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Abstract. The convergence of families of linear polynomial operators with kernels
generated by matrices of multipliers is studied in the scale of the Lp-spaces with 0 <
p ≤ +∞. An element an, k of generating matrix is represented as a sum of the value
of the generator ϕ(k/n) and a certain "small" remainder rn, k . It is shown that under
some conditions with respect to the remainder the convergence depends only on the
properties of the Fourier transform of the generator ϕ. The results enable us to �nd
explicit ranges for convergence of approximation methods generated by some classical
kernels.

1 Introduction
In this paper we continue the systematic study of methods of trigonometric approxi-
mation started in [1] and [5] - [10]. We consider Fourier means, interpolation means
and families of linear polynomial operators, which are de�ned as follows. Let

A = {an, k ∈ C : an,−k = an, k, | k | ≤ rn, n ∈ N0} , (1)
where r ≡ r(A) is a real positive number, be a matrix of multipliers (We put an,k = 0
if |k| > rn.). It generates the kernels Wn(A) given by

Wn(A)(h) =
∑

k∈Zd

an, k e
ikh , n ∈ N0 , h ∈ Rd . (2)

If f ∈ Lp(Td) , 1 ≤ p ≤ ∞ (Td stands for the d-dimensional torus), then the Fourier
means are given by

F (A)
n (f ; x) = (2π)−d

∫

Td

f(h)Wn(A)(x− h) dh , n ∈ N0 , x ∈ Td . (3)

If f belongs to the space C(Td) of continuous 2π - periodic (with respect to each
variable) functions then the interpolation means are de�ned as

I(A)
n (f ;x) = (2N + 1)−d ·

2N∑
ν=0

f (tνN) ·Wn(A) (x− tνN) , n ∈ N0 , x ∈ Td . (4)
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Here

N = [ρ n] , ρ ≥ r(A); tνN =
2πν

2N + 1
, ν ∈ Zd ;

2N∑
ν=0

≡
2N∑
ν1=0

. . .

2N∑
νd=0

.

The functions de�ned in (1) - (4) are trigonometric polynomials of spherical order not
exceeding r(A)n. If f ∈ Lp(Td) , 0 < p < ∞, or if f ∈ C(Td) (p = +∞) then we
consider the functions given by

L(A)
n;λ(f ; x) = (2N + 1)−d ·

2N∑
ν=0

f (tνN + λ) ·Wn(A) (x− tνN − λ) . (5)

In the case that f ∈ Lp(Td) , 0 < p < ∞, formula (5) makes sense for almost all
λ ∈ Rd and x ∈ Td. We understand λ as a parameter and call {L(A)

n;λ} a family of linear
(trigonometric) polynomial operators. In contrast to classical methods of trigonometric
approximation the method of approximation by families is comparatively new (see
e.g. [6], [7]). Its systematic study was continued in [1], [5] and other works. For
applications of the method, in particular for an algorithm of stochastic approximation
(SA-algorithm), we refer to [8]. We are interested in the approximation process

L(A)
n;λ(f ;x) → f(x) (n→ +∞)

The convergence of the family {L(A)
n;λ} must be understood in the sense of an averaging

with respect to the parameter λ. More precisely, we consider the limit process
∥∥L(A)

n;λ(f ; x)− f(x)
∥∥
p

=
( 1

(2π)d

∫

Td

( ∫

Td

∣∣L(A)
n;λ(f ;x)− f(x)

∣∣p dx
)
dλ

) 1
p → 0

if n→ +∞ for admissible p, 0 < p ≤ +∞(see Section 2 for detailed explanation).
In [5] the problem of convergence has been investigated for kernels of type (1) - (2)

with
A(ϕ) = { an, k} : a0, 0 = 1; an, k = ϕ

(
k

σ(n)

)
, k ∈ Zd, n ∈ N , (6)

where σ(n) is a certain strongly increasing sequence of positive real numbers of order
n and ϕ is a complex-valued continuous function on Rd , d ∈ N, with compact support
satisfying ϕ(0) = 1 and ϕ(−ξ) = ϕ(ξ) for each ξ ∈ Rd. In this case it is r(A) =
r(ϕ) := sup{ | ξ | : ϕ(ξ) 6= 0 } . We call ϕ generator of the kernels Wn and we use
the notations Wn(ϕ) and {L(ϕ)

n;λ} in place of Wn(A) and {L(A)
n;λ}, respectively. More

precisely, it was shown in [5]

• that the family {L(ϕ)
σ;λ} converges in Lp for all 1 ≤ p ≤ +∞ if the Fourier

transform ϕ̂ of the generator ϕ belongs to L1(Rd) and that the convergence in Lp
for some 0 < p < 1 is equivalent to the condition: ϕ̂ ∈ Lp(Rd). For this reason
the method of approximation by a family of linear trigonometric polynomial
operators is relevant both for p ≥ 1 and p < 1 with the range of admissible
parameters depending on the properties of its generator ϕ;
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• that the approximation error for families is equivalent to the approximation
error of the corresponding Fourier means in the case of Lp(Td) , 1 ≤ p ≤ +∞
and to the approximation error of the corresponding interpolation means in the
case of C(Td) (p = +∞);

• that the ranges of convergence (the values of p such that the family converges
in Lp) can be determined precisely for appropriate families with classical kernels
(Fej�er, de la Vall�ee-Poussin, Rogosinski, Bochner-Riesz) .

In this paper we elaborate an approach to the study of the convergence problem
for families which are not generated by some function ϕ. In particular, we show

• that in many situations the matrix of multipliers can be represented in the form:

A = A(ϕ) +R , R = { rn, k} ; lim
n→+∞

rn, k = 0, k ∈ Zd, (7)

where A(ϕ) is of type (6) and the matrix of remainders R satis�es some relevant
conditions of "smallness" (see Section 1 for exact de�nitions) which enable us to
reduce the convergence problem for {L(A)

n;λ} to the study of the associated family
{L(ϕ)

σ;λ};

• that for powers of kernels of type (6), that is, for kernels (q is a natural number)

Wn(ϕ, q)(h) = (γn(ϕ, q))
−1(Wn(ϕ))q(h) , (8)

where
γn(ϕ, q) = (2π)−d

∫

Td

(Wn(ϕ)(h))q dh (9)

is a normalizing factor, the ranges of convergence of corresponding families
can be explicitly expressed in terms of the range of convergence of the family
generated by the initial kernels Wn(ϕ);

• that for families with classical kernels of types (7) and (8)-(9) (Fej�er-Korovkin,
Cesaro, (generalized) Jackson) the ranges of convergence can be determined
precisely by applying general results.

The paper is organized as follows. Section 2 is devoted to preliminaries. The gen-
eral results are formulated and proved in Sections 3 and 4. Sharp ranges of convergence
of the families generated by (generalized) Jackson, Fej�er-Korovkin and Cesaro kernels
are determined in Sections 5, 6 and 7-9, respectively. In view of the comparison prin-
ciple stated in [5], Lemma 2.2, the results of this paper formulated for families (5)
immediately imply the classical results on convergence of the corresponding Fourier
means (3) and the interpolation means (4) in the spaces Lp with 1 ≤ p ≤ +∞ and C,
respectively, in both general and special cases.
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2 De�nitions, notations and preliminary remarks
Lp-spaces. As usual, Lp ≡ Lp(Td), where 0 < p < +∞, Td = [0, 2π)d, is the space
of measurable real-valued functions f(x) which are 2π-periodic with respect to each
variable such that

‖ f ‖p =
( ∫

Td

|f(x)|p dx
)1/p

< +∞ .

C ≡ C(Td) (p = +∞) is the space of real-valued 2π-periodic continuous functions
equipped with the Chebyshev norm

‖ f ‖∞ = max
x∈Td

|f(x)| .

For Lp-spaces of non-periodic functions de�ned on a measurable set Ω ⊆ Rd we will
use the notation Lp(Ω).

Often we deal with functions in Lp(T2d) which depend on both the main variable
x ∈ Td and the parameter λ ∈ Td. Let us denote by ‖ · ‖p or ‖ · ‖p;x the Lp(Td)-norm
with respect to x. For the Lp(Td)-norm with respect to the parameter λ we use the
symbol ‖ · ‖p;λ. For shortness, Lp stands for the space Lp(T2d) equipped with the
norm

‖ · ‖p = (2π)−d/p ‖ ‖ · ‖p;x ‖p;λ . (10)
Analogously, we use the symbol ‖ · ‖∞ for the norm in the space C(T2d). Clearly,
Lp with 0 < p < ∞ and C(Td) can be considered as subspaces of Lp and C(T2d),
respectively. In this case,

‖ f ‖p = ‖ f ‖p , f ∈ Lp (f ∈ C if p = ∞) .

The functional ‖ · ‖p is a norm if and only if 1 ≤ p ≤ +∞. For 0 < p < 1 it
is a quasi-norm, and the "triangle" inequality is valid for its p-th power. If we put
p̃ = min(1, p) then the inequality

‖ f + g ‖epp ≤ ‖ f ‖epp + ‖ g ‖epp , f, g ∈ Lp , (11)

will be valid for all 0 < p ≤ +∞. This inequality is very convenient, because both
cases can be treated simultaneously. Moreover, for the sake of convenience we shall use
the notation "norm" also in the case 0 < p < 1.

Spaces of trigonometric polynomials. Let σ be a real non-negative number. Let
us denote by Tσ the space of all real-valued trigonometric polynomials of (spherical)
order σ. It means

Tσ =
{
T (x) =

∑

k∈Zd

ck e
ikx : c−k = ck, | k | ≡ (k2

1 + . . .+ k2
d)

1/2 ≤ σ
}
,

where kx = k1x1 + . . .+kdxd and c is a complex conjugate to c. Further, T stands for
the space of all real-valued trigonometric polynomials of arbitrary order. We denote
by Tσ, p, where 0 < p ≤ +∞, the space Tσ, if it is equipped with the Lp-norm and we
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use the symbol Tσ, p to denote the subspace of Lp which consists of functions g(x, λ)
such that g(x, λ) as a function of x belongs to Tσ for almost all λ. Clearly, Tσ, p
can be considered as a subspace of Tσ, p with identity of the norms. As we can see, in
our notation the line over the index p indicates that we are dealing with functions of
2d variables.

Types of kernels and generators. Recall that the kernels and conditions with
respect to the generator ϕ of the approximation method have been given in the
Introduction (see, in particular, (1), (2), and (6)). Henceforth, the class of all
admissible generators will be denoted by K. The di�erent types of kernels under
consideration can be classi�ed as follows.

Type (G). These are kernels (2) corresponding to matrices A de�ned by (6). The
main characteristics of the generator ϕ is the set Pϕ = {p ∈ (0,+∞] : ϕ̂ ∈ Lp(Rd)},
where ϕ̂ is the Fourier transform of ϕ (see below). The corresponding approximation
methods were studied in [5].

Types (GRα) and (GRα) (0 < α < 1). Let A, Wn(A) be as in (1) and (2). Let
0 < q < +∞. We put

Mq;A(n) = (n+ 1)d(1/q−1) ‖Wn(A) ‖q , n ∈ N0 ; Mq;A = sup
n
Mq;A(n) ; (12)

Mq;A(n) = (n+ 1)d(1/q−1) ‖Wn(A) ‖2, n ∈ N0 ; Mq;A = sup
n
Mq;A(n) . (13)

Clearly,

Mq;A(n) = (2π)d/2(n+ 1)d(1/q−1)


 ∑

| k |≤ rn
| an, k|2




1/2

, n ∈ N0 , (14)

by Parseval's equation.
A kernel is said to be of type (GRα) or (GRα) if it satis�es (7) with Mα;R < +∞

or Mα;R < +∞ for their matrix R of remainders, respectively. Since

Mα;R(n) ≤ (2π)d(1/α−1/2)Mα;R(n) , n ∈ N0 , (15)

by Holder's inequality, each kernel of type (GRα) is also of type (GRα), that is,

GRα ⊂ GRα . (16)

Notations (12) will be used also for kernels of type (G). In this case, that is,
if A = A(ϕ), we use the symbols Mq;ϕ(n) and Mq;ϕ instead of Mq;A(n) and Mq;A,
respectively.

Type (Gq) (q ∈ N). These are powers of kernels of type (G) given by (8)-(9).
It will be shown in Section 4 that γn(ϕ, q) 6= 0 if n ≥ n0, where n0 ≡ n0(ϕ, q) is
a certain integer, and, consequently, the functions Wn(ϕ, q)(h) are well-de�ned for
n ≥ n0. Clearly, they belong to Tqr(ϕ)n.
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Fourier transform and convolution. The Fourier transform and its inverse are
given by

ĝ(ξ) =

∫

Rd

g(x)e−ixξ dx , g∨(x) = (2π)−d
∫

Rd

g(ξ)eixξ dξ , g ∈ L1(Rd) .

Let g1 and g2 be functions in L1(Rd). The function

ĝ1 ∗ g2(ξ) =

∫

Rd

g1(ξ − η)g2(η) dη (17)

is called convolution of g1 and g2. Its main property reads as
ĝ1 ? g2(x) = ĝ1(x) · ĝ2(x), x ∈ Rd. (18)

For ϕ in K we denote by (ϕ)q∗ its qth convolution power, that is, ϕ∗. . .∗ϕ. Applying
(17), (18) we get

(ϕ)q∗(0) =

∫

Rd(q−1)

ϕ(ξ1) . . . ϕ(ξq−1)ϕ(−(ξ1 + . . .+ ξq−1)) dξ1 . . . dξq−1

= ((ϕ̂(·))q)∨(0) = (2π)−d
∫

Rd

(ϕ̂(x))q dx .
(19)

General linear trigonometric polynomial operators. As it was shown in [5]
approximation methods (3) - (5) are examples of linear bounded operators of general
type

Lσ : Lp −→ Trσ, p ⊂ Lp , σ ≥ 0 , (20)
where 0 < p ≤ +∞ and r > 0. The operator norm of Lσ is given by

‖Lσ ‖(p) = sup
‖ f ‖p≤ 1

‖Lσ(f) ‖p . (21)

In particular, ‖ {L(A)
n;λ} ‖(p) stands for the operator norm (quasinorm) of the family

{L(A)
n;λ } in the sense of (21). The sequence (Lσ) is called uniformly bounded on Lp if

their operator norms are bounded by a constant independent of σ, that is,
sup
σ≥0

‖Lσ ‖(p) < +∞ , (22)

and it is said to be convergent in Lp if for each f ∈ Lp (f ∈ C if p = ∞)

lim
σ→+∞

‖ f − Lσ(f) ‖p = 0 . (23)

Obviously, for the approximation processes de�ned in (3) and (4) these concepts coin-
cide with the norm, the boundedness and the convergence in Lp in usual sense.

Taking into account that both the Uniform Boundedness Principle of functional
analysis and the Marcinkiewicz Interpolation Theorem can be extended to the case of
quasi-normed spaces (see, for example, [3], Theorem 1.3.2 and Appendix G ) we obtain
the following statements for the operators (20).
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Theorem A (Banach-Steinhaus Convergence Principle). Let 0 < p ≤ +∞. A sequence
(Lσ) of linear bounded operators of type (20) converges in Lp (in C, if p = ∞) if and
only if the following conditions are satis�ed:
a) lim

σ→+∞
‖ eik· − Lσ(eik·) ‖p = 0 for each k ∈ Zd ;

b) (Lσ) is uniformly bounded on Lp.

Theorem B (Marcinkiewicz Interpolation Principle). Let a sequence (Lσ) of linear
operators of type (20) be bounded on Lp0 and on Lp1, where 0 < p0 < p1 ≤ +∞. Then
it is bounded on Lp for all p0 ≤ p ≤ p1 and there exists a constant c(p, p0, p1) such that

‖Lσ ‖(p) ≤ c(p, p0, p1)‖Lσ ‖1−θ
(p0) · ‖ Lσ ‖θ(p1) , σ ≥ 0 ,

(
1

p
=

1− θ

p0

+
θ

p1

)
. (24)

Relations up to constants. By ′′A . B ′′ we denote the relation A(f, σ) ≤
cB(f, σ) , where c is a positive constant independent of f ∈ Lp (or f ∈ C) and
σ ≥ 0. The symbol ′′ ³ ′′ indicates equivalence. It means that A . B and B . A
simultaneously.

3 Families generated by kernels of type (GR)
In this section we formulate and prove some results on explicit ranges of convergence of
families (5) generated by kernels of types (GRα) and (GRα). Our approach is mainly
based on the following lemmas which have been proved in [5].

Lemma 1. Let A be of type (1) , 0 < p ≤ +∞, p̃ = min(1, p), p̂ = p for 0 < p <
+∞ and p̂ = 1 for p = +∞. Then

Mbp;A(n) . ‖ {L(A)
n;λ} ‖(p) . Mep;A(n) , n ∈ N0 . (25)

Lemma 2. Let 0 < p ≤ 1, ϕ ∈ K. Then Mp;ϕ < +∞ if and only if p ∈ Pϕ, where
Pϕ = { p ∈ (0,+∞] : ϕ̂ ∈ Lp(Rd)}.
Lemma 3. For any T ∈ Tρn, n ∈ N0, ρ ≥ r(A), λ ∈ Rd

L(A)
n;λ(T ;x) =

∑

k∈Zd

an, k cke
ikx , (26)

where ck are the Fourier coe�cients of T .

Our result on convergence of families generated by kernels of type (GRα) can be
formulated as follows.

Theorem 1. Let A be of type (GRα) for some 0 < α < 1, that is, A = A(ϕ) + R ,
where ϕ ∈ K and R = { rn, k} satis�es Mα;R < +∞. Assume that 1 ∈ Pϕ and
α /∈ Pϕ. Then the family {L(A)

n, λ } converges in Lp if and only if p ∈ Pϕ.
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Proof. Let 0 < p ≤ +∞. Suppose k ∈ Zd, A ∈ Rd and n ≥ |k|/ρ. Using (26) we get

‖ eik· − L(A)
n;λ(e

ik·) ‖p = | 1− an, k | · ‖ eik· ‖p = (2π)d/p
∣∣∣ 1− ϕ

( k

σ(n)

)
− rn, k

∣∣∣ .

Taking into account that ϕ is continuous, σ(n) ³ n, lim
n→+∞

rn, k = 0 by (7) we obtain

lim
n→+∞

‖ eik· − LAn;λ(e
ik·) ‖p = 0 , k ∈ Zd . (27)

In view of Theorem A we conclude therefrom that the family {L(A)
n, λ } converges in Lp

if and only if it is uniformly bounded on Lp.
Let �rst p ∈ Pϕ. Since 1 ∈ Pϕ, p̃ also belongs to Pϕ and Mep;ϕ < +∞ by Lemma

2. In view of (12) and p̃ > α we get by Nikol'skij's inequality for di�erent norms for
trigonometric polynomials (see, e.g., [12], Proposition 3.3.2)

Mep;R(n) ≤ cMα;R(n) , n ∈ N0 . (28)

This implies Mep;R < +∞. Hence, we obtain

sup
n
‖ {L(A)

n;λ} ‖ep(p) . M ep
ep;A ≤M ep

ep;ϕ +M ep
ep;R < +∞ .

by Lemma 1 and {L(A)
n;λ} converges in Lp.

Let now p ≥ α and p /∈ Pϕ. In this case p̂ = p̃ = p. By Lemma 1 we get

(Mp;ϕ(n))p − (Mp;R(n))p ≤ (Mp;A(n))p . ‖ {L(A)
n;λ} ‖ep(p) (29)

for n ∈ N0. Since Mp;ϕ = +∞ by Lemma 2 and Mp;R < +∞ in view of (28), the
supremum at the left-hand side of (29) is equal to +∞. Hence, in this case {L(A)

n;λ} is
not uniformly bounded and divergent in Lp.

Finally we consider the case 0 < p < α. Assume that the family {L(A)
n;λ} converges

in Lp. Then {L(A)
n;λ} being uniformly bounded in Lp and L1 should be uniformly

bounded in Lα by the interpolation argument (Theorem B). This contradicts the above
result. ¤

We give a few remarks. Theorem 1 contains the General Convergence Theorem
for kernels of type (G), which we have proved in [5], Theorem 4.1, as a special case
corresponding to R = 0. To �nd an estimate for the value Mα;R can be a rather
sophisticated problem. The replacement of the requirement Mα;R < +∞ by the
stronger condition Mα;R < +∞ is one possible approache to its solution. Another
method is based on the concept of majorant.

Lemma 4. Suppose ψ ∈ K and ψ̂(x) = O(|x |−δ), (x→ +∞) for some δ > d. Then

Mp;ψ(n) .





1 , d/δ < p ≤ +∞
(ln(n+ 1))1/p , p = d/δ

nd/p−δ , 0 < p < d/δ

. (30)
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Proof. By Poisson's summation formula and properties of the Fourier transform we
get

Wn(ψ)(x) =
∑

ν∈Zd

ψ̂(·/n)(2πν − x) = nd
∑

ν∈Zd

ψ̂(n(2πν − x))

for x ∈ [−π, π]d. It follows therefrom the estimate

|Wn(ψ)(x) | ≤ nd
(
| ψ̂(−nx) | + c

∑

ν 6=0

|nν |−δ
)

nd | ψ̂(−nx) | + c1n
−(δ−d) ,

(31)

where c and c1 do not depend on x and n. Inequality (31) immediately implies (30)
for p = +∞. Taking into account that n−(δ−d) is bounded and integrating (31) over
[−π, π]d we conclude

‖Wn(ψ) ‖pp . ndp
∫

[−π,π]d

| ψ̂(nx) |p dx . nd(p−1)

∫

1≤|x|≤2πn

|x |−δp dx .

nd(p−1)

n∫

1

r−δp+d−1 dr

(32)

for 0 < p < +∞. Now (30) follows from (2.8) and (1.3). ¤
In view of (1.6) and (2.6) we obtain by Theorem 1 the following statement. In

particular, it contains the result on convergence of families generated by kernels of
type (GRα) as a special case.

Theorem 2. Let A = A(ϕ) + R′ + R′′, where ϕ ∈ K, R′ = { rn, k} satis�es Mα;R′ <
+∞ for some 0 < α < 1 and R′′ = { r′′n, k} has the representation

r′′n, k = λnψ

(
k

n

)
, n ∈ N ; ψ ∈ K ,

where

ψ ∈ K; ψ̂(x) = O(|x|−δ), (x→ +∞) ; λn = O(nδ−d/α) ; d < δ < d/α .

Assume that 1 ∈ Pϕ and α /∈ Pϕ. Then the family {L(A)
n, λ } converges in Lp if and only

if p ∈ Pϕ.

Proof. By (15) and Lemma 4 we obtain

Mα
α;R′+R′′ ≤ Mα

α;R′ +Mα
α;R′′ = Mα

α;R′ +

(
sup
n
|λn|Mα;ψ(n)

)α

≤

≤ (2π)d(1−α/2)Mα
α;R′ + c

(
sup
n
|λn|nd/α−δ

)α

< +∞.

Now the statement follows from Theorem 1. ¤
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4 Families generated by powers of kernels of type (G)
In this Section we consider kernels of type (Gq). Let ϕ ∈ K and q ∈ N such that

∫

Rd

( ϕ̂(x))q dx 6= 0 . (33)

For the kernels

W0(h) ≡ 1 ; Wn(h) =
∑

k∈Zd

ϕ

(
k

n

)
eikh , n ∈ N , (34)

of type (G) we introduce their qth power by (8)-(9). It is easy to see that

γn ≡ γn(ϕ, q) = (2π)−d
∫

Td

(Wn(ϕ))q dh =
∑

k1+...+kq=0

q∏
j=1

ϕ

(
kj
n

)
. (35)

Up to the factor nd(1−q) these quantities are the Riemannian sums of the integral at
the left-hand side of (19). In view of (33) they are not equal to 0 for n ≥ n0, where
n0 ≡ n0(ϕ, q) is a certain integer. By this reason the kernels Wn(ϕ, q) are well de�ned
by (8)-(9) at least for n ≥ n0.

Theorem 3. Suppose that ϕ ∈ K satis�es (33) and let 1 ∈ Pϕ. Then the family
generated by the kernels Wn(ϕ, q) converges in Lp if and only if p ∈ q−1Pϕ.

Proof. By (8) we get

Wn(ϕ, q)(h) =
∑

k∈Zd

an, k e
ikh , n ≥ n0 , (36)

where
an, k ≡ an, k(ϕ, q) = γ−1

n

∑

k1+...+kq=k

q∏
j=1

ϕ

(
kj
n

)
, k ∈ Zd . (37)

First we prove that
lim

n→+∞
an, k = 1 (38)

for each k ∈ Zd. If k ∈ Zd and n ≥ n0 then

an, k − 1 = γ−1
n


 ∑

k1+...+kq=k

q∏
j=1

ϕ

(
kj
n

)
−

∑

k1+...+kq=0

q∏
j=1

ϕ

(
kj
n

)
 =

= γ−1
n


 ∑

k1,..., kq−1

q−1∏
j=1

ϕ

(
k1

n

)
. . . ϕ

(
kq−1

n

)
·

·
(
ϕ

(
k

n
− k1 + . . .+ kq−1

n

)
− ϕ

(
−k1 + . . .+ kq−1

n

)))

(39)
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by (35) and (37).
In order to estimate the right-hand side of (39) we observe �rst that

lim
n→+∞

nd(1−q) γn = (2π)−d
∫

Rd

(ϕ̂(x))q dx 6= 0 (40)

by (33) and (35). Moreover, by uniform continuity of ϕ for each ε > 0 there exists an
integer n1 such that

sup
ξ ∈Rd

∣∣∣∣ϕ
(
k

n
− ξ

)
− ϕ(−ξ)

∣∣∣∣ < ε , n ≥ n1 . (41)

Taking into account that the number of nonvanishing items in the sum over
k1, . . . , kq−1 in (39) does not exceed cnd(q−1), where c is a positive constant inde-
pendent of n and using (40) and (41) we get from (39)

| an, k − 1 | ≤ c′nd(1−q)

∣∣∣∣∣∣
∑

k1,..., kq−1

sup
ξ ∈Rd

∣∣∣∣ϕ
(
k

n
− ξ

)
− ϕ(−ξ)

∣∣∣∣ ×

×
(

sup
ξ ∈Rd

|ϕ(ξ) |
)q−1

∣∣∣∣∣∣
≤ c′′ε

for su�ciently large n (k is �xed). This completes the proof of (38).
Let 0 < s < +∞. Combining (8), (9) and (40) we see that

nd(1/s−1) ‖Wn(ϕ, q) ‖s = nd(1/s−1) |γ−1
n | ‖Wn(ϕ) ‖qqs ³

³ (
nd(1/qs−1) ‖Wn(ϕ) ‖qs

)q

It follows the equivalence
Ms;A(n) ³ Mqs;ϕ(n) , n ≥ n0 , (42)

using the notations in (12), where A = { an, k} is given by (37).
Let p ∈ q−1Pϕ, that is, qp ∈ Pϕ. Then qp̃ ∈ Pϕ as well. Indeed, for 0 < p ≤ 1 it is

obvious. If 1 ≤ p ≤ +∞, then qp̃ = q ∈ Pϕ because q ≥ 1 and 1 ∈ Pϕ. By the General
Convergence Theorem [5], Theorem 4.1, (see also Theorem 1 with R = 0)

sup
n
‖ {L(ϕ)

n;λ} ‖(qep) < +∞ . (43)

Applying Lemma 1 and (42) with s = p̃ we �nd

‖ {L(A)
n;λ} ‖(p) . Mep,A(n) ³ Mqep;ϕ(n) . ‖ {L(ϕ)

n;λ} ‖(qep) (44)

for n ≥ n0. By (43), (44) the family {L(A)
n;λ} is uniformly bounded on Lp. Thus, its

convergence follows from (38) and Theorem A.
Let now p /∈ q−1Pϕ, that is, qp /∈ Pϕ. Then Mqp;ϕ = +∞ by Lemma 2. In view of

(42) with s = p it implies Mp,A = +∞. Hence, {L(A)
n;λ} is not uniformly bounded on

Lp by Lemma 1. The proof is complete. ¤
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5 Families generated by (generalized) Jackson kernels
The (generalized) Jackson kernels are de�ned by

Jn; q(h) = γ−1
n, q (Fn(h))

q , n ∈ N0 , (2π)−1

2π∫

0

(Fn(h))
q) dh = γn, q , (45)

where q ∈ N and Fn(h) are the Fej�er kernels generated by ϕ(ξ) = ( 1 − | ξ | )+ (a+ =
max(a, 0)). The classical Fej�er and Jackson kernels correspond to q = 1 and q = 2,
respectively. In the general case Jn; q(h) is of type Gq. They have been introduced
by S. Stechkin [13] in order to prove the Jackson type estimate (direct theorem of
approximation theory) for moduli of smoothness of higher orders. Taking into account
that Pϕ = (1/2,+∞] (see, e.g. [5], Section 5) and applying Theorem 3 we immediately
obtain the following statement.

Theorem 4. The family {J (q)
n;λ}, q ∈ N, generated by the generalized Jackson kernels

(45) converges in Lp if and only if 1/(2q) < p ≤ +∞.

Combining this result with the comparison principle [5], Lemma 2.2, we obtain
the classical statements on the convergence of the Fourier means and the interpolation
means generated by Jn; q(h) in the spaces Lp for 1 ≤ p ≤ +∞ and C, respectively (see,
e.g. [2], Chapter 7, �2, [13]).

6 Families generated by Fej�er-Korovkin kernels
The Fej�er-Korovkin kernels Kn(h) are de�ned by (1)-(2), where A = {an, k : | k | ≤
n− 2, n ≥ 2} and

an, k =
(n− | k |+ 1 ) sin

| k |+ 1

n
π − (n− | k |+ 1 ) sin

| k | − 1

n
π

2n sin(π/n)
. (46)

They were introduced by P. Korovkin [4]. The corresponding Fourier means of type (3)
turn out to solve the problem of the existence of positive methods of summation which
would be relevant for the proof of the Jackson type estimate. In this connection we
mention that the Fej�er kernels do not have this property. By elementary calculations
we get

an, k =

(
1− | k |

n

)
cos

π| k |
n

+
1

π
sin

π| k |
n

+ λn sin
π| k |
n

, | k | ≤ n− 2 , (47)

where
λn =

1− (n/π) sin(π/n)− 2(sin(π/(2n)))2

n sin(π/n)
≥ 0 , n ≥ 2 , (48)

Clearly,
λn . n−2 . (49)
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By (47) A = A(ϕ) +R′ +R′′, where

ϕ(ξ) =

{
(1− | ξ |) cos πξ + (1/π) sin π| ξ | , | ξ | ≤ 1

0 , | ξ | > 1
(50)

R′ = {r′n, k} : r′n, k =





−λn−1 sin
π(n− 1)

n
− 2ϕ

(
n− 1

n

)
, |k| = n− 1

0 , otherwise
(51)

R′′ = {r′n, k} : r′′n, k = λn sin
π| k |
n

, | k | ≤ n . (52)

By straightforward calculation one has

ϕ̂(x) = 4π2 (cos(x/2))2

(x− π)2(x+ π)2
, Pϕ = (1/4, +∞ ] . (53)

Using (49) - (51) we obtain
sup

|k|=n−1

r′n, k . n−3.

In view of (14) this leads to
M1/4;R′ < +∞ . (54)

To estimate the contribution of R′′ we rewrite formula (5.7) as

r′′n, k = λnψ

(
k

n

)
, | k | ≤ n , (55)

where ψ(ξ) = sin π|ξ|. By straightforward calculation

ψ̂(x) =
4π2 cos2(x/2)

π2 − x2
; ψ̂(x) = O(|x |−2), x→ +∞ . (56)

By means of (49), (53), (54) - (56) we see that all conditions of Theorem 2 are
satis�ed with d = 1, δ = 2 and α = 1/4. Applying Theorem 2 to the Fej�er-Korovkin
kernels we obtain the following result.

Theorem 5. The family {Kn;λ} generated by the Fej�er-Korovkin kernels converges
in Lp if and only if 1/4 < p ≤ +∞.

Combining this result with the comparison principle [5], Lemma 2.2, we obtain,
in particular, the statement of P. Korovkin on the convergence of the Fourier means
generated by Kn(h) in C (cf. [4]).
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7 Families generated by Cesaro kernels I: structure of the ma-
trix of multipliers

As known (see, e.g. [15], Vol. 1), the Cesaro kernels C(α)
n (h) with index α > 0 are

de�ned by (1)-(2), where A ≡ Aα = {an, k : |k| ≤ n− 1, n ∈ N} and

a
(α)
n, k =

Γ(n− | k |+ α) Γ(n)

Γ(n− | k |) Γ(n+ α)
, | k | ≤ n− 1 . (57)

Obviously, the case α = 1 corresponds to the Fej�er kernels. Applying the asymptotic
formula for the Γ-function

Γ(z) = (2π)1/2 e−z zz−1/2
(
1 + (12z)−1 +O(z−2)

)
, z 6= 0, | argz | < π ,

we get

a
(α)
n, k =

(
1− | k |

n

)α (
1 +

α

n− | k |
)n−| k |+α−1/2 (

n

n+ α

)n+α−1/2

1 + ( 12(n− | k |+ α) )−1 +O ( (n− | k |)−2 )

1 + ( 12(n− | k |) )−1 +O ( (n− | k |)−2 )

1 +O (n−1)

1 +O (n−1)
≡

≡ ϕα

(
k

n

)
· J1 · J2 · J3 · J4

(58)

for n ∈ N, | k | ≤ n− 1 from (57). Here ϕα(ξ) = (1− | ξ |)α+ and bn, k = O(an, k) means
that |bn, k| ≤ can, k, where c does not depend on k and n. Using Taylor expansions for
exp z, ln z and (1− z)−1 we obtain

J1 = eα
(

1 +
α(α− 1)

2(n− | k |) + O
(
(n− | k |)−2

))
, (59)

J2 = e−α
(
1 + O

(
n−1

))
, (60)

J3 = 1 + O
(
(n− | k |)−2

)
, (61)

J4 = 1 + O
(
n−1

)
. (62)

By (58) - (62)

a
(α)
n, k = ϕα

(
k

n

)(
1 +

α(α− 1)

2(n− | k |) +O
(
(n− | k |)−2

))
(1 + λn) , (63)

where λn = O(n−1).
We introduce the matrix Aα = { bn, k}, where bn, k are de�ned by the right-hand

side of (63) with λn = 0. By (63) we get

Aα = A(ϕα) + R′α + R′′α , (64)
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where
R′
α =

(
r′n, k(α)

)
, r′n, k(α) =

α(α− 1)

2
n−1 ϕα−1

(
k

n

)
, (65)

R′′
α =

(
r′′n, k(α)

)
, r′′n, k(α) = O

(
n−2 ϕα−2

(
k

n

))
. (66)

Taking into account that

Wn(Aα)(h) = (1 + λn)Wn(Aα)(h)

it follows from Lemma 1 and Theorem A that the ranges of convergence of the Cesaro
families { C(α)

n;λ} and the families generated by Aα coincide. For this reason we deal
with the matrix Aα in the following.

8 Families generated by Cesaro kernels II: Fourier transform
of the generator

As it was shown in the previous section, the matrix Aα is of type (7) with ϕ(ξ) ≡
ϕα(ξ) = (1 − | ξ |)α+. Following our approach we have to study the properties of the
Fourier transform of the generator ϕα and to dtermine the set Pα = {p ∈ (0,+∞] :
ϕ̂α ∈ Lp(R)}.

Let ψ, ψ0 and ψ1 be real valued even in�nitely di�erentiable functions de�ned on
R and satisfying

ψ(ξ) =

{
1 , ξ ∈ D1

0 , ξ /∈ D5/4

; ψ0(ξ) =

{
1 , ξ ∈ D1/2

0 , ξ /∈ D3/4

; ψ1(ξ) = ψ(ξ)− ψ0(ξ), (67)

where Dρ = { ξ : | ξ | ≤ ρ }. It is clear that

ϕα(ξ) = (ϕα ψ0)(ξ) + (ϕα ψ1)(ξ) , ξ ∈ R. (68)

In view of

( 1− y )α =
3∑

ν=0

(−1)ν [α]ν
ν!

yν + y4 g(y) , −1 < y < 1 ,

where [α]ν = α(α− 1) . . . (α− ν + 1) and g(y) is analytic on (−1, 1), we obtain

(ϕα ψ0)(ξ) =
3∑

ν=0

(−1)ν [α]ν
ν!

| ξ |ν ψ0(ξ) + | ξ |4 g(| ξ |)ψ0(ξ) . (69)

As it was shown in [11], Lemma 4.1 and Theorem 4.1, for any δ > 0, δ 6= 2k for each
k ∈ N one has ∣∣∣

(| · |δ ψ0(·)
)∧

(x)
∣∣∣ ³ | x |−(δ+1) , |x | → +∞ , (70)
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where A ³ B means A ≤ c1B and B ≤ c2A simultaneously for |x| ≥ ρ with some
positive c1, c2 and ρ independent of x. Moreover, by the di�erentiability properties of
the function | ξ |4g(| ξ |) on (−1, 1) we get

∣∣∣
(| · |5 g(| · |)ψ0(·)

)∧
(x)

∣∣∣ ≤ c ( 1 + |x | )−3 , x ∈ R . (71)

Since ψ0(ξ) and | ξ |2 ψ0(ξ) are in�nitely di�erentiable their Fourier transforms can be
also estimated by the right-hand side of (71). Applying (70) and (71) to the right-hand
side of (69) we �nally obtain

∣∣ (ϕα ψ0)
∧ (x)

∣∣ ³ | x |−2 , | x | → +∞ , (72)

for the Fourier transform of the �rst summand on the right-hand side of (68).
The Fourier transform of ϕαψ1 can be studied by reduction to the properties of the

generator of the Bochner-Riesz kernels ϕ(β)(ξ) = (1 − | ξ |2)β+ with the index β > 0 in
the one-dimensional case. As is known ([14], Ch. 9, pp. 389-390]),

ϕ̂(β)(x) = π−β Γ(β + 1) |x |−β−1/2 Jβ+1/2(| x |) , (73)

where Js(x), s > −1/2, is the Bessel function of order s. Using its properties, in
particular, their asymptotic formula and the results on the distribution of their zeros
([14], Ch. 8) it follows from (73)

∣∣ ϕ̂(β)(x)
∣∣ ≤ c ( 1 + |x | )−(β+1) , x ∈ R , (74)

∣∣ ϕ̂(β)(x)
∣∣ ≥ c′ |x |−(β+1) , x ∈ Ω(β) , (75)

with some positive constants independent of x, c and c′. Here (for the sake of shortness
we omit the index β in our notations, if it does not a�ect the concepts)

Ω =
+∞⋃

k=1

{ ξ : ak ≤ | ξ | ≤ bk } , (76)

1 ≤ ak < bk ≤ ak+1 ; inf
k

(bk − ak) > 0 ; ak = O(k) , k → +∞ . (77)

We shall use the representation

ϕα ψ1(ξ) = ϕ(α)(ξ)ψ1(ξ) gα( 1− | ξ |2 ) , ξ ∈ R , (78)

where

gα(η) =





(
1− (1− η)1/2

η

)α

, 0 < | η | < 1

(1/2)α , η = 0

. (79)
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The function gα(η) is analytic in (−1, 1). By expansion into power series at η = 0 and
considering �rst (s− 1)th terms, where s = [α] + 4, we conclude

2α (ϕα ψ1) (ξ) = ϕ(α)(ξ)ψ1(ξ) +
s−1∑
ν=1

g(α)
ν · (ϕ(α+ν) ψ1

)
(ξ) + g(α)

s ·

(
ϕ(α+s) ψ1

)
(ξ)h(ξ) = ϕ(α)(ξ) +

s−1∑
ν=1

g(α)
ν · ϕ(α+ν)(ξ)−

s−1∑
ν=0

g(α)
ν · (ϕ(α+ν) ψ0

)
(ξ) + g(α)

s · (ϕ(α+s) ψ1

)
(ξ)h(ξ) ≡

ϕ(α)(ξ) + I(ξ) , ξ ∈ R ,

(80)

by (68) and (78). Here g(α)
ν , ν = 1, . . . , s, are certain coe�cients and the function h is

in�nitely di�erentiable in D√
2 \ {0}.

By (74) we obtain
∣∣ ϕ̂(α+ν)(x)

∣∣ ≤ c ( 1 + | x | )−(α+ν+1) , x ∈ R , ν = 0, 1, . . . , s− 1 . (81)

The functions ϕ(α+ν) ψ0 , ν = 0, 1, . . . , s− 1, are in�nitely di�erentiable and they have
a compact support. Hence, in particular,

∣∣∣
(
ϕ(α+ν) ψ0

)∧
(x)

∣∣∣ ≤ c ( 1 + |x | )−(α+2) , x ∈ R , ν = 0, 1, . . . , s− 1 . (82)

Recall that s = [α] + 4. By direct calculation we �nd that the function ϕα+s ψ1h is
([α] + 3)-times continuously di�erentiable. This yields the estimate

∣∣∣
(
ϕ(α+s) ψ1 h

)∧
(x)

∣∣∣ ≤ c ( 1 + |x | )−([α]+3) , x ∈ R . (83)

By (81) (for ν 6= 0), (82) and (83) we get

| Î(x) | ≤ c |x |−(α+2) , |x | ≥ 1 , (84)

for the Fourier transform of the remainder I(ξ) in (80).
Combining (74) and (75) with β = α, (80), (81) (for ν = 0) and (84) we obtain

∣∣ (ϕα ψ1)
∧ (x)

∣∣ ≤ c ( 1 + |x | )−(α+1) , x ∈ R , (85)
∣∣ (ϕα ψ1)

∧ (x)
∣∣ ≥ c′ | x |−(α+1) , x ∈ Ω , (86)

where Ω is of type (76)-(77) and c, c′ are positive constants independent of x.
Now we are able to formulate and prove the main result of this section.

Lemma 5. It holds Pα = (q∗,+∞], where q∗ ≡ q∗(α) = max(1/2, 1/(α + 1)), α > 0.
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Proof. Let �rst 0 < α ≤ 1. By (68), (72) and (85)

| ϕ̂α(x) | ≤ c ( 1 + |x | )−(α+1) , x ∈ R . (87)

Applying (68), (72) and (86) we get

| ϕ̂α(x) | ≥
∣∣ (ϕα ψ1)

∧ (x)
∣∣ −

∣∣ (ϕα ψ0)
∧ (x)

∣∣

≥ | x |−(α+1) ( c′ − c |x |α−1 )

≥ c′′ | x |−(α+1) , x ∈ Ω , |x | ≥ ( c′/(2c) )1/(1−α) .

(88)

Let 0 < p < +∞. In view of (76)-(77) and by means of (87), (88) we �nd

c1

+∞∑

k=k0

k−p(α+1) ≤ c′1

+∞∑

k=k0

bk∫

ak

x−p(α+1) dx ≤ ‖ ϕ̂α ‖pp ≤ c2

+∞∫

1

x−p(α+1) dx

for and some k0 ∈ N. This yields Pα = (1/(α+ 1),+∞].
Let now α > 1. In this case the summand ϕαψ0 on the right-hand side of (68) is

dominating. By (68), (72) and (85) we get

| ϕ̂α(x) | ≤ c ( 1 + |x | )−2 , x ∈ R , (89)

and
| ϕ̂α(x) | ≥

∣∣ (ϕα ψ0)
∧ (x)

∣∣ −
∣∣ (ϕα ψ1)

∧ (x)
∣∣ ≥

≥ | x |−2 ( c1 − c | x |1−α ) ≥

≥ c2 |x |−2 , x ∈ Ω , |x | ≥ ( c1/(2c) )1/(α−1) .

(90)

In view of (89) and (90) we have Pα = (1/2,+∞].
To complete the proof we recall that for α = 1 the function ϕα is the generator of

the Fej�er kernels and P1 = (1/2,+∞] (see, e.g. [5]). ¤

9 Families generated by Cesaro kernels III: in�uence of remain-
ders and convergence result

Now we consider the contributions of the matrices R′
α and R′′

α given by (65) and (66).

Lemma 6. Suppose ν ∈ N and 0 < α < ν − 1/2. If the matrix Rα(ν) = {rn, k(α, ν)}
satis�es

rn, k(α, ν) = O

(
n−ν ϕα−ν

(
k

n

))
, | k | ≤ n− 1, n ∈ N , (91)

then M1/(α+1);Rα(ν) < +∞.
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Proof. Indeed, assumption (91) leads to

n2(1/q−1)
∑

|k|≤n−1

| rn, k(α; ν) |2 . n2(1/q−1−α)
∑

|k| ≤n−1

(n − | k |)2(α−ν)

. n2(1/q−1−α)

n∑
j=1

j2(α−ν)

³ n2(1/q−1−α) ·





1 , α < ν − 1/2

ln(n+ 1) , α = ν − 1/2

n2(α−ν)+1 , α > ν − 1/2

(92)

for any 0 < q ≤ 1. Applying (92) to q = 1/(α+ 1) we obtain the desired result. ¤

Lemma 7. It holds Mq∗;R′′α < +∞, where q∗ has the meaning of Lemma 5.

Proof. For 0 < α < 3/2 this statement follows immediately from Lemma 6. Applying
(92) with q = 2/5 we conclude that M2/5+ε;R′′α < +∞ for each ε > 0 if α = 3/2 and
M2/5;R′′α < +∞ if α > 3/2. In both these cases q∗ = 1/2 and

Mq∗;R′′α ≤M2/5;R′′α ≤M2/5+ε;R′′α < +∞ .

The proof is complete. ¤

Lemma 8. It holds Mq∗;R′α < +∞, where q∗ has the meaning of Lemma 5 .

Proof. If 0 < α < 1/2 one has

M1/(α+1);R′α ≤ (2π)α+1/2M1/(α+1);R′α < +∞
by (14) and Lemma 6.

Let now 1/2 ≤ α < 1. In view of (65) we get by Abel's identity for n ≥ 2

Wn(R′
α)(h) = α(α− 1)n−α

(
nα−1

2
+

n−1∑

k=1

(n− k)α−1 cos kh

)

= α(α− 1)n−α
(
Dn−1(h) +

n−2∑

k=1

( (n− k)α−1−

− (n− k − 1)α−1 )Dk(h)


 = α(α− 1)n−α·

(
Dn−1(h) + (α− 1)

n−2∑

k=1

( ξk, n(α) )α−2Dk(h)

)
,

(93)

where ξk, n(α) ∈ [n−k−1, n−k ] andDk(h) are the Dirichlet kernels. Since 1/(α+1) ≤
1/(2− α) < 1 for 1/2 ≤ α < 1, we can choose q such that

1/(1 + α) ≤ 1/(2− α) < q < 1 . (94)
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Applying the well-known estimates for the norms of Dirichlet kernels and using (93),
(94) we obtain

‖Wn(R′
α) ‖1/(1+α) . ‖Wn(R′

α) ‖q

. n−α
(
‖Dn−1 ‖qq +

n−2∑

k=1

(n− k)q(α−2) ‖Dn−1 ‖qq
)1/q

. n−α
(

n∑
ν=1

νq(α−2)

)
. n−α .

This yields M1/(α+1);R′α < +∞.
For α = 1 the matrix R′α is identical 0 by (65). In the case 1 < α < 2 one

has ϕ̂α−1(x) = O(|x |−α), (x → +∞) by (87). Applying now Lemma 4 with d = 1,
p = 1/2, δ = α and using (65) we �nd

M1/2;R′α . n−1M1/2;ϕα−1 . n−1n2−α = n1−α

This implies M1/2;R′α < +∞.
If α ≥ 2 we apply (89) with α − 1 in place of α. In view of (68), (72) and (85) it

remains valid also for α − 1 = 1. Then ϕ̂α−1(x) = O(|x |−2), (x → +∞). Applying
now Lemma 4 with d = 1, p = 1/2, δ = 2 and (65) derive the estimates

M1/2;R′α . n−1M1/2;ϕα−1 . n−1(ln(n+ 1))1/2.

It follows M1/2;R′α < +∞. ¤
Combining Theorem 1, Lemma 5 and Lemmas 7 - 8 we obtain the following con-

vergence criterion.

Theorem 6. The family { C(α)
n;λ}, α > 0, generated by the Cesaro kernels with index α

converges in Lp if and only if q∗(α) < p ≤ +∞, where q∗ ≡ q∗(α) = max(1/2, 1/(α +
1)).

In view of the comparison principle [5], Lemma 2.2, this theorem implies the clas-
sical M. Riesz theorem on the convergence of the Cesaro means in the space C (see,
e.g. [15], Vol. 1, Ch. 3).
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