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Abstract. It is proved that an almost hypoelliptic polynomial P (ξ) = P (ξ1, · · · , ξn)
is increasing at infinity, i. e. |P (ξ)| → ∞ as |ξ| → ∞, if and only if the number n
of variables of P is invariant with respect to any linear nondegenerate transformation
T : Rn −→ Rn·

1 Introduction

We shal use following standard notation: N− the set of all natural numbers,
N0 = N ∪ {0}, Nn

0 = N0 × · · · ×N0− the set of all n-dimensional multi-indices, Rn−
the n-dimensional Euclidian space.

For ξ ∈ Rn and α ∈ Nn
0 we put |ξ| =

√
ξ2
1 + ξ2

2 + · · ·+ ξ2
n, |α| = α1 + · · · + αn,

ξα = ξα1
1 · · · ξαn

n , Dα = Dα1
1 · · ·Dαn

n , where Dj = ∂/∂ξj (j = 1, · · · , n)·
A polynomial P (ξ) = P (ξ1, · · · , ξn) is said to be hypoelliptic (see [6]) if for all

0 6= ν ∈ Nn
0

|P (ν)(ξ)|/|P (ξ)| ≡ |DνP (ξ)|/|P (ξ)| → 0

as | ξ| → ∞.
A polynomial P (ξ) is called hyperbolic with respect to the real vector A ∈ Rn (see

[3], or [6], Definition 12.3.3), if Pm(A) 6= 0 and there exists a real number τ0 such that
P (ξ + iτA) 6= 0, if ξ ∈ Rn and τ < τ0, where Pm(ξ) is the m-homogeneous principal
part of P (ξ).

A polynomial P (ξ) is called hyperbolic by Gȧrding if P is hyperbolic with respect
to some vector A.
Definition 1.1. We say that a polynomial P is more powerful than a polynomial Q
and write Q < P, if for some constant C > 0

|Q(ξ)| ≤ C(1 + |P (ξ)|) ∀ξ ∈ Rn.

Definition 1.2. A polynomial P is called almost hypoelliptic (see [8]) if DαP < P
for all α ∈ Nn

0 .
Existence, uniqueness, smoothness etc. of solutions to many problems for general

differential equations depend on the behaviour at infinity of the characteristic polyno-
mials (complete symbols) of corresponding equations (operators).
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Elliptic, semielliptic and hypoelliptic polynomials increase at infinity (see [6], Theo-
rem 11.1.1), while hyperbolic by Gȧrding (consequently hyperbolic by Petrovsky) (see
[3] and [12]) or almost hypoelliptic polynomials can remain bounded under infinite
argument increase (see [7] or [5]).

Therefore the problem of obtaining conditions under which a polynomial P in sev-
eral variables increases at infinity naturally arises. We denote by In the set of all
polynomials P (ξ) = P (ξ1, · · · , ξn) in n variables such that

|P (ξ)| → ∞ as |ξ| → ∞.

Our purpose in the present paper is finding conditions on a non-hypoelliptic poly-
nomial P under which P ∈ In.

In the general case this problem is not solved hitherto, but there are some results
in this direction.

In connection with numerous problems of the theory of hypoelliptic differential
equations B. Pini [13], L. Cattabriga [1], J. Friberg [2], E. Pehkonen [11] and others
obtained conditions for P ∈ In in various special cases. In our opinion the most general
result is due to V.P. Mikhailov who in his work [10] studied a class of the so-called
non-degenerate (regular) polynomials which belong to In. Similar results have been
obtained by L.R. Volevich and S.G. Gindikin in [14].

In [4] we obtained necessary and sufficient conditions ensuring that a general two-
dimensional polynomial belongs to I2 in terms of multiplicity of the roots of certain
homogeneous subpolynomials.

In [9] V.N. Margaryan and G.G. Tonoyan obtained necessary and sufficient condi-
tions for two-dimensional almost hypoelliptic polynomials to belong to I2 in terms of
linear transformations.

Here we find necessary and sufficient conditions ensuring that an n-dimensional
almost hypoelliptic polynomial belongs to In for any n ≥ 2.

First consider following example: let n = 2 and

P (ξ) = P (ξ1, ξ2) =
m∑
j=0

aj(ξ1 + b ξ2)
2(m−j),

where m ∈ N, aj ≥ 0, (j = 0, 1, · · · ,m), a0 > 0, b 6= 0.
It is easy to verify that
1) this is an almost hypoelliptic polynomial,
2) P /∈ I2,
3) by the linear non-degenerate transformation η1 = ξ1 + bξ2, η2 = ξ2 this poly-

nomial goes into the polynomial in one variable

Q(η) = Q(η1) =
m∑
j=0

ajη
2j
1 ·

This simple example suggests us to investigate the relationship between the fact
that P ∈ In and the behaviour of P under linear non-degenerate transformations. This
leads to the following definition
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Definition 1.3. We call a polynomial P (ξ) = P (ξ1, · · · , ξn) stable with respect to a
linear non-degenerate transformation T : Rn −→ Rn, T ξ = η (with respect to a non-
degenerate matrix T = (tji )

n
i,j=1 ) if the polynomial Q T (η) = P (T−1η) depends on

variables η1, · · · , ηn. A polynomial P (ξ) = P (ξ1, · · · , ξn) is said to be unstable with
respect to a linear nondegenerate transformation T if the polynomial Q T (η) depends
on variables ηi1 , · · · , ηik with k < n. �

2 Some properties of almost hypoelliptic and general polyno-
mials

Let
R(ξ) = R(ξ1, · · · , ξn) =

∑
|α|=m

rαξ
α (2.1)

be a homogeneous polynomial of order m (in the sequel m-homogeneous),

Σ(R) = {ξ ∈ Rn, R(ξ) = 0}

and

Σm(R) = {ξ ∈ Σ(R), ordR ξ = m} ≡ {ξ ∈ Σ(R),
∑

|α|≤m−1

|DαR(ξ)| = 0}.

It is easy to check that the set Σm(R) is a linear manifold. Indeed, let
η1, η2 ∈ Σm(R). Then by Taylor’s formula, for any numbers a and b, we obtain that

R(aη1 + bη2) =
∑
|α|≤m

am−|α|
R(α)(η1)

α!
(bη2)α =

∑
|α|=m

R(α)(η1)

α!
(bη2)α

=
∑
|α|=m

rα α!
1

α!
(bη2)α = bm

∑
|α|=m

rα (η2)α = bmR(η2) = 0.

Lemma 2.1. Let P be an almost hypoelliptic polynomial of order m, T = (tji )
n
i,j=1 be

a n × n non-degenerate matrix and η = Tξ. Then the polynomial Q(η) = QT (η) =
P (T−1η) is almost hypoelliptic.

Proof. Since for any α ∈ Nn
0 the polynomial Dα

ηQ(η) = Dα
ηP (T−1η) is a linear com-

bination of {(Dβ
ξP )(T−1η)} for β ∈ Nn

0 , |β| = |α|, it follows that using the almost
hypoellipticity of P there exist positive constants C1 and C2 such that∑

|α|≤m

|Dα
ηQ(η)| =

∑
|α|≤m

|Dα
ηP (T−1η)|

≤ C1

∑
|β|≤m

|(Dβ
ξP )(T−1η)}| ≤ C2[1 + |P (T−1η)| = C2[1 + |Q(η)| ] ∀η ∈ Rn.
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For an m-homogeneous polynomial R(ξ) = R(ξ1, ..., ξn) by σn,m(R) we denote the
maximal number of linearly independent (in Rn) elements ξ ∈ Σm(R).

Clearly every polynomial P (ξ) =
∑

|α|≤m
γαξ

α of order m can be represented as the

sum of j-homogeneous polynomials (j = 0, 1, · · · ,m):

P (ξ) =
m∑
j=0

Pj(ξ) =
m∑
j=0

∑
|α|=j

γαξ
α· (2.2)

Lemma 2.2. If an almost hypoelliptic polynomial P /∈ In, then

1 ≤ σn,m(Pm) ≤ n− 1· (2.3)

Proof. It is required to prove only the left-hand side of (2.3). Since the set Σm(Pm) is
a linear manifold, to prove the left-hand side of (2.3) it siffices to show the existence
of a non-zero point η ∈ Σm(Pm).

Since P /∈ In, there exists a sequence {ξs} and a constant a1 > 0 such that |ξs| → ∞
as s→∞ and

|P (ξs)| ≤ a1 (s = 1, 2, · · · )· (2.4)

The vectors ηs = ξs/| ξs| (s = 1, 2, · · · ) are of unit length, hence the sequence {ηs}
has an accumulation point η ∈ Rn, | η| = 1 and, by passing to a subsequence we may
assume that ηs → η as s → ∞. It is easily seen that η ∈ Σ(Pm)· Let us show that
η ∈ Σm(Pm).

Since Dα(P − Pm)(ξ) = const ≡ Cα for any α ∈ Nn
0 , |α| = m − 1, by the almost

hypoellipticity of P we obtain∑
|α|=m−1

|DαPm(ξ)| =
∑

|α|=m−1

| [DαPm(ξ) + Cα]− Cα|

=
∑

|α|=m−1

|DαP (ξ)− Cα| ≤
∑

|α|=m−1

|DαP (ξ)|+ a2 ≤ a3[1 + |P (ξ)| ] ∀ξ ∈ Rn,

where
a2 =

∑
|α|=m−1

|Cα|, a3 = a3(P, a2) > 0.

By this and (2.4) it follows that∑
| α|=m−1

|DαPm(ξs) | ≤ a3(a1 + 1) (s = 1, 2, · · · )· (2.5)

Since | ξs| → ∞, | ηs| → η, as s → ∞ and for |α| = m − 1 the polynomial
DαPm is a linear homogeneous function, it follows by (2.5) that DαPm(η) = 0 for all
α ∈ Nn

0 , |α | = m − 1· Therefore by the generalized Euler’s formula for homogeneous
functions we obtain that for any β ∈ Nn

0 , |β| ≤ m− 1
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DβPm(η) =
(|β|+ 1)!

(m− |β|)!
∑

|γ|=m−|β|−1

1

γ!
Dβ+γPm(η) ηγ = 0,

i.e. η ∈ Σm(Pm), which proves the left-hand side of (2.3).

Remark 2.1. The assumption of almost hypoellipticity in the above lemma is essential.
Indeed, for the 2-homogeneous not almost hypoelliptic polynomial P (ξ) = ξ2

1 − ξ2
2 /∈ I2

the set Σ2(P ) \ {0} is empty, i.e. σ2,2 = 0.
The following three statements are true for arbitrary polynomials.

Lemma 2.3. Let P be a polynomial of order m, T be a non-degenerate n×n matrix,
η = Tξ and Q(η) = P (T−1η). Then

a) ordQ = m, and if P and Q are represented in the form (2.2), then Qj(η) =
Pj(T

−1(η)), j = 1, · · · ,m
b) if P is an m-homogeneous polynomial then

b1) Q is also m-homogeneous,
b2) T : Σm(P ) −→ Σm(Q).

Proof. First we prove statement b1). For any t > 0 and η ∈ Rn we have Q(t η) =
P (T−1(t η)) = P (t T−1η) = tmP (T−1η) = tmQ(η), which proves statement b1).

To prove statement a) let us represent P and Q as the sum of homogeneous poly-
nomials (see (2.2), where m(Q) is unknown). By the linearity of the transformation
T and by the proved part of the lemma Qj(η) = Pj (T−1η) = Pj(ξ) (j = 0, 1, · · · ,m)
and ordQ = max 0≤j≤m{ordQj} = ordPm = m, which proves statement a).

Since it is obvious that Tτ ∈ Σ(Q) for τ ∈ Σ(P ) and

Σm(Pm) =
⋂

| α|≤m−1

Σ(DαPm),

we get T ( Σm (Pm)) = Σm (Qm), which proves statement b2).

Lemma 2.4. Let a polynomial P be unstable with respect to a linear non-degenerate
transformation T : Rn −→ Rn (see Definition 1.3 ) and Q < P (see Definition 1.1).
Then Q is unstable with respect to T.

Proof. By the unstability of P there exists a number k ∈ N, k ≤ n− 1 such that (by
renumbering of variables) p (η) ≡ P (T−1η) = p (η1, · · · , ηk). Since Q < P, there exists
a constant C > 0 such that for all ξ, η ∈ Rn

| q (η)| ≡ |Q(T−1η)| = |Q(ξ)| ≤ C[1 + |P (ξ) | ]

= C[1 + |P (T−1η)|] = C[1 + | p (η1, · · · , ηk)| ],

which means that the polynomial q depends only on the variables η1, · · · , ηk, i.e. the
polynomial Q is unstable with respect to T.

Lemma 2.5. Let P ∈ In. Then P is stable with respect to any linear non-degenerate
transformation.
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Proof. Assume to the contrary that P is unstable with respect to some non-degenerate
n × n matrix T = (tji )

n
i,j=1 and η = Tξ. Then p(η) = P (T−1η) is a polynomial in k

variables η1, · · · , ηk, with k ≤ n− 1.

Since k < n the system of linear algebraic equations

n∑
j=1

tjiξj = 0, i = 1, · · · , k (2.6)

has a nonzero solution τ ∈ Rn and by the homogeneity of system (2.6) ξs = sτ
will be a solution to (2.6) for any s ∈ N · Then ηs = Tξs = 0 for all s ∈ N and
P (ξs) = p(ηs) = const (s = 1, 2, · · · )· Since |ξs| = s|τ | → ∞ as s → ∞, this
contradicts the condition P ∈ In·

Lemma 2.6. Let R be a m-homogeneous polynomial (m ≥ 1) with Σm(R) = {0}.
Then there exists a constant C > 0 such that

| ξ| ≤ C[1 +
∑

| α|=m−1

|DαR(ξ)| ] ∀ξ ∈ Rn· (2.7)

Proof. If the set of all linear homogeneous polynomials {DαR; |α| = m − 1} has no
common real non-zero root then

r(ξ) =
∑

|α|=m−1

|DαR(ξ)| 2

is an elliptic homogeneous polynomial of order two for which the inequality

| ξ|2 ≤ C1[ 1 + r(ξ) ] ∀ξ ∈ Rn

with a constant C1 > 0 is well known. This inequality implies inequality (2.7).
Let 0 6= τ ∈ Rn be a common real root of the polynomials {DαR; |α| = m − 1}.

We will show that τ ∈ Σm(R). For this it sufficies to prove that τ is a common real
root of the homogeneous polynomials {DαR; 0 ≤ |α| ≤ m− 2}.

By the generalized Euler’s formula for homogeneous functions we have that for any
homogeneous polynomial DαR, 0 ≤ |α| ≤ m− 2

DαR(τ) =
1

(m− |α|)!
∑

|β|=m−|α|−1

(DβDαR)(τ)

α!
τβ

=
1

(m− |α|)!
∑

|γ|=m−1,γ≥α

DγR(τ)

(γ − α)!
τ γ−α = 0.

This means that 0 6= τ ∈ Σm(R), which contradicts the assumtion Σm(R) =
{0}.
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Futher assume that if the polynomial P (ξ) = P (ξ1, · · · , ξn) is represented in
form (2.2) and the principal part Pm depends on variables ξ1, · · · , ξk : Pm(ξ) =
Pm(ξ1, · · · , ξk) for some k < n, then by Σm,k(Pm) we denote the set of points τ ∈ Rk

such that DαPm(τ) = 0 for all α ∈ Nk
0 , |α| = m− 1.

Corollary 2.1. Let the m−homogeneous principal part Pm of the polynomial P (ξ) =
P (ξ1, · · · , ξn) depend on the variables ξ1, · · · , ξk for some k < n and Σm,k(Pm) = {0}.
Then there exists a constant C > 0 such that√

ξ2
1 + · · ·+ ξ2

k ≤ C[1 +
∑

|α|=m−1

|DαP (ξ)| ] ∀ξ ∈ Rn. (2.8)

Proof. Using representation (2.2) we have that for all ξ ∈ Rn∑
α∈Nk

0 ,|α|=m−1

|DαPm(ξ)| =
∑

β∈Nn
0 ,|β|=m−1

|DβPm(ξ)|

=
∑

β∈Nn
0 , |β|=m−1

|DβP (ξ)−
m−1∑
j=0

DβPj(ξ)| ≤
∑

|β|=m−1

|DβP (ξ)|+ const,

therefore (2.8) follows from (2.7).

Lemma 2.7. Let an almost hypoelliptic polynomial P (ξ) = P (ξ1, · · · , ξn) be repre-
sented in form (2.2), where the principal part Pm depends on the variables ξ1, · · · , ξk
for some k < n and Σm, k(Pm) = {0}. We put ξ′ = (ξ1, · · · , ξk), ξ

′′
= (ξk+1, · · · , ξn)

and represent the polynomial P in the form

P (ξ) = P (ξ
′
, ξ

′′
) = Pm(ξ

′
) +

∑
α′∈Nk

0

(ξ
′
)α

′

rα′ (ξ
′′
)

= Pm(ξ
′
) + r0′ (ξ

′′
) +

∑
0 6=α′∈Nk

0

(ξ
′
)α

′

rα′ (ξ
′′
), (2.9)

where α′
= (α1, · · · , αk), |α

′|+ ord rα′ ≤ m− 1.
Then P ∈ In if and only if r0′ ∈ In−k.

Proof. Since P (0
′
, ξ

′′
) = r0′ (ξ

′′
) the necessity is obvious.

To prove the sufficiency we argue by contradiction. Suppose that r0′ ∈ In−k and
P /∈ In, i.e. there exist a sequence ξs = {(ξs1, · · · , ξsn)}∞s=1 and a number C1 > 0 such
that |ξs| → ∞ as s→∞ and

|P (ξs)| ≤ C1 (s = 1, 2, · · · )· (2.10)

This, together with Corollary 2.1, implies

| (ξ′)s| ≡
√

(ξs1)
2 + ...+ (ξ

s

k)
2 ≤ C2 (s = 1, 2, · · · ) (2.11)

with a number C2 > 0.
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In addition let us show that (under the assumptions of the lemma ) (2.11) implies
that there exists a constant C3 > 0 such that for all α′ ∈ Nk

0 , 0 < |α′| ≤ m− 1

| rα′ ((ξ
′′
)s)| ≤ C3 (s = 1, 2, · · · ). (2.12)

If rα′ ((ξ
′′
)s) = 0 for all s ∈ N, the estimate (2.12) is obvious. Let rα′ ((ξ

′′
)s) 6= 0

for infinitely many s ∈ N · This estimate we prove by the reverse induction on α′ ∈ Nk
0 ;

|α′| ≥ 1.
For α′ ∈ Nk

0 ; |α′| = m − 1 (2.12) immediately follows by the condition |α′| +
ord rα′ ≤ m− 1.

Assume that estimate (2.12) hold for α′ ∈ Nk
0 ; 2 ≤ r ≤ |α′| ≤ m− 1 and prove it

for |α′| = r − 1.
By the almost hypoellipticity of P we have for any α

′ ∈ Nk
0 , |α′| = r − 1 (see

representation (2.9))

|Dα
′

P (ξ)| = |Dα
′

Pm(ξ
′
) +

∑
β′≥α′ ,|β′ |>|α′

(β
′
)!

(β ′ − α′)!
(ξ

′
)β

′−α′rβ′ (ξ
′′
)

+(α
′
!) rα′ (ξ

′′
)| ≤ C4[ 1 + |P (ξ)| ] ∀ξ ∈ Rn

with a constant C4 > 0·
From here, by the inductive hypothesis and applying estimates (2.10), (2.11) we

get with positive constants C5 and C6

|rα′ [ (ξ
′′
)s] | ≤ C5 { [ 1 + |P (ξs)| ] + |Dα

′

Pm((ξ
′
)s)|+

+
∑

β′≥α′ ,|β′ |>|α′

(β
′
)!

(β ′ − α′)!
| [ (ξ′)s ]β

′−α′ | |rβ′ [ (ξ
′′
)s ] |} ≤ C6 (s = 1, 2, · · · ),

which proves inequality (2.12) for all α′ ∈ Nk
0 ; 0 < |α| ≤ m− 1.

Applying estimates (2.10) - (2.12) we get with a constant C7 > 0

|r0 ′ [ (ξ
′′
)s ] | = |P (ξs)− Pm[ (ξ

′
)s ]−

∑
|α′ |≥1

[ (ξ
′
)s ]α

′

rα′ [ (ξ
′′
)s ] | ≤ C7 (s = 1, 2, · · · ),

which contradicts the assumption r0′ ∈ In−k·

Corollary 2.2. Assume that the hypothesis of Lemma 2.7 are fulfilled except condition
Σm,k(Pm) = {0} and let P /∈ In. Then r0 ′ /∈ In−k.

3 Main result

Here we prove the converse of Lemma 2.5 for almost hypoelliptic polynomials.

Lemma 3.1. Let an almost hypoelliptic polynomial P (ξ) = P (ξ1, · · · , ξn) be stable
with respect to any linear nondegenerating transformation. Then P ∈ In.
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Proof. Suppose that there is an almost hypoelliptic polynomial P /∈ In, i.e. there exist
a sequence {ξs} and a constant C > 0 such that |ξs| → ∞ as s→∞ and

|P (ξs)| ≤ C (s = 1, 2, · · · )· (3.1)

Let us show that P is unstable with respect to a sertain linear non-degenerate
transformation. We prove this by induction on n.

For n = 2 this statement is proved in [9], however we give here the proof in the case
n = 2 in terminology convenient for us.

Let the polynomial P (ξ) = P (ξ1, ξ2) be represented in form (2.2). Since P /∈ In,
by Lemma 2.2 σ2, m(Pm) = 1, i.e. the set Σm(Pm) contains a non-zero element. Let
τ ∈ Σm(Pm), |τ | = 1. Then either τ = (0, 1), or τ = (1, 0), or τ1τ2 6= 0. Since the first
two cases can be treated analogously, we consider only two possibilites 1) τ = (1, 0),
2) τ1τ2 6= 0.

In the first case Pm(ξ1, ξ2) = γm ξ
m
2 with γm 6= 0. Without loss of generality it can

be assumed that γm = 1. Then (see (2.9))

P (ξ) = ξm2 +
m−1∑
j=0

ξj2 qj(ξ1).

Since P /∈ I2, by Corollary 2.2 q0 /∈ I1. On the other hand, since q0 is a polynomial
in one variable, ord q0 = 0, i.e. q0(ξ1) ≡ const ≡ C0.

By this and the almost hypoellipticity of P we obtain that, for any j : 1 ≤ j ≤
m− 1, with a constant κ1 > 0

| qj(ξ1) | =
1

j!
|Dj

2P (ξ1, 0)| ≤ κ1 [ 1 + |P (ξ1, 0) | ]

= κ1[1 + | q0(ξ1)| ] = κ1(C0 + 1) ∀ξ1 ∈ R1.

This means that qj(ξ1) ≡ const ≡ Cj for all j = 1, · · · ,m− 1, i.e. the polynomial
P (ξ) = ξ m2 +Σm−1

j=0 Cj ξ
j
2 depends only on one variable, consequently P is unstable with

respect to the identity transformation.
It is easy to verify that in the case 2) τ1τ2 6= 0 the polynomial Pm can be represented

in the form Pm(ξ) = γ(τ2ξ1 − τ1ξ2)
m, where γ 6= 0 (see also [7], Lemma 1.1 ) and,

without loss of generality, we assume that γ = 1.
Let us perform the following change of variables: η1 = τ2ξ1− τ1ξ2, η2 = τ1ξ1 + τ2ξ2.

This is a non-degenerate linear transformation with the matrix T for which det T =
det T−1 = τ 2

1 + τ 2
2 = 1. Then

Q(η) = P (τ2η1 + τ1η2, −τ1η1 + τ2η2) = ηm1 +
m−1∑
j=0

Qj(η1, η2),

where Qj is a j−homogeneous polynomial (j = 0, 1, · · · ,m− 1).
Since the matrix T is non-degenerate, by Lemma 2.1 the polynomial Q is almost

hypoelliptic. On the other hand since by our assumption P /∈ I2 and the matrix T is
invertible, we have Q /∈ I2.
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Now arguing as in case 1) we get

Q(η1, η2) = ηm1 +
m−1∑
j=0

Cj η
j
1 ≡ Q(η1),

i.e. P is unstable with respect to the non-degenerate linear transformation η = Tξ,
which proves our statment for n = 2.

Assume that our statement is proved for 2 ≤ n ≤ r − 1 and prove it for n = r.
Since P /∈ Ir, by Lemma 2.2 1 ≤ σr,m ≡ l ≤ r − 1· Let {τ 1, · · · , τ l} form a basis

in Σm(Pm) and {τ 1, · · · , τ l, τ l+1, · · · , τ r} form a basis in Rr. Denote by U the r× r
matrix U = (τ ji ) and let η = U−1ξ· By Lemma 2.1 the polynomial Q(η) = P (Uη)
is almost hypoelliptic.

Represent Q as the sum of j-homogeneous polynomials (j = 0, 1, · · · ,m(Q)) (see
formula (2.2)), where by Lemma 2.3 m(Q) = m

Q(η) =
m∑
j=0

Qj(η)·

Consider the vectors ej = U−1τ j (j = 1, · · · , r), which form a basis in Rr· Here
eji = δji (i = 1, · · · , r; j = 1, · · · , l), el+ki = 0 (k = 1, · · · , r − l; i = 1, · · · , l)·

Since Qm(η) = Pm(Uη) for all η ∈ Rr, we see that Pm(Uej) = Pm(τ j) = 0 for all
(j = 1, · · · , l). On the other hand by Lemma 2.3 ej ∈ Σm(Qm) (j = 1, · · · , l).

Let us show that the polynomial Qm in fact depends only on the vari-
ables ηl+1, · · · , ηr. For this purpose we prove that for all η ∈ Rr Qm(η) =
Qm(0, · · · , 0, ηl+1, · · · , ηr).

First we show that Qm(η) = Qm(0, η2, · · · , ηr) for all η ∈ Rr. We represent Qm in
the form

Qm(η) =
m∑
j=0

ηm−j1 qjm(η2, · · · , ηr)

and prove that qjm(η2, · · · , ηr) ≡ 0 for all j = 0, 1, · · · ,m− 1.
By the j-homogenity of the polynomials {qjm}, qjm(0, · · · , 0) = 0 for j = 1, · · · ,m−1

and q0
m(η2, · · · , ηn) = const ≡ C0. On the other hand

0 = Qm(e1) =
m∑
j=0

1m−jqjm(0, · · · , 0) = q0
m(0, · · · , 0) = C0 = q0

m(η2, · · · , ηr),

therefore q0
m(η2, · · · , ηr) ≡ 0.

Now we proceed by induction in j = 0, 1, · · · ,m − 1. Assume that the identity
qjm(η2, · · · , ηr) = 0 for all η ∈ Rr holds for j = 1, · · · , k − 1 (1 ≤ k ≤ m − 1) we
will prove it for j = k.

By the inductive hypothesis the polynomial Qm can be represented in the form

Qm( η) =
m∑
j=k

ηm−j1 qjm(η2, · · · , ηr)· (3.2)
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Let
q km(η2, · · · , ηr) =

∑
α2+···+αr=k

γ (α2, ··· , αr) η2
α 2 · · · η α r

r · (3.3)

Since e1 ∈ Σm(Qm), by (3.2) and (3.3) we have, for any multi-index β =
(β2, · · · , βr) : |β| = k < n,

0 = DβQm(e1) =
m∑
j=k

1m−jDβqjm(0, · · · , 0) = Dβ[ηm−k1 qkm(η2, · · · , ηr) ] | η=e1

+Dβ[
m∑

j=k+1

ηm−j1 qjm(η2, · · · , ηr)]| η=e1 = Dβ[γβη
β ] | η=e1

+Dβ[
∑

|α|=k,α 6=β

γαη
α ] | η=e1 +Dβ[

m∑
j=k+1

ηm−j1 qjm(η2, · · · , ηr) ] | η=e1 ,

where
Dβ[ γβη

β ] | η=e1 = (β!)γβ, D
β[

∑
|α|=k, α 6=β

γαη
α ] | η=e1 = 0·

Therefore

(β!)γβ +
m∑

j=k+1

[Dβqjm ](0, · · · , 0) = 0· (3.4)

Since for j = k+1, · · · ,m Dβqjm is a (j−|β|) = (j−k)-homogeneous polynomial
and j − k ≥ 1, we have [Dβqjm ](0, · · · , 0) = 0 for j = k + 1, · · · ,m and by (3.4) it
follows that γβ = 0 for any multiindex β = (β2, · · · , βr) : |β| = k. By (3.3) this means
that qkm(η2, · · · , ηr) = 0 for all η ∈ Rr.

By the inductive hypothesis this means that Qm(η1, η2, · · · , ηr) = Qm(0, η2, · · · , ηr)
for all η ∈ Rr, i.e. the polynomial Qm does not depend on the variable η1.

In the same way we can see that Qm(η) = Qm(0, · · · , 0, ηl+1, · · · , ηr) for all η ∈ Rr,
i.e. that the polynomial Qm in fact depends on variables ηl+1, · · · , ηr only.

Next we put η′ = (η1, · · · , ηl) and η′′ = (ηl+1, · · · , ηr ) and represent (see (2.9 )) the
polynomial Q in form

Q(η) = Q(η
′
, η

′′
) = Qm(η

′′
) +

∑
α
′′∈Nr−l

0

(η
′′
)α

′′

qα′′ (η
′
), (3.5)

where |α′′|+ ordqα′′ ≤ m− 1 and σk, m(Qm) = 0, i.e. Σm, r−l(Qm) = {0}.
Since Σm,r−l(Qm) = {0}, and Q /∈ Ir it follows by Corollary 2.2 that q0′′ /∈ Il.
Since any nonzero polynomial q in one variable of ord q ≥ 1 increases at infinity

and the polynomial q0′′ depends on l variables it follows that either
1) l = 1 and then q0′′ (η

′
) = const ≡ C0

′′ for all η′ ∈ Rl

or
2) 2 ≤ l ≤ r − 1.
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By the almost hypoellipticity of Q, in case 1) we obtain, with a constant κ2 > 0,
for all α′′ ∈ N r−l

0

|qα′′ (η
′
)| = 1

α′′ !
|(Dα

′′

Q)(η
′
, 0

′′
)| ≤ κ2(1 + |Q(η

′
, 0

′′
)|)

= κ2(1 + |q0′′ (η
′
)| = κ2(1 + |C0′′ |) ∀η′ ∈ Rl.

It follows immediately that qα′′ (η
′
) = const ≡ Cα′′ for any α

′′ ∈ N r−l
0 and for all

η
′ ∈ Rl, i.e.

Q(η) = Qm(η
′′
) +

∑
α′′∈Nr−l

0

Cα′′ (η
′′
)α

′′

= Q(0
′
, η

′′
),

which in turn means that the polynomial P is unstable with respect to a linear non-
degenerate transformation U : Rr −→ Rr.

Consider the case 2) l ≥ 2. Since Q is almost hypoelliptic, it is easily seen that
the polynomial qα′′ (η

′
) = Q(η

′
, 0

′′
) is almost hypoelliptic too. On the other hand since

Σm,r−l(Qm) = {0}, l < r and q0′′ /∈ Il, by the inductive hypothesis q0′′ is unstable.
This means that there exist a number l1 ∈ N, l1 ≤ l− 1 and a non-degenerate matrix
V = (vji )

l
i,j=1 : Rl −→ Rl such that ξ′ = V η′ and

q0′′ (η
′
) = q0′′ (V

−1ξ′) = qV
0′′

(ξ1, · · · , ξl1) ∀η′ ∈ Rl.

Applying again the almost hypoellipticity of Q, we obtain, with a constant κ3 > 0,
for any α′′ ∈ N r−l

0 and for all η′ ∈ Rl

|qα′′ (η
′
)| = 1

α′′ !
|Dα

′′

Q(η
′
, 0

′′| ≤ κ3|Q(η
′
, 0

′′| ≤ κ3[1 + |q0′′ (η
′
)|].

By Lemma 2.4 it follows that

qα′′ (η
′
) = qα′′ (V

−1ξ) = qV
α′′

(ξ1, · · · , ξl1) ∀η′ ∈ Rl.

Denote by tji = vji for i, j = 1, · · · , l; tji = δji for i, j = l + 1, · · · , r; tji = 0 in
all other cases and put H = (tji )

r
i,j=1. It is obvious that H is a non-degenerate matrix.

Let T = U H, η = U−1ξ, z = H−1η then z = T−1ξ and

P (ξ) = P (Tz) = Q(z) = Qm(z
′′
) +

∑
α′′

(z
′′
)α

′′

qα′′ (V
−1z

′
) =

= Qm(z
′′
) +

∑
α
′′

(z
′′
)α

′′

qV
α
′′ (z

′
) = Qm(z

′′
) +

∑
α′′

(z
′′
)α

′′

qV
α
′′ (z1, · · · , zl1).

This means that the polynomialQ(z) does not depend on the variables zl1+1, · · · , zl,
i.e. the polynomial P is unstable with respect to the linear non-degenerate transfor-
mation T : Rr −→ Rr. By the inductive hypothesis this completes the proof of the
lemma.

Lemmas 2.5 and 3.1 combined give the main result of this paper:
Theorem 3.1. An almost hypoelliptic polynomial P (ξ) = P (ξ1, · · · , ξn) belongs to
In if and only if P is stable with respect to any linear nondegenerate transformation
T : Rn −→ Rn.
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