. The second property (3.94)
can be proved similarly.
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Thus, under conditions (3.91)-(3.93) properties 3◦ and 4◦ mentioned above are
valid. It can be checked immediately, using formulas (3.37), (2.13), (2.14), (3.84), that
conditions 1◦ и 2◦ hold if properties (3.92), (3.93) are true .

Thus, under conditions (3.91)-(3.93) Cauchy problem (3.88) has on the segment
[0, T ] a unique strong solution y with values in H2.

2) Let us prove the assertion of the theorem. Let us rewrite (3.88) in a vector-matrix
form

dy1

dt
+ A−1/2FA−1/2(y1 + iQ∗y2) + αy1 +

m∑
k=1

∫ t

0

e−α(t−ξ)V̂k(t, ξ)Ĉky1(ξ)dξ

= e−αt(A−1/2f(t)−
m∑
k=1

∫ t

0

Ĝk(t, s)ĈkA
1/2u0ds), y1(0) = A1/2u1, (3.95)

dy2

dt
+ iB1/2A−1/2y1 + αy2 = 0, y2(0) = −iB1/2u0. (3.96)

Here in the equations all the terms belong to C([0, T ];H).
Let us multiply both parts of the equations (3.95), (3.96) by eαt, and then express

eαty2(t) by (3.96) in terms of eαty1(t). Further let us use relations (2.8), (2.13), (2.14),
(3.3), (3.6), (3.8), (3.32) and A1/2u = v. Then after acting on the left by the operator
A1/2 on the modified equation (3.95), we obtain equation (3.89), where all the terms
belong to C([0, T ];D(A−1/2)).

Now without proof we formulate an assertion about the correct solvability of prob-
lem (3.89) in the case (2.9), (2.18),(2.19), (3.37).

Theorem 3.8. Suppose that the following conditions are satisfied:

u0 ∈ D(A−1/2B), u1 ∈ D(A−1/2F ), f ∈ C1([0, T ];D(A−1/2)); (3.97)

D(CkA
−1/2) ⊃ D(B1/2A−1/2), k = 1,m; (3.98)

Gk, ∂Gk/∂t ∈ C(∆T ;L(H,D(A−1/2))), k = 1,m. (3.99)

Then the associated problem (3.89) has on the segment [0, T ] a unique strong solu-
tion (in the sense of Definition 3) u with values in D(A−1/2).

Note that Remark 4 is true for Theorems 3.1-3.2, 3.4-3.5, 3.7-3.8. In these theo-
rems the requirement f ∈ C1([0, T ];D(A−1/2)) can be weakened by replacing it by the
condition (see Remark 4)

A−1/2f ∈ W 1
p ([0, T ];H), p > 1.
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