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Abstract. This paper is devoted to the study of certain maximal functions measuring
smoothness, related function spaces, and properties of multidimensional singular inte-
grals. In this work we essentially use the relation between maximal functions measuring
smoothness and local oscillation of functions.

1 Introduction

Maximal functions measuring smoothness play an important role in the study of struc-
tural properties of singular integrals, potential type integrals and other objects of Har-
monic Analysis. It is well known that maximal functions of this type are useful in the
study of smoothness of functions and of the mapping properties of various operators
on smoothness spaces. The main theme of this paper is the study of certain maximal
functions measuring smoothness, related function spaces and corresponding properties
of singular integrals. In this work we essentially use the relation between maximal
functions measuring smoothness and local oscillation of functions.

The paper is organized as follows.

Section 2 has auxiliary character and presents the basic definitions, some notation
and well-known facts. In Section 3 we prove certain embedding theorems for the
spaces C;f"ﬁ and B;f;f (for definitions see Section 3). In Section 4 the properties of a
multidimensional singular integral in terms of maximal functions measuring smoothness
are investigated. The main results are given in Theorems 3.1, 3.2, 4.2, and 4.3.

2 Preliminaries

Let @ be the class of all positive monotonically increasing on (0, +00) functions such
that ¢ (+0) = 0, and @, (k € N) (N is the set of all natural numbers) be the class of
all functions ¢ € @ such that ¢ (¢) - 7% almost decreases!. By definition we assume
that the function ¢ () = 1 is an element of the class®.

LA function h is called almost decreasing on (0, +00), if there exists a constant ¢ > 0 such that for
any x1 < x2 in (0, 4+00) h (z2) < ch (z1).
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Let R™ be the n-dimensional Euclidean space of points =z = (z1,z9,...,2,),
B(a,r) := {z € R": |x —a|] <r} be the closed ball in R" of radius » > 0 with the
center at the point a € R". Denote the class of all locally p-power summable functions
defined on R™ by L (R™), (1 <p < o), the class of all locally bounded functions

loc
defined on R" by L (R"™).

Denote by P the totality of all polynomials on R™ whose degrees are equal to or
less than ke N [J{0}. If E C R™is (Lebesgue) measurable , let | E| denote the measure
of E.

Let ke N, p € &, 1 < p < oo. Introduce the following notation

# L : R n
flop (@)= Srli%) o (1) welg,f_l {’B (@, r)|=7-|If 7THLP(B(LT))} ,x € R,

where f € L} (R").

loc

For fe L} (R"),1<p<o00,1<¢q<00, ke N define the following functions

,u]} (z;7), = weig,f_l 1f =7l @y, 7>0, z€R",

if 1<qg< o0,

k(.
H:uf (-7T)p La(Rm)

sup ,u’} (z;7), if ¢=oo.
TER"™
Let v = (21, 22,....,%,) € R", v = (11,15, ..., ), v; (i = 1,2,...,n) be non-negative
integers, |v| = vy + 1o+ ... F vy, ¥ = 2]t - x5 - - - xbr. Apply the orthogonalization
process with respect to the inner product

1
(f.9) = W/B(O,l)f(t)g<t> dt

to the system of the power functions {z"}, |v| < k, (k € N|J{0}) arranged in partially
lexicographic order? [21]. Denote by {¢,}, || < k the obtained orthonormal system.

Let L}, (R™). Suppose that ([6], [19]):
1 t—a r—a
Pk’B(a’r)f (x) N I% (m B(a,r) f (t) o < r ) dt) i ( r ) .

It is obvious that P (. f is a polynomial whose degree is less than or equal to k.
Denote

Ok (fa B ((I, T))p = ||f o Pk_LB(auT)f“LP(B(a,T))

for f € Ly, (") (1 <p < o0). Let us call Oy (f, B (a,7)), the local oscillation of k-th
order of the function f on the ball B (a,r) in the metric LP.
Note that if £ = 0, then

1
Pk:B(ar)f(x) =57 f(t) dt =: fB(ar)
‘B (CL,T’)’ B(a,r) ’
2This means that 2” precedes x# if either |v| < |u|, or |v| = |u| and the first nonzero difference

v; — l; is negative.
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and therefore

07 Blar) = [ 150 foa]

B(a,r

It is known [17] that for each polynomial 7 € P,_; and each ball B (z,7) C R" the
inequality

Hf - Pk—l,B(:cm)fHLp(B( )) < C ||f - 7T||LP(B($,'I‘))

is true, where a positive constant C' does not depend on p, f, B and w. Hence it

follows that
3C >0, Vx e R", Yr >0

wy (@37), < Ox (f, B (x,7)), < C- i (z;7),. (2.1)

It should be mentioned that the theory of spaces defined by local oscillation has
been developed by several authors, for instance by F. John and L. Nirenberg [10],
S. Campanato [5], N.G. Meyers [14], S. Spanne [28|, J. Peetre [16], D. Sarason [26] etc.
(see also [1], [9], [24], [30], [13]).

Fork=1,¢p(t)=1,p=1 we get

3C1 >0 3C, >0 Vo € R*: Ciff, (x) < fF(z) < Cuff,, (2),

where

1
f7 () = sup s
r>0 ‘B(I‘,T” B(z,r)

|[f(t) = fo@n|dt.

[ (z) is Fefferman-Stein’s maximal function (introduced in [7]).
It is obvious that

k
-1 py (@;7)
T (2) = 7 sup - L

D o (1) r e R", (2.2)

where v, := |B(0,1)].

For ¢(t) = t* (a>0), k¥ = [a] +1 or £ = (a) + 1 the func-
tion f,f%p (), was considered in the papers of A. Calderon and R. Scott [4],
R. DeVore and R. Sharpley [6]. In the latter paper the following notation was used:

12, @) = fl ey () Foy (@) = ey (2)

(here [a] is an integer part of the number «; («) is the largest integer less than «).
For k =1, ¢ € &1 the function f,f%p was used in the papers of V.I. Kolyada [11],
E. Nakai and H. Sumitomo [15], and others.
Notice that if o is not an integer, then f¥ (x) = f2,(z). For any o > 0 the
inequality
fZ, (x) <const- [l (z), x€R"

is valid.
Modulus of continuity of order & € N of the function f in the metric L? (1 < p < c0)
is defined by the equality

@y )y = o0 [|83 |y (0>0)-
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where
Apf (@)= fz+h)—fl2), Af =40, (A1)
For f € L (R"),1<p<o0, ke N we consider also the following functions

loc

i (3;0), = sup {|B (z.1)| * - Ox (£, B (x,7)), }, w € R, 5> 0;

r<é

Mf (6), = xseulg m’; (z;6),, 6 > 0.

Let us notice that the functions

py (w5r), s (), i (8),, my(zir), and My (r),

monotonically increase on the interval (0, +00) with respect to the argument r.
Further, for positive functions ' and G we will use the notation F' (u) ~ G (u),
u € U if there exist positive constants ¢; and ¢y such that

VueU:aF (u) <G(u) <cF(u).

Let us mention some known facts which we will use further in this work.

Theorem A [22]. If f € LY(R"), 1 <p <gq < o0 (for ¢ = o0 it is supposed that f is
equivalent to a continuous function) then the inequality

pk(8),, < ¢ 6rwh (), (6> 0)

pq —

holds, where ¢ > 0 is independent of f and 9.

Theorem B [22]. Let f € L] (R"),1<p<o0,1<q< o0,

loc

1
/ ta b (t),, dt < +oo.
0

Then the inequality

5
W} (6), <c- /0 f%*lu’} (t),pdt (6>0)

is true, where the constant ¢ > 0 is independent of f and d.

Theorem C [22]. Let f € L2 (R™). Then the inequality

loc
() <t (6) e (6> 0)
is true, where the constant ¢ > 0, is independent of f and J.

Lemma 2.1. Let 1 <p < oo, k€ N. Then the following relation

k(.
" my (a:,r)p .
T) ~ su , TER 2.3
fk,go,p( ) 7‘>IOJ QD(Z‘) ( )

hold, where the constants in the relation “~” do not depend on f € LV (R").

loc
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Proof. Taking into account relation (2.1), by the definitions of functions f,f op (T),
wf (w;7),, mh (x;6), we obtain that

O 7B 5 k :
flfw,p () < sup e, B (@), < supw

< , v €R" 2.4
>0 [B(z, 7)o (r) T 0 p(r) 24)

By the definition of f,f%p (x), with the help of (2.1), it follows also that for all » > 0

the inequality

flop @ @ (r) = |B(w,r)| 77 -y (w;7), > c|B(z,7)[ "% - O (f, B (x,7)),
holds. If to take supremum for r < § in both parts of this inequality we will get

fop @ @ (0) = c-mf(x;6),, € R", §>0,

and hence k (:8)
Fo@)y>e I e jn 550 2.5
fk‘,gﬂ,p (I) ZC ()0(5) y L ) ) ( : )
where the constant ¢ > 0 is independent of x, § and f.
By relations (2.4) and (2.5) we obtain the required relation (2.3). O

3 Spaces CZ’f"F’, B]’j;;f and some embedding theorems

Let ke N, p € &, 1 <p < 0. By C;f"" (R™) we denote the totality of all the functions
f e L? (R") for which ff eL?(R"), i.e.

kyp,p

Che=cpe(RY) = {fe " (R"): ff,, e 1" (R)}.
Introduce the norm in CI])W by means of the equality

I llese = Wl ogany + 1Flcpe

where

flege = ||

With the introduced norm the space C]’;""’ is a Banach space.
In the paper of R. DeVore and R. Sharpley [6] for the space C¥# in the case ¢ (t) = t
(o > 0), the following notation was used:

LP(Rn)

Cy, if k=la]+1,
k6%
cyt = L

ce, if k=(a)+1

Some weighted analogues of the spaces C}¥ and C’;‘ were considered in the paper of
D.C. Yang and S.B. Yang [31].
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Theorem ([3]). If k£ is a positive integer and 1 < p < oo, then
~k ny __ k n
Cp(R )_Wp (R )7
where Wlf (R™) is the Sobolev space, and the norms in these spaces are equivalent.

Theorem ([6]). Let o > 0. Then
Ce (R") = Lipa,

where

Lipa = {f € L*(R"): u);a)ﬂ (0), =0 (%), 6> 0} :

T T L A O
o = Wl 30y L

and the norms in these spaces are equivalent.
For a discussion of the Lipschitz spaces Lip « see, for instance, [29].
Let kK € N, p € &, 1 < p,gq < c0. By B]’;;f we denote the totality of all the

functions f € LP (R") (for p = oo it is assumed that f is equivalent to a continuous
function) for which the following semi-norm is finite

1
e’} wk(t) >th)q .
e ) & if 1<qg< o0,

wi(®)y

o(t)

[ Flagy =

sup if ¢g= .

>0
In the space B;f;f we introduce the norm by the equality
1t = 1y + gt -

Note that spaces of type B]’,f;f have been considered in works of several authors (see,
e.g., |8] and the literature quoted there).

Lemma 3.1. Let 1 <p < oo, p € Py, k € N. Then the embedding
k, k,
Byy CC¥ (3.1)

holds and
3> 0V € B g < el g

Proof. First we notice that if ¢ € @y, then ¢ (2r) = ¢ (r), r > 0.
Let 1 < p < co. Then for all » > 0 and x € R" we have

o [k (1), \" dt 2 k(1) \ " dt pk (), \"
/0 (tn/pgp(t)) t = /r <t"/p<p(t)) t ze (r”/mp(r)>
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where the constant ¢ > 0 is independent of x, r and f. By equality (2.2) we obtain
that for any x € R"

P pk (), \" o (), dt
(flfw,p(x>) = Tn (iglgw/p—m) S(C%) /o (W) T

Hence, with the help of Theorem A [22] we get

-1 13 ( ) dt o0 w’; (t)p Pt
LP(RM) — < (em) /0 (W) r <const-/0 (W) n

The last inequality implies that if 1 < p < oo, then B;;”;f C CZ’)W and

|52

3> 0 VF € B+ fllge < clfllagy
The case p = oo is considered similarly. O]

Lemma 3.2. Let 1 <p < oo, p € Dy, k€ N and

5
t
/ @T()dt —0(p(8)) (6> 0). (3.2)
0
Then the embedding
Ch¢ C BYY, (3.3)
holds and
3> 0 W € |l < elfllcpe

Proof. Let 1 < p < oo and f €C}¥. Then with the help of Theorem B [22] taking into
account (2.2) and (3.2), we obtain

6 5 .k
e [ | 2ot

5 k(. ¢ 5
:c_/ AL -90(t>dt§c1-Hf;* / o) ..
o || t"Pe(t) t Pl Lermy Syt
Lp(R™)
o ||y 0O = 2 e 0(8). 5> 0

where the positive constants c¢;, co are independent of f and §. Hence, it is easy to
obtain the statements of the lemma. O

The following statement can be easily proved with the help of Theorem C [22].
Lemma 3.3. Let ¢ € @k, ¢ (+0) =0, k € N. Then the embedding
Chk¥ c BY?, (3.4)

holds and
3e> 0 9/ € CE - ||fllpse, < el s
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Remark 4. In the case ¢ (t) =t* (o > 0), k = [a] + 1 Lemmas 3.1, 3.2 and 3.3 were
proved in the paper by R. DeVore and R. Sharpley [6]. In the same paper it is proved
that embeddings (3.1), (3.3) and (3.4) are the best in the scale of Besov spaces.

Combining Lemma 3.1 and 3.2, we get the following theorem.

Theorem 3.1. Let 1 < p < oo, p € Py, k € N and condition (3.2) be fulfilled. Then

Byy C Cy¥ C By,
and the embeddings are continuous.
Lemma 3.1 and 3.3 yield

Theorem 3.2. Let ¢ € @y, ¢ (+0) =0, k € N. Then
CL? = BL?

00,007

and the norms in these spaces are equivalent.

4 Properties of singular integrals

Consider the singular integral operator

Af(x) = Apf ()

= lim K(x-y)—| Y j—?D”K(—y) Xyos1y (v) ¢ f (y) dy,

e—=+0 Jpn Wi<het

where
K(z)=Q (H) e /S Q(2)ds = 0, K. (2) = K (2) Xy ().

X{jt/>e} (z) is the characteristic function of the set {t € R": [t| > ¢}, S"' is the
unit sphere in R", k € N; for k = 1 it is assumed that K (z) is differentiable and
has bounded first order partial derivatives, for k& > 1 the function K (x) is k-times
continuously differentiable on S™™'; v = (v1,vs, ..., V), V1, Va, ..., Uy are non-negative
integers, v = (z1,22,...,2,) € R", a¥ = o' -ay® - .- aln, [v] = v1 + 0 + .. + U,
vl =l -y,

[v|
Dt p—

COx 0xk? .0

We can verify that if f € LP (R™) (1 < p < 00), then the singular integral Af = Ay f
differs from the integral

Tf(x)=lim [ K.(z—y)f(y)dy

e—40 Rn

by a polynomial of degree at most k — 1.
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Theorem D [20]. Let z € R", f € L} (R"), 1 <p < oo, k€ N and

loc
/1 5 tml (a; t), dt < +oo.
Then the inequality

mﬁlkf (z;7), <C- rk/ t_k_lml} (z;t),dt
is true for any r > 0, where the constant C' > 0 is independent of f, z and r. (The
statement of the theorem includes the existence of the singular integral Ay f (x) almost
everywhere.)
By Z we denote a class of all functions ¢ € @ satisfying condition (3.2). The class
of all functions ¢ € @, satisfying the condition

5" /500 fk—(fl)dt — 0(p(5)) (> 0) (4.1)

is denoted by Zj.
Let, for instance, ¢ (t) =t*, ¢t € (0,+00). If @« > 0, then p € Z, and if 0 < o < &,
then ¢ € Z.

Theorem 4.1. Let f € I} (R"), 1 <p< o0, ¢ € Zy, k € N. If at the point x € R"

loc

the quantity f,f%p (x) is finite, then the following inequality is valid

(AN o @) < e S, (@), (4.2)
where the constant ¢ > 0 is independent of f and x.

Proof. By applying Theorem D [20] and taking into account relations (2.3) and (4.1),
it follows that

My @)y o 1 [T Myt
(1) =¢ () /tk+1 o

1 )
< Cl-f,f%p(x) ' @ (r) ‘rk/r tht1 dt < 02'][’?1&@0713 (@), 7>0,

where the constants C'; > 0, C5 > 0 are independent of f, x and r. Hence, inequality
(4.2) follows. O

Note that Theorem 4.1 for k =1, ¢ (§) = d* (§ > 0), 0 < a < 1, was proved in the
paper by R. Sharpley and Y.-S. Shim [27].
By Theorem 4.1 the following theorem immediately turns out.

Theorem 4.2. Let 1 <p<oo, p € Z, ke N. If f € L} (R") and |f|C§,w < +00,

loc

then the following inequality is valid
|Akf|CI’fv<P <c- |f|C;f’“P )

where the constant ¢ > 0 is independent of f.
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Theorem 4.3. Let ¢ € Z(\Zx, k € N, [f|ore < +00. Then the following inequality
18 true

Aflege <111,
with the constant ¢ > 0 independent of f.

Proof. By virtue of the results of [23] there is a constant Cy > 0 such that if |f|C§Q,¢ <
400, then for all x € R™ and r > 0

oo (@) < Colflone 0 (r) -
Taking into account relation (2.3), we obtain that
My (r)o < Culflgre 9 (r) 7 >0, (4.3)

where the constant C] > 0 is independent of f and r.
On the other hand the following estimate

M, ; (1) < Cs (/0 %dtwk/ %dt), r>0 (4.4)

is well known (see [18]). Taking into account the condition ¢ € Z (] Z, by inequalities
(4.3) and (4.4) we obtain that

MY, 5 (1) < Cs|flare @ (r), 7>0.

Further, for all x € R™ we have

mk . (z;7) ME . (r)
A, £\ 2~ sup —Akf 0 o T ARV Joo o .
( kf)k,(p,oo ( ) r>18 © 7,) = r>18 © (7,) = V3 |f‘coo*’

Therefore
|Apf ke = H(Akf)iﬁfon

where the constant ¢ > 0 is independent of f. m

Leo(R™) < Wler

The last theorem is an analogue of Plemelj-Privalov’s theorem for multi-dimensional
singular integrals (see, for instance, [25]).

In the case ¢ (t) = t*, where o > 0 and « is non-integer, Theorems 4.2 and 4.3 for
the integral A; f (including the case p = 1) were proved in the paper by R. Sharpley,
Y.-S. Shim [27].

By the from definition of the space C# it follows that C# continuously embedded
in the space LP.

From Theorem 4.2 we get the following

Theorem 4.4. Let 1 <p < oo, ¢ € Zy, k€ N and

Tf(x)=vp. | K(rx—y)fy)dy=lim [ K (z—y)f(y)dy.

Rn e—+0 Rn

Then the operator T f boundedly acts in the space C’If’“’.
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For the case ¢ (t) = t*, where a > 0, this theorem was proved in the paper [20].
A theorem on the boundedness of a singular integral operator on the interval (0, 1) in
the space Cy for the case 0 < a < 1 was proved in the paper by A. Korenovskii [12].

The boundedness of singular integral operators in general Morrey-type spaces was
studied in [2].
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