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Abstract. We consider eigenvalue problems for general elliptic operators of arbitrary
order subject to homogeneous boundary conditions on open subsets of the Euclidean
N -dimensional space. We prove stability results for the dependence of the eigenvalues
upon variation of the mass density and we prove a maximum principle for extremum
problems related to mass density perturbations which preserve the total mass.

1 Introduction

We consider a general class of elliptic partial differential operators

Lu =
∑

0≤|α|,|β|≤m

(−1)|α|Dα(AαβD
βu)

subject to homogeneous boundary conditions on an open subset Ω of RN with finite
measure. We assume that the coefficients Aαβ are fixed bounded real-valued functions
such that Aαβ = Aβα and such that G̊arding’s inequality is satisfied. For such operators
we consider the eigenvalue problem

Lu = λρu , (1.1)

where ρ is a positive function bounded away from zero and infinity. Problem (1.1)
admits a divergent sequence of eigenvalues of finite multiplicity

λ1[ρ] ≤ · · · ≤ λn[ρ] ≤ . . . .

In this paper we prove few results concerning the dependence of λn[ρ] upon variation
of ρ.

Keeping in mind important problems involving harmonic and bi-harmonic op-
erators in linear elasticity (see e.g., Courant and Hilbert [10]), we shall think of
the weight ρ as the mass density of the body Ω and we shall refer to the quantity
M =

∫
Ω
ρdx as the total mass of Ω. In the study of composite materials it is of interest
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to know whether it is possible to minimize or maximize the eigenvalues λn[ρ] under
the assumption that the total mass M is fixed (see e.g., Chanillo et al. [8], Cox and
McLaughlin [11, 12, 13], Henrot [18]). In this paper we generalize the results proved
in [22] for the Dirichlet Laplacian. In particular, we prove the following maximum
principle where we refer to non-zero eigenvalues:

All simple eigenvalues and the symmetric functions of multiple eigenvalues of
(1.1) have no points of local maximum or minimum with respect to mass density
perturbations preserving the total mass.

See Theorem 4.1 for the precise statement. Moreover, we generalize a result of Cox
and McLaughlin [12] and we prove that λn[ρ] are weakly* continuous functions of ρ,
see Theorem 3.1. This, combined with the above mentioned principle, implies that if
C is a weakly* compact set of mass densities then for non-zero eigenvalues we have:

All simple eigenvalues and the symmetric functions of multiple eigenvalues of (1.1)
admit points of maximum and minimum in C with mass constraint M = const and
such points of maximum and minimum belong to ∂C.

See Corollary 4.1 for the precise statement. The reason why we consider the sym-
metric functions of multiple eigenvalues and not the eigenvalues themselves is related
to well-known bifurcation phenomena which prevent multiple eigenvalues from being
differentiable functions of the parameters involved in the equation. Moreover, the sym-
metric functions of multiple eigenvalues appear to be natural objects in the study of
extremum problems, see e.g., [5, 6, 20, 21, 22, 23]. In fact, in this paper we prove
that all simple eigenvalues and the symmetric functions of multiple eigenvalues are
real-analytic functions of ρ and we compute the appropriate formulas for the Frechét
differentials which we need for our argument, see Theorem 3.2.

Theorem 4.1 and Corollary 4.1 are proved for so-called intermediate boundary con-
ditions in which case one of the boundary conditions is u = 0 on ∂Ω (see condition
(4.1) and Example 4). This includes the case of Dirichlet boundary conditions

u =
∂u

∂ν
= · · · = ∂m−1u

∂νm−1
= 0, on ∂Ω. (1.2)

On the other hand, Theorems 3.1 and 3.2 are proved for a larger class of homogeneous
boundary conditions, including Neumann boundary conditions. See Remark 4.2 for a
discussion concerning Neumann-type boundary conditions.

Our work is inspired by the well-known results of Krein [19] and Cox and McLaugh-
lin [11, 12, 13] concerning the description of optimal mass densities for the eigenvalues
of the Dirichlet Laplacian under the additional condition A ≤ ρ ≤ B, where A,B
are fixed positive constants. Complete solution to this problem for N = 1 was given
in [19] where explicit fomulas for minimizers and maximizers of all eigenvalues were
established. In particular, it turns out that optimal mass densities are bang-bang so-
lutions, i.e., minimizers and maximizers satisfy the condition (ρ − A)(ρ − B) = 0 on
Ω. The case N > 1 is discussed in [12, 13] where, among other results, it is proved
that minimizers and maximizers of the first eigenvalue of the Dirichlet Laplacian are
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bang-bang solutions. Moreover, Friedland [15] proves that the minimizers of suitable
functionals of the eigenvalues, in particular of any eigenvalue, are bang-bang as well.
In fact, Friedland [15, 16] carries out a deep analysis of extremum problems for the
eigenvalues of symmetric compact operators in Hilbert space subject to convex sets of
constraints, which in particular allows to prove that optimal mass densities are bang-
bang solutions also for higher order operators with Dirichlet boundary conditions on a
bounded open interval (cf. [15, Theorem 3.3]). We mention that explicit solutions for
the biharmonic operator in spirit to Krein’s results can be found in Banks [3, 4] and
Schwarz [25], see Henrot [18, § 11.4.1] for related open problems.

Our approach allows to state a maximum principle concerning all eigenvalues of
a quite general class of elliptic operators which can be applied to arbitrary sets C of
mass densities, not necessarily convex.

2 Preliminaries and notation

Let Ω be an open set in RN and m ∈ N. By Wm,2(Ω) we denote the Sobolev space
of functions in L2(Ω) with weak derivatives up to order m in L2(Ω), endowed with its
standard norm defined by

‖u‖W m,2(Ω) =

(
‖u‖2

L2(Ω) +
∑
|α|=m

‖Dαu‖2
L2(Ω)

) 1
2

, (2.1)

for all u ∈ Wm,2(Ω). By Wm,2
0 (Ω) we denote the closure in Wm,2(Ω) of the space of

C∞-functions with compact support in Ω.
In the sequel, we shall always assume that V (Ω) is a fixed closed subspace of

Wm,2(Ω) containing Wm,2
0 (Ω) and such that the embedding V (Ω) ⊂ L2(Ω) is compact.

Moreover, we shall assume that Aαβ ∈ L∞(Ω) are fixed coefficients such that Aαβ = Aβα

for all α, β ∈ NN
0 with |α|, |β| ≤ m.

By R we denote the subset of L∞(Ω) of those functions ρ ∈ L∞(Ω) such that
ess infΩ ρ > 0. Let ρ ∈ R be fixed. We consider the following eigenvalue problem∫

Ω

∑
0≤|α|,|β|≤m

AαβD
αuDβϕdx = λ

∫
Ω

uϕρdx, ∀ϕ ∈ V (Ω) , (2.2)

in the unknowns u ∈ V (Ω) (the eigenfunction) and λ ∈ R (the eigenvalue). Note that
problem (2.2) is the weak-formulation of problem (1.1) subject to suitable homogeneous
boundary conditions. The choice of the space V (Ω) is related to the boundary con-
ditions in the classical formulation of the problem. For example, if V (Ω) = Wm,2

0 (Ω)
we obtain Dirichlet boundary conditions as in (1.2). If V (Ω) = Wm,2(Ω) we obtain
Neumann boundary conditions. If V (Ω) = Wm,2(Ω) ∩W k,2

0 (Ω), for some k < m, we
obtain intermediate boundary conditions. See Example 4 below. See also Necǎs [24,
Chapter 1].

It is convenient to denote the left-hand side of equation (2.2) by Q[u, ϕ]. It is
also convenient to denote by L2

ρ(Ω) the space L2(Ω) endowed with the scalar product
defined by

< u1, u2 >ρ=

∫
Ω

u1u2ρdx, ∀ u1, u2 ∈ L2(Ω).
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Note that the corresponding norm ‖u‖L2
ρ(Ω) is equivalent to the standard norm.

We assume that the space V (Ω) and the coefficients Aαβ are such that G̊arding’s
inequality holds, i.e., we assume that there exist a, b > 0 such that

a‖u‖2
W m,2(Ω) ≤ Q[u, u] + b‖u‖2

L2(Ω) , (2.3)

for all u ∈ V (Ω). Actually, in many cases it will be more convenient to normalize the
constants a, b > 0 in such a way that

a‖u‖2
W m,2(Ω) ≤ Q[u, u] + b‖u‖2

L2
ρ(Ω) , (2.4)

for all u ∈ V (Ω). For classical conditions on the coefficients Aαβ ensuring the validity of
(2.3) in the case of Dirichlet boundary conditions we refer to Agmon [1, Theorem 7.6].
Moreover, we assume that there exists c > 0 such that

Q[u, u] ≤ c‖u‖2
W m,2(Ω), (2.5)

for all u ∈ V (Ω). Note that since the coefficients Aαβ are bounded, inequality (2.5)
is always satisfied if Ω is a bounded open set with Lipschitz boundary (actually, it is
sufficient that Ω is a bounded open set with a quasi-resolved boundary, see Burenkov [7,
Theorem 6, p. 160]).

Under assumptions (2.4), (2.5), it is easy to prove that problem (2.2) has a divergent
sequence of eigenvalues bounded below by −b. To do so, we consider the bounded linear
operator L from V (Ω) to its dual V (Ω)′ which takes any u ∈ V (Ω) to the functional
L[u] defined by L[u][ϕ] = Q[u, ϕ], for all ϕ ∈ V (Ω). Moreover, we consider the bounded
linear operator Iρ from L2

ρ(Ω) to V (Ω)′ which takes any u ∈ L2
ρ(Ω) to the functional

Iρ[u] defined by Iρ[u][ϕ] =< u,ϕ >ρ, for all ϕ ∈ V (Ω). By inequalities (2.4), (2.5) and
by the boundedness of the coefficients Aαβ, it follows that the quadratic form defined
by the right-hand side of (2.4) induces in V (Ω) a norm equivalent to the standard
norm (2.1). Hence by the Riesz Theorem, it follows that the operator L + bIρ is a
linear homeomorphism from V (Ω) onto V (Ω)′. Thus, equation (2.2) is equivalent to
the equation

(L+ bIρ)
(−1) ◦ Iρ[u] = µu (2.6)

where
µ = (λ+ b)−1. (2.7)

Thus, it is natural to consider the operator Tρ from L2
ρ(Ω) to itself defined by

Tρ := i ◦ (L+ bIρ)
(−1) ◦ Iρ,

where i is the embedding of V (Ω) into L2
ρ(Ω). In the sequel, we shall omit i and we

shall simply write Tρ = (L+ bIρ)
(−1) ◦ Iρ. Note that

< Tρu1, u2 >ρ= Iρ[u2][(L+ bIρ)
(−1) ◦ Iρ[u1]]

= (L+ bIρ)[(L+ bIρ)
(−1) ◦ Iρ[u1]][(L+ bIρ)

(−1) ◦ Iρ[u2]], (2.8)

for all u1, u2 ∈ L2
ρ(Ω). Thus, since the operator L + bIρ is symmetric it follows that

Tρ is a self-adjoint operator in L2
ρ(Ω). Moreover, if the embedding V (Ω) ⊂ L2(Ω) is
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compact then the operator Tρ is compact. By inequality (2.4), Tρ is injective. It follows
that the spectrum of Tρ is discrete and consists of a sequence of positive eigenvalues of
finite multiplicity converging to zero. Then by (2.7) and standard spectral theory, we
easily deduce the validity of the following

Lemma 1. Let ρ ∈ R. Assume that inequalities (2.4) and (2.5) are satisfied for some
a, b, c > 0. Then the eigenvalues of equation (2.2) have finite multiplicity and can be
represented by means of a divergent sequence λn[ρ], n ∈ N as follows

λn[ρ] = min
E⊂V (Ω)
dim E=n

max
u∈E
u6=0

∫
Ω

∑
|α|,|β|≤mAαβD

αuDβudx∫
Ω
u2ρdx

. (2.9)

Each eigenvalue is repeated according to its multiplicity and

λn[ρ] > −b+
a

‖ρ‖L∞(Ω)

, (2.10)

for all n ∈ N. Moreover, the sequence µn[ρ] = (b + λn[ρ])−1, n ∈ N, represents all
eigenvalues of the compact self-adjoint operator Tρ.

Example 4. We consider the case of poly-harmonic operators. Let m ∈ N. Let
Aαβ = δαβm!/α! for all α, β ∈ NN with |α| = |β| = m, where δαβ = 1 if α = β and
δαβ = 0 otherwise. Let k ∈ N0, 0 ≤ k ≤ m and V (Ω) = Wm,2(Ω)∩W k,2

0 (Ω). Note that
(2.4) and (2.5) are satisfied for any b > 0 where a, c > 0 are suitable constants possibly
depending on b. Moreover, if k = m and the open set Ω has finite Lebesgue measure
then the embedding V (Ω) ⊂ L2(Ω) is compact. If 0 ≤ k < m and the open set Ω is
bounded and has a Lipschitz continuous boundary then the embedding V (Ω) ⊂ L2(Ω)
is compact (actually it is enough to assume that Ω is a bounded open set with a quasi-
continuous boundary, see Burenkov [7, Theorem 8, p.169]). Under these assumptions
all corresponding eigenvalues λn[ρ] are well-defined and non-negative.

Note that if k = m then V (Ω) = Wm,2
0 (Ω) and by integrating by parts one can easily

realize that the the bilinear form Q[u, ϕ] can be written in the more familiar form

Q[u, ϕ] =

{ ∫
Ω

∆
m
2 u∆

m
2 ϕdx, if m is even ,∫

Ω
∇∆

m−1
2 u∇∆

m−1
2 ϕdx, if m is odd ,

for all u, ϕ ∈ Wm,2
0 (Ω). In this case we obtain the classic poly-harmonic operator

L = (−∆)m subject to the Dirichlet boundary conditions (1.2). Recall that the Dirichlet
problem arises in the study of vibrating strings for N = 1 and m = 1, membranes for
N = 2 and m = 1, and clamped plates for N = 2 and m = 2.

In the general case k ≤ m, the classic formulation of the eigenvalue problem is
(−∆)mu = λρu, in Ω,
∂ju
∂νj = 0, ∀ j = 0, . . . , k − 1, on ∂Ω,
Bju = 0, ∀ j = 1, . . . ,m− k, on ∂Ω,
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where Bj are uniquely defined ‘complementing’ boundary operators. See Necǎs [24] for
details. For N ≥ 2, m = 2 and k = 1 we obtain the problem

∆2u = λρu, in Ω,
u = 0, on ∂Ω,
∆u− (N − 1)K ∂u

∂ν
= 0, on ∂Ω,

which is related to the study of a simply supported plate. Here K is the mean curvature
of the boundary of Ω. See Gazzola, Grunau and Sweers [17] for further details.

Finally, we note that if m = 2 and k = 0 then V (Ω) = W 2,2(Ω) and problem (2.2)
is the weak formulation of a Neumann-type problem for the biharmonic operator

∆2u = λρu, in Ω,
∂2u
∂2ν

= 0, on ∂Ω,

div∂Ω[P∂Ω[(D2u)ν] + ∂∆u
∂ν

= 0, on ∂Ω,

(2.11)

which arises in the study of a vibrating free plate. Here div∂Ω is the tangential diver-
gence and P∂Ω the orthogonal projector onto the tangent hyperplane to ∂Ω. See also
Chasman [9].

3 Continuity and analyticity

By min-max principle (2.9) it follows that λn[ρ] is a locally Lipschitz continuous func-
tions of ρ ∈ R. In fact, one can easily prove that

|λn[ρ1]− λn[ρ2]| ≤
min{λn[ρ1], λn[ρ2]}+ 2b

min{ess inf ρ1, ess inf ρ2}
‖ρ1 − ρ2‖L∞(Ω) ,

for all ρ1, ρ2 ∈ R satisfying ‖ρ1 − ρ2‖L∞(Ω) < min{ess inf ρ1, ess inf ρ2}. In fact λn[ρ]
depends with continuity on ρ not only with respect to the strong topology of L∞(Ω) but
also with respect to the weak* topology, which is clearly more relevant in optimization
problems. The following theorem was proved by Cox and McLaughlin [12] in the case
of the Dirichlet Laplacian and mass densities uniformly bounded away from zero and
infinity. The proof can be easily adapted to the general case. Moreover, it is possible
to replace the uniform lower bound for ρ by a weaker assumption.

Theorem 3.1. Let C ⊂ R be a bounded set. Assume that there exist a, b, c > 0 such
that inequalities (2.4) and (2.5) are satisfied for all ρ ∈ C. Then the functions from C
to R which take any ρ ∈ C to λn[ρ] are weakly* continuous for all n ∈ N.

Proof. Since C is bounded in L∞(Ω), it suffices to prove that given ρ ∈ C and a
sequence ρj ∈ C, j ∈ N such that ρj ⇀

∗ ρ as j →∞ then λn[ρj] → λn[ρ]. To do so, we
first prove1 that for each n ∈ N there exists Ln > 0 such that λn[ρj] ≤ Ln for all j ∈ N.
Let n ∈ N be fixed and u1, . . . , un ∈ V (Ω) be linearly independent eigenfunctions

1This is clearly trivial if we assume that 0 < α ≤ ρ for all ρ ∈ C, in which case λn[ρ] ≤ λn[α].
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associated with the eigenvalues λ1[ρ], . . . , λn[ρ], normalized by < ur, us >ρ= δrs for all
r, s = 1, . . . , n. Note that

lim
j→∞

∫
Ω

urusρjdx =

∫
Ω

urusρdx,

for all r, s = 1, . . . , n. Thus

lim
j→∞

∫
Ω

( n∑
r=1

γrur

)2

ρjdx =

∫
Ω

( n∑
r=1

γrur

)2

ρdx, (3.1)

uniformly with respect to γ = (γ1, . . . , γn) ∈ Rn with |γ| ≤ 1. Let E be the linear
space generated by u1, . . . , un. By (3.1) it follows that for any ε > 0 there exists jε ∈ N
such that∫

Ω

∑
|α|,|β|≤mAαβD

αuDβudx∫
Ω
u2ρjdx

≤
∫

Ω

∑
|α|,|β|≤mAαβD

αuDβudx∫
Ω
u2ρdx

+ε(λn[ρ] + 2b) ≤ λn[ρ] + ε(λn[ρ] + 2b) (3.2)

for all u ∈ E, j ≥ jε. By combining (2.9) and (3.2) we deduce that λn[ρj] ≤ λn[ρ] +
ε(λn[ρ] + 2b) for all j ≥ jε, which implies the existence of a uniform bound Ln as
claimed above. The rest of the proof follows the lines of Cox [12]. Let un[ρj], n ∈ N
be a sequence of eigenfunctions associated with the eigenvalues λn[ρj] normalized by
< un[ρj], ul[ρj] >ρj

= δnl for all n, l ∈ N. Note that Q[un[ρj], un[ρj]] = λn[ρj] for all
j ∈ N. By inequality (2.4), the sequence un[ρj], j ∈ N is bounded in the space V (Ω)
equipped with the norm (2.1). It follows that possibly passing to subsequences, there
exists ūn ∈ V (Ω) such that un[ρj] weakly converges to ūn as j →∞ in V (Ω), and there
exists λ̄n ∈ R such λn[ρj] converges to λ̄n as j → ∞. Moreover, since the embedding
V (Ω) ⊂ L2(Ω) is compact we can directly assume that un[ρj] converges to ūn strongly
in L2(Ω) as j →∞. By passing to the limit in the weak equation

Q[un[ρj], ϕ] = λn[ρj] < un[ρj], ϕ >ρj
, ∀ ϕ ∈ V (Ω) ,

it follows that λ̄n is an eigenvalue and of problem (2.2) and ūn a corresponding eigen-
function. Note that < ūn, ūl >ρ= δnl for all n, l ∈ N, hence λn, n ∈ N is a divergent
sequence. It remains to prove that λ̄n = λn[ρ] for all n ∈ N. To do so, assume by con-
tradiction that there exists an eigenfunction ū ∈ V (Ω) associated with an eigenvalue
λ̄ of the weak problem (2.2) such that < ū, ūn >ρ= 0 for all n ∈ N. Assume that ū is
normalized by ‖ū‖ρ = 1/(b+ λ̄). By the Auchmuty principle [2] applied to the operator
L+ bIρ, we have

− 1

2(b+ λn[ρj])
≤
Q[u, u] + b‖u‖2

L2
ρj

(Ω)

2
− ‖u− Pn−1,ρj

u‖L2
ρj

(Ω) , (3.3)

for all u ∈ V (Ω) and n, j ∈ N. Here Pn−1,ρj
u denotes the orthogonal projection in

L2
ρj

(Ω) of u onto the space generated by u1[ρj], . . . , un−1[ρj] for all n ≥ 2 and P0,ρj
u ≡ 0.

By setting u = ū and passing to the limit in (3.3) as j →∞, we obtain

− 1

2(b+ λ̄n)
≤
Q[ū, ū] + b‖ū‖2

L2
ρ(Ω)

2
− ‖ū‖L2

ρ(Ω) = − 1

2(b+ λ̄)

for all j ∈ N, which contradicts the fact that λ̄n →∞ as n→∞.
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By classical results in perturbation theory, one can prove that λn[ρ] depends real-
analytically on ρ as long as ρ is such that λn[ρ] is a simple eigenvalue. This is no longer
true if the multiplicity of λn[ρ] varies. In the case of multiple eigenvalues, analyticity
can be proved for the symmetric functions of the eigenvalues. Namely, given a finite
set of indexes F ⊂ N, we set

R[F ] ≡ {ρ ∈ R : λj[ρ] 6= λl[ρ], ∀ j ∈ F, l ∈ N \ F}

and

ΛF,h[ρ] =
∑

j1,...,jh∈F
j1<···<jh

λj1 [ρ] · · ·λjh
[ρ], h = 1, . . . , |F |. (3.4)

Moreover, in order to compute formulas for the Frechét differentials, it is also con-
venient to set

Θ[F ] ≡ {ρ ∈ R[F ] : λj1 [ρ] = λj2 [ρ], ∀ j1, j2 ∈ F} .

Then we have the following result

Theorem 3.2. Assume that there exist a, b, c > 0 such that inequalities (2.3) and (2.5)
are satisfied. Let F be a finite subset of N. Then R[F ] is an open set in L∞(Ω) and the
functions ΛF,h are real-analytic in R[F ]. Moreover, if F = ∪n

k=1Fk and ρ ∈ ∩n
k=1Θ[Fk]

is such that for each k = 1, . . . , n the eigenvalues λj[ρ] assume the common value λFk
[ρ]

for all j ∈ Fk, then the differentials of the functions ΛF,h at the point ρ are given by
the formula

dΛF,h[ρ][ρ̇] = −
n∑

k=1

ck
∑
l∈Fk

∫
Ω

u2
l ρ̇dx , (3.5)

for all ρ̇ ∈ L∞(Ω), where

ck =
∑

0≤h1≤|F1|
......

0≤hn≤|Fn|
h1+···+hn=h

(
|Fk| − 1

hk − 1

)
λhk

Fk
[ρ]

n∏
j=1
j 6=k

(
|Fj|
hj

)
λ

hj

Fj
[ρ],

and for each k = 1, . . . , n, {ul}l∈Fk
is an orthonormal basis in L2

ρ(Ω) of the eigenspace
associated with λFk

[ρ].

Proof. We set
Λ̃F,h[ρ] =

∑
j1,...,jh∈F
j1<···<jh

(λj1 [ρ] + b) · · · (λjh
[ρ] + b) ,

for all ρ ∈ R[F ]. Note that by elementary combinatorics, we have

ΛF,h[ρ] =
h∑

k=0

(−b)h−k

(
|F | − k

h− k

)
Λ̃F,k[ρ] , (3.6)
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where we have set ΛF,0 = Λ̃F,0 = 1.
By adapting to the operator L+bIρ the same argument used in [22] for the Dirichlet

Laplacian, one can prove that R[F ] is an open set in L∞(Ω) and that Λ̃F,h[ρ] depends
real-analytically on ρ ∈ R[F ]. Thus, by (3.6) we deduce the real-analyticity of the
functions ΛF,h.

We now prove formula (3.5). First we assume that n = 1, hence F = F1 and
ρ ∈ Θ[F ]. For simplicity, we write λF [ρ] rather than λF1 [ρ]. The same computations
used in [22] yields the following formula for the Frechét differential dΛ̃F,h[ρ] of Λ̃F,h at
the point ρ ∈ R[F ]:

dΛ̃F,h[ρ][ρ̇] = −(λF [ρ] + b)h+1

(
|F | − 1

h− 1

)∑
l∈F

< dTρ[ρ̇][ul], ul >ρ , ∀ρ̇ ∈ L∞(Ω). (3.7)

By standard calculus and by recalling that Tρul = (λF [ρ] + b)−1ul for all l ∈ F , we
have

< dTρ[ρ̇][ul], ul >ρ= −b < (L+ bIρ)
−1dIρ[ρ̇](L+ bIρ)

−1Iρul, ul >ρ

+ < (L+ bIρ)
−1dIρ[ρ̇]ul, ul >ρ=

λF [ρ]

λF [ρ] + b
< (L+ bIρ)

−1dIρ[ρ̇]ul, ul >ρ

=
λF [ρ]

(λF [ρ] + b)2

∫
Ω

u2
l ρ̇dx (3.8)

hence

dΛ̃F,h[ρ][ρ̇] = −λF [ρ](λF [ρ] + b)h−1

(
|F | − 1

h− 1

)∑
l∈F

∫
Ω

u2
l ρ̇dx , (3.9)

for all ρ̇ ∈ L∞(Ω). By (3.6) and (3.9) we get

dΛF,h[ρ][ρ̇]

= −
h∑

k=1

λF [ρ](λF [ρ] + b)k−1(−b)h−k

(
|F | − 1

k − 1

)(
|F | − k

h− k

)∑
l∈F

∫
Ω

u2
l ρ̇dx

= −λF [ρ]

(
|F | − 1

h− 1

) h−1∑
k=0

(
h− 1

k

)
(λF [ρ] + b)k(−b)h−1−k

∑
l∈F

∫
Ω

u2
l ρ̇dx,

which immediately implies (3.5) for n = 1. We now consider the case n > 1. By means
of a continuity argument, one can easily see that there exists an open neighborhood
W of ρ in R[F ] such that W ⊂ ∩n

k=1R[Fk]. Thus,

ΛF,h =
∑

0≤h1≤|F1|,...,0≤hn≤|Fn|
h1+···+hn=h

n∏
k=1

ΛFk,hk
(3.10)

on W . By differentiating equality (3.10) at the point ρ and applying formula (3.5) for
n = 1 to each function ΛFk,hk

, we deduce the validity of formula (3.5) for arbitrary
values of n ∈ N. �
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4 Maximum principle

In this section we consider the case of general intermediate boundary conditions. This
means that we assume that V (Ω) is a closed subspace of Wm,2(Ω) satisfying the inclu-
sion

V (Ω) ⊂ W 1,2
0 (Ω) . (4.1)

Assume that Ω has finite measure. For all M > 0 we set

LM =

{
ρ ∈ L∞(Ω) :

∫
Ω

ρdx = M

}
(4.2)

The following theorem is a generalization of [22, Theorem 4.4] to the case of inter-
mediate boundary conditions.

Theorem 4.1. Let all assumptions of Theorem 3.2 hold. Assume in addition that Ω
has finite measure and inclusion (4.1) holds. Then for all h = 1, . . . , |F | the map ΛF,h

of R[F ] ∩ LM to R which takes any ρ ∈ R[F ] ∩ LM to ΛF,h[ρ] has no points of local
maximum or minimum ρ̃ such that λj[ρ̃] have the same sign and λj[ρ̃] 6= 0 for all j ∈ F .

Proof. It is convenient to consider the real-valued function M defined on L∞(Ω) by
M [ρ] =

∫
Ω
ρdx for all ρ ∈ L∞(Ω). Assume by contradiction the existence of ρ̃ as in the

statement. Then ρ̃ is a critical point for the function ΛF,h subject to the mass constraint
M [ρ] = M . This implies the existence of a Lagrange multiplier which means that there
exists c ∈ R such that dΛF,h[ρ̃] = cdM [ρ̃] (see e.g., Deimling [14, Theorem 26.1]). By
formula (3.5), it follows that∫

Ω

(
n∑

k=1

ck
∑
l∈Fk

u2
l

)
ρ̇dx = c

∫
Ω

ρ̇dx,

for all ρ̇ ∈ L∞(Ω). Note that ck are non-zero real numbers of the same sign. Since ρ̇ is
arbitrary, it follows that (

n∑
k=1

ck
∑
l∈Fk

u2
l

)
= c, a.e. in Ω. (4.3)

Since ul ∈ W 1,2
0 (Ω), then by a standard argument one can prove that the function

(
∑n

k=1

∑
l∈Fk

(
√
|ck|ul)

2)1/2 belongs to the space W 1,2
0 (Ω) and equals

√
|c| almost ev-

erywhere in Ω. As is well-known the space W 1,2
0 (Ω) does not contain constant functions

apart from the function identically equal to zero. Thus c = 0 and accordingly ul = 0
for all l ∈ F , a contradiction.

Remark 4.1. Theorem 4.1 concerns mass densities ρ̃ such that λj[ρ̃] do not vanish and
have the same sign for all j ∈ F . This assumption is clearly guaranteed for positively
defined operators. Moreover, we note that the sign of the eigenvalues is preserved by
small perturbations of ρ. Hence our assumption is not much restrictive in the analysis
of bifurcation phenomena associated with multiple eigenvalues different from zero.
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Finally, by Theorems 3.1 and 4.1 we deduce the following

Corollary 4.1. Let all assumptions of Theorem 4.1 hold. Let C ⊂ R[F ] be a weakly∗
compact set in L∞(Ω). Assume that there exist a, b > 0 such that inequality (2.4) is
satisfied for all ρ ∈ C. Let M > 0 be such that C ∩LM is not empty. Assume that the
eigenvalues λj[ρ] have the same sign and do not vanish for all j ∈ F , ρ ∈ C. Then for
all h ∈ {1, . . . , |F |} the map ΛF,h from C ∩LM to R which takes ρ ∈ C ∩LM to ΛF,h[ρ]
admits points of maximum and minimum and all such points belong to ∂C ∩ LM .

Proof. Recall that weakly* compact sets are bounded. Thus, by Theorem 3.1 the
functions ΛF,h are weakly* continuous on C hence they admit both maximum and
minimum on the weakly* compact subset C ∩ LM of C. By Corollary 4.1 the corre-
sponding points of maximum and minimum cannot be interior points of C, hence they
belong to ∂C ∩ LM .

Example 5. Consider the poly-harmonic operators subject to Dirichlet or intermedi-
ate boundary conditions as described in Example 4. Let A,B ∈ L∞(Ω) be functions
satisfying the condition

0 < ess inf
x∈Ω

A(x) < ess sup
x∈Ω

B(x) <∞.

Let
C = {ρ ∈ L∞(Ω) : A ≤ ρ ≤ B}.

Clearly, C is a weakly* compact set. Moreover, since all mass densities ρ are uniformly
bounded away from zero and infinity, inequality (2.4) is satisfied for suitable constants
a, b > 0 not depending on ρ ∈ C. Thus Corollary 4.1 is applicable to all non-zero
eigenvalues. It turns out that points of maximum and minimum ρ̃ should coincide with
A(x) or B(x) in a set of positive measure.

Remark 4.2. Condition (4.1) was used only to guarantee that V (Ω) \ {0} does not
contain constant functions. Thus, one may replace condition (4.1) by slightly more
general conditions. For example one may assume that

V (Ω) ⊂ W 1,2
0,Γ(Ω),

where W 1,2
0,Γ(Ω) is the closure in W 1,2(Ω) of C∞-functions vanishing in an open neigh-

borhood of a suitable subset of Γ of ∂Ω. In this case, one would talk about mixed-
intermediate boundary conditions.

If V (Ω) is a closed subspace of Wm,2(Ω) containing constant functions different
from zero, then we could argue as in the proof on Theorem 4.1 up to condition (4.3).
Thus, in the general case one could simply characterize the critical mass densities
of the functions ΛF,h as those mass densities for which condition (4.3) is satisfied.
Clearly, in the case of simple eigenvalues condition (4.3) reduces to u = const in Ω
which implies that λ = 0. Thus, we conclude that the maximum principle stated in the
introduction holds for all simple eigenvalues and all homogeneous boundary conditions
under consideration. As for multiple eigenvalues we note that the analysis of condition
(4.3) is not straightforward as it may appear at a first glance. Under suitable regularity
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assumptions on the eigenfunctions u1, u2 associated with a double eigenvalue λ of the
Neumann Laplacian, one may prove that the condition u2

1 + u2
2 = const in Ω implies

that λ = 0. However, we do not include such arguments here since we plan to perform
a deeper analysis of Neumann and other boundary conditions in a forthcoming paper.
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