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Abstract. A linear differential operator P (D) with constant coefficients is called
almost hypoelliptic if all derivatives P (ν)(ξ) of the characteristic polynomial P (ξ) can
be estimated above via P (ξ). In this paper we describe the collection of lower order
terms addition of which to an almost hypoelliptic operator P (D) (polynomial P (ξ))
preserves its almost hypoellipticity and its strength.

1 Introduction

We shall use the following standard notation: N - the set of all natural numbers, N0 =
N ∪ {0}, Nn

0 = N0 × ... × N0- the set of all n-dimensional multi-indices, Rn - the n-
dimensional Euclidean space. Rn

0 = {ξ ∈ Rn; ξ1 · · · ξn 6= 0}. For ξ = (ξ1, · · · , ξn) ∈ Rn

and α = (α1, ..., αn) ∈ Nn
0 we put |ξ| =

√
ξ2
1 + ...+ ξ2

n , |α | = α1 + ... + αn, ξα =
ξα1
1 ...ξαn

n , Dα = Dα1
1 ...Dαn

n , where Dj = ∂
∂ξj

(j = 1, · · · , n).

For a linear differential operator with constant coefficients P (D) =
∑
α

γαD
α, let

P (ξ) =
∑
α

γα ξ
α be its characteristic polynomial (complete symbol), where the sum

extends over a finite collection of multi-indices (P ) = {α ∈ Nn
0 , γα 6= 0}.

Definition 1.1. The least convex polyhedron < = <(P ) containing all points α ∈ (P )
is called the Newton or the characteristic polyhedron of an operator P (D) (a
polynomial P (ξ)).

A polyhedron < with vertices from Nn
0 is called complete (see [19]), if < has a

vertex at the origin and also it has vertices on each coordinate axis.
Let < be a complete polyhedron. A set Γ ⊂ < is called a face of <, if there exist

a (unit) vector λ = (λ1, · · · , λn) and a number d = d(λ,Γ) ≥ 0 such that (λ, α) ≡
(λ1α1 + · · · + λnαn) = d for all points α ∈ Γ, wile (λ, β) < d for β ∈ < \ Γ. The
unit vector λ is called an outward normal ( <−normal ) of the face Γ. The set of all
<−normals of Γ we denote by Λ(Γ)·

It is clear, that for a k−dimensional face (0 ≤ k ≤ n − 1) of Γ of a complete
polyhedron < the set Λ(Γ) is an open (n− k)−dimensional cone. Observe, that the
<−normal of (n− 1)−dimensional face is determined uniquely.
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Definition 1.2. A face Γ of a complete polyhedron < is called principal, if there exists
λ ∈ Λ(Γ) with at least one positive coordinate. If in Λ(Γ) there exists a λ with nonnega-
tive (positive) coordinates, then the face Γ we call proper (completely proper) (see
[21], [14] or [17].) A complete polyhedron < is called proper (completely proper)
if all its (n− 1)−dimensional non-coordinate faces are proper (completely proper). A
point α ∈ < is called principal (proper, completely proper) if α belongs to a principal
(proper, completely proper) face of <.

A monomial ξα is called a lower order monomial with respect to the polynomial P ,
if 1) α ∈ <(P ), 2) α is non-principal point of <(P ). A polynomial Q is called a lower
order term with respect to the polynomial P , if every monomial ξα with α ∈ (Q) is
a lower order monomial with respect to P.

Definition 1.3. We say that an operator P (D) is more powerful than an operator
Q(D) (a polynomial P (ξ) is more powerful than a polynomial Q(ξ) ) and write Q < P,
if for some constant C > 0

|Q(ξ)| ≤ C[1 + |P (ξ)| ] ∀ξ ∈ Rn.

Definition 1.4. A polynomial P (ξ) is called almost hypoelliptic if DαP < P for
all α ∈ Nn

0 .

It is well known that one can add any lower order term to an elliptic or semielliptic
polynomial without violating its ellipticity or semiellipticity. However adding some
lower order term to hypoelliptic (by L. Hörmander [16], by L. Gȧrding - B. Malgrange
[8], by V.I. Burenkov [2] - [5], by V.V. Grushin [15] and others ), to hyperbolic (by
I.G. Petrovski [23], or by L. Gȧrding [7], see also [14]) or to almost hypoelliptic (see
[19] or [12]) polynomials can violate their (almost) hypoellipticity or hyperbolicity.

The aim of the paper is finding algebraic conditions on a lower order term Q
with respect to an almost hypoelliptic polynomial P under which the polynomial
P (ξ) +Q(ξ) is almost hypoelliptic.

Let < = <(P ) be the Newton polyhedron of a polynomial P (ξ) , and let <j
i

(i = 1, · · · ,Mj; j = 0, 1, · · · , n−1) be principal faces of <· With each <j
i we associate

a subpolynomial

P i,j(ξ) =
∑
α∈<j

i

γαξ
α.

It is easy to check (see, for instence, [21]) that the polynomial P i,j is λ− homo-
geneous (generalized homogeneous) for every vector λ ∈ Λ(<j

i ), that is, there exists a
number dj

i (λ), satisfying the conditions

P i,j(ξ) =
∑

(λ,α)=dj
i (λ)

γαξ
α; P i,j(tλξ) = td

j
i (λ)P i,j(ξ), (1.1)

for every t > 0 and for all ξ ∈ Rn, where tλξ = (tλ1ξ1, · · · , tλnξn)·
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Definition 1.5. A face <j
i (1 ≤ i ≤ Mj; 0 ≤ j ≤ n − 1) of the Newton polyhedron

< = <(P ) is called regular or non-degenerate (see [21]) if P i,j(ξ) 6= 0 for ξ ∈ Rn
0 · If

P i,j(η0) = 0 for some point η0 ∈ Rn
0 , then face <j

i is called irregular or degenerate.
A polynomial P is called regular if all its principal faces are regular.

In [22] S.M. Nikolskii showed that if the Newton polyhedron < = <(P ) is com-
pletely proper and if for some constant C > 0

1 + |P (ξ)| ≥ C
∑
ν∈<

| ξν | ∀ξ ∈ <,

then P is hypoelliptic. In [21] V.P. Mikhailov proved that every regular polynomial
with complete Newton polyhedron < satisfies this inequality.

Applying this fact and Lemma 2 in [21] one can easely prove

Lemma 1.1. If P is a regular polynomial with a complete Newton polyhedron < and
Q is any lower term with respect to P then

a) P < P +Q < P,
b) if the polyhedron < is proper and P is almost hypoelliptic then P +Q is almost

hypoelliptic.

Therefore it suffices to consider only the case in which the polynomial P is irregular.

2 Almost hypoellipticity of polynomials in terms of powers of
polynomials

Let P be an almost hypoelliptic polynomial with constant (generally complex) coef-
ficients. In this section we obtain some conditions under which the relation Q < P
ensures almost hypoellipticity of the polynomial P +Q·

Lemma 2.1. Let R1 and R2 be λ−homogeneous polynomials (λ ∈ Rn) with λ−orders
d1 > d2 such that R2 < R1· Then

|R2(ξ)|/|R1(ξ)| → 0 as |R1(ξ)| → ∞, (2.1)

|R2(ξ)| ≤ C(1 + |R1(ξ)|
d2
d1 ) ∀ξ ∈ Rn· (2.2)

Proof. It is obvious that (2.2) implies (2.1). To prove (2.2) note that for ξ ∈ Rn :
R1(ξ) = 0, inequality (2.2) immediately follows by the homogeneity of polynomials R1

and R2 and the condition R2 < R1· Let R1(ξ) 6= 0 and t = |R1(ξ)|−
1

d1 then by the
λ−homogeneity of polynomials R1 and R2 and by the conditon R2 < R1 we obtain

td2|R2(ξ)| = |R2(t
λξ)| ≤ C[1 + |R1(t

λξ)| ] = C[1 + td1|R1(ξ)| ] = 2C,

i.e. |R1(ξ)|−
d2
d1 |R2(ξ)| ≤ 2C, which proves (2.2).
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Corollary 2.1. Let R(ξ) be a λ−homogeneous polynomial with λ−order d = dR,
Qj(ξ) be λ−homogeneous polynomials with λ−orders δj (j = 0, 1, · · · ,M), d > δ0 >
δ1 > · · · > δM , Q(ξ) = Q0(ξ) + · · ·+QM(ξ) and Q < R. Then

|Q(ξ)|/|R(ξ)| → 0 as |R(ξ)| → ∞· (2.3)

Proof. From the following system of linear algebraic equations with respect to the
{Qj(ξ)}

M∑
i=0

tδiQi(ξ) = Q(tλξ) t = 1, · · · ,M + 1

(with a nonzero determinant) we obtain that for some positive constants C1, C2, C3

|Qi(ξ)| ≤ C1

M∑
t=1

|Q(tλξ)| ≤ C2

M∑
t=1

[1 + |R(tλξ)| ] = C2(1 + [
M∑
t=1

td]|R(ξ)|)

≤ C3[1 + |R(ξ)| ] ∀ξ ∈ Rn, i = 0, 1, · · · ,M.

This means that Qi < R (i = 0, 1, · · · ,M) and (2.3) follows by Lemma 2.1.

We denote by In the set of all polynomials P (ξ) = P (ξ1, · · · , ξn) such that

|P (ξ)| → ∞ as | ξ| → ∞.

In [9] and [10] in the case n = 2 there were obtained necessary and sufficient
conditions ensuring that P ∈ I2. In [12] it is proved that all the solutions of the
equation P (D)u = f, where f and all its derivatives are square integrable with a
certain exponential weight, which are square integrable with the same weight, are also
such that all their derivatives are square integrable with this weight, if and only if
the operator P (D) is almost hypoelliptic. In [13] the existence of a constant κ0 > 0
is proved such that all solutions of a class of a partially hypoelliptic (with respect to
the hyperplane x′′ = (x2, ..., xn) = 0 of the space En) (see [16], Definition 11.2.4 and
Theorem 11.1.1 ) equation P (D)u = 0 in the strip Ωκ = {(x1, x

′′) = (x1, x2, ..., xn) ∈
En; |x1| < κ} are infinitely differentable when κ ≥ κ0 and Dαu ∈ L2(Ωκ) for all
multi-indices α = (0, α′′) = (0, α2, ..., αn) in the Newton polyhedron of te operator
P (D).

Theorem 2.1. Let a polynomial P ∈ In be almost hypoelliptic and Q < P · Denote
by C0 the smallest positive constant for which

|Q(ξ)| ≤ C0[1 + |P (ξ)| ] ∀ξ ∈ Rn

and put ∆ = 1/C0· Then, for any complex number a such that | a| < ∆, the polynomial
P + aQ is almost hypoelliptic.
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Proof. Since P ∈ In, Q < P and | a| < ∆ there exist some positive numbers M and
ε such that

1− | a | |Q(ξ)|
|P (ξ)|+ 1

[1 +
1

|P (ξ)|
] ≥ ε ∀ξ ∈ Rn : |ξ| ≥M · (2.4)

On the other hand since P is almost hypoelliptic and Q < P, by Theorem 10.4.3
in [14] we get that for a certain constant C1 > 0

|D
νP (ξ)

P (ξ)
|+ | a | |D

νQ(ξ)

P (ξ)
| ≤ C1 ∀ξ ∈ Rn· (2.5)

Let now ν ∈ Nn
0 and |ξ| ≥M · Then inequalities (2.4) and (2.5) imply that

|Dν [P (ξ) + aQ(ξ)] |
|P (ξ) + aQ(ξ)|

≤ | |DνP (ξ)|+ |a | |DνQ(ξ)| |
| |P (ξ)| − |a | |Q(ξ)| |

=

=
|D

νP (ξ)
P (ξ)

|+ | a | |D
νQ(ξ)
P (ξ)

|

1− | a | |Q(ξ)|
|P (ξ)|+1

[1 + 1
|P (ξ)| ]

≤ C1/ε,

which completes the proof.

Example 1. The following example shows that in general in Theorem 2.1 the number
∆ cannot be replaced by a larger one. Let n = 2, P (ξ) = (ξ2

1 − ξ2
2)

2+ ξ2
1 + ξ2

2 + 1,
and Q(ξ) = ξ2

1 + ξ2
2 · It is obvious that Q < P, where ∆ = C0 = 1. By Theorem 2.1

in [17 ] P is almost hypoelliptic. By the same theorem P + aQ is almost hypoelliptic
for any a : −1 < a < 1. On the other hand for a = −1, P (ξ) + aQ(ξ) = (ξ2

1 − ξ2
2)

2 + 1,
is not almost hypoelliptic since D(2, 0)(P + aQ)(t, t) = 8t2 → ∞ as t → ∞, whereas
(P + aQ)(t, t) = 1 for any t ∈ R1·

Lemma 2.2. Let P be an almost hypoelliptic polynomial and P < Q < P · Then Q is
almost hypoelliptic.

Proof. By Lemma 10.4.2 in [16] for any polynomial S(ξ) = S(ξ1, · · · , ξn) there exists
a constant c = c(S) > 0 such that

c−1 S̃(ξ) ≤ sup
| η|≤1

| S(ξ + η)| ≤ c S̃(ξ) ∀ξ ∈ Rn,

where S̃ is L. Hörmander’s function, defined by formula

S̃(ξ) =

√∑
| ν |≥0

|DνS(ξ) |2·

This, together with the assumptions of the lemma, imply that for some positive
constants Cj (j = 1, · · · , 5)

Q̃(ξ) ≤ C1 sup
| η|≤1

| Q(ξ + η)| ≤ C2 sup
| η|≤1

[ 1 + | P (ξ + η)| ]

≤ C3 P̃ (ξ) ≤ C4[ 1 + | P (ξ)| ] ≤ C5[ 1 + | Q(ξ)| ] ∀ξ ∈ Rn·
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Below the notation Q << P means that

|Q(ξ)/P (ξ)| → 0 as | ξ| → ∞·

As a complement to Theorem 2.1 we prove the following statement.

Theorem 2.2. Let a polynomial P ∈ In be almost hypoelliptic and Q << P · Then
for any complex number a the polynomial P + aQ is almost hypoelliptic.

Proof. First note that the condition Q << P implies that P + aQ < P for any a.
On the other hand, since P ∈ In and Q << P, for any a 6= 0 there exist a number
M = M(a) > 0 such that

|Q(ξ)| ≤ 1

2 | a|
|P (ξ)| ∀ξ ∈ Rn : | ξ| ≥M.

Then for all ξ ∈ Rn : | ξ| ≥M

|P (ξ)| ≤ |P (ξ) + aQ(ξ)|+ | a| |Q(ξ)| ≤ |P (ξ) + aQ(ξ)|+ 1

2
|P (ξ)|,

which means that P < P +aQ. Thus P < P +aQ < P, hence (see Lemma 2.2) P +aQ
is almost hypoelliptic.

Theorem 2.3. Let P0, P1 be λ−homogeneous polynomials with real coefficients and
with λ−orders d0 > d1, {Qj} be λ−homogeneous polynomials with real coefficients
and with λ−orders {δj} (j = 0, 1, · · · ,M) and Q(ξ) = Q0(ξ) + · · ·+QM(ξ).

If the polynomial P = P0 + P1 ∈ In is almost hypoelliptic, d0 > δ0 > δ1 > · · · >
δM > d1 and Q < P0, then

1) P0 < P, P1 < P ;
2) P < P +Q < P ;
3) the polynomial P +Q is almost hypoelliptic.

Proof. 1. Since |P1| < |P0|+|P |, to prove statement 1) it suffices to show that P0 < P.
It is proved in [17] that for the polynomial P = P0 +P1 ∈ In with real coefficients

P0(ξ) ≥ 0 (≤ 0) for all ξ ∈ Rn and P1(η) > 0 (< 0) for all η ∈ Σ(P0) ≡ {ξ : ξ ∈
Rn

0 , P0(ξ) = 0}. We can assume that P0(ξ) ≥ 0 for all ξ ∈ Rn and P1(η) > 0 for all
η ∈ Σ(P0).

Let 0 6= ξ ∈ Rn, we put

| ξ, λ| = [
n∑

j=1

| ξj|2/λj ]1/2, ηj = ξj/| ξ, λ|λj (j = 1, ..., n).

Then | η, λ| = 1 and for t = | ξ, λ| we have ξ = tλη = (tλ1η1, ..., t
λnηn), where

| ξ, λ| = 0 if and only if | ξ| = 0.
We divide the unit sphere Σ in Rn into two classes: Σ = Σ′ ∪ Σ′′, where Σ′ =

{ξ : P1(ξ) > 0}, Σ′′ = {ξ : P1(ξ) ≤ 0} and put p 0 = min{P0(ξ); ξ ∈ Σ′′}, p 1 =
max{|P1(ξ)|; ξ ∈ Σ′′}, p 2 = max{|P0(ξ)|; ξ ∈ Σ′′}· The set Σ′′ is closed, Σ(P0) ⊂ Σ′

and P0(ξ) > 0 for ξ ∈ Σ′′, hence p 0 > 0·
If η ∈ Σ′ then by the definition of Σ′ we have

P (ξ) = P0(ξ) + td1 P1(η) ≥ P0(η)· (2.6)
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Let η ∈ Σ′′. Since d0 > d1 there exists a number t0 > 0 such that p1 t
d1 ≤ p0

2
td0

for all t ≥ t0. Then for t ≥ t0 we have

P (ξ) = td0 P0(η) + td1 P1(η) ≥ p0 t
d0 − p1 t

d1

≥ p0

2
td0 =

1

2

p0

p2

p2 t
d0 ≥ 1

2

p0

p2

P0(η) t
d0 =

1

2

p0

p2

P0(ξ)· (2.7)

For the points ξ ∈ Rn for which t ≤ t0 we have

P0(ξ) ≤ p3 ≡ max{P0(ξ); |λ, ξ| ≤ t0}· (2.8)

By (2.6) - (2.8) it follows that P0 < P and statement 1) is proved.
2. The right-hand side of statement 2) follows immediately by statement 1). To

prove the left-hand side of statement 2) note that the inequality |P (ξ)| ≤ C[1+ |P (ξ)+
Q(ξ)| ], with a positive constant C, is obvious when |P (ξ)| is bounded. Therefore it is
required to consider only the case in which |P (ξ)| is unbounded. In this case by Corol-
lary 2.1 there exists a number ε1 ∈ (0.1) such that |Q(ξ)| ≤ ε1|P0(ξ)| for sufficiently
large |P (ξ)|. Since by proved statement 1) P0 < P, this means that |Q(ξ)| ≤ ε|P (ξ)|
for a number ε ∈ (0.1) and for sufficiently large |P (ξ)|. Then

|P (ξ)| ≤ |P (ξ) +Q(ξ)|+ |Q(ξ)| ≤ |P (ξ) +Q(ξ)|+ ε|P (ξ)|

and statement 2) follows.
3. To prove statement 3) we need to show that Dν(P +Q) < P +Q for any ν ∈ Nn

0 .
By statement 2) P < P +Q, hence it suffices to show that Dν(P +Q) = DνP +DνQ <
P · The relation DνP < P follows from almost hypoellipticity of P · To prove the
relations DνQ < P for all ν ∈ Nn

0 we show that Q̃ < P, where Q̃ is L. Hörmander’s
function of the polynomial Q. By Theorem 10.4.3 in [ 16] for this purpose it is suffices
to show that for a constant C1 > 0 |Q(ξ)| ≤ C1P̃ (ξ) ∀ξ ∈ Rn· Since the polynomial
P is almost hypoelliptic, this inequality is equivalent to the relation Q < P. By the
condition Q < P0 of the theorem and by alredy proved statement 1) P0 < P, which
completes the proof.

Remark 1. By Theorem 10.4.3 in [16] one can replace the condition Q < P0 of
Theorem 2.3 by the weaker one: Q < P.

3 Comparison of powers of polynomials

Our purpose in this section is finding conditions under which the polynomial P ∈ In
with real coefficients is more powerfull than a polynomial Q, i.e. for which Q < P . First
note that any polynomial P ∈ In with real coefficients preservеs sign for sufficiently
large | ξ|· Therefore, without loss of generality, in the sequel we assume that P (ξ) ≥ 0
for all ξ ∈ Rn·

For λ ∈ Rn and a λ−homogeneous polynomial R(ξ) we set Σ(R) = {η ∈
Rn, 0, |η| = 1, R(η) = 0} and for a point η ∈ Σ(R) denote ℵ(η,R) = {ν ∈
Nn

0 , D
νR(η) 6= 0},
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∆(η,R) ≡ ∆(η,R, λ) = min
ν∈ ℵ(η,R)

(λ, ν)· (3.1)

Let <j
i (1 ≤ i ≤ Mj; 0 ≤ j ≤ n − 1) be a principal face of the complete Newton

polyhedron < = <(P ) of a polynomial P. It is clear that for every vector λ ∈ Λ(<j
i )

there exists a natural numberM = M(λ,<j
i ) and non-negative numbers dj = dj(λ,<j

i )
(j = 0, 1, · · · ,M), such that P can be represented as a sum of non-zero λ−homogeneous
polynomials Pj with λ−degree dj:

P (ξ) =
M∑

j=0

Pj(ξ) ≡
M∑

j=0

Pdj
(ξ) =

M∑
j=0

∑
(λ,α)=dj

γαξ
α, (3.2)

where d0 > d1 > · · · > dM ≥ 0. It is also clear that Pd0(ξ) ≡ P i,j(ξ) for every
λ ∈ Λ(<j

i )·
Let the principal face Γ ≡ <k

l (1 ≤ l ≤ Mk; 0 < k ≤ n − 1) be irregular and
λ ∈ Λ(Γ) ≡ Λ(<k

l ). With the λ−homogeneous polynomials Pdj
j = 0, 1, · · · ,M =

M(Λ,Γ) (with the face Γ ≡ <k
l ) we associate the sets Σ(λ, Pj), ℵ(η, Pj) and the

numbers ∆(η, Pj, λ), defined by (3.1).

Remark 2. Let an irregular principal face Γ ≡ <k
l (1 ≤ l ≤ Mk; 0 < k ≤ n − 1) of

a polynomial P ∈ In, a vector λ ∈ Λ(Γ) and a point η ∈ Σ(P l,k) be fixed and P be
represented in form (3.2). Since P ∈ In, there exists a number j 0 = j 0(Γ, λ, η) : 0 <
j 0 ≤M such that a) Pj 0(ξ) 6= const, b) P j(η) = 0 (j = 0, 1, · · · , j 0−1), Pj 0(η) 6= 0·
Thus with any triplet (Γ, λ, η) we associate a unique number j 0 = j 0(Γ, λ, η), which
we use in this section.

Similarly to (3.2) for every λ ∈ Λ(Γ) one can represent a polynomial Q as the
sum of non-zero λ−homogeneous polynomials:

Q(ξ) =

M(λ,Q)∑
j=0

Qj(ξ)·

If Qj < P for all j = 0, 1, · · · ,M(λ,Q), then it is clear that Q < P.
Therefore in order to simplify the formulations of results it is convenient to agree

that
a) Q is a λ−homogeneous polynomial,
b) an irregular principal face Γ is (n−1)−dimensional (in the two-dimensional case

only this is possible) with the <−normal λ, which is defined uniquely,
c) j 0(Γ, λ, η) = 1 for all η ∈ Σ(Γ).

A generalized homogeneous polynomial R is called a polynomial with characteristics
of constant multiplicity (see [6] or [24]) if for each η ∈ Σ(R) there exists a neighborhood
U(η), sufficiently smooth generalized homogeneous functions q(ξ) = q(ξ, η), r(ξ) =
r(ξ, η) and a natural number m = m(η), which does not depend on ξ ∈ U(η), such
that q(η) = 0, r(η) 6= 0, grad q(η) 6= 0 and

R(ξ) = [q(ξ)]m r(ξ) ∀ξ ∈ U(η)· (3.3)
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Remark 3. In the case n = 2, every generalized homogeneous polynomial R is a
polynomial with characteristics of constant multiplicity, i.e. it has a representation of
form (3.3) in some neighborhood of each η ∈ Σ(R) (see [ 17], Lemma 2.1). On the
other hand, for n ≥ 3 not every generalized homogeneous polynomial can be represented
in form (3.3). Let n = 3, and let R(ξ) = (ξ1 − ξ2)(ξ2 − ξ3). It is easy to see that this
homogeneous polynomial is not representable in form (3.3) in any neighborhood of the
point η = (1, 1, 1) ∈ Σ(R).

Theorem 3.1. Let < = <(P ) be the complete Newton polyhedron of a polynomial
P (ξ) = P (ξ1, · · · , ξn) ∈ In all principal faces of which are regular except for one prin-
cipal (n−1)−dimensional irregular face Γ ≡ <n−1

l · Let λ be the <−normal of this face,
and let (λ, α) = d0 be the equation of the (n − 1)−dimensional supporting hyperplane
going through this face. Let Q(ξ) be a λ−homogeneous polynomial of λ−degree dQ :
d1 < dQ ≤ d0, <(Q) ⊂ <(P ). Let us represent the polynomial P in form (3.2) with the
above vector λ, where P1(η) 6= 0 for all η ∈ Σ(Γ) ≡ Σ(P l, n−1).

Let P0 and Q be polynomials with characteristics of constant multiplicity, i.e. for
each η ∈ Σ(Γ) the polynomials P0 and Q can be represented in the form (see (3.3))

P0(ξ) = [q(ξ)]m r(ξ) ∀ξ ∈ U(η), (3.4)

Q(ξ) = [q(ξ)]m1 r1(ξ) ∀ξ ∈ U1(η), (3.5)

where q(ξ) = q(ξ, η), r(ξ) = r(ξ, η), r1(ξ) = r1(ξ, η), q(η) = 0, r(η) 6= 0, r1(η) 6= 0,
and if λ1 ≥ λ2 ≥ · · · ≥ λn, then DnP0(η) 6= 0,

Then Q < P if and only if

1) Σ(Q) ⊆ Σ(P0),

2)
d0 − d1

dQ − d1

≥ ∆(η, P0)

∆(η,Q)
∀η ∈ Σ(P0)· (3.6)

Remark 4. 1) It is obvious that one can assume that U1(η) = U(η) for all η ∈ ∆(Γ),
2) the fact that in the right-hand side of the representations (3.4), (3.5) q1(ξ) ≡ q(ξ)
is motivated by condition 1) of this theorem and mentioned above Lemma 2.1 in [17].

Remark 5. Since a λ− homogeneous polynomial is σλ− homogeneous for any σ > 0
and relation (3.6) holds after replacing λ by σ λ, we can assume that the numbers
∆(η, P0) and ∆(η,Q) are natural and m(η) = ∆(η, P0), m1(η) = ∆(η,Q) for all
η ∈ Σ(P0)·

Proof of Theorem 3.1. Necessity of 1) is obvious. Indeed, if Q(η) 6= 0 for some
point η ∈ Σ(P0) then |P (tλ η) | = td1|P1(η) | [1 + o(1)] and |Q(tλ η) | = tdQ |Q(η) | as
t→∞· Since dQ > d1 this means that |Q(tλ η) |/|P (tλ η) | → ∞·

Necessity of 2). For some point η ∈ Σ(P0) let

d0 − d1

dQ − d1

<
∆(η, P0)

∆(η,Q)
· (3.7)
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For ϑ = (ϑ1, · · · , ϑn) ∈ Rn, t > 0, and κ > 0 set

ξi = tλi (ηi + ϑit
−κλi) i = 1, · · · , n·

Then by Taylor’s formula we have as t→∞

Q(ξ) = tdQ Q(η + θt−κλ) = tdQ

∑
α

t−κ(λ, α) θ
α

α!
DαQ(η)

= tdQ−κ∆(η,Q)
∑

(λ,α)=∆(η,Q)

θα

α!
DαQ(η) + o(tdQ−κ∆(η,Q))·

Choose θ ∈ Rn in such a way that∑
(λ, α)=∆(η, Q)

θα

α!
DαQ(η) 6= 0·

The existence of such a vector θ obviously follows the definition of ∆(η,Q)· Then
for all t > 0 with a constant C1 > 0

|Q(ξ)| ≥ C1 t
d Q−k∆(η, Q)· (3.8)

For the polynomials P0 and P1 we obviously have for a constant C2 > 0

|P0(ξ) | ≤ C2 t
d Q−κ∆(η, P0), |P1(ξ)| ≤ C2 t

d1· (3.9)

Obvious geometric arguments show that as t→∞

|P (ξ)− [P0(ξ) + P1(ξ) ] | = o(td1)· (3.10)

Choose a number κ so that d0−κ∆(η, P0) = d1 < dQ−κ∆(η, Q), which is possible
by (3.7). Then by (3.9), (3.10) and (3.8) we have that for some constant C3 > 0

|P (ξ) | ≤ C3 t
d1(1 + o(1)) = o(|Q(ξ) |),

as t→∞, from which it follows that |Q(ξ) |/|P (ξ) | → ∞ as t→∞·
This proves the necessity of condition 2) for Q < P ·
To prove the sufficiency we will use the method of V.P. Mikhailov, applied by

him in [21] for study regular polynomials, modified by us and adapted for non-regular
polynomials (see, for instance, [18]).

Suppose, to the contrary, that under the fulfillment of conditions 1) and 2) there
exists a sequence {ξs}, such that |ξs| → ∞ as s→∞ and

|Q(ξ) |/[|P (ξ) |+ 1 ] →∞· (3.11)

It can be assumed without loss of generality that all of the coordinates of the vectors
{ξs} are positive. Let for s ∈ N

ρs = exp

√√√√ n∑
j=1

(ln ξs
j )

2; λs
i =

ln ξs
i

ln ρs

(i = 1, · · · , n). (3.12)
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Then ξs = ρλs

s (ξs
i = ρ

λs
i

s ; i = 1, · · · , n) and |λs | = 1 (s = 1, 2, · · · )·
Since the vectors λs are in the unit sphere, the sequence {λs} has a limit point

λ∞, and by passing to a subsequence we may assume that λs → λ∞ as s → ∞. By
the convexity of the polyhedron < it follows that λ∞ is an outward normal to one and
only one face of <·

In Rn consider an orthogonal basis e1,1, e1,2, · · · , e1,n with e1,1 = λ∞· Then λs =
Σn

i=1λ
s
1, ie

1, i· Morever, since λs → λ∞ = e1,1, we have λs
1, 1 → 1 and λs

1, i = o(λs
1, 1) for

i = 2, 3, · · · , n as s→∞·
If at the expense of an admissible choice of a subsequence we have Σn

j=2λ
s
1, j e

1, j =
0, for all sufficiently large s, we denote the basis e1, 1, e1, 2, · · · , e1, n by e1, · · · , en.
Otherwise, by an appropriate choice of a subsequence we have that Σn

j=2λ
s
1, j e

1, j 6= 0
for all s ∈ N and that as s→∞

n∑
i=2

λs
1, i e

1, i/|
n∑

i=2

λs
1, i e

1, i| → e2,2; |e2,2| = 1·

In the subspace spanned by e1, 2, · · · , e1, n we pass to a new orthogonal basis
e2, 2, · · · , e2, n with the vector e2,2 defined above. Then (for n ≥ 3)

λs = λs
1, 1 e

1, 1 +
n∑

i=2

λs
2, i e

2, i,

where clearly

λs
2, 2 = o(λs

1, 1), λ
s
2, i = o(λs

2, 2), i = 3, · · · , n, s→∞·

Proceeding analogously in the subspace with basis e2, 3, · · · , e2, n and so on, we
finally obtain (after modifying the notation ) to an orthogonal basis e1, e2, · · · , en

such that

λs =
n∑

i=1

λs
i e

i, λs
1 → 1, λs

i+1 = o(λs
i ) (i = 1, · · · , n− 1), s→∞·

Moreover, there exist natural numbers s0 and m; (m ≤ n) such that for all s ≥ s0

we have λs
i 6= 0 for i = 1, · · · ,m and λs

i = 0 for i = m + 1, · · · , n· Without loss of
generality we may assume that s0 = 1 and that λs

i > 0 (i = 1, · · · ,m) for all s ∈ N ·
To relate the constructed basis with the Newton polyhedron < = <(P ) of the

polynomial P, we consider the faces <k1
i1
,<k2

i2
, · · · ,<km

im
of <, where <k1

i1
lies in the

supporting hyperplane of < with outward normal e1 while each face <kj

ij
(2 ≤ j ≤ m)

either coincides with the face <kj−1

ij−1
or is a subfece thereof, and in either case <kj

ij
lies

in that predecessor, orthogonal to the supporting hyperplane for whose points α the
quantity (ej, α) is largest possible.

It is obvious by the construction of the faces <k1
i1
,<k2

i2
, · · · ,<km

im
that their dimen-

sions are subject to the relation k1 ≥ k2 ≥ · · · ,≥ km·
As above, let P i j ,k j be the subpolynomials of P corresponding to the faces <kj

ij

(j = 1, · · · ,m), and {Qi j ,k j} be subpolynomials defined by the polynomial Q and the
vectors {ej} analogously to the polynomials {P i j ,k j}·
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Compare the behaviour of the P (ξs) and Q(ξs) as s→∞, i.e. as ρs →∞ and
ξs = ρλs

s = ρ
Σn

j=1λs
j ej

s (s = 1, 2, · · · )·
Since we may select a subsequence, we can assume that for some r (1 ≤ r ≤ m)

ρλs
r

s →∞, ρ
λs

r+1
s → b ≥ 1 as s→∞· (3.13)

(For r = m = n set λs
n+1 = 0 for all s ∈ N and let en+1 be an arbitrary unit

vector).
From the convexity of < and their faces and from ej−homogeneity of polynomials

P i j ,k j and Qi j ,k j we obtain that for an arbitrary multi-index α belonging to all
<i j ,k j (i.e. α ∈ <km

im
) and for some positive ε1, · · · , εr

P (ξs) = ρ(α, λs
1 e1)

s [P i 1, k 1(ρ
Σn

j=2λs
j ej

s ) + o(ρ−ε1 λs
1

s ) ]

= ρ(α, λs
1 e1+λs

2 e2)
s [P i 2, k 2(ρ

Σn
j=3λs

j ej

s ) + o(ρ−ε2 λs
2

s ) ] = . . .

= ρ
(α, Σr

j=1λs
j ej)

s [P i r, k r(ρ
Σn+1

j=r+1λs
j ej

s ) + o(ρ−εr λs
r

s ) ]· (3.14)

For the polynomial Q we obtain similarly that, for a multiindex β ∈ <(Q) and for
some positive ε

′
1, · · · , ε

′
r

Q(ξs) = ρ
(β, Σr

j=1λs
j ej)

s [Qi r, k r(ρ
Σn+1

j=r+1λs
j ej

s ) + o(ρ−ε
′
r λs

r
s ) ]· (3.15)

By our assumptions

ηs ≡ ρ
Σn+1

j=r+1λs
j ej

s → b er+1 ≡ η, (0 < ηi <∞; i = 1, · · · , n)·

We consider two cases: (α, e1) > 0 and (α, e1) = 0· The case (α, e1) < 0 is impossi-
ble, as can be seen from the fact that the equation for the hyperplane of support with
outword unit normal λ of a proper polyhedron < can be written in the form (λ, α) = d,
where d ≥ 0 is the distance from the origin to the given hyperplane and α is a roving
point of the hyperplane (see, for example, [1]). In the case (α, e1) > 0 the face <kr

ir
of

<(P ) is principal and in the case (α, e1) = 0, the face <kr
ir

is non-principal.
First let (α, e1) > 0 and P i r, k r(η) 6= 0. Then for the polynomials P and Q we

obtain by (3.14) and (3.15) that

P (ξs) = ρ
(α, Σr

j=1λs
j ej)

s P i r, k r(η) (1 + o(1)),

Q(ξs) = ρ
(β, Σr

j=1λs
j ej)

s Qi r, k r(η) (1 + o(1))

as s→∞.
By the condition <(Q) ⊂ <(P ) in our theorem, by the positivity of λs

j (j =
1, · · · , r; s ∈ N) and by the definition of vectors e1, · · · , er we easily obtain that
(β, Σr

j=1λ
s
j e

j) ≤ (α, Σr
j=1λ

s
j e

j) for all s ∈ N, hence the last two relations together
contradict (3.11).
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Let now (α, e1) > 0 and P i r, k r(η) = 0. Since the face <km
im

is principal and we
assumed all principal faces of < to be regular except of the principal (n−1)−dimensional
face Γ ≡ <n−1

l , we obtain that the face <kr
ir

coincides with the irregular face Γ, i.e.

kr = n− 1, <kr
ir

= Γ, e1 = λ, ,Qir,kr(ξ) ≡ Q(ξ)·

We represent P as the sum of λ−homogeneous polynomials by (see formula (3.2)).
Note that P0(η) = P ir,kr(η) = 0, P1(η) 6= 0 and by condition 1) Q(η) = 0.

Representations (3.14) and (3.15) for a γ ∈ Nn
0 such that (λ, γ) = d1(λ) take the

form

P (ξs) = ρλs
1(λ, α)

s P0(η
s) + ρλs

1(λ,γ)
s P1(η

s) + o(ρλs
1(λ,γ)

s ), (3.16)

Q(ξs) = ρλs
1(λ, β)

s Q(ηs). (3.17)

We will prove that there exists a constant C > 0 such that for all s ∈ N for which
ρs ∈ U(η) (see representations (3.4) and (3.5), where U1(η) ≡ U(η))

|Q(ηs) | ≤ C |P0(η
s) |(dQ−d1)/(d0−d1) ∀ρs ∈ U(η)· (3.18)

By representations (3.4) and (3.5 ), where m(η) = ∆(η, P0), m1(η) = ∆(η,Q) for
all η ∈ Σ(P0) (see Remark 3.4), we obtain

[Q(ηs)]d0−d1

[P0(ηs)]dQ−d1
=

[q(ηs)]m1(d0−d1) [r1(η
s)]d0−d1

[q(ηs)]m(dQ−d1) [r(ηs)]dQ−d1

= [q(ηs)]m1(d0−d1)−m(dQ−d1) [r1(η
s)]d0−d1

[r(ηs)]dQ−d1
· (3.19)

By our assumption r(η) 6= 0, i.e. r(ηs) 6= 0 for all ρs ∈ U(η), hence there exists a
constant C1 > 0 such that

|r1(ηs)| d0−d1/|r(ηs)| dQ−d1 ≤ C1 ∀ρs ∈ U(η)· (3.20)

By condition 2) of our theorem m1(d0 − d1) − m(dQ − d1) = ∆(η,Q)(d0 − d1) −
∆(η, P0)(dQ − d1) ≥ 0. This, together with (3.19) and (3.20), proves (3.18).

By assumption P ∈ In P0(η
s) ≥ 0 and P1(η

s) > 0 for all ρs ∈ U(η). Consequently
from (3.16) we obtain that for S(ξ) = P (ξ) − [P0(ξ) + P1(ξ)] on our sequence {ξs}
we have |S(ξs) |/|P (ξs) | → 0 as s → ∞, which in turn shows that for sufficiently
large s

|P (ξs) | ≥ C2|ρd0
s P0(η

s) + ρd1
s P1(η

s) | (3.21)

for a constant C2 > 0.
Now for xs = ρs ≥ 1, ys = |P0(η

s)| ∈ [0, 1] and a1 > 0, a2 > 0 apply the
inequality

xdQ
s y(dQ−d1)/(d0−d1)

s ≤ C (1 + a1x
d0
s ys + a2x

d1
s ) s = 1, 2, · · · ,

( which can be proved simply if we choose ys = zd0−d1
s ). We obtain for all s ∈ N
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ρdQ
s |P0(η

s) |(dQ−d1)/(d0−d1) ≤ C3 [|ρdQ
s P0(η

s) + ρd1
s P1(η

s) |+ 1]

with a constant C3 > 0.
This, together with (3.18), (3.21), contradicts (3.11) and completes the considera-

tion in the case (e1, α) > 0, i.e. when the face <km
im

is principal.The case (e1, α) = 0,

when the face <kr
ir

is non-principal can be treated analogously to the corresponding
case of Theorem 2 in [17]. �

4 Description of lower order terms preserving almost hypoel-
lipticity

For an arbitrary multi-index ν ∈ Nn
0 the sets Σ(λ,DνPj), ℵ(η,DνPj) and the numbers

∆(η,DνPj, λ) for the λ−homogeneous polynomials {Pj} can be defined similary using
representation DνP in the form

DνP (ξ) =
∑

α

γα, νξ
α =

M∑
j=0

DνPj(ξ) ≡
M∑

j=0

DνPdj
(ξ) (4.1)

(see (3.1), (3.2))
In [20] it is proved that if a polynomial P (ξ) = P (ξ1, ξ2) is almost hypoelliptic then

each principal irregular face of the proper Newton polygon <(P ) is completely proper.
Thus the restriction to completely proper irregular faces below (see Lemma 4.1 and
Theorem 4.1 ) for almost hypoelliptic polynomials is motivated by this circumstance.

Lemma 4.1. Let Γ ≡ <k
l (1 ≤ l ≤ Mk; 0 < k ≤ n − 1) be an irregular completely

proper face of the proper Newton polyhedron < = <(P ) of an almost hypoelliptic poly-
nomial P. Then for any λ ∈ Λ(Γ) and η ∈ Σ(P l, k)

dj(λ)−∆(η, λ, Pj) ≤ dj 0 (j = 0, 1, · · · , j 0 − 1), (4.2)

where the number j 0 = j 0(Γ, λ, η) is defined as in Remark 3.1.

Proof. Suppose, to the contrary, that for some 0 ≤ j ≤ j 0 − 1 the inequality (4.2) is
violated. We denote by j 1 the least of such {j}. Thus, let

dj(λ)−∆(η, λ, Pj) ≤ dj 0 (0 ≤ j ≤ j1 − 1); dj1(λ)−∆(η, λ, Pj1) > dj 0 . (4.3)

Let β ∈ Nn
0 is chosen in such way that DβPj 1(η) 6= 0 and (λ, β) = ∆(η, λ, Pj 1).

We consider the behaviour of the polynomials P and DβP on the sequence ξs = sλη
(s = 1, 2, · · · )·

Since dj(λ) > dj1(λ) j = 0, 1, · · · , j 1 − 1, it follows by (4.3) that ∆(η, λ, Pj) >
∆(η, λ, Pj 1) j = 0, 1, · · · , j 1 − 1. Then Pj(η) = DβPj(η) = 0 (j = 0, 1, · · · , j 0 − 1),
DβPj 1(η) 6= 0. Hence by representation (4.1) and inequality (4.3) we obtain P (ξs) =
Pj 0(η)s

dj 0 + o(sdj 0 ) as s → ∞. For the polynomial DβP, respectively, for all s =
1, 2, · · ·
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DβP (ξs) = sdj1
(λ)−∆(η, λ, Pj1

)DβPj1(η) +
M∑

j=j1+1

sdj(λ)−∆(η, λ, Pj1
)DβPj(η)·

Since dj(λ) < dj1(λ) (j = j1 + 1, · · · ,M) we have

|DβP (ξs)| = |DβPj1(η)|sdj1
(λ)−∆(η, λ, Pj1

) (1 + o(1))

as s→∞.
These relations together with (4.3) show that

|DβP (ξs)|/[ 1 + |P (ξs)| ] →∞

as s→∞, which contradicts the almost hypoellipticity of P.

Theorem 4.1. Let P (ξ) = P (ξ1, · · · , ξn) ∈ In be an almost hypoelliptic polynomial
with the proper Newton polyhedron <, all the principal faces of which are regular except
of one (n − 1)−dimensional irregular completely proper face Γ = <n−1

i 0
. Let λ be the

<−normal of this face, and let (λ, α) = d0 be the equation of the (n− 1)−dimensional
supporting hyperplane going through this face.

Let Q(ξ) be a lower order term with respect to P. Using the vector λ represent the
polynomials P and Q in form (see (3.2)):

P (ξ) =

M(P )∑
j=0

Pj(ξ) ≡
M(P )∑
j=0

Pdj
(ξ) =

M(P )∑
j=0

∑
(λ, α)=dj

γP
α ξ

α, (4.4)

Q(ξ) =

M(Q)∑
j=1

Qj(ξ) ≡
M(Q)∑
j=0

Qδj
(ξ) =

M(Q)∑
j=0

∑
(λ, α)=δj

γQ
α ξ

α, (4.5)

where
1) j 0(η) = 1, i.e P1(η) 6= 0 for any η ∈ Σ(Γ),
2) let d0 > δ1 > δ2 · · · > δl > d1 and δj < d1 j = l + 1, · · · ,M(Q) for any

η ∈ Σ(Γ), hence P0 and Qj j = 1, · · · , l are polynomials with characteristics of
constant multiplicity, i.e. for each η ∈ Σ(Γ) the polynomials P0 and Qj 1 ≤ j ≤ l
can be represented in form (see (3.8)):

P0(ξ) = [q(ξ)]m r(ξ) ξ ∈ U(η), (4.6)

Qj(ξ) = [q(ξ)]mj rj(ξ) ξ ∈ Uj(η) j = 1, · · · , l, (4.7)

where q(η) = 0, r(η) 6= 0, rj(η) 6= 0, and if λ1 ≥ λ2 ≥ · · · ≥ λn, then DnP0(η) 6= 0,
3) Qj(ξ) ≥ 0 ∀ξ ∈ Uj(η) j = 0, 1, · · · , l.
Then the polynomial T = P+Q is almost hypoelliptic if and only if for all η ∈ Σ(Γ)

δj −∆(η,Qj) ≤ d1 (j = 1, · · · , l)· (4.8)
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Remark 6. 1) It is obvious that one can assume Uj(η) = U(η) for all j = 1, · · · , l and
η ∈ ∆(Γ), 2) the consideration of the case j0(η) = 1 for any η ∈ ∆(Γ) does not re-
strict generality, since in the case of more than one Pj (j > 0) such that Pj(η) = 0 for
a point η ∈ ∆(Γ), one can include such Pj in the set of lower order terms, 3) the case
of several non-regular faces of polyhedron <(P ) may be considered analogously, 4) the
restriction to (n−1)− dimensionality of a irregular face is motivated first by simplicity
and, secondly, by the fact that in the two-dimensional case this is only possibility.

Proof of Theorem 4.1. The necessity of conditions (4.8) is contained in Lemma 4.1.
To prove the sufficency suppose, to the contrary, that there exists a multi-index

ν ∈ Nn
0 and a sequence {ξs}, such that |ξs| → ∞ as s→∞ and |DνT (ξs) |/|T (ξs) | →

∞, where one can assume (see [15],Theorem 1.1) that |ν | = 1. To be definite, let
ν = (1, 0, · · · , 0) and as s→∞

|D1T (ξs) |/|T (ξs) | → ∞ as s→∞. (4.9)

Reasoning as in the proof of Theorem 3.1, we obtain a representation for polynomial
T similar to representation (3.14) for the polynomial P. We consider only case (α, e1) >
0· Since the polyhedron <(Q) consists only of non-principal points of <(T ) = <(P ), in
this case <kr

ir
(T ) = <kr

ir
(P ) is a principal face of <(P )· First let T i r, k r(η) = P i r, k r(η) 6=

0· Then we obtain

|T (ξs) | = ρλs
1 (α, e1)

s |P ir, kr(η) | (1 + o(1)) (4.10)

as s→∞. Similary, for the polynomial D1T, we have that for some constant C1 > 0

|D1T (ξs) | ≤ C1 ρ
λs
1 [(α, e1)− e1

1]
s |D1P

ir, kr(η) |+ o(ρλs
1 (α, e1)

s )· (4.11)

If e11 < 0, for simple geometric reasons it is clear that the face <k1
i1

(and conse-
quently all its subfaces) of the proper polyhedron <(T ) = <(P ) lies on hyperplane
α1 = 0, i.e. the polynomial P ir, kr(ξ) is not depend on ξ1. Then D1P

i r, k r(ξ) = 0 for
all ξ ∈ Rn and, in particular, D1P

i r, k r(η) = 0. Reasoning as above (see representations
(3.14), (4.4) and (4.5)) we obtain for a certain number ε > 0

|D1T (ξs) | = |D1Q1(η) | ρλs
1 (δ1−ε)

s (1 + o(1))

as s→∞, where δ1 < (α, e1). This, together with (4.10), contradicts (4.9).
Let now P i r, k r(η) = 0. Then <kr

ir
= Γ, i.e. kr = n− 1, e1 = λ is the <− normal

of Γ, ηs ≡ ρ
Σn

j=2λs
jej

s → b er+1 ≡ η (0 < ηi < ∞; i = 1, · · · , n) as s → ∞, where
η ∈ Σ(P0) (see representation (4.4)).

The polynomials Pj, D1Pj, (j = 0, 1, · · · ,M(P )); Qj, D1Qj (j = 1, · · · ,M(Q))
are λ−homogeneous and P0, Qj (j = 1, · · · , l) are polynomials with isolated charac-
teristics, i.e. represented in form (4.6) - (4.7). Then

D1P0(ξ) = m[q(ξ)]m−1D1q(ξ) r(ξ) + [q(ξ)]mD1r(ξ) (4.12)

and for any j = 1, · · · , l

D1Qj(ξ) = mj[q(ξ)]
mj−1D1 q(ξ) rj(ξ) + [q(ξ)]mj D1 rj(ξ)· (4.13)
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For convenience we denote Q0 = P0, m0 = m, r0 = r, δ0 = d0 and prove that for
each j = 0, 1, · · · , l there exists a constant ωj > 0 such that

|D1Qj(ξ
s) | ≤ ωj[ |Qj(ξ

s)|+ |P1(ξ
s) | ] ∀s ∈ N · (4.14)

Let the number s0 ∈ N be chosen in such a way that ηs ∈ U(η) for s ≥ s0. Then
for s ≥ s0 we get

Qj(ξ
s) = ρλs

1δj
s Qj(η

s) = ρλs
1δj

s [q(ηs)]mj rj(η
s) (j = 0, 1, · · · , l),

P1(ξ
s) = ρλs

1d1
s P1(η

s).

For the polynomials {D1Qj}, D1P1 respectively, for s ≥ s0

D1Qj(ξ
s) = ρλs

1(δj−λ1)
s {mj [q(ηs)]mj−1D1q(η

s) + [q(ηs)]mj D1rj(η
s)},

D1P1(ξ
s) = ρλs

1(d1−λ1)
s D1P1(η

s),

where λs
1 → 1 as s→∞.

Since ηs → η, q(ηs) → q(η) = 0 as s → ∞ and rj(η) 6= 0, P1(η) 6= 0, we obtain
from the last four representations with some positive constants C1, C2 and the same s

|Qj(ξ
s) | ≥ C1 ρ

λs
1δj

s |q(ηs)|mj , (j = 0, 1, · · · , l) (4.15)

|P1(ξ
s) | ≥ C1 ρ

λs
1d1

s , (4.16)

|D1Qj(ξ
s) | ≤ C2 ρ

λs
1(δj−λ1)

s |q(ηs)|mj−1, (j = 0, 1, · · · , l), (4.17)

|D1P1(ξ
s) | ≤ C2 ρ

λs
1(d1−λ1)

s · (4.18)

If mj 0 = 1 for a j 0, satisfying 0 ≤ j 0 ≤ l, then by the conditions Dnq(η) 6= 0 and
λn ≤ λ1 we get ∆(η, Pj 0) = λn ≤ λ1. Therefore δj 0 −λ1 ≤ δj 0 −λn ≤ d1 by conditions
(4.8) and estimate (4.14) for Qj 0 follows from estimates (4.17), (4.16).

Thus, we can assume that mj > 1 (j = 0, 1, · · · , l). Arguing as above we ob-
tain ∆(η,Qj) = mjλn and by conditions (4.8) δj − mjλ1 ≤ δj − mjλn ≤ d1

(j = 0, 1, · · · , l).
Applying Lemma 1.3 in [17] for xs = ρ

λs
1δj

s , ys = |q(ηs) |, a = λs
1(δj − λ1), b =

mj − 1, c = λs
1δj, d = mj, e = λs

1dl (j = 0, 1, · · · , l; s ∈ N) by (4.15) - (4.18) we
obtain (4.14). Note that xs ≥ 1 and ys ∈ [0, 1] for sufficiently large s.

We write

S(ξ) = T (ξ)− [P0(ξ) +
l∑

j=1

Qj(ξ) + P1(ξ)].

Obvious geometric arguments show that
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|S(ξs) | = o(ρ λs
1δ1

s ); |D1S(ξs) | = o(ρ λs
1(δ1−λ1)

s ) (4.19)

as s → ∞. By (4.14) and (4.19) follows the existence of a constant C3 > 0 such that
for sufficiently large s (satisfying ηs ∈ U(η)) we get

|D1T (ξs) | ≤ C3 [ |P0(ξ
s) |+

l∑
j=1

|Qj(ξ
s) |+ |P1(ξ

s) | ]· (4.20)

On the other hand, Qj(ξ
s) ≥ 0 (j = 1, · · · , l) by the assumption and P0(ξ

s) ≥ 0,
P1(ξ

s) > 0 for s satisfying ηs ∈ U(η) since P ∈ In (see Lemma 1.2 in [17]). This,
together with (4.19) and (4.16), shows that for some constant C4 > 0 for the same s

|T (ξs) | ≥ C4 [P0(ξ
s) +

l∑
j=1

Qj(ξ
s) + P1(ξ

s) ]. (4.21)

Estimates (4.20), (4.21) contradict (4.9). �

The following example shows that condition 3) for lower order term Q in Theorem
4.1 is essential for the almost hypoellipticity of P +Q

Example 2. Let n = 2 and P (ξ) = (ξ1−ξ2)4 (ξ2
1 +ξ2

2) +ξ2
2 +1. The Newton polyhedron

<(P ) is the triangle in R2 with vertices (6, 0), (0, 6), (0, 0) ∈ N2
0 · Here P0(ξ) = (ξ1 −

ξ2)
4 (ξ2

1 + ξ2
2), P1(ξ) = ξ2

2 , Σ(P0) = {±η} = (±1/
√

2, ±1/
√

2), P1(±η) = 1/2,
∆(±η, P0) = 4, d0 = 6, d1 = 2· It is easily seen that all conditions of Theorem 2.1 in
[15] are satisfied, and hence P is almost hypoelliptic.

Let Q±(ξ) = ±(ξ1 − ξ2)
2 (ξ2

1 + 2ξ2
2) be a lower order term with respect to P, where

dQ = 4, Σ(Q) = Σ(P0), ∆(±η,Q) = 2, d0 −∆(±η, P0) = dQ −∆(±η,Q) = 2 = d1.
Thus all the condition of Theorem 4.1 for polynomial P +Q+ are satisfied, and hence
P +Q+ is almost hypoelliptic.

For polynomial Q− condition 3) is not satisfied. We will show that P +Q− is not
almost hypoelliptic. Indeed, it is easy to check that for the sequence {ξs = (s+1, s); s ∈
N} P (ξs) +Q−(ξs) = 2 for all s ∈ N, whereas D2

1[P (ξs) +Q−(ξs)] = 18s2(1 + o(1))
as s→∞, i.e. P +Q− is not almost hypoelliptic.

On the other hand the following example shows that a polynomial P1 and a lower
order term Q in Theorem 4.1 may have values of any sign outside of some neighborhood
of a point η ∈ Σ(P0)·

Example 3. Let n = 2 and P (ξ) = (ξ1 − ξ2)
4(ξ2

1 + ξ2
2) −(ξ2

1 − 2ξ2
2)· Here P0(ξ) =

(ξ1 − ξ2)
4(ξ2

1 + ξ2
2), P1(ξ) = −(ξ2

1 − 2ξ2
2), where d0 = 6, d1 = 2, Σ(P0) = {η±}

= (±1/
√

2,±1/
√

2), P1(η
±) = 1, ∆(η±, P0) = 4· It is easy to verify that a) P ∈ I2

(see [9]), b) the polynomial P satisfies all assumptions of Theorem 2.1 in [15] and P
is almost hypoelliptic.

Let Q(ξ) = −(ξ1 − ξ2)
2 (2ξ2

1 − 3ξ2
2) be a lower term with respect to P · Here

dQ = 4, Σ(Q) = Σ(P0), ∆(η±, Q) = 2· Since dQ − ∆(η±, Q) = d1 = 2, P0 and
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Q are polynomials with characteristics of constant multiplisity, by Theorem 4.1 the
polynomial P +Q is almost hypoelliptic.

It should be observed that although P1(η
±) = 1, and there exist a neiborhood

U(η±) such that Q(ξ) ≥ 0 for ξ ∈ U(η±), it turns out that the polynomials P1 and
Q have values of any sign outside of U(η±)·

Replacing in presented examples (for instance) ξ1 by ξ2
1 we get examples of polyno-

mials with generalized homogeneous irregular principal parts.
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