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Abstract. In this paper we consider the spectral problem for the Schrodinger equation
with an integral perturbation in the periodic boundary conditions. The unperturbed
problem is assumed to have the system of eigenfunctions and associated functions
forming a Riesz basis in Lo(0,1). We construct the characteristic determinant of the
spectral problem. We show that the basis property of the system of root functions of
the problem may fail to be satisfied under an arbitrarily small change in the kernel of
the integral perturbation.

1 Introduction

It is well known that the system of root functions of an ordinary differential operator
with arbitrary strongly regular boundary conditions is a Riesz basis in Ly(0,1). In the
case in which the boundary conditions are regular but not strongly regular, the basis
property of the system of root function, unlike the completeness property, is not even
determined by the boundary conditions. V.A. II'in [2] was the first to note this effect
[2] and he constructed a related example for a second order differential operator of
general form. As shown in [2], in this case, in addition to the boundary conditions, the
coefficients of the differential operator also affect the basis property. Moreover, this
property can change under an arbitrarily small change in coefficients in the metric of
those spaces in which they are defined. In the present paper we consider the problem of
instability of the basis property under integral perturbation of the boundary conditions
for the periodic boundary value problem.
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2 Statement of the problem

In the space Ly(0,1) we consider the operator Ly generated by the ordinary differential
expression

l(u) = —u"(z) + q(x)u(z), 0 <z <1 (2.1)
and the periodic boundary conditions
Ui(u) = u/'(0) — /(1) = 0, Us(u) =u(0) —u(l) = 0. (2.2)

Let L; be the operator in Ly(0,1), given by expression (1) and the “perturbed”
boundary conditions:

Uy (u) = /0 p@u(@)dz, Us(w) = 0, p(x) € Ls(0, 1). (2.3)

In the present paper the unperturbed operator L is assumed to have the system
of eigen- and associated functions (EAF) forming a Riesz basis in Ly(0,1) and we
construct the characteristic determinant of the spectral problem for the operator L;.
On the basis of this formula we make conclusions about instability of the Riesz basis
property of the EAF of the problem with the integral perturbation of the boundary
condition. The case ¢(x) = 0 was studied in [4].

The problem of the basis of eigen- and associated functions of the operator L; with
more general integral boundary conditions was positively solved in [10] where the Riesz
basis with parentheses property under the conditions of Birkhoff regularity |8, pp. 66—
67] of the boundary conditions of the unperturbed problem was proved. Moreover,
under the additional assumption of strong regularity the Riesz basis property of EAF
was proved.

For the unperturbed operator Ly the Riesz basis with parentheses property of EAF
in case of the regular boundary conditions was established in [11]. If the boundary
conditions are strongly regular then EAF form a Riesz basis |7, 3|. For the second
order equation the Riesz basis property under regular but not strongly regular boundary
conditions was considered in [5]. In our case boundary conditions (2.2) are regular but
not strongly regular boundary conditions. So we cannot apply the results of [10] for it
and an additional investigation is required.

Problem (2.1), (2.2) is a periodic boundary problem, moreover, it is also self-adjoint
for a real-valued coefficient ¢(x). The problem of the Riesz basis property of the system
of root functions of the periodic problem with a complex-valued coefficient ¢(x) was
investigated in [6, 13]. In particular, it was shown that the set of potentials ¢(z) such
that the system of root functions of problem (2.1), (2.2) is a Riesz basis in Ly(0, 1),
is dense in Ly(0,1). As follows from the results in [11], the set of potentials ¢(z)
for which problem (2.1), (2.2) has an asymptotically multiple spectrum, is dense in
L5(0,1). A particular case of the potential ¢(z), when all the eigenvalues of (2.1), (2.2)
are multiple, investigated in our study [9].

3 Characteristic determinant of a spectral problem

We additionally assume that the potential ¢(x) is chosen in such a way that the un-
perturbed periodic problem (2.1), (2.2) has the system of EAF forming a Riesz basis
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in Ly(0,1). Let \) be eigenvalues (numbered in decreasing order of their modules) of
the operator Ly of multiplicity my, + 1 to which correspond the eigenfunctions uj(x)
and chains of the adjoint functions u;(x), j = T,7m. Then the biorthogonal system
consists of the eigenfunctions v}, () and the associated functions vp;(z), j = 0,my — 1

of the operator L corresponding to the eigenvalues )\_2. Obviously the system of EAF
{vgj(:r), j=0,mg, k=1, oo} of the operator L also forms a Riesz basis in Ly(0, 1).
Applying integration by parts, we obtain the Lagrange formula:

Jo Wwyo(@)de — [y u(@)l*(v)da = [w/(0) — u'(1)] v(0)+
- (3.1)
/(1) [000) = v(D)| = [(0) = w(1)] /(0] — w(1) [v'(0) — /(1)) .
Here [*(v) is the adjoint differential expression:
I*(v) = —v"(z) + q(z)v(z), 0 <z < 1. (3.2)

Consequently the operator L{ corresponding to the operator Ly is given by differ-
ential expression (3.2) and the boundary conditions

Ui(v) =0'(0) —'(1) = 0, Uz(v) =v(0) —v(1) = 0. (3.3)

Also the operator L} corresponding to the operator L, is given by the loaded dif-
ferential expression

IF(v) = —v"(z) + q(z)v(x) + p(z)v(0), 0 <z < 1. (3.4)

and periodic boundary conditions (3.3).

Now we construct the characteristic determinant of the spectral problem. Let
uy(z, A), us(x, \) be a system of fundamental solution of the equation [(u) = Au satis-
fying the conditions ug.k*l)((), A) = 0k, j,k =1,2. Here 0, is the Kronecker symbol.
Assuming that the general solution u(x, \) = Cius(x, A)+Caus(z, \), satisfies boundary
conditions (2.3), we obtain the following linear system with respect to the coefficients
C}CI

Cy [—ug(l,A) — /Olmul(m,wx] + ) {1 —uh(1,\) — /;MUQ(:B,)\)CM} =0,

O 1 — uy (1, \)] + Ca[1 — up(1,\)] = 0.

The determinant of this system is the characteristic determinant of problem (2.1), (2.3):

—uf (1, ) — fo ﬁ (x Ndr 1T —wu(1, )

Ar(N) =
1Y 1 —ub(1,N) — f (x,N)dx  —us(1, )

(3.5)

It is easy to see that the characteristic determinant of unperturbed problem (2.1), (2.2)
is obtained by (3.5) with p(z) = 0. We denote it by Ag(\). We expand the function
p(z) along the basis {U,gj(x), j=0,mg, k=1, oo}:

= Z [Z akjvgj(x)] . (3.6)

k=1 Lj=0
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Using (3.6), we shall obtain a more convenient representation of the determinant
A1(X). To do all this we first calculate

/o p(@)us(z, N de = Z [Z@ (us(z, /\),vgj(a:))] , s=1,2. (3.7)

k=1 Lj=0

In order to avoid the problem of choice of the associated functions we assume that EAF
of the adjoint problem are constructed by the following formulas:

* 0. /30 0 7
Lovkmo = )\kvkmo, Lovkj = /\k% + A/ MV J=0,my — 1.

It is easy to check the following chain of equalities

(N = A (s, A), o (2)) = (Vg ), v () = (s, 0, Aol ()

= o) = (s ity = () o) = () o) — (o i)

+()‘2) (umvng)-
Here we use Lagrange formula (3.1) and boundary conditions (3.3). Then for all
7 =0,mi — 1 we get

(A = A0 (us(@, ), v () = Brs(5) + (M)

where we denote

Bya(j) = [u,(0) — (1) 02,0) — [u(0) — u(1)] o, (0). (3.8)

Repeating such calculations (my — 1 — j) times, we obtain

=

N

(u57 Ul(c)j+1)7

my—1—j T 1\ ME—J
(AR)? (AR)? 0
ug(z, N), v} E Bis(j+ 1 + Us, Uy 1
( ( ) k] e k ] ) [/\ )\0]7‘-1-1 N — )\2 ( k k)

Similarly for the eigenfunction vy ,, we get

(A =A%) (us(@, A), vk g, (%) = Brs(ma)

Combining two last equations, we get

\ =N B ()2
(US(I ) Ukj TZO ks j + 7") [>\ )\O]r+1

Substituting here the explicit form of By(j + r) given by (3.8), we find

(us(2, A), v (7)) = [} (0) — uy(1)] [Zi’l’“& g %02 j+r(0)]
(3.9)

T

~1u0) — ()] [ 2757 8D )

[A=29
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Now we can substitute (3.9) in formula (3.7). Then

/0 P (@)1t (2, Nz = [(0) — ! (1)] Ay(A) — 12 (0) — 1o (1)] A (),

where we denote

&W=;JZ%%§:AAMHAﬁ@M. (3.10)

7=0 r=0

Using (3.5), after elementary transformations, we get:
AN = Ao(A) — Ao(N)A1(N) = Ag(\) (1 . A1(>\)>. (3.11)

Substituting here the value of A;(\) given by (3.10), we find the following representa-
tion of the characteristic determinant of the operator Li:

Ar(N) = Ag(X ( Z[Za;”(z %vgﬂr(()))]). (3.12)

k=1 Lj=0 r=0
Let us formulate the obtained result in the form of a theorem.

Theorem 3.1. Let problem (2.1),(2.2) have the eigenvalues ) and a system of EAF
forming a Riesz basis. Then the characteristic determinant of problem (2.1), (2.3) with
the perturbed boundary conditions can be represented in form (3.12), where Ag(N) is
the characteristic determinant of problem (2.1),(2.2); {v};} are EAF of the adjoint
unperturbed problem; ay; are the Fourier coefficients of the biorthogonal expansion (3.6)
of function p(x) along this system.

In representation (3.11) the function A;(\) has poles at A = A} of maximal order
my + 1. But at the same points the function Ag(A) has zeros of order my + 1. So the

function A;()), given by formula (3.12), is an entire analytic function of the variable
A

4 Particular cases of the characteristic determinant

Consider the cases in which formula (3.12) is simpler. First suppose that the poten-
tial ¢(z) is chosen in such a way that the eigenvalues A} of the unperturbed periodic
boundary problem (2.1), (2.2) are all double except for the simple root A}; the cor-
responding root subspace consists of two eigenfunctions cx(x), sg(z); and the system
{co(), cr(x), sp(x), k = 1,00} is a Riesz basis in L(0,1). Then the biorthogonal ad-
joint system {c}(x), cp(x), si(x)} consists of the eigenfunctions of the adjoint boundary
problem (3.2), (3.3) and is a Riesz basis in Ly(0, 1) as well. Without loss of generality,
we choose the biorthogonal systems in such a way that s;(0) = 0. Then in this partic-
ular case formula (3.12) of the representation of the characteristic determinant of the
perturbed problem has the form

mmzmwG—Zjﬂ%>
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where a5 are the Fourier coefficients of biorthogonal expansion (3.6) which in our
particular case has the form

p(x) = Z agcp(x) + Z brsp(x).

In particular, if g(z) = 0, then chosing the basis of the unperturbed problem to be
ci(x) =1, ¢i(x) = cos2kmx, s;(v) = sin2knz, the characteristic determinant will be

written as
\/X > Qe
— in2 _ A S
A1(N) =sin 5 1 kEZO N2k )

From the analysis of the last formula it follows that A} = A} = (2k7)? is always an
eigenvalue of problem (2.1), (2.3) with g(z) = 0. This fact clarifies the results of paper
[4].

Another case of simpler form of characteristic determinant (3.12) is the case in which
p(z) is represented as a finite sum in (3.6), that is when there exists such number N
that ax; = 0 for all £ > N. In this case the formula (3.12) has the form

A1) = Aol (1+Z ZW(Z_ ﬁ@)]) (@)

k=1 Lj=0 r=0

From this special case of formula (3.12) it is easy to prove the following

Corollary 4.1. Let problem (2.1), (2.2) have the eigenvalues N2 and a system of EAF
forming a Riesz basis. Then for any preassigned numbers A (complex) and m (nat-
ural) there exists a function p such that X is an eigenvalue of problem (2.1),(2.3) of
multiplicity m.

5 Perturbations preserving the basis property

From the analysis of formula (4.1) it is also easy to see that A;(\?) = 0 for all &k > N.
Hence all the eigenvalues A}, k& > N of the unperturbed problem (2.1), (2.2) are
eigenvalues of perturbed problem (2.1), (2.3). Also it is not hard to see that the
multiplicity (my + 1) of the eigenvalues A}, k& > N is also preserved.

Moreover from the biorthogonality condition of the system of EAF of the adjoint
problems it follows that in this case

1
/0 p(x)up;(z)de =0, j =0,my, k> N.

So EAF uj;(x) of problem (2.1), (2.2) at k > N satisfy the boundary conditions
(2.3) and hence, are EAF of problem (2.1), (2.3). Thus in this case the system of EAF
of problem (2.1), (2.3) and the system of EAF of problem (2.1), (2.2) (forming a Riesz
basis) coincide except for a finite number of the first terms. Consequently, the system
of EAF of problem (2.1), (2.3) also is a Riesz basis in Ly(0, 1).

By the Riesz basis property in Ly(0, 1) of the system of EAF {v});(x)} of the adjoint
unperturbed problem, the set of functions p(x), represented by finite sums of (3.6) is
dense in Ly(0,1). Hence the following statement is proved.
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Theorem 5.1. Let problem (2.1),(2.2) have a system of EAF forming a Riesz basis.
Then the set of all functions p € Ls(0,1), for which the system of EAF of problem
(2.1),(2.3) is a Riesz basis in Ly(0,1), is dense in Lo(0,1).

Note that in [4] an analogue of Theorem 5.1 was proved for a particular case of the
integral perturbation of the periodic boundary conditions for the operator of double
differentiation (that is for the case ¢(z) = 0).

6 Perturbations that do not preserve the basis property

Moreover, in [4] it was proved that the set of all functions p € Ly(0,1) for which the
system of EAF of the problem (with perturbed periodic boundary conditions) does not
form even an ordinary basis in L9(0,1) is also dense in Ly(0,1). We prove a similar
result for more general case ¢(z) # 0.

Theorem 6.1. Let periodic problem (2.1),(2.2) have a system of EAF forming a Riesz
basis in L9(0,1), let the eigenvalues of the problem be asymptotically double, and let
root subspaces corresponding to double eigenvalues consist of two eigenfunctions. Then
the set of all functions p € L(0, 1), for which the system of EAF of problem (2.1), (2.3)
does not form even an ordinary basis in Ly(0, 1), is dense in Ly(0,1).

Proof. Asymptotic doubleness of the eigenvalues means the existence of such a number

Ny that all eigenvalues A} for k& > N, are double. As the root subspaces for k > Ny

consist of two eigenfunctions ci(z), sg(x) for the operator Ly and two eigenfunctions

ci(x), sp(z) for the operator L, we may choose the eigenfunctions inside the root

subspace in a way convenient for us. Without loss of generality, we assume that the

functions cg(x), sk(x) are normalized, mutually orthogonal and s} (0) for all £ > Nj.
So the system of EAF of problem (3.2), (3.3) has the form:

{vp;(2), j=0,ms, k=1,No; cj(x), sp(x), k> No},

and expansion (3.6) may be represented in the form:

p(z) = Z [Z agvp; ()| + Z larc(z) + besy(z)] . (6.1)

In this case (taking into account that s;(0) = 0) the characteristic determinant (3.12)
has the form:

e —— me—j (ODE
AN = (1 - | (S0 s O ) +
- (6.2)
S — ¢ (0
2 kNt ak%) Ag(A).

From the analysis of formula (6.2) it is easy to see Aj(\)) = 0 for all & > Ny; i.e.,
all eigenvalues \?, k > Ny of unperturbed problem (2.1), (2.2) are also eigenvalues of
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perturbed problem (2.1), (2.3). So A, k > N, are eigenvalues of problem (3.2), (3.3).
As s3(0) = 0, the functions v)(x) = (is;(x) are eigenfunctions of problem (3.2), (3.3),
corresponding to the eigenvalues )\_2, k > Nj.

If for any n > N, simultaneously a, # 0 and b, # 0, then by direct calculation
it is easy to verify that the function u®(z) = b,c,(x) — @ys,(7) is an eigenfunction of
problem (2.1), (2.2), corresponding to the eigenvalue \J.

From the condition of biorthogonality of the system of EAF corresponding to the

adjoint problems it follows that
1= (00,18) = (Busty(2), Buca(t) — Trsa(z)) = —Batin
Hence we find the coefficient 3, = —1/a,. Therefore,
ul (1) = by (x) — Tpsn () and vl (2) = —(1/a,)sk (2) (6.3)

are pairs in biorthogonal systems. Since the eigenfunctions ¢, (z), s,(z) are chosen to
be mutually orthogonal and normalized, we have

||ug(:1c)||2 = |bn|2||cn(x)||2 + |an|2||3n(x)||2 = |bn|2 + |GN|2- (6.4)
From the biorthogonality condition we obtain

1 1 1 1
= (s(a), (2)) < llsallP + S lsnl = 5 + S5

Therefore ||s}|| > 1. This, together with (6.4), implies the inequality

i @) - lon @) > V1 + 1ba/an?

for biorthogonal pair (6.3).
Consequently, for all functions p whose coefficients of the expansions of the functions
(6.1) contain a subsequence a, # 0, b, # 0 such that lim, .. |b,/a,| = oo, we get

Jim (@) - o2(z)| = oo
i.e., the uniform minimality condition [1, p. 66] fails to be satisfied for the system of
root functions of the operator L; and, therefore, it is not even an ordinary basis in
Ly(0,1).
Denote by oy(z) the partial sum of series (6.1). Suppose N > Ny. Due to the
Riesz basis property of the system of EAF system of problem (3.2), (3.3), the linear
manifold of all functions p, which can be presented as a series

o

plx) =on(2) + Y laci(e) + bisi(z)],
k=N+1
where a = 1/(k2%), by = 1/(2%), k > N is dense in Ly(0,1). Since by/aj, = k — oo,

for such functions p the system of EAF of problem (2.1), (2.3) it is not even an ordinary
basis in Ly(0,1). O



On spectral properties of a periodic problem.... .. 61

Note that, in the proof of the theorem, we have justified that problem (2.1), (2.3)
and problem (3.3) for loaded equation (3.4) are adjoint. Since adjoint operators si-
multaneously have the Riesz basis property of root functions, we have the following
assertion.

Corollary 6.1. The set P of all functions p € Ls(0,1), for which the system of root
functions of problem (3.3) for loaded equation (3.4) is a Riesz basis in Ly(0,1), is dense
in Ly(0,1). The set Ly(0, 1)\ P is dense in Lo(0,1) as well.

The results of the present work, in contrast to [10]|, demonstrate the possibility of
instability of the basis properties of system of EAF of problems with integral pertur-
bation of the boundary conditions, which are regular but not strongly regular.

Acknowledgments

We are thankful to the Eurasian Mathematical Journal for careful editing of our paper.



62

(1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

N.S. Imanbaev, M.A. Sadybekov

References

S.G. Krein Funktsional’nyi analiz (Functional analysis), Ed., Moscow: Nauka, 1972.

V.A. Il'in, On the relationship between the form of the boundary conditions and the basis property
and property of equiconvergence with the trigonometric series of expansions in root functions of
a nonself-adjoint differential operator, Differ. Uravn., 30 (1994), no. 9, 1516-1529.

G.M. Kesel'man, On the unconditional convergence of eigenfunction expansions of certain dif-
ferential operators, Izv. Vyssh. Uchebn. Zaved. Mat.(1964), no. 2, 82-93.

A.S. Makin, On a nonlocal perturbation of a periodic Figenvalue Problem, Differ. Uravn., 42
(2006), no. 4, 560-562.

A.S. Makin, On spectral decompositions corresponding to non-self-adjoint Sturm-Liouville oper-

ators, Doklady Mathematics, 73 (2006), no. 1, 15-18.

A.S. Makin, Convergence of expansions in the root functions of periodic boundary value problems,
Doklady Mathematics, 73 (2006), no. 1, 71-76.

V.P. Mikhailov, On Riesz basis in L2(0, 1), Dokl. Akad. Nauk SSSR, 144 (1962), no. 5, 981-984.
M.A. Naimark, Linear differential operators, Nauka, Moskau, 1969 (in Russian).

M.A. Sadybekov, N.S. Imanbaev, On the basis property of root functions of a periodic problem
with an integral perturbation of the boundary condition, Differential Equations, 48 (2012), no. 6,
896-900.

A.A. Shkalikov, Basis property of eigenfunctions of ordinary differential operators with integral
boundary conditions, Vestnik Moskov. Univ. Ser. I Mat. Mech. (1982), no. 6 , 12-21.

A.A. Shkalikov, On the basis problem of the eigenfunctions of an ordinary differential operator,
Uspekhi Mat. Nauk, 34 (1979), no. 5 , 235-236.

V.A. Tkachenko, Spectral analysis of a nonselfadjoint Hill operator, Sov. Math. Dokl., 45 (1992),
78-82.

O.A. Veliev, A.A. Shkalikov, On the Riesz basis property of eigen- and associated functions of
periodic and anti-periodic Sturm-Liouville problems, Mat. Zametki, 85 (2009), no. 5, 671-686.

Nurlan Imanbaev

International Kazakh-Turkish University named after A. Yasawi
Sattarhanov street, 161200 Turkestan, Kazahstan

E-mail: imanbaevnur@mail.ru

Makhmud Sadybekov

Institute of Mathematics and Mathematical Modeling
Pushkin street, 125, 050010 Almaty, Kazakhstan
E-mail: makhmud-s@mail.ru

Received: 13.10.2010
Revised version: 14.02.2013



