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Abstract. For monotonic functions necessary and sufficient conditions are investigated
ensuring the equivalence of a function and of an integral containing that function.
Factorization theorems (Schur tests) are proved for the classical Hardy operator and
its adjoint in Lebesque spaces with monotonic weights.

1 Introduction

The Schur test or, in other words, the Schur extrapolation theorem (see, for example,
[6], p. 37, [11], p. 42), is well known in the theory of integral operators with positive
kernels. It states that the integral operator K, defined by

Ka(t) = / k(t, )2 (s)ds, € R,

Ry

whose kernel satisfies the inequality k(t,s) > 0 for almost all ¢, s, is bounded in

LP = LP(Ry) with 1 < p < oo if and only if there is a positive, almost everywhere
finite function u, such that the operator K is bounded both as K : L;° — Lg° and
K : L} — L! where v = u!/P~!. In recent years, in connection with various problems of
analysis, interest to extrapolation has significantly increased [10, 4, 5, 1, 3|. However,
it seems that in all known proofs of the Schur theorem the weight function u is not
constructed explicitly which does not allow to investigate its properties.

In this paper, for the classical Hardy operator and its adjoint, necessary conditions
and sufficient conditions of such form are given with explicit weight functions.

Let S(u) be the space of all functions x : R, — R measurable with respect to the
Lebesgue measure u. Recall that a Banach space X C S(u), is called ideal [7] if the
conditions y € X, x € S(u) and the inequality |z(t)| < |y(t)| almost everywhere on R
imply that z € X and ||z|X| < ||y|X]]. (The symbol ||z|X|| denotes the norm of x in

space X.)
Let w: Ry — R, be a positive function (weight). If X is an ideal space, then the
symbol X,, denotes the new ideal space whose norm is given by ||z|X,|| = [Jwz|X]].

In particular, if X = L?, then the equality ||z|LE || = ||wz|LP]| is true. This definition
somewhat differs from the conventional one: usually the weight is included in the
measure.
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For an ideal space X the symbol X denotes the space of all integral functionals on
X with the standard norm

ly|X|| = sup{/R y(®)z(t)dt - ||z X| < 1}.

+

!

It is well known that {X,} = X1 e

Denote by K(]) the cone in S(u), consisting of all non-negative non-increasing
functions, and by K () the cone in S(u), consisting of all non-negative non-decreasing
functions. Let X be an ideal space in S(u). Denote by K(]) N X and K(T) N X the
intersection of the space X with the cone K(|), K(T) respectively.

It is said that an operator T : S(u) — S(u) belongs to the class of sublinear
operators (1" € K), if the following conditions

T(z+y)()] < Tle|(t) + Tlyl(t) and [TAz)(B)] < [A[Tx(t)], A€ R,

are satisfied for all t € R,.
In particular, the class K contains all integral operators with non-negative kernels.
For T € K an operator 7" is called associative in the LP-scale if for all p € [1, 0]
and any weight u the followings inequalities
CYTILE — Lh|| < 1T'(L5)" — (Lh)'|| < C|ITILE, — L

u

are satisfied, where C' > 0 is independent of p and the weight u.
First of all, let us formulate the Schur extrapolation theorem in the modern form
(see, for example, [3]).

Theorem S. Let T, T € K, v be a weight function, 1 < p < oo, § = 1/p (hence
1 —60 = 1/p, where p is the conjugate of p ). Then the following conditions are
equivalent:

1) an operator T is bounded as

T:LP — LP (1.1)
2) there exist two weight functions vy and vy such that for almost all t € R
v(t) = v1(t)? - ve(t)~? (1.2)
and an operator T is bounded both as

T:Lll)1 Ny T:L%HL%. (1.3)

v1?

We note that the implication (1.2) — (1.3) = (1.1) follows by the interpolation
theorem for positive operators (see, for example, [1]), and the implication (1.1) =
(1.2) — (1.3) is the essence of the Schur theorem.

Suppose that a function x belongs to L*([0,n]) for every n € N. Then the Hardy
operator is defined by the formula

1

¢
Hx(t):¥/0x(s)ds, r € R,
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Let w(t) = 1 and a function z belong to LY ([n"!,00)) for every n € N. Then the
equality
Qx(t) :/ @ds, € Ry,
' s
defines the adjoint Hardy operator. It is easy to see that for the Hardy operators
theorem S holds.

The following theorem is well known (see, for example, [8, 9.

Theorem M. Let v be a weight function.
If 1 < p < oo, then the Hardy operator is bounded as an operator H : LY — LP if
and only if

stlig) (/too (@)pds) v (/0 (%)p,ds) o < 00. (1.4)

The Hardy operator is bounded as an operator H : L},1 — L}}I if and only if for

some C >0
v1(s)

/00 ——=ds < Cvy(t) (1.5)

S

for almost allt € R..
The Hardy operator is bounded as an operator H : Ly? — L3y if and only if for

some C' > 0 .
d t
/ " <cC (1.6)
o vo(s) vo(t)
for almost allt € R..

In [8, 9] one can also find an analogue of Theorem M for the adjoint Hardy operator

Q.

2 Auxiliary results

For the sequel we need some properties of special functions. Let for a function ¢ :
R+_>R+anda€R+

Tl (g,a) = T
()é+(g,(l) - tLoo g(t) ’ —(gv ) lHO g(t) )
g(at) g(at)

ﬁ-&-(gaa) = h_mt—>oo g(t) ) ﬂ—(.%a) = hﬁt—@%'

First of all, we note the equalities

, g(at) 1 1 1
Bi(g,a) =lim, = — = ;o f(9,a) = ———.
+(9,a) 0 g(t) hmmo% ay(g,a™t) (9,) a_(g,a™t)

Theorem 2.1. For a function g € K(|) there exists C > 0 such that

[ Ty < o) (2.1)

S
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for any t € Ry if and only if there exists a > 1 such that
ai(g,a) <1, a_(g,a)<1. (2.2)

Proof. Suppose that inequality (2.1) holds. We shall prove that the function g satisfies
(2.2) by contradiction. Since g € K(|), for a > 1, the inequalities ay(g,a) < 1,
a_(g,a) < 1 are valid. If for any a > 1 we have the equality a,(g,a) = 1, then
straightforwardly by the definition of a4 (g,a) it follows that for every | € N there
g(2tt
g(to

o ds 2'to ds 2% g
[0Sz [ e zeen [ 5
to

S to to s

exists a number ¢ty € R, such that

()’) > % Therefore, we have

(2.3)

> g(to) /%O ds _ ] g(to)In 2 '
2 ) s 2

0
Since [ is an arbitrary integer, (2.3) contradicts (2.1). Thus, the first inequality in
(2.2) is proved. Similarly we can prove the second inequality in (2.2).
Now w show that if g satisfies condition (2.2), then it satisfies (2.1).
Let a; > 1. Then we can find ¢;(a;) such that for all ¢ > ¢;(a;), the inequality

g(ait)
g(t)

<q <1

is satisfied.
We note that the monotonicity of g implies that the latter inequality is valid for all
t >ti(ar) and a > a;.
Thus for all ¢ > t;(ay) the inequalities
glart) _ gleit) glaat) _
9(t) ~ glat) g(t) ~

are valid, and similarly we find that for every k € N and for all t > ¢;(a;) the inequality

g(alt)

<
g(t) !

is satisfied.
In the same manner it can be shown that there exist g2 € (0,1), and sufficiently
large as > 1 and t3(ag) > 0 such that

g9(1)
g(az"t)

for all £ € N and for all ¢ € (0, t2(az)].

Let a = max{ay,as}, ¢ = max{q, @}, t1 = ti(a), to = t2(a). Without loss of
generality, we assume that the inequality {5 < ¢; is true. Suppose t € R,. There are
three possible cases: a)t < ty, b) te <t <ty, c)t>1.

k
< @5
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First, assume that ¢t < ts.
Then -
> ds = [t ds
[ 0T =3 e
¢ S —o Jait S
at 1t att1¢
ds
-y [T > [
{istait1<ta} * ¢ 't {izta<taitli<t;} ¢ 't
1+1t
+ > / _11+12+13 (2.4)
{ista?>t1}

Let iy = max{i : ta’ < ty}, i = min{i : ta’ > t;}. Then by the monotonicity of g we

obtain
1+1t i1 ai+1t ds
h= 3 [T = [ e
a’ 0 a’

t S
{ita’t1<ta}

7,+1t
ds lna
') =1 t) <l 2.5
; g(a /a . naZga na-g(t E (2.5)

0 —q

Similarly, we prove that the inequalities

aitl! aitl att1
Z / t ds Z/ t — < Zg at / t @
{ita’>t2} att

S
i 4 Ina Ina
lnaZgat <Ina-g(a™t Zq <g(a 2t)l_qgg(tl)l_q (2.6)
12
are satisfied.
Let
1 /tl ds
C1 = —.
g<t1) taJa S

Then we have

L= ) /

{ita<ta’*l<iti}

z+1t

T2 [ a9 < g .)

2/a

Combining estimates (2.5)-(2.7), we finally obtain

> ds
/ g(S)?:Il—FIQ—{—[g
t

Ina Ina Ina
< T 90 gt + () < (e + 20 )ol0)

Thus, for ¢ < t5 inequality (2.1) is proved. In the case to <t < t; in (2.4) there is

no first term I; and if ¢; > ¢ then in (2.4) there is only term I3. The proof of (2.1) in
these cases is similar to the case ¢t < ts.

O
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A dual fact also holds.
Theorem 2.2. For a function g € K(1) there exists C > 0 such that

Ab@ﬁscm>

S

for any t € R, if and only if there exists a > 1 such that

ﬁ+(gaa)>17 ﬁ—(g)a’)>1‘

The proof of Theorem 2.2 is similar to that of Theorem 2.1.

For a function g : R, — R, we put ut g(t) = ﬁ and apply Theorem 2.2 to the

function g. We formulate the corresponding result as a corollary.

Corollary 2.1. Let g : Ry — R, be such that the function g € K(1). Then there
exists C' > 0 such that

A}@@s0w>

S

for any t € Ry if and only if there exists a € (0,1) such that

6+(gaa)>a7 ﬁ*(g7a)>a'

The proof of the corollary is obtained from the following chain of equalities:

Gt . ate®) e gla'n) L
lim, =~ =lim, ,— = alim, | =alim__, =afBy(g,a ).
0 T WMo oy = Ao 0 g - Wlga)

3 Main results

Theorem 3.1. Let for 1 < p < oo, 0 = % (hence 1 — 6 = 1%), vo,v1 € K(|), and
u(t) = () vy~ (2).

Assume that the Hardy operator H is bounded both as H : L), — L, and H :
ng — ng.

Then the operator H is bounded as H : LY — LY. Moreover, v € K(]), there exists
C > 0 such that for allt € Ry

/Oo <®)pds < oo (3.1)

/Ot (%)ﬂds < Ovp't(t) , (3.2)

fora € [1,00)

and for a € (0,1)
Bi(v,a) > (B (v, )™, B-(v,a) > (B-(vo,a))' ™" (3.4)
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Proof. First we prove (3.1). Under the assumptions of Theorem 3.1 by Theorem M it
follows that for vy and v; conditions (1.5)-(1.6) are satisfied. According to the equalities

[0y [y

00 1/6-1 00 1/6-1
B vy (s)ds vy’ (s)ds
= [ st = [ e 2R

s s
non-increasing of the function ”OT(S) and condition (5) we obtain
e vé/efl(s) ds < v(l)/e*l(t) > ds
\ vi(s) Ssl/0—1 ¢ = 41/6-1 ] Ul(s)?
1/6-1 01 ,,1—0
v () _ o @i @) L ()
C i (t) /-1 ¢ 11761 =C 11/0-1"
The proof of inequality (3.2) is similar to the above proof. One needs to use non-
decreasing of the function —— and condition (1.6):

v1(s)

/ot <$>ﬂds - / <vé-9<s>1 A

t t
0o vo(s) vy’ sy T /T ) Sy vo(s)
t t t
=C ;= C—,
R O B C R O R () R OL

The first of inequalities (3.3) can be verified in the following way. Since for a > 1
the inequality vg(at) < vo(t) holds, we obtain

<C

_povlat) _ y_(vl(at)>9<vo(at)>l—6

t—oo v(t)  t—oo\ vy(t) vo(t)

—vi(at)\?  —uvi(at)\? 0

< = =
- tlg&( v1 (%) ) (tlggo vy (%) ) (o (or, )"

Similarly one can prove the second inequality in (3.3).

The proof of the first inequality in (3.4) follows since for 0 < a < 1 the inequality

vi(at) > vy(t) holds, which implies that

v(at) lim (vl(at))G (Uo(at))l—e

Bi(v,a) = e i) Cm

> lim (Uo(at)>1€ = (hm M) o = (B4 (vo,a))' ™.

=00\ vg(t) t—o0 V(1)

Similarly one can prove the second inequality in (3.4). O

The following theorem is one of the main results.
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Theorem 3.2. Let for 1 < p < oo, 8§ =1/p, v € K(|) and let the Hardy operator H
be bounded as

H:ILP — LP.

Then there exist two weight functions vy, v1 € K(|), satisfying (1.2), such that the
operator H 1s bounded both as

H:LY— LY H:L, —L,

v

if and only if the following two conditions are satisfied:
a) there exists a > 1 such that

ar(v,a) <1, a_(v,a) <1, (3.5)

and
b) there exists a € (0,1) such that

By(v,a) >a, p[_(v,a)>a. (3.6)

Proof. If one can find two weight functions v, v; € K(|), satisfying (1.2) and such
that the Hardy operator is bounded as an operator in two spaces, then (3.5) follows
by (1.5), Theorem 2.1 and inequality (3.3) of Theorem 3.1. Inequalities (3.6) follow by
(1.6), Corollary 2.1 and inequalities (3.4) of Theorem 3.1.

If a function v satisfies conditions (3.5)-(3.6), so we can put vy(t) = v1(t)= v(t).
Then vy, v, € K(|), and (1.2) obviously holds. Condition (1.5) follows by (3.5) and
Theorem 2.1, and the validity of (1.6) is obtained by (3.6) and Corollary 2.1. O

A dual statement is formulated in the next theorem.

Theorem 3.3. Let for 1 < p < oo, 8 = 1/p, v € K(1) and let the Hardy operator @
be bounded as

Q:LP — IP. (3.7)

Then there exist two weight functions vo,v, € K(1), satisfying (1.2), such that the
operator () is bounded both as

Q: Ly — Ly, Q:Lzl)l—>L1

Vo vy )
if and only if the following two conditions are satisfied:
a) there exists a € (0,1) such that
ar(vya) <1, a_(v,a) <1, (3.8)

and
b) there exists a > 1 such that

1

Bi(v,a) >a™; B_(v,a) >at. (3.9)
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Proof. By duality condition (3.7) holds if and only if the operator H is bounded as
H:(LF) — (LP). (3.10)

By the equality (X,,) = X;/w (3.10) can be rewritten as

H Lﬁ’/v — LI{/U.
We set w = 1/v. Since v € K(7), it follows that w € K(|). In addition, we
have 1% = 1 — . According to the previous theorem there exist two weight functions
wo, w; € K(]), satisfying the identity w = w- w%’e, and such that the Hardy operator

bounded as
H:Ly — Ly, H:Ly, — Ly, (3.11)

wo?

if and only if
a) there exists a > 1 such that

ar(w,a) <1l; a_(w,a)<l1 (3.12)

and
b) there exist a € (0,1) such that

Be(w,a) >a; p_(w,a)>a. (3.13)

Next, we have

ar(w,a) = EM = lim U(t) = i_v<a717—) = (v,at
+( ) ) tl—>oo w(t) tLOOU(CLt) el U(T) +( ) )7
Ew(at) _ v(t)  —wv(alT) P
a-(w,a) =lm= ey = I ~ M —m ~(v,a7),
pwlat) o) )
ﬁ-i—(w»a) - t1—>oo w(t) t—»oov(at) oo U(T) ﬁ-&-( ) )7
Bi(w,a) = hmw(at) =1l olt) _ li vla”’7) = B (v,a™h).

=0 w(t)  t=o0v(at) 10 v(T)

Therefore conditions (3.12)-(3.13) are equivalent to conditions (3.8)-(3.9).
It remains to note that < = (wio)e(wil)l*g, and that (3.11) is equivalent to the
boundedness of the operator () is bounded as

Q:L% — L%, @Q:L. —L..
wy w1 wo
O

Conditions (1.5)-(1.6) ensuring the boundedness of H in spaces L, and Ly imply
that natural assumptions on the weight functions are as follows:

n(t) € K(1), %(t) e K(1). (3.14)
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Let 1 <p<oo, 0= % and the function v be defined by v(t) = v?(t) v ~?(t). Then by
(3.14) it immediately follows that

:1(—2 e K(]). (3.15)

Therefore it is natural to look for an analogue of Theorem 3.2 with weights v satisfying
condition (3.15).

Theorem 3.4. Let 1 < p < 00, 6 = 1/p, v be is a weight function satisfying (3.15),
w(t) = tvl(_t?,, and let the Hardy operator H be bounded as

H:LP — L7,

Then there exist two weight functions vg, vy satisfying (1.2) and (3.14), such that
the operator H 1s bounded both as
H: Ly — Ly, H:qujl—>Lil,
if and only if the following two conditions are satisfied:
a) there exists a > 1 such that

ar(w,a) <1, a_(wa)<l, (3.16)

and
b) there exists a € (0,1) such that

Bi(w,a™') >a; B_(w,a™t)>a. (3.17)

Proof. Necessity. Inequality (1.5) and Theorem 2.1 imply that there exists a; > 1, for
which the inequalities
ar(vi,a) <1, a(v,a) <1

are satisfied.
It follows by (1.6) and Theorem 2.2 that there exists ag > 1, for which the inequal-
ities
By (Gna0) > 1, G-(G,a0) > 1
are satisfied.
Therefore, taking into account conditions (3.14) with a > 1 we have

—(at)? vg(at) vy (at)?)  ——wvi(at)?)
= <
a+(w,a) = i e @ = A )7

0

= (ay(v1,a))

and
a_(w,a) < (a_(vi,a))’.

This implies the inequality (3.16).
Analogously, we have
By (w,a™) > By (t0, )’
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and
B-(w,a™") > B_(Ty,a)" "’
This implies the inequality (3.17).
Sufficiency. We define, for v € (0,1), the functions vy and v; by the following
equalities

vo(t) = t(:l(__tZ)(lv)/(lm — tw(t)(lfv)/(lff))’ vi(t) = (@)7/9 — w(t)'Y/a.

Then direct calculations show that

o) =0 o), i) € K1), D e (),
Oé+(1)1, CL) = Oé+('LU, a>7/07 o (Ula CL) = Q- <w7 a>7/97 (318>
and
Bo(f,0) = B, a™) 000 (5 ) = _w,a ™) (319)

It follows by (3.18), (3.16), Theorems 2.1, and Theorem M, that H is bounded as an
operator H : L}, — L, .

Similarly, it follows by (3.19), (3.17), Theorems 2.2, and Theorem M that operator
H is bounded as an operator H : Ly. — Lie. O

Passing to the adjoint operator and dual space, it is easy to obtain the dual state-
ment.

Theorem 3.5. Let for 1 <p < oo, § =1/p, v be a weight function such that

v(t)t? € K(1), (3.20)
and let the Hardy operator Q) be bounded as

Q: LV — P (3.21)

Then there ezist two weight functions vy, vy satisfying (1.2), such that vo(t) € K(7),
tvi(t) € K(1) and such that the operator Q) is bounded both as

Q:LY—LY, Q:L), — L, (3.22)

vo? v

if and only if the following two conditions are satisfied:
a) there exist a > 1 such that

ar(v,a™t) <d’, a_(v,a™) <d (3.23)

and
b) there exist a € (0,1) such that

1-6

By(v,a) >a'™?  B_(v,a) >a'". (3.24)



28 E.I. Berezhnoi

Proof. Condition (3.21) is equivalent to

H: L} —LF

Put w(t) = 1/v(t). Then “¥ € K(|) <= v(t)t’ € K(1). Let u(t) = “2. According
to the previous theorem there exist two weight functions wy, w1, satisfying (3.14), such
that w(t) = wi () - wf(t) and such that the Hardy operator H is bounded both as

H:Ly —Ly, H:L, — L. (3.25)

wo? w1?

if and only if the following conditions are satified:
a) there exist a > 1 such that

ap(u,a) <1; a_(u,a) <1 (3.26)

and
b) there exist a € (0,1) such that

Bi(u,a™) >a; B_(u,a™t) > a. (3.27)
Direct calculations show that the following equalities

ay(u,a) = E% —a "’ a,(v,a™);  a_(u,a) =a”

‘. Oé_(U, a_l);

t)%v(at
utua™) = Jin O 05 oy 5w =50
hold.
Therefore, conditions (3.26)-(3.27) are equivalent to conditions (3.23)-(3.24).
It remains to note that the equality + = (5-)’(5-)""? holds, and that condi-

tion(3.25) is equivalent to condition (3.22). O
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