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Abstract. Two-sided estimates are established for two types of generalized Hardy
operators on the cones of functions in weighted Lebesgue spaces with some properties
of monotonicity. In this paper we continue the proofs given in [9] for the main results
announced in our paper [7]. Also we present here some other equivalent descriptions,
consider some particular cases and establish results in the case of a degenerate measure.

1 Introduction

This paper is organized in the following way. For convenience of the reader we reproduce
in the introduction the setting of the problems, the main notation and results in [9],
Section 1. In the next Sections of this paper we preserve all the notation given in [9].
Anyway, in order to understand the content of this paper the reader has to be familiar
with the related notation and facts in [9].

1.1. Let β and γ be non-negative Borel measures on R+ = (0,∞) ; p, q ∈ R+, and
Ω be a certain cone of non-negative Borel measurable functions on R+, and A be a
positive operator. Introduce

HΩ (A) = sup
f∈Ω


 ∫

R+

(Af)q dγ

1/q ∫
R+

fpdβ

−1/p
 . (1.1)

Here, we consider the cones of functions that are monotone with respect to the pre-
scribed positive continuous functions k and m :

Ωk = {f > 0 : f (τ)/k (τ) ↓} ; Ωm = {f > 0 : f (τ)/m (τ) ↑} . (1.2)

As operator A, consider the generalized Hardy operators A = Aµ, and A = Bµ where
µ is a non-negative Borel measure on R+ ;

(Aµf) (t) =

∫
(0,t]

fdµ; (Bµf) (t) =

∫
[t,∞)

fdµ. (1.3)
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1.2. First, we formulate the result for HΩk
(Bµ). For this purpose we need some

notations:

ωp (t) =

 ∫
(0,t)

kpdβ


1/p

, t > 0; Ψ (t, τ) =

∫
[t,τ)

kdµ, t < τ ; (1.4)

Vp (t) = sup
τ∈(t,∞)

[
Ψ (t, τ)

ωp (τ)

]
, p ∈ (0, 1] ; (1.5)

Vp (t) =


∫

(t,∞)

Ψp′ (t, τ)

(
−d
[

1

ωp
′
p (τ)

])
1/p′

; p > 1,
1

p
+

1

p′
= 1; (1.6)

Wq (τ) =

 ∫
(0,τ)

dγ


1/q

; ξα (τ) = ω−1
p (αωp (τ)) , τ ∈ R+. (1.7)

Here α ∈ (0, 1) is fixed; ω−1
p is the right-continuous inverse function for the (increasing)

continuous function ωp. Obviously, ξα (τ) < τ .
The criterion of the boundedness for HΩk

(Bµ) is determined by the following quan-
tities:

Epq = sup
τ∈R+


 ∫

[ξα(τ),τ)

Ψq (t, τ) dγ (t)


1/q

1

ωp (τ)

 , p 6 q; (1.8)

Epq =


∫
R+

 ∫
[ξα(τ),τ)

Ψq (t, τ) dγ (t)


s/q (

−d
[

1

ωsp (τ)

])
1/s

, p > q, (1.9)

Fpq = sup
t∈R+

[Vp (t)Wq (t)] , p 6 q, (1.10)

Fpq =


∫
R+

V s
p (t) d

[
W s
q (t)

]
1/s

, p > q, (1.11)

where as always in this paper s = pq/(p− q) for p > q. In addition, introduce the non-
degeneracy condition for measure β :

β ∈ Np (k) ⇔
∫

(0,1)

kpdβ = 1,

∫
[1,∞)

kpdβ = ∞. (1.12)

Theorem 1.1. Let β ∈ Np (k) and functions ωp and Wq be positive and continuous
on R+, ωp (+0) = 0. Then there exists c0 = c0 (p, q, α) ∈ [1,∞) such that

c−1
0 (Epq + Fpq) 6 HΩk

(Bµ) 6 c0 (Epq + Fpq) . (1.13)
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1.3. Now, we present the corresponding results concerning HΩm (Aµ) (see (1.1)-
(1.3)). To this end we denote

ω̄p (t) =

 ∫
(t,∞)

mpdβ


1/p

, t > 0; Φ (τ, t) =

∫
(τ,t]

mdµ, τ < t; (1.14)

V (0)
p (t) = sup

τ∈(0,t)

[
Φ (τ, t)

1

ω̄p (τ)

]
, p ∈ (0, 1] ; (1.15)

V (0)
p (t) =


∫

(0,t)

Φp′ (τ, t)d

[
1

ω̄p
′
p (τ)

]
1/p′

, p > 1; (1.16)

W̄q (τ) =

 ∫
(τ,∞)

dγ


1/q

; ςα (τ) = ω̄−1
p (αω̄p (τ)) , τ ∈ R+. (1.17)

Here α ∈ (0, 1) is fixed; ω̄−1
p is the right-continuous inverse function for the (decreasing)

continuous function ω̄p. Obviously, τ < ςα (τ) . Now, we introduce

E(0)
pq = sup

τ∈R+


 ∫

(τ,ςα(τ)]

Φq (τ, t) dγ (t)


1/q

1

ω̄p (τ)

 , p 6 q; (1.18)

E(0)
pq =


∫
R+

 ∫
(τ,ςα(τ)]

Φq (τ, t) dγ (t)


s/q

d

[
1

ω̄sp (τ)

]
1/s

, p > q. (1.19)

F (0)
pq = sup

t∈R+

[
V (0)
p (t) W̄q (t)

]
, p 6 q, (1.20)

F (0)
pq =


∫
R+

(
V (0)
p

)s
(t)
(
−d
[
W̄ s
q (t)

])
1/s

, p > q. (1.21)

Now, the non-degeneracy condition on measure β is the following:

β ∈ N̄p (m) ⇔
∫

(0,1]

mpdβ = ∞,

∫
(1,∞)

mpdβ = 1. (1.22)

Theorem 1.2. Let β ∈ N̄p (m) and functions ω̄p and W̄q be positive and continuous
on R+, ω̄p (+∞) = 0. Then for c0 ∈ [1,∞) from Theorem 1.1,

c−1
0

(
E(0)
pq + F (0)

pq

)
6 HΩm (Aµ) 6 c0

(
E(0)
pq + F (0)

pq

)
. (1.23)
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Remark 1. Let p 6 q in Theorems 1.1 and 1.2. Then, we can change definitions
(1.8) and (1.18). Namely, the estimates (1.13) and (1.23) with a certain constants
c0, c1; ci = ci (p, q) ∈ [1,∞) , i = 0, 1, remain true if we replace Epq in (1.13) or E(0)

pq

in (1.23), respectively, by

Ėpq = sup
τ∈R+


 ∫

(0,τ)

Ψq (t, τ) dγ (t)


1/q

1

ωp (τ)

 , p 6 q; (1.24)

or by

Ė(0)
pq = sup

τ∈R+


 ∫

(τ,∞)

Φq (τ, t) dγ (t)


1/q

1

ω̄p (τ)

 , p 6 q. (1.25)

2 Some equivalent criteria and particular cases

2.1 Some particular cases of Theorems 1.1 and 1.2 are of spe-
cial interest

Proposition 2.1. Let β ∈ Np (k) and function ωp be positive and continuous on
R+, ωp (+0) = 0.

1. If Vp ◦ ω−1
p ∈ ∆2. that is, for a = α−1/3 with α ∈ (0, 1) from (1.7)–(1.9),

Da = sup
t∈R+

[
Vp
(
ω−1
p (t)

)/
Vp
(
ω−1
p (at)

)]
<∞, (2.1)

then there exists c = c (p, q, α) ∈ [1,∞) such that

c−1Fpq 6 HΩk
(Bµ) 6 cFpq. (2.2)

2. If for a = α−1/3 with α ∈ (0, 1) from (1.7)–(1.9)

δa = inf
t∈R+

[
Wq

(
ω−1
p (at)

)/
Wq

(
ω−1
p (t)

)]
> 1, (2.3)

then there exists c1 = c1 (p, q, α) ∈ [1,∞) such that

c−1
1 Epq 6 HΩk

(Bµ) 6 c1Epq. (2.4)

Now, we formulate corresponding result for HΩm (Aµ).
Proposition 2.2. Let β ∈ N̄p ( m) and function ω̄p be positive and continuous on
R+, ω̄p (+∞) = 0.

1. If V (0)
p ◦ ω̄−1

p ∈ ∆2 , that is, for a = α−1/3 with α ∈ (0, 1) from (1.17)–(1.19),

D̄a = sup
t∈R+

[
V (0)
p

(
ω̄−1
p (t)

)/
V (0)
p

(
ω̄−1
p (at)

)]
<∞, (2.5)
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then there exists c = c (p, q, α) ∈ [1,∞) such that

c−1F (0)
pq 6 HΩm (Aµ) 6 cF (0)

pq . (2.6)

2. If for a = α−1/3 with α ∈ (0, 1) from (1.17)-(1.19),

δ̄a = inf
t∈R+

[
W̄q

(
ω̄−1
p (at)

)/
W̄q

(
ω̄−1
p (t)

)]
> 1, (2.7)

then there exists c1 = c1 (p, q, α) ∈ [1,∞) such that

c−1E(0)
pq 6 HΩm (Aµ) 6 cE(0)

pq . (2.8)

Remark 2. It is easy to see that if (2.1) holds for a given a = α−1/3 > 1 then it holds
for each a > 1, and (2.2) remains true with c = c (p, q, α, a) ∈ [1,∞). Similar remark
is relative to (2.5), and (2.6).

2.2. Here we present several special cases where the criterion of the boundedness for
HΩk

(Bµ) is obtained by application of some other approaches. Corresponding proofs
are given in Section 3. Also, we show there that these equivalent descriptions may be
obtained from the approaches developed in this paper.
Proposition 2.3. Under notation (1.1)-(1.7), (1.24) let 0 < p 6 min {1, q}. Then,

HΩk
(Bµ) = Ėpq = sup

τ∈R+


 ∫

(0,τ)

Ψq (t, τ) dγ (t)


1/q

1

ωp (τ)

 . (2.9)

Proposition 2.4. Let the hypotheses of Theorem 1.1 be fulfilled with p > q = 1 .
Then,

HΩk
(Bµ) ∼=


∫
R+

 ∫
(0,τ)

Ψ (t, τ) dγ (t)


p′ (

−d
[

1

ωp
′
p (τ)

])
1/p′

. (2.10)

3 Proofs of Propositions 2.1–2.4

3.1 Proof of Proposition 2.1.

1. First, we prove Part 1 of Proposition 2.1.
All the hypotheses of Theorem 1.1 are fulfilled, and we have assertions [9; (5.6) −

(5.8)]. For
HΩ1 (Bµk

; p, q, βkp, γ)

we can apply [9; Theorem 2.1], so that

HΩ1 (Bµk
; p, q, βkp, γ) ∼= Ẽ0

pq (1, βkp, γ, µk) + F̃pq (1, βkp, γ, µk) , (3.1)
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where

Ẽ0
pq (1, βkp, γ, µk) =


∑
n

a−ns

 ∫
∆n

Ψq (1, µk; t, λn+1) dγ (t)

s/q


1/s

,

F̃pq (1, βkp, γ, µk) = sup
n

[Vp (1, βkp, µk;λn)Wq (γ;λn)] , p 6 q;

F̃pq (1, βkp, γ, µk) =

{∑
n

V s
p (1, βkp, µk;λn)

[
W s
q (γ;λn)−W s

q (γ;λn−1)
]}1/s

,

for p > q. Here λn is determined by [9; (2.2)] with ωp (t) = ωp (1, βkp; t) = ωp (k, β; t),
thus λn = ω−1

p (k, β; an). Note that (2.1) coincides with [9; (3.16)], and we can apply
[9; Proposition 3.7]. Then,

Ẽ0
pq (1, βkp, γ, µk) 6 aDaF̃pq (1, βkp, γ, µk) ,

and we obtain

HΩ1 (Bµk
; p, q, βkp, γ) ∼= F̃pq (1, βkp, γ, µk) ∼= Fpq (1, βkp, γ, µk)

(the last assertion follows from [9; (4.12))]. Together with [9; (5.6)− (5.8)] it implies

HΩk
(Bµ; p, q, β, γ) ∼= Fpq (k, β, γ, µ) ,

thus proving the first part of Proposition 2.1.
2. Now, we prove Part 2 of Proposition 2.1.
As before, we have assertions [9; (5.6)] and (3.1). Thus, our aim is to estimate

HΩ1 (Bµk
; p, q, βkp, γ). Note that (2.3) coincides with [9; (3.25)], so that [9; Proposition

3.9] is applicable here. Then, according to [9; (3.26)],

F̃pq (1, βkp, γ, µk) 6 cẼpq (1, βkp, γ, µk) . (3.2)

Together with [9; (3.3)], it gives

HΩ1 (Bµk
; p, q, βkp, γ) ∼= Ẽpq (1, βkp, γ, µk) . (3.3)

Now, we apply estimate [9; (4.5)] for p 6 q, or the first estimate from [9; (4.11)] for
p > q and obtain

Ẽpq (1, βkp, γ, µk) 6 c1Epq (1, βkp, γ, µk) . (3.4)
From the other side, [9; (4.4)] for p 6 q, or the second estimate from [9; (4.11)] for
p > q imply

Epq (1, βkp, γ, µk) 6 c2

[
Ẽ0
pq (1, βkp, γ, µk) + F̃pq (1, βkp, γ, µk)

]
.

It is obvious from definitions [9; (3.1)], and [9; (2.5)] that

Ẽ0
pq (1, βkp, γ, µk) 6 Ẽpq (1, βkp, γ, µk) .

This inequality together with (3.2), yield the reverse estimate in (3.4), so that

Ẽpq (1, βkp, γ, µk) ∼= Epq (1, βkp, γ, µk) . (3.5)

We insert this estimate in (3.3) and obtain

HΩ1 (Bµk
; p, q, βkp, γ) ∼= Epq (1, βkp, γ, µk) . (3.6)

Now, assertions [9; (5.6)] and [9; (5.7)] imply (2.4) �
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3.2 Proof of Proposition 2.2.

Here, we use approach developed in [9; Section 5.2] for reduction of Proposition 2.2 to
Proposition 2.1.

1. First, we show that (2.5) coincides with (2.1) for k (t) = m (t−1) , and measures
β̃, and µ̃. Indeed, we see from [9; (5.23)] that

ωp

(
k, β̃; τ

)
= ω̄p

(
τ−1
)

⇒ ω−1
p

(
k, β̃; t

)
= 1/ω̄−1

p (t) . (3.7)

Now, [9; (5.25)] implies,

Vp

(
ω−1
p

(
k, β̃; t

))
= Vp

(
1/ω̄−1

p (t)
)

= V (0)
p

(
ω̄−1
p (t)

)
, t ∈ R+,

so that,

Da = sup
t∈R+

 Vp

(
ω−1
p

(
k, β̃; t

))
Vp

(
ω−1
p

(
k, β̃; at

))
 = sup

t∈R+

(
V

(0)
p

(
ω̄−1
p (t)

)
V

(0)
p

(
ω̄−1
p (at)

)) = D̄a <∞.

Thus, the first Part of Proposition 2.1 is applicable here, and

HΩk

(
Bµ̃; p, q, β̃, γ̃

)
∼= Fpq

(
k, β̃, γ̃, µ̃

)
.

Moreover, we have equalities [9; (5.21)] and [9; (5.27)], so that

HΩm (Aµ; p, q, β, γ) = HΩk

(
Bµ̃; p, q, β̃, γ̃

)
, Fpq

(
k, β̃, γ̃, µ̃

)
= F (0)

pq ,

and (2.6) follows.
2. Similarly, (3.7) and [9; (5.26)] imply

Wq

(
ω−1
p

(
k, β̃; t

))
= Wq

(
1/ω̄−1

p (t)
)

= W̄q

(
ω̄−1
p (t)

)
, t ∈ R+,

and

δa = inf
t∈R+

Wq

(
ω−1
p

(
k, β̃; at

))
Wq

(
ω−1
p

(
k, β̃; t

))
 = inf

t∈R+

(
W̄q

(
ω̄−1
p (at)

)
W̄q

(
ω̄−1
p (t)

) ) = δ̄a > 1.

Therefore, (2.7) coincides with (2.3), and by Part 2 of Proposition 2.1,

HΩk

(
Bµ̃; p, q, β̃, γ̃

)
∼= Epq

(
k, β̃, γ̃, µ̃

)
.

Now, we apply (2.5) and [9; (5.31)] and obtain (2.8). Proposition 2.2 is proved �
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3.3 Proof of Proposition 2.3.

Under the hypotheses of Proposition 2.3, i.e., for 0 < p 6 min {1, q}, we can apply the
results of paper [2; Theorem 3] showing that sup

f∈Ωk

. . . in (1.1) is achieved on the family

of functions {fτ}τ∈R+
⊂ Ωk, where

fτ (t) = k (t)χ(0,τ) (t) , t ∈ R+. (3.8)

Therefore, see also (1.24),

HΩk
(Bµ) = sup

τ>0


 ∫

R+

(Bµfτ )
q dγ

1/q ∫
R+

fpτ dβ

−1/p


= sup
τ>0


∫
R+

 ∫
[t,∞)

kχ(0,τ)dµ


q

dγ (t)


1/q ∫

R+

χ(0,τ)k
pdβ

−1/p
 = Ėpq.

�

Remark 3. Let us show that the equivalent description follows from the results of
Section 1.

Let the hypotheses of Theorem 1.1 be fulfilled. Then, for 0 < p 6 min {1, q} we
obtain from Remark 1,

HΩk
(Bµ) ∼= Ėpq, (3.9)

which corresponds to (2.9). Indeed, according to Remark 1,

HΩk
(Bµ) ∼= Ėpq + Fpq, (3.10)

where Fpq is determined by (1.10) with Vp from (1.5). It means that

Fpq = sup
t∈R+

sup
τ∈(t,∞)

Ψ (t, τ)

ωp (τ)
Wq (t) = sup

τ∈R+

1

ωp (τ)
sup
t∈(0,τ)

Ψ (t, τ)

∫
(0,t)

dγ (ξ)


1/q

6 sup
τ∈R+

1

ωp (τ)
sup
t∈(0,τ)

∫
(0,t)

Ψq (ξ, τ) dγ (ξ)


1/q

6 Ėpq.

Consequently, (3.10) implies (3.9).
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3.4 Proof of Proposition 2.4.

We apply equality [9; (5.6)] with q = 1, and obtain by the change of the order of
integration

HΩk
(Bµ) = sup

f∈Ω1

∫
R+

 ∫
[t,∞)

fkdµ

 dγ (t)

 ∫
R+

fpkpdβ

−1/p
 =

= sup
f∈Ω1

∫
R+

f (ξ) k (ξ)

 ∫
(0,ξ]

dγ

 dµ (ξ)

 ∫
R+

fpkpdβ

−1/p
 ≡ G0. (3.11)

Now, we denote

dβ0 (ξ) = kp (ξ) dβ (ξ) , dγ0 (ξ) = k (ξ)

 ∫
(0,ξ]

dγ

 dµ (ξ) , (3.12)

so that,

G0 = sup
f∈Ω1

∫
R+

fdγ0

 ∫
R+

fpdβ0

−1/p
 .

To estimate G0 we apply one result from [8; Theorem 1.1] in corresponding notations,
and obtain

G0
∼=


∫
R+

 ∫
(0,τ)

dγ0


1/p′ (

−d
[

1

ωp′ (τ)

])
1/p′

. (3.13)

Here,

ω (τ) :=

 ∫
(0,τ)

dβ0


1/p

=

 ∫
(0,τ)

kpdβ


1/p

= ωp (τ) ,

∫
(0,τ)

dγ0 =

∫
(0,τ)

k (ξ)

 ∫
(0,ξ]

dγ

 dµ (ξ) =

∫
(0,τ)

 ∫
[t,τ)

kdµ

 dγ (t),

so that, ∫
(0,τ)

dγ0 =

∫
(0,τ)

Ψ (t, τ) dγ (t).

These assertions show that,

HΩk
(Bµ) ∼= A0 :=


∫
R+

 ∫
(0,τ)

Ψ (t, τ) dγ (t)


1/p′ (

−d
[

1

ωp
′
p (τ)

])
1/p′

. (3.14)
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This completes the proof of Proposition 2.4 �

3.5 Direct proof of estimate (3.14).

Below, we present the direct proof of assertion (3.14) without application of the result
from [8]. This illustrates the correspondence of the results given here to ones obtained
by applying of some other approaches.

So, let the hypotheses of Theorem 1.1 be fulfilled with p > q = 1. Then, we apply
the equality [9; (5.6)], assertions [9; (2.8)], and [9; (3.45)], and obtain

HΩk
(Bµ) = HΩ1 (Bµk

; p, 1, βkp, γ) ∼= Ẽ0
p1 + F̃p1 ∼= Ẽ0

p1 + f̃p1, (3.15)

where Ẽ0
p1, and f̃p1 are determined by [9; (2.5)] and [9; (3.43)] with p > q = 1, s = σ =

p′, so that

Ẽ0
p1 =


∑
m

a−m ∫
∆m

Ψ (t, λm+1) dγ

p′


1/p′

, (3.16)

f̃p1 =

{∑
n

∑
m>n

[
ψ (λm) a−m

]p′ [
W p′

1 (λn)−W p′

1 (λn−1)
]}1/p′

=

{∑
m

[
ψ (λm) a−m

]p′ ∑
n6m

[
W p′

1 (λn)−W p′

1 (λn−1)
]}1/p′

=

{∑
m

[
ψ (λm) a−mW1 (λm)

]p′}1/p′

. (3.17)

Now, our aim is to prove that
A0

∼= Ẽ0
p1 + f̃p1. (3.18)

Let us take into account the increase of the non-negative function

f (τ) =

∫
(0,τ)

Ψ (t, τ) dγ (t).

Then, we can apply the discretisation procedure [9; (2.2)–(2.4)] for A0 in (3.14), and
obtain, by analogy with [9; Proposition 2.2],

A0
∼=

{∑
m

a−mp
′
fp

′
(λm)

}1/p′

=


∑
m

a−mp
′

 ∫
(0,λm)

Ψ (t, λm) dγ


p′


1/p′

. (3.19)

Let us show that ∫
(0,λm)

Ψ (t, λm) dγ = Im + Jm, (3.20)
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where
Im =

∑
l6m−1

∫
∆l

Ψ (t, λl+1) dγ, (3.21)

Jm =
∑
l6m−2

 ∫
∆l

dγ

 m−1∑
j=l+1

ψ (λj). (3.22)

Indeed,∫
(0,λm)

Ψ (t, λm) dγ =

∫
∆m−1

Ψ (t, λm) dγ +
∑
l6m−2

∫
∆l

Ψ (t, λm) dγ

=

∫
∆m−1

Ψ (t, λm) dγ +
∑
l6m−2

∫
∆l

Ψ (t, λl+1) dγ +
∑
l6m−2

Ψ (λl+1, λm)

∫
∆l

dγ

= Im +
∑
l6m−2

(
m−1∑
j=l+1

Ψ (λj, λj+1)

)∫
∆l

dγ =Im + Jm.

Now, we change the order of summation in (3.22) and obtain,

Jm =
∑

j6m−1

ψ (λj)
∑
l6j−1

∫
∆l

dγ =
∑

j6m−1

ψ (λj)

∫
(0,λj)

dγ =
∑

j6m−1

ψ (λj)W1 (λj). (3.23)

From (3.20), (3.21), and (3.23), we see that∫
(0,λm)

Ψ (t, λm) dγ =
∑
l6m−1

βl, βl =

∫
∆l

Ψ (t, λl+1) dγ + ψ (λl)W1 (λl) . (3.24)

We substitute this equality in (3.19), and obtain by applying of [9; Proposition 2.3],

A0
∼=

∑
m

a−mp
′

( ∑
l6m−1

βl

)p′


1/p′

∼=

{∑
m

a−mp
′
βp

′

m−1

}1/p′

=

= a−1

{∑
m

a−mp
′
βp

′

m

}1/p′

.

From here, from (3.24), (3.16), and (3.17), it follows (3.18).
Assertions (3.18), and (3.15) give (3.14) �

4 The case of degeneracy for measure β

Here, we consider the case of degeneracy, when the condition β ∈ Np (k) (1.12) is
violated. The essentially non-trivial situation appears in the following case (see (1.4))

ωp (1) = 1 6 ωp (∞) <∞. (4.1)
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We preserve here the notations of Section 1 and introduce also

epq = sup
τ∈(0,1]


 ∫

[ξα(τ),τ)

Ψq (t, τ) dγ (t)


1/q

1

ωp (τ)

 , p 6 q; (4.2)

epq =


∫

(0,1]

 ∫
[ξα(τ),τ)

Ψq (t, τ) dγ (t)


s/q (

−d
[

1

ωsp (τ)

])
1/s

, p > q, (4.3)

fpq = sup
t∈(0,1)

[
V̇p (t)Wq (t)

]
, p 6 q, (4.4)

fpq =


∫

(0,1)

V̇ s
p (t) d

[
W s
q (t)

]
1/s

, p > q, (4.5)

where for t ∈ (0, 1),

V̇p (t) = sup
τ∈(t,1]

[
Ψ (t, τ)

ωp (τ)

]
, p ∈ (0, 1] ; (4.6)

V̇p (t) =


∫

(t,1]

Ψp′ (t, τ)

(
−d
[

1

ωp
′
p (τ)

])
1/p′

; p > 1,
1

p
+

1

p′
= 1. (4.7)

For t > 1 we assume that V̇p (t) = 0.
Theorem 4.1. Under the hypotheses of Theorem 1.1, let the condition (1.12) be
replaced by (4.1). Then, the following assertions hold

HΩk
(Bµ) ∼= epq + fpq +Dpq, (4.8)

HΩk
(Bµ) ∼= Epq + Fpq +Dpq, (4.9)

where

Dpq =
1

ωp (∞)

 ∫
R+

Ψq (t,∞) dγ (t)

1/q

. (4.10)

Remark 4. The structure of the answers in (4.8) and in (4.9) is the same, but in epq
and in fpq only the values of functional parameters on (0, 1] are involved.
Remark 5. Analogously to Remark 1, if p 6 q in Theorem 4.1, we can replace the
answer (4.9) by the following equivalent one:

HΩk
(Bµ) ∼= Ėpq + Fpq,

with Ėpq from (1.24).
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Indeed, inequality [9; (4.2)] holds without assumption β ∈ Np (k). Together with
(4.9), it gives

HΩk
(Bµ) ∼= Ėpq +HΩk

(Bµ) ∼= Ėpq + Fpq +Dpq
∼= Ėpq + Fpq.

Here, the last assertion follows from the inequality 0 6 Dpq 6 Ėpq.

Proof. 1. Our first aim is to prove (4.8). Let us note that under assumptions (4.1) ∫
(0,1)

fpdβ


1/p

6

 ∫
R+

fpdβ

1/p

6 ωp (∞)

 ∫
(0,1)

fpdβ


1/p

, f ∈ Ωk. (4.11)

Indeed,

f ∈ Ωk ⇒ f (ξ) >
f (1)

k (1)
k (ξ) , ξ ∈ (0, 1) ; f (ξ) 6

f (1)

k (1)
k (ξ) , ξ > 1. (4.12)

Therefore ∫
(0,1)

fpdβ > (f (1)/k (1))p
∫

(0,1)

kpdβ = (f (1)/k (1))p ; (4.13)

∫
[1,∞)

fpdβ 6 (f (1)/k (1))p
∫

[1,∞)

kpdβ = (f (1)/k (1))p
[
ωpp (∞)− 1

]
,

and ∫
[1,∞)

fpdβ 6
[
ωpp (∞)− 1

] ∫
(0,1)

fpdβ.

Consequently, ∫
R+

fpdβ =

∫
(0,1)

fpdβ +

∫
[1,∞)

fpdβ 6 ωpp (∞)

∫
(0,1)

fpdβ,

which gives (4.11). Now, (4.11) implies

HΩk
(Bµ) ∼= Ḣ ≡ sup

f∈Ωk


 ∫

R+

(Bµf)q dγ

1/q
 ∫

(0,1)

fpdβ


−1/p

 . (4.14)

The denominator in Ḣ is independent of values of f (ξ) for ξ > 1. It means that sup
f∈Ωk

. . .

is achieved on the most function f0 ∈ Ωk which has the same values as f for ξ ∈ (0, 1),
namely on

f0 (ξ) = f (ξ) , ξ ∈ (0, 1) ; f0 (ξ) =
f (1)

k (1)
k (ξ) , ξ > 1
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(see (4.12)). Therefore,
Ḣ ∼= H(0) + Ḣ(0), (4.15)

where

H(0) = sup
f∈Ωk


 ∫

(0,1)

 ∫
[t,1)

fdµ


q

dγ


1/q ∫

(0,1)

fpdβ


−1/p

 , (4.16)

Ḣ(0) =

 ∫
(0,1)

 ∫
[1,∞)

kdµ


q

dγ +

∫
[1,∞)

 ∫
[t,∞)

kdµ


q

dγ


1/q

. (4.17)

In (4.17) it was taken into account that

sup
f∈Ωk

f (1)

k (1)

 ∫
(0,1)

fpdβ


−1/p

 =

k (1)

k (1)

 ∫
(0,1)

kpdβ


−1/p

 = 1,

because of (4.13). Now, (4.17) implies

Ḣ(0) =

 ∫
(0,1)

Ψq (1,∞) dγ +

∫
[1,∞)

Ψq (t,∞) dγ


1/q

6

 ∫
R+

Ψq (t,∞) dγ

1/q

. (4.18)

Estimates (4.14), (4.15), and (4.18) show that

HΩk
(Bµ) +Dpq

∼= H(0) + Ḣ(0) +Dpq
∼= H(0) +Dpq. (4.19)

Let us note that k ∈ Ωk, so that

HΩk
(Bµ) >

( ∫
R+

(Bµk)
q dγ

)1/q

( ∫
R+

kpdβ

)1/p
=

( ∫
R+

Ψq (t,∞) dγ

)1/q

ωp (∞)
= Dpq. (4.20)

Therefore, from (4.19) we obtain,

HΩk
(Bµ) ∼= H(0) +Dpq. (4.21)

Now, our aim is to estimate H(0) (4.16). We define measure β1 ∈ Np (k) (see (1.12))
such that β1 (e) = β (e) for each Borel set e ⊂ (0, 1) and consider

H(1) = sup
f∈Ωk


 ∫

(0,1)

 ∫
[t,1)

fdµ


q

dγ


1/q ∫

R+

fpdβ1

−1/p
 . (4.22)
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Note that the numerator in (4.22) is independent of values of f (ξ) for ξ > 1. It means
that sup

f∈Ωk

. . . is achieved in (4.22) on the smallest function f1 ∈ Ωk which has the same

values as f for ξ ∈ (0, 1), namely on

f1 (ξ) = f (ξ) , ξ ∈ (0, 1) ; f1 (ξ) = 0, ξ > 1. (4.23)

Therefore, H(1) = H(0). From the other side, we see from (4.22) that

H(1) = sup
f∈Ωk


 ∫

R+

 ∫
[t,∞)

fdµ1


q

dγ


1/q ∫

R+

fpdβ1

−1/p
 , (4.24)

where measure µ1 is extension by zero of measure µ from (0, 1) on R+, i.e.,
µ1 (e) = µ (e ∩ (0, 1)) for each Borel set e ⊂ R+. Thus, we have

HΩk
(Bµ) ∼= H(1) +Dpq, (4.25)

with H(1) determined by (4.24), where measure β1 ∈ Np (k). It means that Theorem
1.1 is applicable for H(1), and we have

H(1)
∼= E(1)

pq + F (1)
pq ,

where E(1)
pq and F (1)

pq are determined by formulas (1.4)-(1.11) with β and µ replaced by
β1 and µ1. Thus,

HΩk
(Bµ) ∼= E(1)

pq + F (1)
pq +Dpq, (4.26)

Let us describe explicitly the quantities E(1)
pq and F (1)

pq . We denote

ωp1 (t) =

 ∫
(0,t)

kpdβ1


1/p

, t ∈ R+,

so that
ωp1 (t) = ωp (t) , t ∈ (0, 1] .

Further,

Ψ1 (t, τ) =

∫
[t,τ)

kdµ1 =


Ψ (t, τ) , 0 < t < τ 6 1;
Ψ (t, 1) , 0 < t < 1 < τ ;
0, t > 1.

(4.27)

Then, for p 6 q

E(1)
pq = sup

τ∈R+


 ∫

[ξα(τ),τ)

Ψq
1 (t, τ) dγ (t)


1/q

1

ωp1 (τ)

 ∼= epq + e′pq; (4.28)
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where epq was defined in (4.2), and

e′pq = sup
τ>1


 ∫

[ξα(τ),τ)

Ψq
1 (t, τ) dγ (t)


1/q

1

ωp1 (τ)

 6

 ∫
R+

Ψq (t,∞) dγ (t)

1/q

.

Here we take into account that ωp1 (τ) > ωp1 (1) = 1 for τ > 1. Simultaneously, for
p > q

E(1)
pq =


∫
R+

 ∫
[ξα(τ),τ)

Ψq
1 (t, τ) dγ (t)


s/q (

−d
[

1

ωsp1 (τ)

])
1/s

∼= epq + e′pq, (4.29)

where epq was defined in (4.3), and

e′pq =


∫

(1,∞)

 ∫
[ξα(τ),τ)

Ψq
1 (t, τ) dγ (t)


s/q (

−d
[

1

ωsp1 (τ)

])
1/s

6

 ∫
R+

Ψq (t,∞) dγ (t)

1/q


∫
(1,∞)

(
−d
[

1

ωsp1 (τ)

])
1/s

=

 ∫
R+

Ψq (t,∞) dγ (t)

1/q

.

(recall that ωp1 (1) = 1, ωp1 (∞) = ∞). Consequently, for all p, q > 0,

E(1)
pq
∼= epq + e′pq, 0 6 e′pq 6 ωp (∞)Dpq.

It means that,
E(1)
pq +Dpq

∼= epq +Dpq. (4.30)

Now, we estimate
F (1)
pq = sup

t∈R+

[Vp1 (t)Wq (t)] , p 6 q; (4.31)

F (1)
pq =


∫
R+

V s
p1 (t) d

[
W s
q (t)

]
1/s

, p > q. (4.32)

Here,
Vp1 (t) = sup

τ∈(t,∞)

(Ψ1 (t, τ)/ωp1 (τ)) , p ∈ (0, 1] , (4.33)
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Vp1 (t) =


∫

(t,∞)

Ψp′

1 (t, τ)

(
−d

[
1

ωp
′

p1 (τ)

])
1/p′

; p > 1,
1

p
+

1

p′
= 1. (4.34)

We see from (4.27) that Vp1 (t) = 0, t > 1. It means that

Vp1 (t) ∼= V̇p (t) + Ṽp (t) , t ∈ R+, (4.35)

with V̇p (t) from (4.6) or (4.7), and for t > 1 we have Ṽp (t) = 0 ; for t ∈ (0, 1) we have

Ṽp (t) = sup
τ∈[1,∞)

Ψ1 (t, τ)

ωp1 (τ)
6 Ψ (t,∞)

1

ωp1 (1)
= Ψ (t,∞) , p ∈ (0, 1] ,

or

Ṽp (t) =


∫

[1,∞)

Ψp′

1 (t, τ)

(
−d

[
1

ωp
′

p1 (τ)

])
1/p′

6 Ψ (t,∞)


∫

[1,∞)

(
−d

[
1

ωp
′

p1 (τ)

])
1/p′

= Ψ (t,∞) ; p > 1.

We see that always
0 6 Ṽp (t) 6 Ψ (t,∞) , t ∈ R+. (4.36)

Now, we substitute (4.35) in (4.31) and in (4.32), and obtain

F (1)
pq
∼= fpq + f ′pq, (4.37)

with fpq from (4.4)-(4.5), and

f ′pq = sup
t∈R+

[
Ṽp (t)Wq (t)

]
, p 6 q; (4.38)

f ′pq =


∫
R+

Ṽ s
p (t) d

[
W s
q (t)

]
1/s

, p > q, (4.39)

where Ṽp satisfies inequality (4.36). Our nearest aim is to show that (4.36) implies the
estimate

0 6 f ′pq 6 cpqωp (∞)Dpq. (4.40)

For p 6 q we substitute (4.36) in (4.38) and obtain taking into account the decrease of
Ψ (t,∞) and equality (1.7):

f ′pq 6 sup
t∈R+

Ψ (t,∞)

 ∫
(0,t)

dγ


1/q
 6 sup

t∈R+

 ∫
(0,t)

Ψq (ξ,∞) dγ (ξ)


1/q

= ωp (∞)Dpq.
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This gives (4.40) for p 6 q with cpq = 1. If p > q, we substitute (4.36) in (4.39) and
obtain

f ′pq 6


∫
R+

Ψs (t,∞) d
[
W s
q (t)

]
1/s

. (4.41)

The decrease of Ψ (t,∞) yields the following estimate
∫
R+

Ψs (t,∞) d
[
W s
q (t)

]
1/s

6 c (s, q)


∫
R+

Ψq (t,∞) d
[
W q
q (t)

]
1/q

. (4.42)

Here s = pq/(p− q) > q. Now, (4.41), (4.42), and (1.7) imply

f ′pq 6 c (s, q)


∫
R+

Ψq (t,∞) d
[
W q
q (t)

]
1/q

= c (s, q)


∫
R+

Ψq (t,∞) dγ


1/q

.

which gives (4.40) with cpq = c (s, q).
Further, (4.40) and (4.37) imply

F (1)
pq +Dpq

∼= fpq +Dpq. (4.43)

Finally, by (4.26), (4.30) and (4.43) we have (4.8)
2. Now, to prove (4.9) it suffices to show that

Epq + Fpq +Dpq
∼= epq + fpq +Dpq. (4.44)

The arguments are similar to ones given at the step1. For p 6 q we have from (1.8)
and (4.2)

Epq = max
{
epq, e

′′
pq

}
, (4.45)

where

e′′pq = sup
τ>1


 ∫

[ξα(τ),τ)

Ψq (t, τ) dγ (t)


1/q

1

ωp (τ)

 , (4.46)

and

0 6 e′′pq 6

 ∫
R+

Ψq (t,∞) dγ (t)

1/q

sup
τ>1

[
1

ωp (τ)

]
= ωp (∞)Dpq, (4.47)

because ωp (τ) ↑, ωp (1) = 1. For p > q we have from (1.9) and (4.3)

Epq =
{
espq +

(
e′′pq
)s}1/s ∼= epq + e′′pq, (4.48)

where

e′′pq =


∫

(1,∞)

 ∫
[ξα(τ),τ)

Ψq (t, τ) dγ (t)


s/q (

−d
[

1

ωsp (τ)

])
1/s

. (4.49)



On increase at infinity of almost hypoelliptic polynomials 61

Therefore,

e′′pq 6

 ∫
R+

Ψq (t,∞) dγ (t)

1/q

∫

(1,∞)

(
−d
[

1

ωsp (τ)

])
1/s

6 ωp (∞)Dpq,

because 
∫

(1,∞)

(
−d
[

1

ωsp (τ)

])
1/s

=

{
1

ωsp (1)
− 1

ωsp (∞)

}1/s

6
1

ωp (1)
= 1.

These estimates show that for all p, q > 0

Epq +Dpq
∼= epq +Dpq. (4.50)

Now, let us prove that
Fpq +Dpq

∼= fpq +Dpq. (4.51)

From (1.5) and (4.6) we see that for p ∈ (0, 1]

Vp (t) = max
{
V̇p (t) , V̄p (t)

}
, t ∈ R+, (4.52)

where
V̄p (t) = sup

τ∈(δt,∞)

(
Ψ (t, τ)

ωp (τ)

)
, δt = max {1, t} . (4.53)

Also, from (1.6) and (4.7) it follows that for p > 1

Vp (t) ∼= V̇p (t) + V̄p (t) , t ∈ R+, (4.54)

where

V̄p (t) =


∫

(δt,∞)

Ψp′ (t, τ)

(
−d
[

1

ωp
′
p (τ)

])
1/p′

(4.55)

(recall that V̇p (t) = 0, t > 1). For all p > 0 we have the estimate

0 6 V̄p (t) 6 Ψ (t,∞) , t ∈ R+,

which is established by analogy with (4.36). It means that for all p > 0

Vp (t) ∼= V̇p (t) + V̄p (t) , 0 6 V̄p (t) 6 Ψ (t,∞) . (4.56)

We substitute this estimate in (1.10) for p 6 q or in (1.11) for p > q, and obtain

Fpq ∼= fpq + f ′′pq, (4.57)

with fpq from (4.4)-(4.5), and

f ′′pq = sup
t∈R+

[
V̄p (t)Wq (t)

]
, p 6 q; (4.58)
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f ′′pq =


∫
R+

V̄ s
p (t) d

[
W s
q (t)

]
1/s

, p > q, (4.59)

Now, inequality
0 6 f ′′pq 6 cpq ωp (∞)Dpq (4.60)

follows from (4.58), (4.59), and (4.56) in just the same way as (4.40) follows from (4.38),
(4.39) and from estimate (4.36).

Then, (4.57) and (4.60) imply (4.51). Finally, (4.50), and (4.51) establish (4.44).
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