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Abstract. This paper is devoted to the study of certain maximal functions measuring
smoothness, related function spaces, and properties of multidimensional singular inte-
grals. In this work we essentially use the relation between maximal functions measuring
smoothness and local oscillation of functions.

1 Introduction

Maximal functions measuring smoothness play an important role in the study of struc-
tural properties of singular integrals, potential type integrals and other objects of Har-
monic Analysis. It is well known that maximal functions of this type are useful in the
study of smoothness of functions and of the mapping properties of various operators
on smoothness spaces. The main theme of this paper is the study of certain maximal
functions measuring smoothness, related function spaces and corresponding properties
of singular integrals. In this work we essentially use the relation between maximal
functions measuring smoothness and local oscillation of functions.

The paper is organized as follows.
Section 2 has auxiliary character and presents the basic definitions, some notation

and well-known facts. In Section 3 we prove certain embedding theorems for the
spaces Ck,ϕ

p and Bk,ϕ
p,q (for definitions see Section 3). In Section 4 the properties of a

multidimensional singular integral in terms of maximal functions measuring smoothness
are investigated. The main results are given in Theorems 3.1, 3.2, 4.2, and 4.3.

2 Preliminaries

Let Φ be the class of all positive monotonically increasing on (0,+∞) functions such
that ϕ (+0) = 0, and Φk (k ∈ N) (N is the set of all natural numbers) be the class of
all functions ϕ ∈ Φ such that ϕ (t) · t−k almost decreases1. By definition we assume
that the function ϕ (t) ≡ 1 is an element of the classΦ.

1A function h is called almost decreasing on (0,+∞), if there exists a constant c > 0 such that for
any x1 < x2 in (0,+∞) h (x2) ≤ ch (x1).
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Let Rn be the n-dimensional Euclidean space of points x = (x1, x2, ..., xn),
B (a, r) := {x ∈ Rn : |x− a| ≤ r} be the closed ball in Rn of radius r > 0 with the
center at the point a ∈ Rn. Denote the class of all locally p-power summable functions
defined on Rn by Lp

loc (Rn), (1 ≤ p <∞), the class of all locally bounded functions
defined on Rn by L∞loc (Rn).

Denote by Pk the totality of all polynomials on Rn whose degrees are equal to or
less than k∈ N

⋃
{0}. If E ⊂ Rn is (Lebesgue) measurable , let |E| denote the measure

of E.
Let k ∈ N , ϕ ∈ Φk, 1 ≤ p ≤ ∞. Introduce the following notation

f#
k,ϕ,p (x) : = sup

r>0

1

ϕ (r)
inf

π∈Pk−1

{
|B (x, r)|_

1
p · ‖f − π‖Lp(B(x,r))

}
, x ∈ Rn,

where f ∈ Lp
loc (Rn).

For f ∈ Lp
loc (Rn), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, k ∈ N define the following functions

µk
f (x; r)p := inf

π∈Pk−1

‖f − π‖Lp(B(x,r)) , r > 0, x ∈ Rn,

µk
f (r)pq :=


∥∥∥µk

f (·; r)p

∥∥∥
Lq(Rn)

if 1 ≤ q <∞,

sup
x∈Rn

µk
f (x; r)p if q = ∞.

Let x = (x1, x2, ..., xn) ∈ Rn, ν = (ν1, ν2, ..., νn), νj (i = 1, 2, ..., n) be non-negative
integers, |ν| = ν1 + ν2 + ... + νn, x

ν = xν1
1 · xν2

2 · · · xνn
n . Apply the orthogonalization

process with respect to the inner product

(f, g) =
1

|B (0, 1)|

∫
B(0,1)

f (t) g (t) dt

to the system of the power functions {xν}, |ν| ≤ k, (k ∈ N
⋃
{0}) arranged in partially

lexicographic order2 [21]. Denote by {ϕν} , |ν| ≤ k the obtained orthonormal system.
Let L1

loc (Rn). Suppose that ([6], [19]):

Pk,B(a,r)f (x) =
∑
|ν|≤k

(
1

|B (a, r)|

∫
B(a,r)

f (t)ϕν

(
t− a

r

)
dt

)
ϕν

(
x− a

r

)
.

It is obvious that Pk,B(a,r)f is a polynomial whose degree is less than or equal to k.
Denote

Ok (f,B (a, r))p :=
∥∥f − Pk−1,B(a,r)f

∥∥
Lp(B(a,r))

for f ∈ Lp
loc (Rn) (1 ≤ p ≤ ∞). Let us call Ok (f,B (a, r))p the local oscillation of k-th

order of the function f on the ball B (a, r) in the metric Lp.
Note that if k = 0, then

Pk,B(a,r)f (x) ≡ 1

|B (a, r)|

∫
B(a,r)

f (t) dt =: fB(a,r),

2This means that xν precedes xµ if either |ν| < |µ|, or |ν| = |µ| and the first nonzero difference
νi − µi is negative.
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and therefore
O1 (f,B (a, r))1 =

∫
B(a,r)

∣∣f (t)− fB(a,r)

∣∣ dt.
It is known [17] that for each polynomial π ∈ Pk−1 and each ball B (x, r) ⊂ Rn the

inequality ∥∥f − Pk−1,B(x,r)f
∥∥

Lp(B(x,r))
≤ C ‖f − π‖Lp(B(x,r))

is true, where a positive constant C does not depend on p, f, B and π. Hence it
follows that

∃C > 0, ∀x ∈ Rn, ∀r > 0 :

µk
f (x; r)p ≤ Ok (f,B (x, r))p ≤ C · µk

f (x; r)p . (2.1)

It should be mentioned that the theory of spaces defined by local oscillation has
been developed by several authors, for instance by F. John and L. Nirenberg [10],
S. Campanato [5], N.G. Meyers [14], S. Spanne [28], J. Peetre [16], D. Sarason [26] etc.
(see also [1], [9], [24], [30], [13]).

For k = 1, ϕ (t) ≡ 1, p = 1 we get

∃C1 > 0 ∃C2 > 0 ∀x ∈ Rn : C1f
#
k,ϕ,p (x) ≤ f# (x) ≤ C2f

#
k,ϕ,p (x) ,

where
f# (x) := sup

r>0

1

|B (x, r)|

∫
B(x,r)

∣∣f (t)− fB(x,r)

∣∣ dt.
f# (x) is Fefferman-Stein’s maximal function (introduced in [7]).

It is obvious that

f#
k,ϕ,p (x) = γ

− 1
p

n · sup
r>0

µk
f (x; r)p

rn/p · ϕ (r)
, x ∈ Rn, (2.2)

where γn := |B (0, 1)|.
For ϕ (t) = tα (α > 0), k = [α] + 1 or k = (α) + 1 the func-

tion f#
k,ϕ,p (x), was considered in the papers of A. Calderon and R. Scott [4],

R. DeVore and R. Sharpley [6]. In the latter paper the following notation was used:

f#
α,p (x) := f#

[α]+1,δα,p (x) ; f b
α,p (x) := f#

(α)+1,δα,p (x)

(here [α] is an integer part of the number α; (α) is the largest integer less than α).
For k = 1, ϕ ∈ Φ1 the function f#

k,ϕ,p was used in the papers of V.I. Kolyada [11],
E. Nakai and H. Sumitomo [15], and others.

Notice that if α is not an integer, then f#
α,p (x) ≡ f b

α,p (x) . For any α > 0 the
inequality

f#
α,p (x) ≤ const · f b

α,p (x) , x ∈ Rn

is valid.
Modulus of continuity of order k ∈ N of the function f in the metric Lp (1 ≤ p ≤ ∞)

is defined by the equality

ωk
f (δ)p := sup

|h|≤δ

∥∥∆k
hf
∥∥

Lp(Rn)
(δ > 0) ,
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where
∆1

hf (x) := f (x+ h)− f (x) , ∆k
hf = ∆1

h

(
∆k−1

h f
)
.

For f ∈ Lp
loc (Rn), 1 ≤ p ≤ ∞, k ∈ N we consider also the following functions

mk
f (x; δ)p := sup

r≤δ

{
|B (x, r)|−

1
p ·Ok (f,B (x, r))p

}
, x ∈ Rn, δ > 0;

Mk
f (δ)p := sup

x∈Rn

mk
f (x; δ)p , δ > 0.

Let us notice that the functions

µk
f (x; r)p , µk

f (r)pq , ωk
f (δ)p , mk

f (x; r)p and Mk
f (r)p

monotonically increase on the interval (0,+∞) with respect to the argument r.
Further, for positive functions F and G we will use the notation F (u) ≈ G (u),

u ∈ U if there exist positive constants c1 and c2 such that

∀u ∈ U : c1F (u) ≤ G (u) ≤ c2F (u) .

Let us mention some known facts which we will use further in this work.

Theorem A [22]. If f ∈ Lq (Rn), 1 ≤ p ≤ q ≤ ∞ (for q = ∞ it is supposed that f is
equivalent to a continuous function) then the inequality

µk
f (δ)pq ≤ c · δ

n
pωk

f (δ)q (δ > 0)

holds, where c > 0 is independent of f and δ.

Theorem B [22]. Let f ∈ Lq
loc (Rn), 1 ≤ p ≤ ∞, 1 ≤ q <∞,∫ 1

0

t−
n
q
−1µk

f (t)qp dt < +∞.

Then the inequality

ωk
f (δ)p ≤ c ·

∫ δ

0

t−
n
q
−1µk

f (t)qp dt (δ > 0)

is true, where the constant c > 0 is independent of f and δ.

Theorem C [22]. Let f ∈ L∞loc (Rn). Then the inequality

ωk
f (δ)∞ ≤ c · µk

f (δ)∞∞ (δ > 0)

is true, where the constant c > 0, is independent of f and δ.

Lemma 2.1. Let 1 ≤ p ≤ ∞, k ∈ N . Then the following relation

f#
k,ϕ,p (x) ≈ sup

r>0

mk
f (x; r)p

ϕ (x)
, x ∈ Rn (2.3)

hold, where the constants in the relation “≈” do not depend on f ∈ Lp
loc (Rn).
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Proof. Taking into account relation (2.1), by the definitions of functions f#
k,ϕ,p (x),

µk
f (x; r)p, m

k
f (x; δ)p we obtain that

f#
k,ϕ,p (x) ≤ sup

r>0

Ok (f,B (x, r))p

|B (x, r)|−1/p · ϕ (r)
≤ sup

r>0

mk
f (x; r)p

ϕ (r)
, x ∈ Rn. (2.4)

By the definition of f#
k,ϕ,p (x), with the help of (2.1), it follows also that for all r > 0

the inequality

f#
k,ϕ,p (x)ϕ (r) ≥ |B (x, r)|−

1
p · µk

f (x; r)p ≥ c |B (x, r)|−
1
p ·Ok (f,B (x, r))p

holds. If to take supremum for r ≤ δ in both parts of this inequality we will get

f#
k,ϕ,p (x)ϕ (δ) ≥ c ·mk

f (x; δ)p , x ∈ R
n, δ > 0,

and hence

f#
k,ϕ,p (x) ≥ c ·

mk
f (x; δ)p

ϕ (δ)
, x ∈ Rn, δ > 0, (2.5)

where the constant c > 0 is independent of x, δ and f .
By relations (2.4) and (2.5) we obtain the required relation (2.3).

3 Spaces Ck,ϕ
p , Bk,ϕ

p,q and some embedding theorems

Let k ∈ N , ϕ ∈ Φk, 1 ≤ p ≤ ∞. By Ck,ϕ
p (Rn) we denote the totality of all the functions

f ∈ Lp (Rn) for which f#
k,ϕ,p∈Lp (Rn), i.e.

Ck,ϕ
p = Ck,ϕ

p (Rn) :=
{
f ∈ Lp (Rn) : f#

k,ϕ,p ∈ L
p (Rn)

}
.

Introduce the norm in Ck,ϕ
p by means of the equality

‖f‖Ck,ϕ
p

:= ‖f‖Lp(Rn) + |f |Ck,ϕ
p
,

where
|f |Ck,ϕ

p
:=
∥∥∥f#

k,ϕ,p

∥∥∥
Lp(Rn)

.

With the introduced norm the space Ck,ϕ
p is a Banach space.

In the paper of R. DeVore and R. Sharpley [6] for the space Ck,ϕ
p in the case ϕ (t) = tα

(α > 0), the following notation was used:

Ck,δα

p =:


Cα

p , if k = [α] + 1,

Ċα
p , if k = (α) + 1

.

Some weighted analogues of the spaces Cα
p and Ċα

p were considered in the paper of
D.C. Yang and S.B. Yang [31].
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Theorem ([3]). If k is a positive integer and 1 < p ≤ ∞, then

Ċk
p (Rn) = W k

p (Rn) ,

where W k
p (Rn) is the Sobolev space, and the norms in these spaces are equivalent.

Theorem ([6]). Let α > 0. Then

Ċα
∞ (Rn) = Lipα,

where
Lipα :=

{
f ∈ L∞ (Rn) : ω

(α)+1
f (δ)∞ = O (δα) , δ > 0

}
,

‖f‖Lip α := ‖f‖L∞(Rn) + sup
δ>0

ω
(α)+1
f (δ)∞

δα
,

and the norms in these spaces are equivalent.
For a discussion of the Lipschitz spaces Lipα see, for instance, [29].
Let k ∈ N , ϕ ∈ Φk, 1 ≤ p, q ≤ ∞. By Bk,ϕ

p,q we denote the totality of all the
functions f ∈ Lp (Rn) (for p = ∞ it is assumed that f is equivalent to a continuous
function) for which the following semi-norm is finite

|f |Bk,ϕ
p,q

:=



(∞∫
0

(
ωk

f (t)p

ϕ(t)

)q
dt
t

) 1
q

if 1 ≤ q <∞,

sup
t>0

ωk
f (t)p

ϕ(t)
if q = ∞.

In the space Bk,ϕ
p,q we introduce the norm by the equality

‖f‖Bk,ϕ
p,q

:= ‖f‖Lp(Rn) + |f |Bk,ϕ
p,q
.

Note that spaces of type Bk,ϕ
p,q have been considered in works of several authors (see,

e.g., [8] and the literature quoted there).

Lemma 3.1. Let 1 ≤ p ≤ ∞, ϕ ∈ Φk, k ∈ N . Then the embedding

Bk,ϕ
p,p ⊂ Ck,ϕ

p (3.1)

holds and
∃c > 0 ∀f ∈ Bk,ϕ

p,p : ‖f‖Ck,ϕ
p
≤ c ‖f‖Bk,ϕ

p,p
.

Proof. First we notice that if ϕ ∈ Φk, then ϕ (2r) ≈ ϕ (r), r > 0.
Let 1 ≤ p <∞. Then for all r > 0 and x ∈ Rn we have∫ ∞

0

(
µk

f (x; t)p

tn/pϕ (t)

)p
dt

t
≥
∫ 2r

r

(
µk

f (x; t)p

tn/pϕ (t)

)p
dt

t
≥ c ·

(
µk

f (x; r)p

rn/pϕ (r)

)p

,
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where the constant c > 0 is independent of x, r and f . By equality (2.2) we obtain
that for any x ∈ Rn

(
f#

k,ϕ,p (x)
)p

= γ−1
n ·

(
sup
r>0

µk
f (x; r)p

rn/p · ϕ (r)

)p

≤ (cγn)−1 ·
∫ ∞

0

(
µk

f (x; t)p

tn/pϕ (t)

)p
dt

t
.

Hence, with the help of Theorem A [22] we get∥∥∥f#
k,ϕ,p

∥∥∥p

Lp(Rn)
≤ (cγn)−1 ·

∫ ∞

0

(
µk

f (t)pp

tn/pϕ (t)

)p
dt

t
≤ const ·

∫ ∞

0

(
ωk

f (t)p

ϕ (t)

)p
dt

t
.

The last inequality implies that if 1 ≤ p <∞, then Bk,ϕ
p,p ⊂ Ck,ϕ

p and

∃c > 0 ∀f ∈ Bk,ϕ
p,p : ‖f‖Ck,ϕ

p
≤ c ‖f‖Bk,ϕ

p,p
.

The case p = ∞ is considered similarly.

Lemma 3.2. Let 1 ≤ p <∞, ϕ ∈ Φk, k ∈ N and∫ δ

0

ϕ (t)

t
dt = O (ϕ (δ)) (δ > 0) . (3.2)

Then the embedding
Ck,ϕ

p ⊂ Bk,ϕ
p,∞ (3.3)

holds and
∃c > 0 ∀f ∈ Ck,ϕ

p : ‖f‖Bk,ϕ
p,∞

≤ c ‖f‖Ck,ϕ
p
.

Proof. Let 1 ≤ p <∞ and f ∈Ck,ϕ
p . Then with the help of Theorem B [22] taking into

account (2.2) and (3.2), we obtain

ωk
f (δ)p ≤ c ·

∫ δ

0

t−
n
p
−1µk

f (t)pp dt = c ·
∫ δ

0

µk
f (t)pp

tn/pϕ (t)
· ϕ (t)

t
dt

= c ·
∫ δ

0

∥∥∥∥∥µk
f (· ; t)p

tn/pϕ (t)

∥∥∥∥∥
Lp(Rn)

· ϕ (t)

t
dt ≤ c1 ·

∥∥∥f#
k,ϕ,p

∥∥∥
Lp(Rn)

·
∫ δ

0

ϕ (t)

t
dt

≤ c2 ·
∥∥∥f#

k,ϕ,p

∥∥∥
Lp(Rn)

· ϕ (δ) = c2 · |f |Ck,ϕ
p
· ϕ (δ) , δ > 0,

where the positive constants c1, c2 are independent of f and δ. Hence, it is easy to
obtain the statements of the lemma.

The following statement can be easily proved with the help of Theorem C [22].

Lemma 3.3. Let ϕ ∈ Φk, ϕ (+0) = 0, k ∈ N . Then the embedding

Ck,ϕ
∞ ⊂ Bk,ϕ

∞,∞ (3.4)

holds and
∃c > 0 ∀f ∈ Ck,ϕ

∞ : ‖f‖Bk,ϕ
∞,∞

≤ c ‖f‖Ck,ϕ
∞
.
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Remark 4. In the case ϕ (t) = tα (α > 0), k = [α] + 1 Lemmas 3.1, 3.2 and 3.3 were
proved in the paper by R. DeVore and R. Sharpley [6]. In the same paper it is proved
that embeddings (3.1), (3.3) and (3.4) are the best in the scale of Besov spaces.

Combining Lemma 3.1 and 3.2, we get the following theorem.

Theorem 3.1. Let 1 ≤ p <∞, ϕ ∈ Φk, k ∈ N and condition (3.2) be fulfilled. Then

Bk,ϕ
p,p ⊂ Ck,ϕ

p ⊂ Bk,ϕ
p,∞,

and the embeddings are continuous.

Lemma 3.1 and 3.3 yield

Theorem 3.2. Let ϕ ∈ Φk, ϕ (+0) = 0, k ∈ N . Then

Ck,ϕ
∞ = Bk,ϕ

∞,∞,

and the norms in these spaces are equivalent.

4 Properties of singular integrals

Consider the singular integral operator

Af (x) = Akf (x)

= lim
ε→+0

∫
Rn

Kε (x− y)−

 ∑
|ν|≤k−1

xν

ν!
DνK (−y)

X{|t|>1} (y)

 f (y) dy,

where

K (x) = Ω

(
x

|x|

)
· |x|−n ,

∫
Sn−1

Ω (x) ds = 0, Kε (x) = K (x)X{|t|>ε} (x) ,

X{|t|>ε} (x) is the characteristic function of the set {t ∈ Rn : |t| > ε}, Sn−1 is the
unit sphere in Rn, k ∈ N ; for k = 1 it is assumed that K (x) is differentiable and
has bounded first order partial derivatives, for k > 1 the function K (x) is k-times
continuously differentiable on Sn−1; ν = (ν1, ν2, ..., νn), ν1, ν2, ..., νn are non-negative
integers, x = (x1, x2, ..., xn) ∈ Rn, xν = xν1

1 · xν2
2 · ... · xνn

n , |ν| = ν1 + ν2 + ... + νn,
ν! = ν1!ν2! · · · νn!,

Dνf (x) :=
∂|ν|f

∂xν1
1 ∂x

ν2
2 ...∂x

νn
n

.

We can verify that if f ∈ Lp (Rn) (1 ≤ p <∞), then the singular integral Af = Akf
differs from the integral

Tf (x) = lim
ε→+0

∫
Rn

Kε (x− y) f (y) dy

by a polynomial of degree at most k − 1.
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Theorem D [20]. Let x ∈ Rn, f ∈ Lp
loc (Rn), 1 < p <∞, k ∈ N and∫ ∞

1

t−k−1mk
f (x; t)p dt < +∞.

Then the inequality

mk
Akf (x; r)p ≤ C · rk

∫ ∞

r

t−k−1mk
f (x; t)p dt

is true for any r > 0, where the constant C > 0 is independent of f , x and r. (The
statement of the theorem includes the existence of the singular integral Akf (x) almost
everywhere.)

By Z we denote a class of all functions ϕ ∈ Φ satisfying condition (3.2). The class
of all functions ϕ ∈ Φk satisfying the condition

δk

∫ ∞

δ

ϕ (t)

tk+1
dt = O (ϕ (δ)) (δ > 0) (4.1)

is denoted by Zk.
Let, for instance, ϕ (t) = tα, t ∈ (0,+∞). If α > 0, then ϕ ∈ Z, and if 0 ≤ α < k,

then ϕ ∈ Zk.

Theorem 4.1. Let f ∈ Lp
loc (Rn), 1 < p <∞, ϕ ∈ Zk, k ∈ N . If at the point x ∈ Rn

the quantity f#
k,ϕ,p (x) is finite, then the following inequality is valid

(Akf)#
k,ϕ,p (x) ≤ c · f#

k,ϕ,p (x) , (4.2)

where the constant c > 0 is independent of f and x.

Proof. By applying Theorem D [20] and taking into account relations (2.3) and (4.1),
it follows that

mk
Akf (x; r)p

ϕ (r)
≤ C · 1

ϕ (r)
· rk

∫ ∞

r

ϕ (t)

tk+1
·
mk

f (x; t)p

ϕ (t)
dt

≤ C1 · f#
k,ϕ,p (x) · 1

ϕ (r)
· rk

∫ ∞

r

ϕ (t)

tk+1
dt ≤ C2 · f#

k,ϕ,p (x) , r > 0,

where the constants C1 > 0, C2 > 0 are independent of f , x and r. Hence, inequality
(4.2) follows.

Note that Theorem 4.1 for k = 1, ϕ (δ) = δα (δ > 0), 0 < α < 1, was proved in the
paper by R. Sharpley and Y.-S. Shim [27].

By Theorem 4.1 the following theorem immediately turns out.

Theorem 4.2. Let 1 < p < ∞, ϕ ∈ Zk, k ∈ N . If f ∈ Lp
loc (Rn) and |f |Ck,ϕ

p
< +∞,

then the following inequality is valid

|Akf |Ck,ϕ
p
≤ c · |f |

C
k,ϕ
p

,

where the constant c > 0 is independent of f .
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Theorem 4.3. Let ϕ ∈ Z
⋂
Zk, k ∈ N , |f |Ck,ϕ

∞
< +∞. Then the following inequality

is true
|Akf |Ck,ϕ

∞
≤ c · |f |

C
k,ϕ
∞
,

with the constant c > 0 independent of f .

Proof. By virtue of the results of [23] there is a constant C0 > 0 such that if |f |Ck,ϕ
∞

<
+∞, then for all x ∈ Rn and r > 0

f#
k,ϕ,∞ (x) ≤ C0 |f |Ck,ϕ

∞
ϕ (r) .

Taking into account relation (2.3), we obtain that

Mk
f (r)∞ ≤ C1 |f |Ck,ϕ

∞
ϕ (r) , r > 0, (4.3)

where the constant C1 > 0 is independent of f and r.
On the other hand the following estimate

Mk
Akf (r)∞ ≤ C2

(∫ r

0

Mk
f (t)∞
t

dt+ rk

∫ ∞

r

Mk
f (t)∞
tk+1

dt

)
, r > 0 (4.4)

is well known (see [18]). Taking into account the condition ϕ ∈ Z
⋂
Zk, by inequalities

(4.3) and (4.4) we obtain that

Mk
Akf (r)∞ ≤ C3 |f |Ck,ϕ

∞
ϕ (r) , r > 0.

Further, for all x ∈ Rn we have

(Akf)#
k,ϕ,∞ (x) ≈ sup

r>0

mk
Akf (x; r)∞
ϕ (r)

≤ sup
r>0

Mk
Akf (r)∞
ϕ (r)

≤ C3 |f |Ck,ϕ
∞
.

Therefore
|Akf |Ck,ϕ

∞
:=
∥∥∥(Akf)#

k,ϕ,∞

∥∥∥
L∞(Rn)

≤ c |f |Ck,ϕ
∞
,

where the constant c > 0 is independent of f .

The last theorem is an analogue of Plemelj-Privalov’s theorem for multi-dimensional
singular integrals (see, for instance, [25]).

In the case ϕ (t) = tα, where α > 0 and α is non-integer, Theorems 4.2 and 4.3 for
the integral A1f (including the case p = 1) were proved in the paper by R. Sharpley,
Y.-S. Shim [27].

By the from definition of the space Ck,ϕ
p it follows that Ck,ϕ

p continuously embedded
in the space Lp.

From Theorem 4.2 we get the following

Theorem 4.4. Let 1 < p <∞, ϕ ∈ Zk, k ∈ N and

Tf (x) = v.p.

∫
Rn

K (x− y) f (y) dy = lim
ε→+0

∫
Rn

Kε (x− y) f (y) dy.

Then the operator Tf boundedly acts in the space Ck,ϕ
p .
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For the case ϕ (t) = tα, where α > 0, this theorem was proved in the paper [20].
A theorem on the boundedness of a singular integral operator on the interval (0, 1) in
the space Cα

p for the case 0 < α < 1 was proved in the paper by A. Korenovskii [12].
The boundedness of singular integral operators in general Morrey-type spaces was

studied in [2].
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