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Abstract. We consider eigenvalue problems for general elliptic operators of arbitrary
order subject to homogeneous boundary conditions on open subsets of the Euclidean
N-dimensional space. We prove stability results for the dependence of the eigenvalues
upon variation of the mass density and we prove a maximum principle for extremum
problems related to mass density perturbations which preserve the total mass.

1 Introduction

We consider a general class of elliptic partial differential operators

Lu = Z (=) D*(AqsDPu)

0<]al,[B|<m

subject to homogeneous boundary conditions on an open subset Q of RY with finite
measure. We assume that the coefficients A,z are fixed bounded real-valued functions
such that A,3 = Ag, and such that Garding’s inequality is satisfied. For such operators
we consider the eigenvalue problem

Lu = Mpu, (1.1)

where p is a positive function bounded away from zero and infinity. Problem (1.1)
admits a divergent sequence of eigenvalues of finite multiplicity

Ml <<l <

In this paper we prove few results concerning the dependence of \,[p] upon variation
of p.

Keeping in mind important problems involving harmonic and bi-harmonic op-
erators in linear elasticity (see e.g., Courant and Hilbert [10]), we shall think of
the weight p as the mass density of the body €2 and we shall refer to the quantity
M = fﬂ pdz as the total mass of 2. In the study of composite materials it is of interest
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to know whether it is possible to minimize or maximize the eigenvalues \,[p] under
the assumption that the total mass M is fixed (see e.g., Chanillo et al. [8], Cox and
McLaughlin [11, 12, 13|, Henrot [18]). In this paper we generalize the results proved
in [22] for the Dirichlet Laplacian. In particular, we prove the following maximum
principle where we refer to non-zero eigenvalues:

All simple eigenvalues and the symmetric functions of multiple eigenvalues of
(1.1) have no points of local maximum or minimum with respect to mass density
perturbations preserving the total mass.

See Theorem 4.1 for the precise statement. Moreover, we generalize a result of Cox
and McLaughlin [12] and we prove that \,[p] are weakly™ continuous functions of p,
see Theorem 3.1. This, combined with the above mentioned principle, implies that if
C' is a weakly™* compact set of mass densities then for non-zero eigenvalues we have:

All simple eigenvalues and the symmetric functions of multiple eigenvalues of (1.1)
admit points of mazimum and minimum in C' with mass constraint M = const and
such points of maximum and minimum belong to OC.

See Corollary 4.1 for the precise statement. The reason why we consider the sym-
metric functions of multiple eigenvalues and not the eigenvalues themselves is related
to well-known bifurcation phenomena which prevent multiple eigenvalues from being
differentiable functions of the parameters involved in the equation. Moreover, the sym-
metric functions of multiple eigenvalues appear to be natural objects in the study of
extremum problems, see e.g., [5, 6, 20, 21, 22, 23|. In fact, in this paper we prove
that all simple eigenvalues and the symmetric functions of multiple eigenvalues are
real-analytic functions of p and we compute the appropriate formulas for the Frechét
differentials which we need for our argument, see Theorem 3.2.

Theorem 4.1 and Corollary 4.1 are proved for so-called intermediate boundary con-
ditions in which case one of the boundary conditions is v = 0 on 9 (see condition
(4.1) and Example 4). This includes the case of Dirichlet boundary conditions
_ Ou oty

=5, =T ot

On the other hand, Theorems 3.1 and 3.2 are proved for a larger class of homogeneous
boundary conditions, including Neumann boundary conditions. See Remark 4.2 for a
discussion concerning Neumann-type boundary conditions.

Our work is inspired by the well-known results of Krein [19] and Cox and McLaugh-
lin [11, 12, 13| concerning the description of optimal mass densities for the eigenvalues
of the Dirichlet Laplacian under the additional condition A < p < B, where A, B
are fixed positive constants. Complete solution to this problem for N = 1 was given
in [19] where explicit fomulas for minimizers and maximizers of all eigenvalues were
established. In particular, it turns out that optimal mass densities are bang-bang so-
lutions, i.e., minimizers and maximizers satisfy the condition (p — A)(p — B) = 0 on
Q). The case N > 1 is discussed in [12, 13| where, among other results, it is proved
that minimizers and maximizers of the first eigenvalue of the Dirichlet Laplacian are

u =0, on 09. (1.2)
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bang-bang solutions. Moreover, Friedland [15] proves that the minimizers of suitable
functionals of the eigenvalues, in particular of any eigenvalue, are bang-bang as well.
In fact, Friedland [15, 16] carries out a deep analysis of extremum problems for the
eigenvalues of symmetric compact operators in Hilbert space subject to convex sets of
constraints, which in particular allows to prove that optimal mass densities are bang-
bang solutions also for higher order operators with Dirichlet boundary conditions on a
bounded open interval (cf. [15, Theorem 3.3]). We mention that explicit solutions for
the biharmonic operator in spirit to Krein’s results can be found in Banks [3, 4] and
Schwarz [25], see Henrot |18, § 11.4.1] for related open problems.

Our approach allows to state a maximum principle concerning all eigenvalues of
a quite general class of elliptic operators which can be applied to arbitrary sets C' of
mass densities, not necessarily convex.

2 Preliminaries and notation

Let Q be an open set in RY and m € N. By W™2(Q) we denote the Sobolev space
of functions in L*(Q) with weak derivatives up to order m in L?(2), endowed with its
standard norm defined by

I (|u||L2 S Dl ) (2.1)

|lal=m

for all uw € W™2(Q). By WJ"*(Q) we denote the closure in W"2(Q) of the space of
C*>-functions with compact support in 2.

In the sequel, we shall always assume that V(Q) is a fixed closed subspace of
W™2(Q) containing Wg™?(Q) and such that the embedding V(Q) C L?*(Q) is compact.
Moreover, we shall assume that A,z € L>(2) are fixed coeflicients such that A,3 = Ag,
for all o, 8 € NI with |al, |8] < m.

By R we denote the subset of L>(2) of those functions p € L*°(Q) such that
essinfg p > 0. Let p € R be fixed. We consider the following eigenvalue problem

/ Z AusD*uDP pdx = )\/ uppdz, Yo € V(Q), (2.2)
Q 0

0<|al,|8|<m

in the unknowns u € V(Q) (the eigenfunction) and A € R (the eigenvalue). Note that
problem (2.2) is the weak-formulation of problem (1.1) subject to suitable homogeneous
boundary conditions. The choice of the space V() is related to the boundary con-
ditions in the classical formulation of the problem. For example, if V(Q) = W;"*(Q)
we obtain Dirichlet boundary conditions as in (1.2). If V() = W™?(Q) we obtain
Neumann boundary conditions. If V(Q) = W™2(Q) N W?(Q), for some k < m, we
obtain intermediate boundary conditions. See Example 4 below. See also Necas [24,
Chapter 1].

It is convenient to denote the left-hand side of equation (2.2) by Qfu,¢]. It is
also convenient to denote by L?(Q) the space L*(Q2) endowed with the scalar product
defined by

< up, U >,= / urugpdr, Y uy,us € LQ(Q).
Q



A maximum principle in spectral optimization problems for elliptic operators 73

Note that the corresponding norm ||ul| 2(0) is equivalent to the standard norm.
We assume that the space V(1) and the coefficients A, are such that Garding’s
inequality holds, i.e., we assume that there exist a,b > 0 such that

allullfymag) < Qlu,ul + bllullZzq) (2.3)

for all uw € V(§2). Actually, in many cases it will be more convenient to normalize the
constants a,b > 0 in such a way that

allullfymz@) < Qlu, u] + bllullzzq) (2.4)

for all u € V(). For classical conditions on the coefficients A, ensuring the validity of
(2.3) in the case of Dirichlet boundary conditions we refer to Agmon [1, Theorem 7.6].
Moreover, we assume that there exists ¢ > 0 such that

Qlu,u] < cllullfym.zq). (2.5)

for all uw € V(). Note that since the coefficients A, are bounded, inequality (2.5)
is always satisfied if {2 is a bounded open set with Lipschitz boundary (actually, it is
sufficient that €2 is a bounded open set with a quasi-resolved boundary, see Burenkov |7,
Theorem 6, p. 160]).

Under assumptions (2.4), (2.5), it is easy to prove that problem (2.2) has a divergent
sequence of eigenvalues bounded below by —b. To do so, we consider the bounded linear
operator L from V() to its dual V(Q2)" which takes any u € V() to the functional
Lu] defined by L{u][¢] = Q[u, ¢], for all ¢ € V(). Moreover, we consider the bounded
linear operator I, from L2(Q2) to V(Q)" which takes any u € L2(f2) to the functional
I,[u] defined by I,[u][¢] =< u,p >,, for all ¢ € V(). By inequalities (2.4), (2.5) and
by the boundedness of the coefficients A,g3, it follows that the quadratic form defined
by the right-hand side of (2.4) induces in V(Q2) a norm equivalent to the standard
norm (2.1). Hence by the Riesz Theorem, it follows that the operator L + bl, is a
linear homeomorphism from V() onto V(). Thus, equation (2.2) is equivalent to

the equation
(L+bL) Vo I[u] = pu (2.6)

where

p=(A+0b)"" (2.7)
Thus, it is natural to consider the operator T, from L2(€2) to itself defined by
T,:=io(L+0bI,)"Yol,

where i is the embedding of V() into L2(Q). In the sequel, we shall omit 7 and we
shall simply write T, = (L + b1,)"Y o I,. Note that

< Tyur,ug >,p= Ip[u2][(L + pr)(_l) © Ip[ul]]
(LML D) o Ll [(E + I D o Ll (29

for all uy,us € Lz(Q). Thus, since the operator L + bl, is symmetric it follows that
T, is a self-adjoint operator in L2(€2). Moreover, if the embedding V(Q) C L*(Q) is
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compact then the operator T}, is compact. By inequality (2.4), T, is injective. It follows
that the spectrum of 7T}, is discrete and consists of a sequence of positive eigenvalues of
finite multiplicity converging to zero. Then by (2.7) and standard spectral theory, we
easily deduce the validity of the following

Lemma 1. Let p € R. Assume that inequalities (2.4) and (2.5) are satisfied for some
a,b,c > 0. Then the eigenvalues of equation (2.2) have finite multiplicity and can be
represented by means of a divergent sequence \,[p], n € N as follows

fQ Zlalylﬂ\ﬁm AagDo‘uDﬁudx

Anlp] = min max 5 (2.9)
Son) ik Jo o
FEach eigenvalue is repeated according to its multiplicity and
a
Anlp] > b+ —— (2.10)
ol L= @)

for all n € N. Moreover, the sequence p,[p] = (b + A\u[p])~"

etgenvalues of the compact self-adjoint operator T,.

, n € N, represents all

Example 4. We consider the case of poly-harmonic operators. Let m € N. Let
Aug = dapm!/al for all a, 3 € NV with |o| = |B] = m, where dop = 1 if « = 3 and
bap = 0 otherwise. Let k € Ny, 0 < k < m and V(Q) = W™(Q) N W *(Q). Note that
(2.4) and (2.5) are satisfied for any b > 0 where a,c > 0 are suitable constants possibly
depending on b. Moreover, if k = m and the open set ) has finite Lebesque measure
then the embedding V() C L*(Q) is compact. If 0 < k < m and the open set ) is
bounded and has a Lipschitz continuous boundary then the embedding V (Q) C L*(Q)
is compact (actually it is enough to assume that € is a bounded open set with a quasi-
continuous boundary, see Burenkov [7, Theorem 8, p.169]). Under these assumptions
all corresponding eigenvalues \,[p] are well-defined and non-negative.

Note that if k = m then V() = WOm’Q(Q) and by integrating by parts one can easily
realize that the the bilinear form Qlu, ¢| can be written in the more familiar form

Olu. ] fQ AZuAZ pdr, if m is even,
U, p| = e "
Jo VATIUVATlgodm, if m is odd,

for all u,p € ng’Z(Q). In this case we obtain the classic poly-harmonic operator
L = (=A)™ subject to the Dirichlet boundary conditions (1.2). Recall that the Dirichlet
problem arises in the study of vibrating strings for N =1 and m = 1, membranes for
N =2 and m =1, and clamped plates for N = 2 and m = 2.

In the general case k < m, the classic formulation of the eigenvalue problem is

(—A)™u = Apu, in Q,
Gu—0,Vj=0,... k-1, on 09,

Biu=0,Vj=1,...,m—k,  on 0,
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where B; are uniquely defined ‘complementing’ boundary operators. See Necds [24] for
details. For N > 2, m =2 and k =1 we obtain the problem

A%u = \pu, in €,
u =0, on 0,
Au— (N —-1)K% =0, on 9,

which is related to the study of a simply supported plate. Here K is the mean curvature
of the boundary of Q. See Gazzola, Grunau and Sweers [17] for further details.

Finally, we note that if m = 2 and k = 0 then V() = W22(Q) and problem (2.2)
s the weak formulation of a Neumann-type problem for the biharmonic operator

A%y = \pu, in €,
Zu =0, on 99, (2.11)

divaoe[Pro[(D*u)v] + 284 =0,  on 01,

which arises in the study of a vibrating free plate. Here divyq is the tangential diver-
gence and Py the orthogonal projector onto the tangent hyperplane to 0§2. See also
Chasman [9].

3 Continuity and analyticity

By min-max principle (2.9) it follows that \,[p] is a locally Lipschitz continuous func-
tions of p € R. In fact, one can easily prove that

min{ A, [p1], Anlp2] } + 20
min{essinf py, essinf ps}

[Anlp1] = Aulpa]| < o1 — p2llze(e) »

for all py, po € R satisfying ||p1 — pa|lre) < min{essinf p;,essinf po}. In fact A, [p]
depends with continuity on p not only with respect to the strong topology of L>(£2) but
also with respect to the weak™ topology, which is clearly more relevant in optimization
problems. The following theorem was proved by Cox and McLaughlin [12] in the case
of the Dirichlet Laplacian and mass densities uniformly bounded away from zero and
infinity. The proof can be easily adapted to the general case. Moreover, it is possible
to replace the uniform lower bound for p by a weaker assumption.

Theorem 3.1. Let C C R be a bounded set. Assume that there exist a,b,c > 0 such
that inequalities (2.4) and (2.5) are satisfied for all p € C. Then the functions from C
to R which take any p € C to \,[p] are weakly* continuous for all n € N.

Proof. Since C' is bounded in L*>(€), it suffices to prove that given p € C and a
sequence p; € C, j € N such that p; —=* p as j — oo then A\, [p;] — A\u[p]. To do so, we
first prove! that for each n € N there exists L, > 0 such that \,[p;] < L, for all j € N.
Let n € N be fixed and uy,...,u, € V(Q2) be linearly independent eigenfunctions

IThis is clearly trivial if we assume that 0 < o < p for all p € C, in which case A\, [p] < \,[a].
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associated with the eigenvalues A1 [p], ..., \,[p], normalized by < u,,us >,= d,, for all
r,s =1,...,n. Note that

lim uruspjdx—/uruspdx,
Q Q

J—00

forall ,s =1,...,n. Thus

n 2 n 2
lim (Z%W) pjdx:/ (nyrur) pdx, (3.1)
I Ja r=1 Q r=1

uniformly with respect to v = (71,...,7,) € R" with |y| < 1. Let E be the linear
space generated by uq, ..., u,. By (3.1) it follows that for any € > 0 there exists j. € N
such that

fQ Z|a\,|ﬂ\§m AOZBDOCUD6UdI < fQ ZWHﬁ\Sm AaﬁDauDﬁudx
Jo u?p;da - Jo u?pdx
+e(Anlp] +2b) < Aulp] + e(Anlp] +20)  (3.2)

for all u € E, j > j.. By combining (2.9) and (3.2) we deduce that \,[p;] < \,[p] +
e(Anlp] + 20) for all j > j., which implies the existence of a uniform bound L, as
claimed above. The rest of the proof follows the lines of Cox [12]. Let u,[p;], n € N
be a sequence of eigenfunctions associated with the eigenvalues A, [p;] normalized by
< up[p;), wlpj] >p,= 0w for all n,l € N. Note that Qu,[p;], un[p;]] = An[p;] for all
j € N. By inequality (2.4), the sequence u,[p;], j € N is bounded in the space V()
equipped with the norm (2.1). It follows that possibly passing to subsequences, there
exists u, € V() such that u,[p,] weakly converges to 4, as j — oo in V(2), and there
exists A, € R such \, [pj] converges to A\, as j — 0o. Moreover, since the embedding
V(Q) € L*(Q) is compact we can directly assume that u,[p;] converges to u, strongly
in L*(Q) as j — oo. By passing to the limit in the weak equation

Qunlpjl, ¢l = Anlps] < unlpsl, 0 >p V9 €V(Q),

it follows that A, is an eigenvalue and of problem (2.2) and 1, a corresponding eigen-
function. Note that < ,,u; >,= d,; for all n,l € N, hence \,, n € N is a divergent
sequence. It remains to prove that A, = \,[p] for all n € N. To do so, assume by con-
tradiction that there exists an eigenfunction u € V() associated with an eigenvalue
A of the weak problem (2.2) such that < @, 1, >,= 0 for all n € N. Assume that @ is
normalized by |||, = 1/(b+A). By the Auchmuty principle [2] applied to the operator
L +bl,, we have

1 Qlu, u] +b||u|’%g,(9) P 23
— < . — U — Lp—1.0. U2 , .
2<b+/\n[Pj]) = 9 | 1,p; Hij(Q) (3-3)
for all u € V() and n,j € N. Here P, ,u denotes the orthogonal projection in
Lf)j (2) of u onto the space generated by ui[p;], ..., un_1[p;] for alln > 2 and P ,,u = 0.
By setting u = @ and passing to the limit in (3.3) as j — 0o, we obtain
1 Qlu, u] + bHﬂ’H%%(Q) ~ 1
- — < —lallrze) = —57—/=
2(b+ \y) 2 2(b+ N)

for all 7 € N, which contradicts the fact that A, — oo as n — oo. O
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By classical results in perturbation theory, one can prove that A,[p] depends real-
analytically on p as long as p is such that \,[p] is a simple eigenvalue. This is no longer
true if the multiplicity of A, [p] varies. In the case of multiple eigenvalues, analyticity
can be proved for the symmetric functions of the eigenvalues. Namely, given a finite
set of indexes F' C N, we set

RIF|={peR: N[p] £\, VjeF leN\F}

and

AF,h[p] = ' Z Aji [p] - 'Ajh[p]a h=1,...[F] (3.4)

Moreover, in order to compute formulas for the Frechét differentials, it is also con-
venient to set

OF] ={p e R[F]: Nulpl = Aplpl, Vi, j2 € F}.
Then we have the following result

Theorem 3.2. Assume that there exist a,b,c > 0 such that inequalities (2.3) and (2.5)
are satisfied. Let F' be a finite subset of N. Then R[F] is an open set in L>(2) and the
functions Apy, are real-analytic in R[F]. Moreover, if F' = U}_,F, and p € N}_,O[F}]
is such that for each k = 1,... n the eigenvalues \;[p] assume the common value \g, [p]
for all j € Fy, then the differentials of the functions Apy at the point p are given by

the formula
el == e Y [ e, (35)

k=1 IcFy

for all p € L>(QY), where

S e 00

0<hi<|Fy j=1
...... £k
0<hn <|F 7
hi+:+hn=h
and for each k =1,...,n, {w}ier, is an orthonormal basis in Li(Q) of the eigenspace

associated with A, [p].

Proof. We set
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where we have set Apy = AFO =1.

By adapting to the operator L+b1, the same argument used in [22] for the Dirichlet
Laplacian, one can prove that R[F] is an open set in L>(Q) and that App[p] depends
real-analytically on p € R[F]|. Thus, by (3.6) we deduce the real-analyticity of the
functions App,.

We now prove formula (3.5). First we assume that n = 1, hence F' = F; and
p € O[F]. For simplicity, we write Ar[p] rather than Ag, [p]. The same computations
used in [22] yields the following formula for the Frechét differential dA gy [p] of Apy at
the point p € R[F]:

dApp[pllp] = —(Aelp] + )" (“Z |__11> > <dTpllw),w >,, VpeLX(Q). (3.7)

By standard calculus and by recalling that T,u; = (Ap[p] + b) 'y for all I € F, we
have

< dT,[pl[w],u; >,= —b < (L +bL,) *dL,[p|(L + bl,) " L, w >,

< (L—i—b[) Lar [ ]ul,ul >p= #][p—l]—b < (L+b[> Ydr [ ]ul,ul >p
. Ar[p] w2 pde
Jenr +b>2/9 & o

hence

dhraldl) = Meldoeld + 00 (3T e, o

leF

for all p € L>(§2). By (3.6) and (3.9) we get

dApulp][p]
_ _;;AF[,)KAFM rorn (1) ’_‘11> ('F ) > | utia
— o] (\?_—11) Zz:: (h - 1) O] b ()1~ k;/ulpdx

which immediately implies (3.5) for n = 1. We now consider the case n > 1. By means
of a continuity argument, one can easily see that there exists an open neighborhood
W of p in R[F] such that W C N}_,R[Fy]. Thus,

App = Z H Afp, b, (3.10)

0<h1<|F1,....0<hn <|Fn| k=1

hi+-+hn=h
on W. By differentiating equality (3.10) at the point p and applying formula (3.5) for
n = 1 to each function Ap, 5,, we deduce the validity of formula (3.5) for arbitrary
values of n € N. l [
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4 Maximum principle

In this section we consider the case of general intermediate boundary conditions. This
means that we assume that V(Q) is a closed subspace of W™2(Q) satisfying the inclu-
sion

V(Q) Cc W% (Q). (4.1)

Assume that €2 has finite measure. For all M > 0 we set
Ly = {pGLOO(Q) : /pd:c:M} (4.2)
Q

The following theorem is a generalization of [22, Theorem 4.4] to the case of inter-
mediate boundary conditions.

Theorem 4.1. Let all assumptions of Theorem 3.2 hold. Assume in addition that €2
has finite measure and inclusion (4.1) holds. Then for all h =1,...,|F| the map Apy,
of RIF) N Ly to R which takes any p € R[F| N Ly to Applp] has no points of local
mazimum or minimum p such that X;[p] have the same sign and \;[p] # 0 for all j € F'.

Proof. It is convenient to consider the real-valued function M defined on L>(£2) by
Mp] = [, pda for all p € L>°(Q2). Assume by contradiction the existence of p as in the
statement. Then p is a critical point for the function Apj subject to the mass constraint
M]p] = M. This implies the existence of a Lagrange multiplier which means that there
exists ¢ € R such that dAp[p] = cdM|p] (see e.g., Deimling [14, Theorem 26.1]). By
formula (3.5), it follows that

/Q <Z cx Zu?) pda = C/dex,

k=1 leF},

for all p € L>(Q2). Note that ¢; are non-zero real numbers of the same sign. Since p is
arbitrary, it follows that

(Z Ch Z u?) =c, a.e. in . (4.3)

k=1 leF},

Since uw; € Wy (), then by a standard argument one can prove that the function
(Crot Yoier, (Veklu)?)Y? belongs to the space W;#(2) and equals y/|c| almost ev-
erywhere in €. As is well-known the space VVO1 (2) does not contain constant functions
apart from the function identically equal to zero. Thus ¢ = 0 and accordingly u; = 0
for all [ € F', a contradiction. O

Remark 4.1. Theorem 4.1 concerns mass densities p such that \;[p] do not vanish and
have the same sign for all j € F. This assumption is clearly guaranteed for positively
defined operators. Moreover, we note that the sign of the eigenvalues is preserved by
small perturbations of p. Hence our assumption is not much restrictive in the analysis
of bifurcation phenomena associated with multiple eigenvalues different from zero.
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Finally, by Theorems 3.1 and 4.1 we deduce the following

Corollary 4.1. Let all assumptions of Theorem 4.1 hold. Let C C R[F] be a weakly*
compact set in L>(S2). Assume that there exist a,b > 0 such that inequality (2.4) is
satisfied for all p € C. Let M > 0 be such that C' N Ly is not empty. Assume that the
eigenvalues \j[p] have the same sign and do not vanish for all j € F, p € C. Then for
allh € {1,...,|F|} the map Apy, from C'N Ly to R which takes p € CN Ly to App[p]
admits points of mazimum and minimum and all such points belong to OC N Lyy.

Proof. Recall that weakly™ compact sets are bounded. Thus, by Theorem 3.1 the
functions Apj, are weakly® continuous on C' hence they admit both maximum and
minimum on the weakly* compact subset C N Ly, of C. By Corollary 4.1 the corre-
sponding points of maximum and minimum cannot be interior points of C', hence they
belong to C' N L. O

Example 5. Consider the poly-harmonic operators subject to Dirichlet or intermedi-
ate boundary conditions as described in Example 4. Let A, B € L>®(Q)) be functions
satisfying the condition

0 < essinf A(z) < esssup B(x) < oo.
e zeN
Let
C={pel>=): A<p<B}.

Clearly, C' is a weakly™ compact set. Moreover, since all mass densities p are uniformly
bounded away from zero and infinity, inequality (2.4) is satisfied for suitable constants
a,b > 0 not depending on p € C'. Thus Corollary 4.1 is applicable to all non-zero
eigenvalues. It turns out that points of maximum and minimum p should coincide with
A(z) or B(z) in a set of positive measure.

Remark 4.2. Condition (4.1) was used only to guarantee that V(2) \ {0} does not
contain constant functions. Thus, one may replace condition (4.1) by slightly more
general conditions. For example one may assume that

V(Q) € Wi (),

where Wollg(Q) is the closure in WY2(Q) of C*-functions vanishing in an open neigh-
borhood of a suitable subset of I' of OQ). In this case, one would talk about mized-
intermediate boundary conditions.

If V(Q) is a closed subspace of W™2(Q) containing constant functions different
from zero, then we could argue as in the proof on Theorem 4.1 up to condition (4.3).
Thus, in the general case one could simply characterize the critical mass densities
of the functions Apy, as those mass densities for which condition (4.3) is satisfied.
Clearly, in the case of simple eigenvalues condition (4.3) reduces to uw = const in
which implies that X = 0. Thus, we conclude that the maximum principle stated in the
introduction holds for all simple eigenvalues and all homogeneous boundary conditions
under consideration. As for multiple eigenvalues we note that the analysis of condition
(4.3) is not straightforward as it may appear at a first glance. Under suitable reqularity
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assumptions on the eigenfunctions wuy, us associated with a double eigenvalue A\ of the
Neumann Laplacian, one may prove that the condition u? + u3 = const in Q implies
that A = 0. However, we do not include such arguments here since we plan to perform
a deeper analysis of Neumann and other boundary conditions in a forthcoming paper.
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