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Abstract. Let q(x) be real-valued compactly supported su�ciently smooth function.
It is proved that the scattering data A(−β, β, k) ∀β ∈ S2, ∀k > 0, determine q uniquely.

1 Introduction
The scattering solution u(x, α, k) solves the scattering problem:

[∇2 + k2 − q(x)]u = 0 in R3, (1)

u = eikα·x + A(β, α, k)
eikr

r
+ o

(
1

r

)
, r := |x| → ∞, β :=

x

r
. (2)

Here α, β ∈ S2 are the unit vectors, S2 is the unit sphere, the coe�cient A(β, α, k) is
called the scattering amplitude, q(x) is a real-valued compactly supported su�ciently
smooth function. The inverse scattering problem of interest is to determine q(x) given
the backscattering data A(−β, β, k) ∀β ∈ S2, ∀k > 0. This problem is called the
inverse scattering problem with backscattering data.

The function A(−β, β, k) depends on one unit vector β and on the scalar k, i.e.,
on three variables. The potential q(x) depends also on three variables x ∈ R3. This
inverse problem is, therefore, not over-determined in the sense that the data and the
unknown q(x) are functions of the same number of variables.

Assumption A): We assume that q is compactly supported, i.e., q(x) = 0 for |x| > a,
where a > 0 is an arbitrary large �xed number; q(x) is real-valued, i.e., q = q; and
q(x) ∈ H`

0(Ba), ` > 3.
Here Ba is the ball centered at the origin and of radius a, and H`

0(Ba) is the closure
of C∞0 (Ba) in the norm of the Sobolev space H`(Ba) of functions whose derivatives up
to the order ` belong to L2(Ba).

It was proved in [5] that if q = q and q ∈ L2(Ba) is compactly supported, then the
resolvent kernel G(x, y, k) of the Schr�odinger operator −∇2+q(x)−k2 is a meromorphic
function of k on the whole complex plane k, analytic in Imk ≥ 0, except, possibly, of
a �nitely many simple poles at the points ikj, kj > 0, 1 ≤ j ≤ n, where −k2

j are
negative eigenvalues of the selfadjoint operator −∇2 + q(x) in L2(R3). Consequently,
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the scattering amplitude A(β, α, k), corresponding to the above q, is a restriction to the
positive semiaxis k ∈ [0,∞) of a meromorphic on the whole complex k-plane function.

It was proved by the author ([6]), that the �xed-energy scattering data A(β, α) :=
A(β, α, k0), k0 = const > 0, ∀β ∈ S2

1 , ∀α ∈ S2
2 , determine real-valued compactly

supported q ∈ L2(Ba) uniquely. Here S2
j , j = 1, 2, are arbitrary small open subsets of

S2 (solid angles).
In [9] (see also monograph [10], Chapter 5, and [7]) an analytical formula is derived

for the reconstruction of the potential q from exact �xed-energy scattering data, and
from noisy �xed-energy scattering data, and stability estimates and error estimates for
the reconstruction method are obtained. To the author's knowledge, these are the only
known until now theoretical error estimates for the recovery of the potential from noisy
�xed-energy scattering data in the three-dimensional inverse scattering problem.

In [8] stability results are obtained for the inverse scattering problem for obstacles.
The scattering data A(β, α) depend on four variables (two unit vectors), while

the unknown q(x) depends on three variables. In this sense the inverse scattering
problem, which consists of �nding q from the �xed-energy scattering data A(β, α), is
overdetermined.

Historical remark. In the beginning of the forties of the last century physicists
raised the the following question: is it possible to recover the Hamiltonian of a
quantum-mechanical system from the observed quantities, such as S-matrix? In the
non-relativistic quantum mechanics the simplest Hamiltonian H = −∇2 + q(x) can be
uniquely determined if one knows the potential q(x). The S-matrix in this case is in
one-to-one correspondence with the scattering amplitude A: S = I − k

2πi
A, where I

is the identity operator in L2(S2), A is an integral operator in L2(S2) with the kernel
A(β, α, k), and k2 > 0 is energy. Therefore, the question, raised by the physicists, is
reduced to an inverse scattering problem: can one determine the potential q(x) from
the knowledge of the scattering amplitude. We have brie�y discussed this problem
above.

Since the above question was raised, there were no uniqueness theorems for three-
dimensional inverse scattering problems with non-overdetermined data. The goal of
this paper is to prove such a theorem.

Theorem 1. If Assumption A) holds, then the data A(−β, β, k) ∀β ∈ S2, ∀k > 0,
determine q uniquely.

Remark. The conclusion of Theorem 1 remains valid if the data A(−β, β, k) are known
∀β ∈ S2

1 and k ∈ (k0, k1), where (k0, k1) ⊂ [0,∞) is an arbitrary small interval, k1 > k0,
and S2

1 is an arbitrary small open subset of S2.

In Section 2 we formulate some known auxiliary results.
In Section 3 proof of Theorem 1 is given.
In the Appendix a technical estimate is proved.
A brief announcement of the result is given in [3]. Altough we follow the outline

of the ideas from [3], the current paper is essentially self-contained and contains new
arguments.
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2 Auxiliary results
Let

F (g) := g̃(ξ) =

∫

R3

g(x)eiξ·xdx, g(x) =
1

(2π)3

∫

R3

e−iξ·xg̃(ξ)dξ. (3)

If f ∗ g :=
∫
R3 f(x− y)g(y)dy, then

F (f ∗ g) = f̃(ξ)g̃(ξ), F (f(x)g(x)) =
1

(2π)3
f̃ ∗ g̃. (4)

If
G(x− y, k) :=

eik[|x−y|−β·(x−y)]

4π|x− y| , (5)

then
F (G(x, k)) =

1

ξ2 − 2kβ · ξ , ξ2 := ξ · ξ. (6)

The scattering solution u = u(x, α, k) solves (uniquely) the integral equation

u(x, α, k) = eikα·x −
∫

Ba

g(x, y, k)q(y)u(y, α, k)dy, (7)

where
g(x, y, k) :=

eik|x−y|

4π|x− y| . (8)

If
v = e−ikα·xu(x, α, k), (9)

then
v = 1−

∫

Ba

G(x− y, k)q(y)v(y, α, k)dy, (10)

where G is de�ned in (5).
De�ne ε by the formula

v = 1 + ε. (11)
Then (10) can be rewritten as

ε(x, α, k) = −
∫

R3

G(x− y, k)q(y)dy − Tε, (12)

where
Tε :=

∫

Ba

G(x− y, k)q(y)ε(y, α, k)dy.

Fourier transform of (12) yields (see (4),(6)):

ε̃(ξ, α, k) = − q̃(ξ)

ξ2 − 2kα · ξ −
1

(2π)3

1

ξ2 − 2kα · ξ q̃ ∗ ε̃. (13)

An essential ingredient of our proof in Section 3 is the following lemma, proved by the
author in [10], p.262, and in [9]. For convenience of the reader a short proof of this
lemma is given in Appendix.
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Lemma 1. If Aj(β, α, k) is the scattering amplitude corresponding to potential qj,
j = 1, 2, then

−4π[A1(β, α, k)− A2(β, α, k)] =

∫

B1

[q1(x)− q2(x)]u1(x, α, k)u2(x,−β, k)dx, (14)

where uj is the scattering solution corresponding to qj.

Consider an algebraic variety M in C3 de�ned by the equation

M := {θ · θ = 1, θ · θ := θ2
1 + θ2

2 + θ2
3, θj ∈ C, 1 ≤ j ≤ 3.} (15)

This is a non-compact variety, intersecting R3 over the unit sphere S2.
Let R+ = [0,∞). The following result is proved in [11], p.62.

Lemma 2. If Assumption A) holds, then the scattering amplitude A(β, α, k) is a re-
striction to S2×S2×R+ of a function A(θ′, θ, k) on M×M×C, analytic on M×M
and meromorphic on C, θ′, θ ∈M, k ∈ C.

The scattering solution u(x, α, k) is a meromorphic function of k in C, analytic in
Imk ≥ 0, except, possibly, at the points k = ikj, 1 ≤ j ≤ n, kj > 0, where −k2

j are
negative eigenvalues of the selfadjoint Schr�odinger operator, de�ned by the potential q
in L2(R3). These eigenvalues can be absent, for example, if q ≥ 0.

We need the notion of the Radon transform:

f̂(β, λ) :=

∫

β·x=λ
f(x)dσ, (16)

where dσ is the element of the area of the plane β · x = λ, β ∈ S2, λ is a real number.
The following properties of the Radon transfor will be used:

∫

Ba

f(x)dx =

∫ a

−a
f̂(β, λ)dλ, (17)

∫

Ba

eikβ·xf(x)dx =

∫ a

−a
eikλf̂(β, λ)dλ, (18)

f̂(β, λ) = f̂(−β,−λ). (19)

These properties are proved, e.g., in [12], pp. 12, 15. We also need the following
Phragmen-Lindel�of lemma, which is proved in [1], p.69, and in [2].

Lemma 3. Let f(z) be holomorphic inside an angle A of opening < π; |f(z)| ≤
c1e

c2|z|, z ∈ A, c1, c2 > 0 are constants; |f(z)| ≤ M on the boundary of A; and f is
continuous up to the boundary of A. Then |f(z)| ≤M, ∀z ∈ A.
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3 Proof of Theorem 1
The scattering data in Remark determine uniquely the scattering data in Theorem 1
by Lemma 2.

Let us outline the ideas of the proof of Theorem 1.
Assume that potentials qj, j = 1, 2, generate the same scattering data:

A1(−β, β, k) = A2(−β, β, k) ∀β ∈ S2, ∀k > 0,

and let
p(x) := q1(x)− q2(x).

Then by Lemma 1, see equation (14), one gets

0 =

∫

Ba

p(x)u1(x, β, k)u2(x, β, k)dx, ∀β ∈ S2, ∀k > 0. (20)

By (9) and (11) one can rewrite (20) as
∫

Ba

e2ikβ·x[1 + ε(x, k)]p(x)dx = 0 ∀β ∈ S2, ∀k > 0, (21)

where
ε(x, k) := ε := ε1(x, k) + ε2(x, k) + ε1(x, k)ε2(x, k).

By Lemma 2 the relations (20) and (21) hold for complex k,

k =
κ+ iη

2
, κ+ iη 6= 2ikj, η ≥ 0. (22)

Using formulas (3)-(4), one derives from (21) the relation

p̃((κ+ iη)β) +
1

(2π)3
(ε̃ ∗ p̃)((κ+ iη)β) = 0 ∀β ∈ S2, ∀κ ∈ R, (23)

where the notation (f ∗ g)(z) means that the convolution f ∗ g is calculated at the
argument z = (κ+ iη)β.

One has

sup
β∈S2

|ε̃ ∗ p̃| := sup
β∈S2

|
∫

R3

ε̃((κ+ iη)β − s)p̃(s)ds| ≤ ν(κ, η) sup
s∈R3

|p̃(s)|, (24)

where
ν(κ, η) := sup

β∈S2

∫

R3

|ε̃((κ+ iη)β − s)|ds.

We prove that if η = η(κ) = O(lnκ) is suitably chosen, namely as in (29) below, then
the following inequality holds:

0 < ν(κ, η(κ)) < 1, κ→∞. (25)
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We also prove that
sup
β∈S2

|p̃((κ+ iη(κ))β)| ≥ sup
s∈R3

|p̃(s)|, κ→∞, (26)

and then it follows from (23)-(26) that p̃(s) = 0, so p(x) = 0, and Theorem 1 is
proved. Indeed, it follows from (23) and (26) that, for su�ciently large κ and a suitable
η(k) = O(ln k), one has

sup
s∈R3

|p̃(s)| ≤ 1

(2π)3
ν(κ, η(κ)) sup

s∈R3

|p̃(s)|.

If (25) holds, then the above equation implies that p̃ = 0. This and the injectivity of
the Fourier transform imply that p = 0.

This completes the outline of the proof of Theorem 1.
Let us now give a detailed proof of estimates (25) and (26), that completes the

proof of Theorem 1.
We assume that p(x) 6≡ 0, because otherwise there is nothing to prove. Let

max
s∈R3

|p̃(s)| := P 6= 0.

Lemma 4. If Assumption A) holds and P 6= 0, then
lim sup
η→∞

max
β∈S2

|p̃((κ+ iη)β)| = ∞, (27)

where κ > 0 is arbitrary but �xed. For any κ > 0 there is an η = η(κ), such that
max
β∈S2

|p̃((κ+ iη(κ))β)| = P , (28)

where the number P := maxs∈R3 |p̃(s)|, and
η(κ) = a−1 lnκ+O(1) as κ→ +∞. (29)

Proof of Lemma 4. By formula (18) one gets

p̃((κ+ iη)β) =

∫

Ba

p(x)ei(κ+iη)β·xdx =

∫ a

−a
eiκλ−ηλp̂(β, λ)dλ. (30)

The function p̂(β, λ) is compactly supported, real-valued, and satis�es relation (19).
Therefore

max
β∈S2

|p̃((κ+ iη(κ))β)| = max
β∈S2

|p̃((κ− iη(κ))β)|. (31)

Indeed,

max
β∈S2

|p̃((κ+ iη(κ))β)| = max
β∈S2

∣∣∣∣
∫ a

−a
eiκλ−ηλp̂(β, λ)dλ

∣∣∣∣

= max
β∈S2

∣∣∣∣
∫ a

−a
e−iκµ+ηµp̂(β,−µ)dµ

∣∣∣∣

= max
β′∈S2

∣∣∣∣
∫ a

−a
e−iκµ+ηµp̂(−β′,−µ)dµ

∣∣∣∣

= max
β′∈S2

∣∣∣∣
∫ a

−a
e−iκµ+ηµp̂(β′, µ)dµ

∣∣∣∣
= max

β∈S2
|p̃((κ− iη)β)|.

(32)
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At the last step we took into account that p̂(β, λ) is a real-valued function, so

max
β∈S2

∣∣∣∣
∫ a

−a
e−iκµ+ηµp̂(β, µ)dµ

∣∣∣∣ = max
β∈S2

∣∣∣∣
∫ a

−a
eiκµ+ηµp̂(β, µ)dµ

∣∣∣∣
= max

β∈S2
|p̃((κ− iη)β)|.

(33)

If p(x) 6≡ 0, then (30) and (31) imply (27), as follows from Lemma 3. Let us give a
detailed proof of this statement.

Consider the function h of the complex variable z := κ+ iη :

h := h(z, β) :=

∫ a

−a
eizλp̂(β, λ)dλ. (34)

If (27) is false, then

|h(z, β)| ≤ c ∀z = κ+ iη, η ≥ 0, ∀β ∈ S2, (35)

where κ ≥ 0 is an arbitrary �xed number and the constant c > 0 does not depend on
β and η.

Thus, |h| is bounded on the ray {κ = 0, η ≥ 0}, which is part of the boundary of
the right angle A, and the other part of its boundary is the ray {κ ≥ 0, η = 0}. Let us
check that |h| is bounded on this ray also.

One has
|h(κ, β)| = |

∫ a

−a
eiκλp̂(β, λ)dλ| ≤

∫ a

−a
|p̂(β, λ)|dλ ≤ c, (36)

where c stands in this paper for various constants. From (35)-(36) it follows that
on the boundary of the right angle A, namely, on the two rays {κ ≥ 0, η = 0} and
{κ = 0, η ≥ 0} the entire function h(z, β) of the complex variable z is bounded,
|h(z, β)| ≤ c, and inside A this function satis�es the estimate

|h(z, β)| ≤ ea|η|
∫ a

−a
|p̂(β, λ)|dλ ≤ cea|η|, (37)

where c does not depend on β. Therefore, by Lemma 3, |h(z, β)| ≤ c in the whole
angle A.

By (31) the same argument is applicable to the remaining three right angles, the
union of which is the whole complex z−plane C. Therefore

sup
z∈C,β∈S2

|h(z, β)| ≤ c. (38)

This implies by the Liouville theorem that h(z, β) = c ∀z ∈ C.
Since p̂(β, λ) ∈ L1(−a, a), the relation

∫ a

−a
eizλp̂(β, λ)dλ = c ∀z ∈ C, (39)
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and the Riemann-Lebesgue lemma imply that c = 0, so p̂(β, λ) = 0 ∀β ∈ S2 and
∀λ ∈ R. Therefore p(x) = 0, contrary to our assumption. Consequently, relation (27)
is proved.

Relation (28) follows from (27) because for large η the left-hand side of (28) is
larger than P due to (27), while for η = 0 the left-hand side of (28) is not larger than
P by the de�nition of the Fourier transform.

Let us derive estimate (29).
From the assumption p(x) ∈ H`

0(Ba) it follows that

|p̃((κ+ iη)β)| ≤ c
ea|η|

(1 + κ2 + η2)`/2
. (40)

This inequality is proved in Lemma 5, below.
The right-hand side of this inequality is of the order O(1) as κ → ∞ if |η| =

a−1 lnκ+ O(1) as κ→∞. This proves relation (29) and we specify O(lnκ) as in this
relation.

Let us now prove inequality (40).

Lemma 5. If p ∈ H`
0(Ba) then estimate (40) holds.

Proof. Consider ∂jp := ∂p
∂xj
. One has

∣∣∣∣
∫

Ba

∂jpe
i(κ+iη)β·xdx

∣∣∣∣ =

∣∣∣∣−i(κ+ iη)βj

∫

Ba

p(x)ei(κ+iη)β·xdx

∣∣∣∣
= (κ2 + η2)1/2|p̃((κ+ iη)β)|.

(41)

The left-hand side of the above formula admits the following estimate
∣∣∣∣
∫

Ba

∂jpe
i(κ+iη)β·xdx

∣∣∣∣ ≤ cea|η|,

where the constant c > 0 is proportional to ||∂jp||L2(Ba). Therefore,

|p̃((κ+ iη)β)| ≤ c[1 + (κ2 + η2)]−1/2ea|η|. (42)

Repeating this argument one gets estimate (40). Lemma 5 is proved. ¤
Estimate (42) implies that if relation (29) holds and κ → ∞, then the quantity

supβ∈S2 |p̃((κ+ iη)β)| remains bounded as κ→∞.
If η is �xed and κ→∞, then supβ∈S2 |p̃((κ+ iη)β)| → 0 by the Riemann-Lebesgue

lemma. This, the continuity of |p̃((κ+iη)β)| with respect to η, and relation (27), imply
the existence of η = η(κ), such that equality (28) holds, and, consequently, inequality
(26) holds. This η(κ) satis�es (29) because P is bounded.

Lemma 4 is proved. ¤
To complete the proof of Theorem 1 one has to establish estimate (25). This

estimate will be established if one proves the following relation:

lim
κ→∞

ν(κ) := lim
κ→∞

ν(κ, η(κ)) = 0, (43)
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where η(κ) satis�es (29) and

ν(κ, η) = sup
β∈S2

∫

R3

|ε̃((κ+ iη)β − s)|ds. (44)

Our argument is valid for ε1, ε2 and ε1ε2, so we will use the letter ε and equation
(13) for ε̃.

Below we denote 2k := κ+ iη and we choose η = η(κ) = a−1 lnκ+O(1) as κ→∞.
We prove that equation (12) can be solved by iterations if Imη ≥ 0 and |k + iη|

is su�ciently large, because for such k + iη the operator T 2 has small norm in C(Ba),
the space of functions, continuous in the ball Ba, with the sup-norm. Since equation
(12) can be solved by iterations and the norm of T 2 is small, the main term in the
series, representing its solution, as |κ+ iη| → ∞, η ≥ 0, is the free term of the equation
(12). The same is true for the Fourier transform of equation (12), i.e., for equation
(13). Therefore the main term of the solution ε̃ to equation (13) as |κ + iη| → ∞,
η ≥ 0, is obtained by using the estimate of the free term of this equation. Thus, it
is su�cient to check estimate (43) for the function ν(κ, η(κ)) using in place of ε̃ the
function q̃(ξ)(ξ2 − 2kβ · ξ)−1, with 2k replaced by κ + iη and η = a−1 lnκ + O(1) as
κ→∞.

For the above claim that equation (12) has the operator

Tε =

∫

Ba

G(x− y, k)q(y)ε(y, β, k)dy,

with the norm ||T 2|| in the space C(Ba), which tends to zero as |κ+ iη| → ∞, η ≥ 0,
see Appendix.

Thus, let us estimate the modulus of the factor ν(κ, η) in (24) with η = η(κ) as in
(29). Using inequality (40), and denoting ξ = (κ + iη)β, where β ∈ S2 plays the role
of α in (13), one obtains:

I : = sup
β∈S2

∫

R3

|q̃((κ+ iη)β − s)|ds
|[(κ+ iη)β − s)2 − (κ+ iη)β · ((κ+ iη)β − s)]|

≤ cea|η| sup
β∈S2

∫

R3

ds

|s2 − (κ+ iη)β · s|[1 + (κβ − s)2 + η2]`/2

:= cea|η|J.

(45)

Let us prove that
J = o

(
1

κ

)
, κ→∞.

If this estimate is proved and η = a−1 lnκ + O(1), then I = o(1) as κ→∞, therefore
relation (43) follows, and Theorem 1 is proved.

Let us write the integral J in the spherical coordinates with x3-axis directed along
vector β. We have

|s| = r, β · s = r cos θ := rt, −1 ≤ t ≤ 1.
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Denote
γ := κ2 + η2.

Then

J ≤ 2π

∫ ∞

0

drr

∫ 1

−1

dt

[(r − κt)2 + η2t2]1/2(1 + γ + r2 − 2rκt)`/2

:= 2π

∫ ∞

0

drrB(r),

(46)

where

B := B(r) = B(r, κ, η) :=

∫ 1

−1

dt

[(r − κt)2 + η2t2]1/2(1 + γ + r2 − 2rκt)`/2
.

Estimate of J we start with the observation

τ := min
t∈[−1,1]

[(r − κt)2 + η2t2] = min{r2η2/γ, (r − κ)2 + η2}.

Let τ = r2η2/γ, which is always the case if r is su�ciently small. In the case when
τ = (r − κ)2 + η2 the proof is considerably simpler and is left for the reader. If
τ = r2η2/γ, then

J ≤ 2πγ1/2η−1

∫ ∞

0

dr

∫ 1

−1

dt[1 + γ + r2 − 2κrt]−`/2.

Integrating over t yields

J ≤ 2πγ1/2η−1[(`− 2)κ]−1J ,

where
J :=

∫ ∞

0

drr−1[(1 + γ + r2 − 2κr)−b − (1 + γ + r2 + 2κr)−b],

and b := `/2− 1.
Since η = O(lnκ), one has η

κ
= o(1) as κ→∞. Therefore,

γ1/2η−1κ−1 = O(η−1) as κ→∞.

Since ` > 3, one has b > 1
2
, and, as we prove below,

J = o

(
1

κ

)
as κ→∞. (47)

This relation implies the desired inequality:

J ≤ o

(
1

κ

)
as κ→∞. (48)
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Let us derive relation (47). One has

J =

∫ 1

0

+

∫ ∞

1

:= J1 + J2,

J1 ≤
∫ 1

0

drr−1 (w2 + 2rκ+ r2)b − (w2 − 2rκ+ r2)b

(w2 + 2rκ+ r2)b(w2 − 2rκ+ r2)b
,

where
w2 := 1 + γ = 1 + η2 + κ2.

Furthermore,

(w2 + 2rκ+ r2)b − (w2 − 2rκ+ r2)b ≤ 4brκ

(w2 − 2rκ+ r2)1−b .

Thus,
J1 ≤ 4bκ

∫ 1

0

dr
1

(w2 + 2rκ+ r2)b(w2 − 2rκ+ r2)
.

This implies the following estimate

J1 ≤ O(κ/w2+2b) ≤ O(κ−(1+2b)),

because w = κ[1 + o(1)] as κ→∞. Furthermore,

J2 ≤
∫ ∞

1

drr−1[(1 + η2 + (r − κ)2)−b − (1 + η2 + (r + κ)2)−b] := J21 − J22.

One has J22 ≤ J21.
Let us estimate J21. One obtains

J21 =

∫ κ/2

1

+

∫ ∞

κ/2

:= j1 + j2,

and
j1 ≤ 1

[W 2 + κ2

4
]b

lnκ = o(
1

κ
), W 2 := 1 + η2, b >

1

2
.

Furthermore

j2 ≤ 2

κ

∫ ∞

κ/2

dr

[W 2 + (r − κ)2]b
≤ 2

κ

∫ ∞

−∞

dy

[W 2 + y2]b
= o(

1

κ
).

Thus, if b > 1
2
, then J2 = o

(
1

κ

)
and J = J1 + J2 = o

(
1

κ

)
. Thus, relation (47) is

proved.
Relation (47) yields the desired estimate

J = o

(
1

κ

)
.
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Thus, both estimates (47) and (48) are proved.
Note that the desired relation J = o

(
1

κ

)
could have been obtained even by

replacing W 2 by the smaller quantity 1 in the above argument.
Estimate (45) implies

I ≤ cea|η|o

(
1√

κ2 + η2

)
, κ→∞, η = a−1 lnκ+O(1). (49)

The quantity η = η(k) = a−1 lnκ + O(1) was chosen so that if κ → ∞, then the
quantity e|η|a√

κ2+η2
remains bounded as κ→∞. Therefore esimate (49) implies

lim
κ→∞,η=a−1 lnκ+O(1)

I = 0. (50)

Consequently, estimate (43) holds.
Theorem 1 is proved. ¤

APPENDIX
1. Estimate of the norm of the operator T 2.
Let

Tf :=

∫

Ba

G(x− y, κ+ iη)q(y)f(y)dy. (51)

Assume q ∈ H`
0(Ba), ` > 2, f ∈ C(Ba). Our goal is to prove that equation (12) can be

solved by iterations for all su�ciently large κ.
Consider T as an operator in C(Ba). One has:

T 2f =

∫

Ba

dzG(x− z, κ+ iη)q(z)

∫

Ba

G(z − y, κ+ iη)q(y)f(y)dy

=

∫

Ba

dyf(y)q(y)

∫

Ba

dzq(z)G(x− z, κ+ iη)G(z − y, κ+ iη).

(52)

Let us estimate the integral

I(x, y) : =

∫

Ba

G(x− z, κ+ iη)G(z − y, κ+ iη)q(z)dz

=

∫

Ba

ei(κ+iη)[|x−z|−β·(x−z)+|z−y|−β·(z−y)]

16π2|x− z||z − y| q(z)dz

=
1

16π2

∫

Ba

ei(κ+iη)[|x−z|+|z−y|−β·(x−y)]

|x− z||z − y| q(z)dz

:=
e−i(κ+iη)β·(x−y)

16π2
I1(x, y).

(53)

Let us use the following coordinates (see [11], p.391):

z1 = `st+
x1 + y1

2
, z2 = `

√
(s2 − 1)(1− t2) cosψ +

x2 + y2

2
, (54)
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z3 = `
√

(s2 − 1)(1− t2) sinψ +
x3 + y3

2
. (55)

The Jacobian J of the ransformation (z1, z2, z3) → (`, t, ψ) is

J = `3(s2 − t2), (56)

where
` =

|x− y|
2

, |x− z|+ |z − y| = 2`s, |x− z| − |z − y| = 2`t, (57)

|x− z||z − y| = 4`2(s2 − t2), 0 ≤ ψ < 2π, t ∈ [−1, 1], s ∈ [1,∞). (58)
One has

I1 = `

∫ ∞

a

e2i(κ+iη)`sQ(s)ds, (59)

where
Q(s) := Q(s, `,

x+ y

2
) =

∫ 2π

0

dψ

∫ 1

−1

dtq(z(s, t, ψ; `,
x+ y

2
)), (60)

and the function Q(s) ∈ H2
0 (R3) for any �xed x, y. Therefore, an integration by parts

in (59) yields the following estimate:

|I1| = O

(
1

|κ+ iη|
)
, |κ+ iη| → ∞. (61)

From (52), (53) and (61) one gets:

‖T 2‖ = O

(
1√
γ

)
, γ := κ2 + η2 →∞. (62)

Therefore, integral equation (12), with k replaced by κ+iη
2

, can be solved by iterations
if γ is su�ciently large and η ≥ 0. Consequently, integral equation (13) can be solved
by iterations. Thus, estimate (43) holds if such an estimate holds for the free term in
equation (13), that is, for the function q̃

ξ2−(κ+iη)β·ξ , namely, if estimate (50) holds.

2. Proof of Lemma 1.
Let LjGj := [∇2 + k2 − qj(x)]Gj(x, y, k) = −δ(x − y) in R3, j = 1, 2. Applying

Green's formula one gets

G1(x, y, k)−G2(x, y, k) =

∫

Ba

[q2(z)− q1(z)]G1(x, z, k)G2(z, y.k)dz. (63)

In [11], p. 46, the following formula is proved:

Gj(x, y, k) =
eik|y|

4π|y|uj(x, α, k) + o(
1

|y|), |y| → ∞, α := − y

|y| , (64)

where uj(x, α, k) is the scattering solution, j = 1, 2. Applying formula (64) to (63),
one obtains

u1(x, α, k)− u2(x, α, k) =

∫

Ba

[q2(z)− q1(z)]G1(x, z, k)u2(z, α, k)dz (65)
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using the de�nition (2) of the scattering amplitude A(β, α, k), one derives from (65)
the relation

4π[A1(β, α, k)− A2(β, α, k)] =

∫

Ba

[q2(z)− q1(z)]u1(z,−β, k)u2(z, α, k)dz. (66)

This formula is equivalent to (14) because of the well-known reciprocity relation
A(β, α, k) = A(−α,−β, k).

Lemma 1 is proved. ¤
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