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Abstract. We consider a quadratic matrix boundary value problem with equations and
boundary conditions dependent on a spectral parameter. We study an inverse problem
that consists in recovering the differential pencil by the so–called Weyl matrix. We
obtain asymptotic formulas for the solutions of the considered matrix equation. Using
the ideas of the method of spectral mappings, we prove the uniqueness theorem for
this inverse problem.

1 Introduction and main results

In this paper, we consider the boundary value problem L = L(`, U, V ) for the equation

`Y := Y ′′ + (ρ2 · I + 2iρQ1(x) +Q0(x))Y = 0, x ∈ (0, π), (1.1)

with the boundary conditions

U(Y ) := Y ′(0) + (iρh1 + h0)Y (0) = 0,
V (Y ) := Y ′(π) + (iρH1 +H0)Y (π) = 0.

(1.2)

Here Y (x) = [yk(x)]k=1,m is a column vector, ρ is the spectral parameter, I is the
m×m unit matrix, Qs(x) = [Qs,jk(x)]j,k=1,m are m×m matrices with entries Qs,jk(x) ∈
W s

1 [0, π], s = 0, 1 hs = [hs,jk]j,k=1,m, Hs = [Hs,jk]j,k=1,m, where hs,jk, Hs,jk are complex
numbers.

We assume that det(I ± h1) 6= 0 and det(I ± H1) 6= 0. This condition excludes
problems of Regge type (see [23]) from consideration, as they require a separate inves-
tigation.

Differential equations with nonlinear dependence on the spectral parameter, or
with so-called “energy–dependent” coefficients, frequently appear in mathematics and
applications (see [15, 14, 16, 18, 21, 24] and references therein). In particular, inverse
problems for such equations arise in investigation of mathematical models describing
collisions of relativistic spinless particles [13] or proper vibrations of a string with
viscous drag [22].
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In this paper, we investigate the inverse problem for the pencil L, which consists
in recovering coefficients of the boundary value problem (1.1), (1.2) by its spectral
characteristics. In the scalar case (m = 1) inverse problems for quadratic pencils were
studied in works [10, 25, 6, 7, 11, 20, 1, 2].

In the particular case when Q1(x) ≡ 0, equation (1.1) becomes the matrix Sturm–
Liouville equation. In recent years, significant progress has been made in the inverse
problems theory for this equation. Constructive algorithms for solution of inverse
problems were suggested, and characterization of spectral data was given (see [27, 8,
19, 3, 4]).

Now we plan to use ideas, developed for the matrix Sturm–Liouville equation,
for problems with nonlinear dependence on the spectral parameter. In the present
paper, we consider a general situation, without any conditions of selfadjointness on the
coefficients and with the spectral parameter in the boundary conditions. We study the
inverse problem for the pencil L by so–called Weyl matrix and prove the uniqueness
theorem for the solution of this problem.

For our investigation, we develop ideas of the method of spectral mappings [9,
26]. This method also can be used to obtain a constructive procedure and numerical
methods for the solution of this inverse problem. Numerical algorithms based on the
method of spectral mappings are considered in the paper [12]. However, the questions
of constructive solution of the inverse problem for the matrix pencil require separate
investigation.

One of the main difficulties in problems for differential pencils is related to asymp-
totic behavior of solutions. The main terms of asymptotic representations depend on
the coefficients of the pencil Q1, h1, H1. Derivation of asymptotic formulas is nontriv-
ial even in the scalar case, and in the matrix case it is more complicated, because of
additional difficulties related to noncommutativity of matrix multiplication. We obtain
the asymptotics for the fundamental system of solutions for equation (1.1). They are
required to prove uniqueness, but they can also be considered as a separate result.

Now we proceed to the formulation of the main result. Let Φ(x, ρ) =
[Φjk(x, ρ)]j,k=1,m be the matrix solution of equation (1.1) satisfying the conditions
U(Φ) = I, V (Φ) = 0. We call Φ(x, ρ) the Weyl solution for L. Put M(ρ) := Φ(0, ρ).
The matrix M(ρ) = [Mjk(ρ)]j,k=1,m is called the Weyl matrix for L. The notion of
the Weyl matrix is a generalization of the notion of the Weyl function (m-function)
for the scalar case (see [17, 9]) and the notion of the Weyl matrix for the matrix
Sturm–Liouville operator (see [3, 4]).

The inverse problem is stated as follows.

Inverse Problem 1. Given a Weyl matrix M(ρ), find the coefficients of the pen-
cil L.

Remark. One can prove in a standard way that the boundary problem L has a
countable set of eigenvalues {ρn}. The entries of M(ρ) are meromorphic in ρ and their
poles coincide with {ρn}. As in the scalar case (see [6]), the following representation
is valid

M(ρ) =
∑

n

mn∑
ν=1

Mnν

(ρ− ρn)ν
, (1.3)
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where mn are multiplicities of the corresponding eigenvalues ρn, and Mnν are some
matrix coefficients.

Following [6, 7], we call the collection {ρn,Mnν} the spectral data of the pencil L.
By virtue of (1.3), the spectral data determine the Weyl matrix uniquely. Therefore,
Inverse Problem 1 is equivalent to

Inverse Problem 2. Given spectral data {ρn,Mnν}, find the coefficients of the
pencil L.

In this paper, we restrict ourselves to Inverse Problem 1.
Along with L we consider a pencil L̃ of the same form but with other coefficients

Q̃s(x), h̃s, H̃s. We agree that if a symbol γ denotes an object related to L then γ̃
denotes the corresponding object related to L̃.

We now state the uniqueness theorem for Inverse Problem 1.

Theorem 1.1. If M(ρ) = M̃(ρ), then L = L̃. Hence the Weyl matrix determines the
coefficients of the pencil (1.1), (1.2) uniquely.

In order to prove Theorem 1.1, we need asymptotics for the solutions to equation
(1.1). They are obtained in Section 2. In Section 3, we provide the proof of the
uniqueness theorem.

2 Asympotic behaviour of the solutions

Let C(x, ρ) = [Cjk(x, ρ)]j,k=1,m and S(x, ρ) = [Sjk(x, ρ)]j,k=1,m be the matrix solutions
of equation (1.1) under the initial conditions

C(0, ρ) = S ′(0, ρ) = I, C ′(0, ρ) = S(0, ρ) = 0.

The main goal of this section is to obtain the asymptotics of S(x, ρ) and C(x, ρ) as
|ρ| → ∞.

Let the matrix functions P+(x), P−(x), P ∗
+(x) and P ∗

−(x) be the solutions of the
Cauchy problems

P ′
±(x) = ±Q1(x)P±(x), P±(0) = I,

P ∗′
± (x) = ±P ∗

±(x)Q1(x), P ∗
±(0) = I.

(2.1)

Remark. In the scalar case (m = 1), one has

P±(x) = P ∗
±(x) = exp

{
±
∫ x

0

Q1(t) dt

}
.

Lemma 2.1. The following relations hold

P+(x)P ∗
−(x) = P ∗

−(x)P+(x) = I, P−(x)P ∗
+(x) = P ∗

+(x)P−(x) = I,

for all x ∈ [0, π].



An inverse problem for the matrix quadratic pencil on a finite interval 23

Proof. Using (2.1), we get

(P ∗
−(x)P+(x))′ = (P ∗

−(x))′P+(x) + P ∗
−(x)P ′

+(x)

= −P ∗
−(x)Q1(x)P+(x) + P ∗

−(x)Q1(x)P+(x) = 0.

Hence P ∗
−(x)P+(x) does not depend on x, so P ∗

−(x)P+(x) = P ∗
−(0)P+(0) = I. The

other relations can be proved similarly.

Theorem 2.1. For x ∈ [0, π], |ρ| → ∞, ν = 0, 1, the following relations hold

C(ν)(x, ρ) =
(iρ)ν

2
exp(iρx)P−(x) +

(−iρ)ν

2
exp(−iρx)P+(x) +O(ρν−1 exp(|τ |x)),

(2.2)

S(ν)(x, ρ) =
(iρ)ν−1

2
exp(iρx)P−(x) +

(−iρ)ν−1

2
exp(−iρx)P+(x) +O(ρν−2 exp(|τ |x)),

where τ := Im ρ.

In order to prove the theorem, we develop the ideas of [5] with necessary modifica-
tions caused by the matrix case.

Proof. 1. First we derive Volterra integral equations for S(x, ρ) and C(x, ρ).
One can easily check that the matrix functions

C0(x, ρ) =
1

2
exp(iρx)P−(x) +

1

2
exp(−iρx)P+(x),

S0(x, ρ) =
1

2iρ
exp(iρx)P−(x)− 1

2iρ
exp(−iρx)P+(x)

form a fundamental system of solutions for the differential equation

Y ′′ +Q′
1(x)(iρ · I −Q1(x))

−1Y ′ + (ρ2 · I + 2iρQ1(x)−Q2
1(x))Y = 0.

Rewrite equation (1.1) in the form

Y ′′ +Q′
1(x)(iρ · I −Q1(x))

−1Y ′ + (ρ2 · I + 2iρQ1(x)−Q2
1(x))Y = F (x, ρ, Y ), (2.3)

F (x, ρ, Y ) := Q′
1(x)(iρ · I −Q1(x))

−1Y ′ − (Q2
1(x) +Q0(x))Y. (2.4)

Apply the method of variation of parameters to this equation. Every solution of (2.3)
can be represented in the form

Y (x, ρ) = C0(x, ρ)A(x, ρ) + S0(x, ρ)B(x, ρ),

where coefficient matrices A(x, ρ) and B(x, ρ) can be found from the system[
C0(x, ρ) S0(x, ρ)
C ′

0(x, ρ) S ′0(x, ρ)

]
·
[
A′(x, ρ)
B′(x, ρ)

]
=

[
0

F (x, ρ, Y )

]
(2.5)
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and the initial conditions

A(0, ρ) = Y (0, ρ), B(0, ρ) = (I −Q1(0)/(iρ))
−1Y ′(0, ρ). (2.6)

In order to solve system (2.5), we introduce the matrix functions

C∗
0(x, ρ) =

1

2
exp(iρx)P ∗

−(x) +
1

2
exp(−iρx)P ∗

+(x),

S∗0(x, ρ) =
1

2iρ
exp(iρx)P ∗

−(x)− 1

2iρ
exp(−iρx)P ∗

+(x).

Using Lemma 2.1, one can easily show that[
C0 S0

C ′
0 S ′0

]−1

=

[
S∗

′
0 −S∗0

−C∗′
0 C∗

0

]
·
[
iρ(iρ · I −Q1)

−1 0
0 iρ(iρ · I −Q1)

−1

]
.

Therefore

A′(x, ρ) = −iρS∗0(x, ρ)(iρ · I −Q1(x))
−1F (x, ρ, Y ),

B′(x, ρ) = iρC∗
0(x, ρ)(iρ · I −Q1(x))

−1F (x, ρ, Y ).

and

Y (x, ρ) = C0(x, ρ)A(0, ρ) + S0(x, ρ)B(0, ρ)+

+ iρ

∫ x

0

(S0(x, ρ)C
∗
0(t, ρ)− C0(x, ρ)S

∗
0(t, ρ))(iρ · I −Q1(t))

−1F (t, ρ, Y ) dt. (2.7)

Simple calculations show that

S0(x, ρ)C
∗
0(t, ρ)− C0(x, ρ)S

∗
0(t, ρ)

=
1

2iρ

{
exp(iρ(x− t))P−(x)P ∗

+(t)− exp(−iρ(x− t))P+(x)P ∗
−(t)

}
.

Substituting Y = C(x, ρ) and Y = S(x, ρ) into (2.6) and (2.7), we arrive at the
following integral equations

C(x, ρ) = C0(x, ρ) +
1

2

∫ x

0

{
exp(iρ(x− t))P−(x)P ∗

+(t)−

− exp(−iρ(x− t))P+(x)P ∗
−(t)

}
(iρ · I −Q1(t))

−1F (t, ρ, C) dt, (2.8)

S(x, ρ) = S0(x, ρ)

(
I − Q1(0)

iρ

)−1

+
1

2

∫ x

0

{
exp(iρ(x− t))P−(x)P ∗

+(t)−

− exp(−iρ(x− t))P+(x)P ∗
−(t)

}
(iρ · I −Q1(t))

−1F (t, ρ, S) dt,

where F (x, ρ, Y ) is defined in (2.4).
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2. Then we continue to work with C(x, ρ). The function S(x, ρ) can be treated
similarly. Differentiating (2.8) with respect to x and using (2.1), we get

C ′(x, ρ) = C ′
0(x, ρ) +

1

2
(iρ · I −Q1(x))

∫ x

0

{
exp(iρ(x− t))P−(x)P ∗

+(t)+

+ exp(−iρ(x− t))P+(x)P ∗
−(t)

}
(iρ · I −Q1(t))

−1F (t, ρ, C) dt, (2.9)

Denote
µν(ρ) := max

x∈[0,π]
‖C(ν)(x, ρ) exp(−|τ |x)‖, ν = 0, 1.

We agree to denote by the same symbolK different positive constants not depending
on x and ρ, and we mean by ‖.‖ the following matrix norm:

‖A‖ = max
j=1,m

m∑
k=1

|aij|,

A = [ajk]j,k=1,m.
Since

‖F (t, ρ, C)‖ ≤ K‖Q′
1(t)‖

µ1(ρ)

|ρ|
+ ‖Q2

1(t) +Q0(t)‖µ0(ρ),

we get from (2.8) and (2.9)

µ0(ρ) ≤ K

(
1 +

µ0(ρ)

|ρ|
+
µ1(ρ)

|ρ|2

)
, µ1(ρ) ≤ K

(
|ρ|+ µ0(ρ) +

µ1(ρ)

|ρ|

)
,

whence we obtain µν(ρ) ≤ K|ρ|ν or

C(ν)(x, ρ) = O(|ρ|ν exp(|τ |x)).

Substituting this into (2.8) and (2.9), we arrive at (2.2).

3 Proof of the uniqueness theorem

Let ϕ(x, ρ) = [ϕjk(x, ρ)]j,k=1,m and ψ(x, ρ) = [ψjk(x, ρ)]j,k=1,m be the matrix solutions
of equation (1.1) under the initial conditions

ϕ(0, ρ) = ψ(π, ρ) = I, U(ϕ) = V (ψ) = 0.

It is easy to check that

Φ(x, ρ) = S(x, ρ) + ϕ(x, ρ)M(ρ), (3.1)

Φ(x, ρ) = ψ(x, ρ)(U(ψ))−1. (3.2)

We expand ϕ(x, ρ) by the fundamental system of solutions C(x, ρ) and S(x, ρ)

ϕ(x, ρ) = C(x, ρ)− S(x, ρ)(iρh1 + h0)
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and, using Theorem 2.1, we get

ϕ(ν)(x, ρ) =
(iρ)ν

2
exp(iρx)P−(x)(I − h1) +

(−iρ)ν

2
exp(−iρx)P+(x)(I + h1)

+O(ρν−1 exp(|τ |x)), x ∈ [0, π], ν = 0, 1, |ρ| → ∞.

In order to obtain the asymptotics for ψ(x, ρ), we can apply the substitution x →
π − x, h1 → −H1, h0 → −H0. Then we need the analogs of P±(x) and P ∗

±(x), which
we denote by P •

±(x) and P •∗
± (x) and define as the solutions of the Cauchy problems

P •′
± (x) = ∓Q1(x)P

•
±(x), P •

±(π) = I,

P •∗′
± (x) = ∓P •∗

± (x)Q1(x), P •∗
± (π) = I.

The following lemma establishes connections between these asymptotic coefficients.

Lemma 3.1. For x ∈ [0, π], the following relations hold

P+(x)P •
−(0) = P •

−(x), P−(x)P •
+(0) = P •

+(x),

P •∗
− (0)P ∗

+(x) = P •∗
− (x), P •∗

+ (0)P ∗
−(x) = P •∗

+ (x).

The proof, based on using the corresponding Cauchy problems, is trivial.
One can obtain the following asymptotic formula

ψ(ν)(x, ρ) =
(−iρ)ν

2
exp(iρ(π−x))P •

−(x)(I+H1)+
(iρ)ν

2
exp(−iρ(π−x))P •

+(x)(I−H1)

+O(ρν−1 exp(|τ |(π − x))), x ∈ [0, π], ν = 0, 1, |ρ| → ∞,

and then using (3.2), one can derive asymptotic formulas for Φ(x, ρ) and M(ρ).
Hereafter the asymptotics in the angles Θ±

δ := {ρ ∈ C : δ ≤ ± arg ρ ≤ π − δ},
0 < δ < π will be required, so we formulate the following result.

Lemma 3.2. Suppose x ∈ (0, π), ν = 0, 1, |ρ| → ∞; then
(i) for ρ ∈ Θ+

δ , we have

ϕ(ν)(x, ρ) =
(−iρ)ν

2
exp(−iρx)P+(x)(I + h1) +O(ρν−1 exp(|τ |x)),

ψ(ν)(x, ρ) =
(iρ)ν

2
exp(−iρ(π − x))P •

+(x)(I −H1) +O(ρν−1 exp(|τ |(π − x))),

Φ(ν)(x, ρ) = −(−iρ)ν−1 exp(iρx)P •
+(x)(P •

+(0))−1(I + h1)
−1 +O(ρν−2 exp(−|τ |x)),

M(ρ) = (iρ)−1(I + h1)
−1 +O(ρ−2).

(ii) for ρ ∈ Θ−
δ , we have

ϕ(ν)(x, ρ) =
(iρ)ν

2
exp(iρx)P−(x)(I − h1) +O(ρν−1 exp(|τ |x)),

ψ(ν)(x, ρ) =
(−iρ)ν

2
exp(iρ(π − x))P •

−(x)(I +H1) +O(ρν−1 exp(|τ |(π − x))),

Φ(ν)(x, ρ) = −(iρ)ν−1 exp(−iρx)P •
−(x)(P •

−(0))−1(I − h1)
−1 +O(ρν−2 exp(−|τ |x)),

M(ρ) = −(iρ)−1(I − h1)
−1 +O(ρ−2).
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By definition, put

`∗Z := Z ′′ + Z(ρ2 · I + 2iρQ1(x) +Q0(x)),

U∗(Z) := Z ′(0) + Z(0)(iρh1 + h0),

V ∗(Z) := Z ′(π) + Z(π)(iρH1 +H0),

〈Z, Y 〉 = Z ′(x)Y (x)− Z(x)Y ′(x),

where Z = [zk]
t
k=1,m

is a row vector (t is the sign for the transposition). Then

〈Z, Y 〉|x=0 = U∗(Z)Y (0)− Z(0)U(Y ), 〈Z, Y 〉|x=π = V ∗(Z)Y (π)− Z(π)V (Y ). (3.3)

If Y (x, ρ) and Z(x, ρ) satisfy the equations `Y (x, ρ) = 0 and `∗Z(x, ρ) = 0 respectively,
then

d

dx
〈Z(x, ρ), Y (x, ρ)〉 = 0. (3.4)

Let ϕ∗(x, ρ), S∗(x, ρ), ψ∗(x, ρ) and Φ∗(x, ρ) be the matrices, satisfying the equation
`∗Z = 0 and the conditions

ϕ∗(0, ρ) = S∗′(0, ρ) = ψ∗(π, ρ) = U∗(Φ∗) = I,

U∗(ϕ∗) = S∗(0, ρ) = V ∗(ψ∗) = V ∗(Φ∗) = 0. Put M∗(ρ) := Φ∗(0, ρ). Then

Φ∗(x, ρ) = S∗(x, ρ) +M∗(ρ)ϕ∗(x, ρ) = (U∗(ψ∗))−1ψ∗(x, ρ). (3.5)

According to (3.4), 〈Φ∗(x, ρ),Φ(x, ρ)〉 does not depend on x. Using (3.3), we get

〈Φ∗(x, ρ),Φ(x, ρ)〉|x=0 = M(ρ)−M∗(ρ), 〈Φ∗(x, ρ),Φ(x, ρ)〉|x=π = 0.

Therefore, M(ρ) ≡M∗(ρ).
Using (3.3), one can easily show that[

Φ∗′(x, ρ) −Φ∗(x, ρ)
−ϕ∗′(x, ρ) ϕ∗(x, ρ)

] [
ϕ(x, ρ) Φ(x, ρ)
ϕ′(x, ρ) Φ′(x, ρ)

]
=

[
I 0
0 I

]
.

Hence, [
ϕ(x, ρ) Φ(x, ρ)
ϕ′(x, ρ) Φ′(x, ρ)

]−1

=

[
Φ∗′(x, ρ) −Φ∗(x, ρ)
−ϕ∗′(x, ρ) ϕ∗(x, ρ)

]
. (3.6)

We also need the asymptotics for ϕ∗(x, ρ) and Φ∗(x, ρ).

Lemma 3.3. Suppose x ∈ (0, π), ν = 0, 1, |ρ| → ∞; then
(i) for ρ ∈ Θ+

δ , we have

ϕ∗(ν)(x, ρ) =
(−iρ)ν

2
exp(−iρx)(I + h1)P

∗
+(x) +O(ρν−1 exp(|τ |x)),

ψ∗(ν)(x, ρ) =
(iρ)ν

2
exp(−iρ(π − x))(I −H1)P

•∗
+ (x) +O(ρν−1 exp(|τ |(π − x))),
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Φ∗(ν)(x, ρ) = −(−iρ)ν−1 exp(iρx)(I + h1)
−1(P •∗

+ (0))−1P •∗
+ (x) +O(ρν−2 exp(−|τ |x)).

(ii) for ρ ∈ Θ−
δ , we have

ϕ∗(ν)(x, ρ) =
(iρ)ν

2
exp(iρx)(I − h1)P

∗
−(x) +O(ρν−1 exp(|τ |x)),

ψ∗(ν)(x, ρ) =
(−iρ)ν

2
exp(iρ(π − x))(I +H1)P

•∗
− (x) +O(ρν−1 exp(|τ |(π − x))),

Φ∗(ν)(x, ρ) = −(iρ)ν−1 exp(−iρx)(I − h1)
−1(P •∗

− (0))−1P •∗
− (x) +O(ρν−2 exp(−|τ |x)).

Proof of Theorem 1.1. Consider the problems L and L̃ with the Weyl matrices
M(λ) ≡ M̃(λ). Note that according to asymptotics for M(λ) of Lemma 3.2, we
straightway get

h1 = h̃1. (3.7)

Now we consider the block-matrix P(x, ρ) = [Pjk(x, ρ)]j,k=1,2 defined by

P(x, ρ)

[
ϕ̃(x, ρ) Φ̃(x, ρ)

ϕ̃′(x, ρ) Φ̃′(x, ρ)

]
=

[
ϕ(x, ρ) Φ(x, ρ)
ϕ′(x, ρ) Φ′(x, ρ)

]
. (3.8)

Taking (3.6) into account, we calculate

Pj1(x, ρ) = ϕ(j−1)(x, ρ)Φ̃∗′(x, ρ)− Φ(j−1)(x, ρ)ϕ̃∗
′
(x, ρ),

Pj2(x, ρ) = Φ(j−1)(x, ρ)ϕ̃∗(x, ρ)− ϕ(j−1)(x, ρ)Φ̃∗(x, ρ).
(3.9)

Applying Lemmas 3.2 and 3.3 and using (3.7), for ρ ∈ Θ+
δ , |ρ| → ∞, x ∈ (0, π) we

calculate

P11(x, ρ) =
1

2
P+(x)(P̃ •∗

+ (0))−1P̃ •∗
+ (x) +

1

2
P •

+(x)(P̃ ∗
+(0))−1P̃ ∗

+(x) +O(ρ−1),

P12(x, ρ) =
1

2iρ
P •

+(x)(P •
+(0))−1P̃ ∗

+(x)− 1

2iρ
P+(x)(P̃ •∗

+ (0))−1P̃ •∗
+ (x) +O(ρ−2).

Similarly, for ρ ∈ Θ−
δ , |ρ| → ∞, x ∈ (0, π)

P11(x, ρ) =
1

2
P−(x)(P̃ •∗

− (0))−1P̃ •∗
− (x) +

1

2
P •
−(x)(P̃ ∗

−(0))−1P̃ ∗
−(x) +O(ρ−1),

P12(x, ρ) = − 1

2iρ
P •
−(x)(P •

−(0))−1P̃ ∗
−(x) +

1

2iρ
P−(x)(P̃ •∗

− (0))−1P̃ •∗
− (x) +O(ρ−2).

Using Lemma 3.1, we obtain for ρ ∈ Θ+
δ ∪Θ−

δ , |ρ| → ∞, x ∈ (0, π), that

P11(x, ρ) = Ω(x) +O(ρ−1), P12(x, ρ) = ρ−1Λ(x) +O(ρ−2), (3.10)

where
Ω(x) :=

1

2

(
P−(x)P̃ ∗

+(x) + P+(x)P̃ ∗
−(x)

)
,
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Λ(x) :=
1

2i

(
P−(x)P̃ ∗

+(x)− P+(x)P̃ ∗
−(x)

)
.

Substituting (3.1) and (3.5) into (3.9), we get

P11 = ϕS̃∗
′ − Sϕ̃∗

′
+ ϕ(M̃∗ −M)ϕ̃∗,

P12 = Sϕ̃∗ − ϕS̃∗ + ϕ(M − M̃∗)ϕ̃∗,

Note that for each fixed x ∈ (0, π), the matrix functions ϕ, ϕ∗, S, S∗ and they deriva-
tives with respect to x are entire in ρ of order 1. Since M̃∗(ρ) ≡ M̃(ρ) ≡M(ρ), it follows
for each fixed x ∈ (0, π) that the entries of P11(x, ρ) and P12(x, ρ) are entire functions
in ρ of order not greater than 1. Together with (3.10) this yields P11(x, ρ) ≡ Ω(x),
P12(x, ρ) ≡ 0, Λ(x) ≡ 0.

Differentiating Ω(x) and using (2.1), we get

Ω′(x) = i(Λ(x)Q̃1(x)−Q1(x)Λ(x)) = 0

for almost all x in [0, π]. Therefore, Ω(x) ≡ Ω(0) ≡ I, x ∈ [0, π]. Thus, P11(x, ρ) = I,
x ∈ (0, π). By virtue of (3.8) we have ϕ(x, ρ) ≡ ϕ̃(x, ρ), Φ(x, ρ) ≡ Φ̃(x, ρ) and
consequently, L = L̃.
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