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Abstract. In this paper two-weighted inequalities for the Hardy operator and its
dual operator acting from one weighted variable Lebesgue space to another weighted
variable Lebesgue space are proved. In particular, sufficient conditions on the weights
ensuring the validity of two-weighted inequalities of Hardy type are found. Also an
embedding theorem for weighted variable Lebesgue spaces is proved.

1 Introduction

It is known that for constant exponent Lebesgue Lp-spaces with 0 < p < 1 the Hardy
inequality is not satisfied for arbitrary non-negative measurable functions, but it is sat-
isfied for non-negative monotone functions. Moreover, in [6] and [7] the sharp constant
in the Hardy-type inequality for non-negative non-increasing functions was found. Re-
cently, in [8] the Hardy-type inequality for usual Lp-spaces with 0 < p < 1 is proved
for some spaces of hypodecreasing functions (see also [17]). Therefore the investigation
of the Hardy inequality in variable exponent Lebesgue spaces Lp(x) for 0 < p(x) < 1 is
actual. Note that many investigations are devoted to the problem of boundedness of
the Hardy-type operator in variable exponent Lebesgue spaces Lp(x) for p(x) ≥ 1 (see,
for example, [2], [3], [9]). But the investigation of the Hardy inequality in variable ex-
ponent Lebesgue space Lp(x) for 0 < p(x) < 1 is an open problem. It is well known that
the variable exponent Lebesgue spaces Lp(x) for p(x) ≥ 1 appeared in the literature for
the first time in [14]. Further development of this theory was connected with the theory
of modular function space. Somewhat later, a more explicit version of these spaces,
namely modular function spaces, were investigated by many mathematicians (see [13]).
The next step in the investigation of variable exponent spaces was made in [18] and in
[11]. But the variable exponent Lebesgue spaces for 0 < p(x) < 1 are much less studied.
Note that the space Lp(x) for 0 < p(x) < 1 is not a modular function space. The study
of these spaces has been stimulated by problems in elasticity, fluid dynamics, calculus
of variations and differential equations with non-standard growth conditions (see [15],
[19], [20]). For detailed information about variable exponent Lebesgue space Lp(x) for
p(x) ≥ 1 we refer to [10].
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In this paper two-weighted inequalities for the Hardy operator and its dual oper-
ator acting from one weighted variable Lebesgue space to another weighted variable
Lebesgue space are proved. In particular, sufficient conditions on the weights ensuring
the validity of two-weighted inequalities of Hardy type are found.

2 Preliminaries

Let Rn be the n-dimensional Euclidean space of points x = (x1, ..., xn) , Ω be a Lebesgue

measurable subset in Rn, and |x| =

(
n∑
i=1

x2
i

)1/2

. Suppose that p is a Lebesgue mea-

surable function on Ω such that 0 < p ≤ p(x) ≤ p < ∞, p = ess infx∈Ω p(x),
p = ess supx∈Ω p(x), and ω is a weight function on Ω, i.e. ω is a non-negative, al-
most everywhere (a.e.) positive function on Ω. The Lebesgue measure of a set Ω will
be denoted by |Ω|.

Definition 2.1. By Lp(x), ω(Ω) we denote the set of all measurable functions f on Ω
such that

Ip, ω(f) =

∫
Ω

(|f(x)|ω(x))p(x) dx <∞.

Note that the expression

‖f‖Lp(·), ω(Ω) = ‖f‖p, ω,Ω = inf

λ > 0 :

∫
Ω

(
|f(x)|ω(x)

λ

)p(x)
dx ≤ 1


defines a quasi-norm on Lp(x), ω(Ω). Lp(x), ω(Ω) is a quasi-Banach space equipped with
this quasi-norm (see [16]).

We note one important property of the spaces Lp(x), ω(Ω). We have (see [16])

min
{
‖f‖pp, ω,Ω, ‖f‖

p
p, ω,Ω

)
≤ Ip, ω(f) ≤ max

{
‖f‖pp, ω,Ω, ‖f‖

p
p, ω,Ω

)
. (2.1)

Theorem 2.1. Let 0 < p ≤ p(x) ≤ q(x) ≤ q <∞ and r(x) =
p(x) q(x)

q(x)− p(x)
.

Then the inequality

‖fg‖Lp(·)(Ω) ≤
(
A+B + ‖χΩ2‖L∞(Ω)

)1/p

‖f‖Lq(·)(Ω) ‖g‖Lr(·)(Ω) (2.2)

holds for every f ∈ Lq(x)(Ω), g ∈ Lr(x)(Ω), where Ω1 = {x ∈ Ω : p(x) < q(x)} ,

Ω2 = {x ∈ Ω : p(x) = q(x)} , A = sup
x∈Ω1

p(x)

q(x)
, B = sup

x∈Ω1

q(x)− p(x)

q(x)
, and ‖g‖Lr(·)(Ω) =

max{‖g‖Lr(·)(Ω1), ‖g‖L∞(Ω2)}.

Proof. We have

‖fg‖Lp(·)(Ω2) ≤ ‖f‖Lp(·)(Ω2) ‖g‖L∞(Ω2) = ‖fχΩ2‖Lp(·)(Ω) ‖g‖L∞(Ω2)
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≤ ‖f‖Lp(·)(Ω) ‖χΩ2‖L∞(Ω) ‖g‖L∞(Ω2) .

Therefore

∥∥∥∥∥ fg

‖f‖Lp(·)(Ω) ‖g‖L∞(Ω2)

∥∥∥∥∥
Lp(·)(Ω2)

≤ ‖χΩ2‖L∞(Ω) ≤ 1. By virtue of inequality

(2.1) ∫
Ω2

(
|f(x) g(x)|

‖f‖Lp(·)(Ω) ‖g‖L∞(Ω2)

)p(x)

dx ≤ ‖χΩ2‖
p

L∞(Ω) = ‖χΩ2‖L∞(Ω) . (2.3)

It is well known that for s > 1 the inequality

ab ≤ as

s
+
bs

′

s′
, (2.4)

holds, where s′ =
s

s− 1
, a, b > 0. We take s = s(x) =

q(x)

p(x)
, a =

(
|f(x)|

‖f‖Lq(·)(Ω1)

)p(x)

and

b =

(
|g(x)|

‖g‖Lr(·)(Ω1)

)p(x)

. Thus s′ = s′(x) =
q(x)

q(x)− p(x)
and by inequality (2.4) we have

(
|f(x)||g(x)|

‖f‖Lq(·)(Ω1) ‖g‖Lr(·)(Ω1)

)p(x)

≤ p(x)

q(x)

(
|f(x)|

‖f‖Lq(·)(Ω1)

)q(x)

+
q(x)− p(x)

q(x)

(
|g(x)|

‖g‖Lr(·)(Ω1)

)r(x)

≤ A

(
|f(x)|

‖f‖Lq(·)(Ω1)

)q(x)

+B

(
|g(x)|

‖g‖Lr(·)(Ω1)

)r(x)

.

Obviously, 1 ≤ A+B ≤ 2. Integrating with respect to Ω1 and Definition 2.1, we get∫
Ω1

(
|f(x)||g(x)|

‖f‖Lq(·)(Ω1) ‖g‖Lr(·)(Ω1)

)p(x)

dx

≤ A

∫
Ω1

(
|f(x)|

‖f‖Lq(·)(Ω1)

)q(x)

dx+B

∫
Ω1

(
|g(x)|

‖g‖Lr(·)(Ω1)

)r(x)

dx ≤ A+B. (2.5)

Inequalities (2.3) and (2.5) imply that∫
Ω

(
|f(x)||g(x)|

‖f‖Lq(·)(Ω) ‖g‖Lr(·)(Ω)

)p(x)

dx =

∫
Ω1

(
|f(x)||g(x)|

‖f‖Lq(·)(Ω) ‖g‖Lr(·)(Ω)

)p(x)

dx

+

∫
Ω2

(
|f(x)||g(x)|

‖f‖Lq(·)(Ω) ‖g‖Lr(·)(Ω)

)p(x)

dx ≤
∫
Ω1

(
|f(x)||g(x)|

‖f‖Lq(·)(Ω1) ‖g‖Lr(·)(Ω1)

)p(x)

dx

+

∫
Ω2

(
|f(x)||g(x)|

‖f‖Lp(·)(Ω) ‖g‖L∞(Ω2)

)p(x)

dx ≤ A+B + ‖χΩ2‖L∞(Ω) .
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From the last inequality we have

1 ≥
∫
Ω

 |f(x)| |g(x)|(
A+B + ‖χΩ2‖L∞(Ω)

)1/p(x)

‖f‖Lq(·)(Ω) ‖g‖Lr(·)(Ω)


p(x)

dx

≥
∫
Ω

 |f(x)| |g(x)|(
A+B + ‖χΩ2‖L∞(Ω)

)1/p

‖f‖Lq(·)(Ω) ‖g‖Lr(·)(Ω)


p(x)

dx.

Hence (2.2) follows.

Let ω1 and ω2 be weights functions defined on Ω. Replacing f by fω2 and taking
g =

ω1

ω2

in Theorem 2.1 we obtain the following corollary.

Corollary 2.1. Let 0 < p ≤ p(x) ≤ q(x) ≤ q < ∞ and r(x) =
p(x) q(x)

q(x)− p(x)
. Suppose

that ω1 and ω2 are weights functions defined in Ω satisfying the condition∥∥∥∥ω1

ω2

∥∥∥∥
Lr(·)(Ω)

<∞.

Then the inequality

‖f‖Lp(·), ω1
(Ω) ≤

(
A+B + ‖χΩ2‖L∞(Ω)

)1/p
∥∥∥∥ω1

ω2

∥∥∥∥
Lr(·)(Ω)

‖f‖Lq(·), ω2
(Ω),

holds for every f ∈ Lq(x),ω2(Ω).

Remark 1. Note that Theorem 2.1 in the case 1 ≤ p ≤ p(x) ≤ q(x) ≤ q ≤ ∞ was
proved in [10] (see [10], Lemma 3.2.20). If |Ω2| = 0, then the constant in [10] is equal
to A + B. Since (A + B)1/p ≤ A + B, then the constant in (2.2) is better than the
constant in [10]. Note that Corollary 2.1 in the case ω1 = ω2 = 1 and |Ω| < ∞ was
proved in [16]. In the case 1 ≤ p ≤ p(x) ≤ q(x) ≤ q < ∞ for general measures
Corollary 2.1 was proved in [4] (see, also [10]).

The following Lemmas are known.

Lemma 2.1. [1] Let 1 ≤ p ≤ p(x) ≤ q(y) ≤ q < ∞ for all x ∈ Ω1 ⊂ Rn and
y ∈ Ω2 ⊂ Rm. If p ∈ C (Ω1) , then the inequality∥∥∥‖f‖Lp(·)(Ω1)

∥∥∥
Lq(·)(Ω2)

≤ Cp,q

∥∥∥‖f‖Lq(·)(Ω2)

∥∥∥
Lp(·)(Ω1)

is valid, where

Cp,q =

(
‖χ∆1‖∞ + ‖χ∆2‖∞ +

p

q
−
p

q

)
(‖χ∆1‖∞ + ‖χ∆2‖∞),

q = ess inf
Ω2

q(x), q = ess sup
Ω2

q(x), ∆1 = {(x, y) ∈ Ω1 × Ω2 : p(x) = q(y)} , ∆2 = Ω1 ×

Ω2 \∆1 and C (Ω1) is the space of continuous functions in Ω1 and f : Ω1 ×Ω2 → R is
any measurable function such that ‖‖f‖Lq(·)(Ω2)‖Lp(·)(Ω1) <∞.
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Lemma 2.2. [6] Let 0 < s < 1, −∞ < a < b ≤ ∞ and f be a non-negative and
non-increasing function defined on (a, b). Then b∫

a

f(x) dx

s

≤ s

b∫
a

f s(x) (x− a)s−1 dx.

Lemma 2.3. [6] Let 0 < s < 1, −∞ ≤ a < b < ∞ and f be a non-negative and
non-decreasing function defined on (a, b). Then b∫

a

f(x) dx

s

≤ s

b∫
a

f s(x) (b− x)s−1 dx.

3 Main results

We consider the classical Hardy operator and its dual operator defined as

Hf(x) =
1

x

x∫
0

f(t) dt, H∗f(x) =

∞∫
x

f(t)

t
dt,

where f is a non-negative function on (0,∞).

Lemma 3.1. Let 0 < p ≤ pn ≤ p ≤ 1, pn ≥ pn+1 and {xn}n≥1 be any non-negative
sequence of real numbers such that xpn

n ≥ x
pn+1

n+1 for any n ∈ N.
Then (

∞∑
n=1

x
pn
p

n

)p

≤
∞∑
n=1

xpn
n [npn − (n− 1)pn ] ≤

∞∑
n=1

xpn
n . (3.1)

Proof. First we prove that(
m∑
n=1

x
pn
pm
n

)pm

≤
m∑
n=1

xpn
n [npn − (n− 1)pn ] . (3.2)

We consider the function h(t) =
(1 + t)q − 1

tq
, where t ≥ 0 and 0 < q < 1. It is ob-

vious that h′(t) =
q [1− (1 + t)q−1]

tq+1
≥ 0 for all t ≥ 0. In particular, the function h

monotonically increases on the segment [0, B]. Therefore h(t) ≤ h(B), i.e.,

(1 + t)q ≤ 1 + tq
[(
B−1 + 1

)q −B−q] for any 0 ≤ t ≤ B. (3.3)

Since xp11 ≥ xp22 , then x2 ≤ x
p1
p2
1 . Therefore taking t =

x2

x
p1
p2
1

, B = 1 and q = p2 in (3.3),

we have (
x

p1
p2
1 + x2

)p2
≤ xp11 + xp22 (2p2 − 1) . (3.4)
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It is obvious that inequality (3.4) is inequality (3.2) for m = 2. By the assumptions of

Lemma 2.1 p2 ≥ p3, and so 2p3 ≤ 2p2 . Since x3 ≤ x

p1
p3
1 +x

p2
p3
2

2
by (3.3) for t =

x3

x
p1
p3
1 + x

p2
p3
2

,

B =
1

2
and q = p3 and (3.4), we get

(
x

p1
p3
1 + x

p2
p3
2 + x3

)p3
≤
(
x

p1
p3
1 + x

p2
p3
2

)p3
+ xp33 (3p3 − 2p3)

≤ xp11 + xp22 (2p3 − 1) + xp33 (3p3 − 2p3) ≤ xp11 + xp22 (2p2 − 1) + xp33 (3p3 − 2p3) .

The last inequality is (3.1) for m = 3. Clearly

x
p1

pm+1

1 + x
p2

pm+1

2 + . . .+ x
pm

pm+1
m + xm+1 ≥ (m+ 1)xm+1.

Hence

xm+1 ≤
x

p1
pm+1

1 + x
p2

pm+1

2 + . . .+ x
pm

pm+1
m

m
.

Therefore taking

t =
xm+1

x
p1

pm+1

1 + x
p2

pm+1

2 + . . .+ x
pm

pm+1
m

, B =
1

m
and q = pm+1

in (3.3), we have (
m+1∑
n=1

x
pn

pm+1
n

)pm+1

=

(
m∑
n=1

x
pn

pm+1
n + xm+1

)pm+1

≤

(
m∑
n=1

x
pn

pm+1
n

)pm+1

+ x
pm+1

m+1 [(m+ 1)pm+1 −mpm+1 ]

≤
m∑
n=1

xpn
n [npn − (n− 1)pn ] + x

pm+1

m+1 [(m+ 1)pm+1 −mpm+1 ]

=
m+1∑
n=1

xpn
n [npn − (n− 1)pn ] .

By the induction principle inequality (3.2) is proved for any m ∈ N.
Since the sequence {pn}n≥1 is decreasing, then lim

n→∞
pn = p. Therefore passing to

the limit as m → ∞ in (3.2) we have the left part of inequality (3.1). By using the
inequality npn ≤ (n− 1)pn + 1, we have the right part of inequality (3.1).

Example 3.1. Let xn =

{
n−

p

2 pn , for n = k2

0, for n 6= k2,
and p <

p+ 1

2
.
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It is obvious that the sequence {xpn
n }n≥1 is not monotone and

∞∑
n=1

x
pn
p

n =
∞∑
k=1

1

k
= +∞. On the other hand, npn − (n− 1)pn ∼ pn n

pn−1 ∼ npn−1

as n→∞. Therefore
∞∑
n=1

xpn
n [npn − (n− 1)pn ] ∼

∞∑
n=1

xpn
n npn−1 =

∞∑
k=1

k−p+2 pk−2 ≤
∞∑
k=1

k2 p−p−2.

It is well known that the series
∞∑
k=1

k2 p−p−2 converges if and only if p <
p+ 1

2
. Thus

for p <
p+ 1

2
inequality (3.1) does not hold.

The example shows that the condition of monotonicity of the sequence {xpn
n }n≥1 is

essential.

Remark 2. Note that Lemma 3.1 in the case p1 = p2 = . . . = pn = . . . = p = const
was proved in [6]. The idea of proving Lemma 3.1 is taken from [6].

Theorem 3.1. Let x ∈ (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1, r(x) =
p p(x)

p(x)− p
and f

be a non-negative and non-increasing function defined on (0,∞). Suppose that ω1 and
ω2 are weight functions defined on (0,∞).

Then for any f ∈ Lp(x), ω1(0, ∞) the inequality

‖Hf‖Lq(·), ω2
(0,∞) ≤ p

1
p cp,q dp

∥∥∥∥∥∥
t1/p

′ ∥∥ω2

x

∥∥
Lq(·)(t,∞)

ω1

∥∥∥∥∥∥
Lr(·)(0,∞)

‖f‖Lp(·), ω1
(0,∞)

holds, where

cp,q =

(
‖χ∆1‖L∞(0,∞) + ‖χ∆2‖L∞(0,∞) +p

(
1

q
− 1

q

))(
‖χS1‖L∞(0,∞) +‖χS2‖L∞(0,∞)

)
,

S1 =
{
x ∈ (0,∞) : p(x) = p

}
, S2 = (0,∞)\S1, and dp =

(
1 +

p− p

p
+ ‖χS1‖L∞(0,∞)

)1/p

.

Proof. Taking a = 0, b = x, s = p and applying Lemma 2.2, we have

‖Hf‖Lq(·), ω2
(0,∞) = ‖ω2Hf‖Lq(·)(0,∞) =

∥∥∥∥∥∥ω2

x

x∫
0

f(t) dt

∥∥∥∥∥∥
Lq(·)(0,∞)

≤ p
1
p

∥∥∥∥∥∥∥
ω2(x)

x

 x∫
0

fp(t) tp−1 dt

1/p
∥∥∥∥∥∥∥
Lq(·)(0,∞)

.
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Now applying Lemma 2.1, we get∥∥∥∥∥∥∥
ω2(x)

x

 x∫
0

fp(t) tp−1 dt

1/p
∥∥∥∥∥∥∥
Lq(·)(0,∞)

=

∥∥∥∥∥∥∥
 ∞∫

0

fp(t)χ(0, x)(t)

[
ω2(x)

x

]p
tp−1 dt

1/p
∥∥∥∥∥∥∥
Lq(·)(0,∞)

=

∥∥∥∥∥∥
∞∫

0

fp(t)χ(0, x)(t)

[
ω2(x)

x

]p
tp−1 dt

∥∥∥∥∥∥
1/p

L q(·)
p

(0,∞)

≤ cp,q

 ∞∫
0

∥∥∥∥fp(t)χ(0, x)(t)

[
ω2(x)

x

]p
tp−1

∥∥∥∥
L q(·)

p

(0,∞)

dt


1/p

= cp,q

 ∞∫
0

fp(t) tp−1

∥∥∥∥χ(0, x)(t)

[
ω2(x)

x

]p∥∥∥∥
L q(·)

p

(0,∞)

dt


1/p

= cp,q

 ∞∫
0

fp(t) tp−1
∥∥∥ω2

x

∥∥∥p
Lq(·)(t,∞)

dt

1/p

= cp,q

∥∥∥∥f t1/p′ ∥∥∥ω2

x

∥∥∥
Lq(·)(t,∞)

∥∥∥∥
Lp(0,∞)

.

Finally, applying Corollary 2.1, we get∥∥∥∥f t1/p′ ∥∥∥ω2

x

∥∥∥
Lq(·)(t,∞)

∥∥∥∥
Lp(0,∞)

≤ dp

∥∥∥∥∥∥
t1/p

′ ∥∥ω2

x

∥∥
Lq(·)(t,∞)

ω1

∥∥∥∥∥∥
Lr(·)(0,∞)

‖f‖Lp(·), ω1
(0,∞).

Thus

‖Hf‖Lq(·), ω2
(0,∞) ≤ p

1
p cp,q dp

∥∥∥∥∥∥
t1/p

′ ∥∥ω2

x

∥∥
Lq(·)(t,∞)

ω1

∥∥∥∥∥∥
Lr(·)(0,∞)

‖f‖Lp(·), ω1
(0,∞).

Theorem 3.2. Let 0 < p ≤ p(x) ≤ q(x) ≤ q < 1, r(x) =
p p(x)

p(x)− p
and f be a non-

negative and non-decreasing function defined on (0, 1). Suppose that ω1 and ω2 are
weight functions defined on (0, 1).

Then for any f ∈ Lp(x), ω1(0, 1) the inequality

‖Hf‖Lq(·), ω2
(0,1) ≤ p

1
p cp,q dp

∥∥∥∥∥
∥∥∥∥(x− t)1/p′ ω2

x

∥∥∥∥
Lq(·)(t,1)

1

ω1

∥∥∥∥∥
Lr(·)(0,1)

‖f‖Lp(·), ω1
(0,1) (3.5)

holds, where cp,q and dp are the constants in Theorem 3.1.
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Proof. Taking a = 0, b = x, s = p and applying Lemma 2.3, we have

‖Hf‖Lq(·), ω2
(0,1) = ‖ω2Hf‖Lq(·)(0,1)

=

∥∥∥∥∥∥ω2

x

x∫
0

f(t) dt

∥∥∥∥∥∥
Lq(·)(0,1)

≤
(
p
)1/p ∥∥∥∥∥∥∥

ω2(x)

x

 x∫
0

fp(t) (x− t)p−1 dt

1/p
∥∥∥∥∥∥∥
Lq(·)(0,1)

.

Now applying Lemma 2.1, we get∥∥∥∥∥∥∥
ω2(x)

x

 x∫
0

fp(t) (x− t)p−1 dt

1/p
∥∥∥∥∥∥∥
Lq(·)(0,1)

=

∥∥∥∥∥∥∥
 1∫

0

fp(t)χ(0, x)(t)

[
ω2(x)

x

]p
(x− t)p−1 dt

1/p
∥∥∥∥∥∥∥
Lq(·)(0,1)

=

∥∥∥∥∥∥
1∫

0

fp(t)χ(0, x)(t)

[
ω2(x)

x

]p
(x− t)p−1 dt

∥∥∥∥∥∥
1/p

L q(·)
p

(0,1)

≤ cp

 1∫
0

∥∥∥∥fp(t)χ(0, x)(t)

[
ω2(x)

x

]p
(x− t)p−1

∥∥∥∥
L q(·)

p

(0,1)

dt


1/p

= cp

 1∫
0

fp(t)

∥∥∥∥χ(0, x)(t)

[
(x− t)1/p′

x
ω2(x)

]p∥∥∥∥
L q(·)

p

(0,1)

dt


1/p

= cp

 1∫
0

fp(t)

∥∥∥∥(x− t)1/p′

x
ω2

∥∥∥∥p
Lq(·)(t,1)

dt

1/p

= cp

∥∥∥∥∥f
∥∥∥∥(x− t)1/p′

x
ω2

∥∥∥∥
Lq(·)(t,1)

∥∥∥∥∥
Lp(0,1)

.

Finally, applying Corollary 2.1, we get∥∥∥∥∥f
∥∥∥∥(x− t)1/p′

x
ω2

∥∥∥∥
Lq(·)(t,1)

∥∥∥∥∥
Lp(0,1)
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≤

∥∥∥∥∥
∥∥∥∥(x− t)1/p′ ω2

x

∥∥∥∥
Lq(·)(t,1)

1

ω1

∥∥∥∥∥
Lr(·)(0,1)

‖f‖Lp(·), ω1
(0,1).

Hence inequality (3.5) follows.

For the dual operator H∗ the theorem below is proved analogously.

Theorem 3.3. Let x ∈ (0,∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1, r(x) =
p p(x)

p(x)− p
and f

be a non-negative and non-increasing function defined on (0,∞). Suppose that ω1 and
ω2 are weight functions defined on (0,∞).

Then for any f ∈ Lp(x), ω1(0, ∞) the inequality

‖H∗f‖Lq(·), ω2
(0,∞) ≤ p

1
p cp,q dp

∥∥∥∥∥
∥∥∥∥(t− x)1/p′ ω2

x

∥∥∥∥
Lq(·)(0, t)

1

ω1

∥∥∥∥∥
Lr(·)(0,∞)

‖f‖Lp(·), ω1
(0,∞)

holds, where cp,q and dp are the constants in Theorem 3.1.

Remark 3. Note that Theorem 3.1, Theorem 3.2 and Theorem 3.4 in the case p(x) =
q(x) = p = const and ω1(x) = ω2(x) = xα were proved in [6] with sharp constant in
Hardy inequality (see also [5]). In the case 1 ≤ p(x) ≤ q(x) ≤ q <∞ Hardy inequality
is well studied (see [2], [3], [9] and etc.). In the constant exponent case 1 ≤ p ≤ q ≤ ∞
for detailed information we refer to [12].

Example 3.2. Let x ∈ (0, ∞), 0 < p(x) = p = const < 1, q(x) ={
1
4
, for 0 < x < 1

1
2
, for x ≥ 1,

0 < p ≤ q(x) and p′ =
p

p− 1
. Suppose ω1(x) = xα, ω2(x) = xβ+1,

β < −2, β 6= −4 and β + 2 +
1

p′
< α < min

{
1

p′
; β + 4 +

1

p′

}
, where r(x) = ∞.

Then the pair (ω1, ω2) satisfies the assumptions of Theorem 3.1.
Example 3.3. Let x ∈ (0, ∞), 0 < p ≤ p(x) ≤ q(x) ≤ q < 1 and p′ =

p

p− 1
. Sup-

pose ω1(x) = x1/p′
∥∥∥ω2

x

∥∥∥
Lq(·)(x,∞)

. Then the condition ‖1‖Lr(·)(0,∞) <∞ guarantees the

validity of the assumptions of Theorem 3.1. Note that by Definition 2.1 the condition
‖1‖Lr(·)(0,∞) <∞ is equivalent to

∞∫
0

δ
p p(x)

p(x)−p dx <∞,

where δ ∈ (0, 1). Then the pair (ω1, ω2) satisfies the assumptions of Theorem 3.1.
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