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ON THE BOUNDARY BEHAVIOUR OF FUNCTIONS
IN THE DJRBASHYAN CLASSES Uα AND Aα

R.V. Dallakyan

Communicated by T.V. Tararykova

Keywords: weighted Djrbashyan classes, boundary behavior of meromorphic func-
tions.
AMS Mathematic Subject Classification: 30E25
Abstract. Nevanlinna factorization theorem was essentially extended in a series of
papers by M.M. Djrbashyan for classes Aα and Uα introduced by him, see [2], [3]. In
this paper we pay particular attention to non vanishing functions f ∈ Aα(−1 < α < 0)
and show that for any θ except at most a set of zero (1 + α) - capacity we have
| ln |f(z)|| = o((1− |z|)1+α) as z → eiθ.

1 Introduction

We start with some preliminary information on the M.M. Djrbashyan classes Aα and Uα
(see [2], Chapter IX). The Riemann-Liouville fractional integral of order α (0 < α <∞)
of a function f(z) given in the unit circle U = {z; |z| < 1} is defined as follows:

D−αf(reiθ) =
1

Γ(α)

r∫
0

(r − t)α−1f(teiθ)dt.

For α = 0 D0 is defined as the identity operator, i.e.

D0f(z) = f(z), z ∈ U.

The fractional derivative of order α (0 < α <∞) is defined as

Dαf(reiθ) =
∂p

∂rp
{D−(p−α)f(reiθ)}, reiθ ∈ U,

where p ≥ 1 is the so-called upper integer part of the number α, i.e. the integer defined
by the inequalities p− 1 < α ≤ p.

For any values of the parameter α ∈ (−1,∞) we consider the following kernels of
Cauchy, Schwarz and Poisson:

Cα(z) =
Γ(1 + α)

(1− z)1+α
, z ∈ U.
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Sα(z) = 2Cα(z)− Cα(0) = Γ(1 + α)

{
2

(1− z)1+α
− 1

}
, z ∈ U

Pα(ϕ, r) = <Sα(reiϕ), reiϕ ∈ U
The class Aα(−1 < α < ∞) is defined as a class of all functions f(z) analytic in

the circle U , for which the integrals

mα(r, f) =
r−α

2π

2π∫
0

D−α
(+) ln |f(reiθ)|dθ

are bounded as r → 1− 0, where

D−α
(+)ϕ(r) = max

{
D−αϕ(r), 0

}
.

With the increase of the parameter α, the classes Aα(−1 < α <∞) monotonically
expand, thus

Aα ⊂ A0, (−1 < α < 0),

where A0 ≡ N is the well known Nevanlinna class of analytic functions.
The classes Uα(−1 < α <∞) of functions u(z) harmonic in the circle U are defined

by the condition

sup
0<r<1


π∫

−π

∣∣uα(reiϕ)∣∣ dϕ
 = Mα < +∞,

where uα(reiϕ) = r−αD−αu(reiϕ).
It is known that the class Uα (0 < α < ∞) coincides with the set of all harmonic

functions u(z), represented in the form

u(z) =
1

2π

π∫
−π

Pα(ϕ− θ, r)dψ(θ), z = reiϕ ∈ U. (A)

where ψ(θ) is a real-valued function with a finite variation on [−π, π].
Any non-negative, normalized, i.e. µ[0, 2π] = 1 totally additive set function µ

defined on {B} is said to be a measure. Consider the system of all Borel measurable
sets {B} that lie in [0, 2π]. See, for example [3].

We say that the measure µ is concentrated on E ⊂ [0.2π], and write µ ≺ E, if

∫
E

dµ =

2π∫
0

dµ = µ(E) = 1.

The potentials are defined as usual

U
[µ]
0 (z) =

∫
E

ln
1

|z − ξ|
dµ(ξ),
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U [µ]
α (z) =

∫
E

1

|z − ξ|α
dµ(ξ), (0 < α < 2).

Let
Vα = inf

µ
sup
z∈U

U (µ)
α (z), (0 ≤ α < 2).

The capacity of the order α of a set E is defined as

Cα(E) =
1

Vα
.

If Vα = ∞, then the corresponding set has zero α-capacity.

2 Main results

First, we prove the following lemma.

Lemma 2.1. Let the point z ∈ U tends to the boundary point eiϑ on the ray that forms
a certain angle 0 ≤ β < π

2
with passing through the eiϑ radius of the circle U , i.e.

|ϑ− arg(eiϑ − z)| = β, and v(z) = (1− |z|)1+α<
[

2eiϑ(α+1)

(eiϑ−z)1+α − 1
]
. Then

lim
n→∞

v(z) = 2(cos β)1+α cos[(1 + α)β], (−1 < α <∞) (2.1)

Proof. Without loss of generality we can assume that ϑ = 0. Then the equation of the
ray, passing through the point 1 and forming the angle β with the radius connecting
the points 0 and 1, takes the form

z = 1 + i(1− t) tan β, 0 ≤ t ≤ 1.

Denoting this ray by Lβ, we note that if z → 1 through this ray, then t→ 1− 0. It
is easily seen that

lim
z→1,z∈Lβ

v(z) = lim
z→1,z∈Lβ

(1− |z|)1+α<
[

2

(1− z)1+α
− 1

]

= lim
t→1−

(
1−

√
t2 + (1− t)2 tan2 β

)1+α

<
[

2

(1− t− i(1− t) tan β)1+α
− 1

]

= lim
t→1−

(
1− t2 − (1− t)2 tan2 β

1 +
√
t2 + (1− t)2 tan2 β

)1+α

×<
[
2(1 + i tan β)1+α − (1− t)1+α(1 + tan2 β)

(1− t)1+α(1 + tan2 β)1+α
− 1

]
= 2(cos β)1+α<[cos β + i sin β]1+α = 2(cos β)1+α cos[(1 + α)β].
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Theorem 2.1. Let f(z) ∈ Aα, (−1 < α < 0) has no zeros. Then

lim
z→eiθ

(1− |z|)1+α · | ln |f(z)|| = 0 (2.2)

for all θ ∈ [0, 2π], except, perhaps, some unique set with (1 + α) - capacity equal to
zero.

Proof. If for some point eiθ equality (2) does not take place, then there exists a sequence
{zn} ⊂ U , such that zn → eiθ as n→∞ and

lim
z→∞

(1− |zn|)1+α · | ln |f(zn)|| = d 6= 0 (2.3)

It is known that (see [1]) if for harmonic function ln |f(z)| ∈ Uα equality (2.3) takes
place, then ln |f(z)| has the following representation

ln |f(z)| = u(z) + sΓ(1 + α)<
[

2ei(1+α)θ

(eiθ − z)1+α
− 1

]
, (2.4)

where u(z) is a harmonic function from the class Uα, such that

lim
z→eiθ

(1− |z|)1+αu(z) = 0 (2.5)

and 2πs is the jump of the function ψ(y) at the point θ in the presentation

ln |f(z)| = 1

2π

π∫
−π

Pα(ϕ− γ, r)dψ(γ), z = reiϕ ∈ U

For Nevanlinna classes A0 ≡ N this result is obtained in [4].
In view of (2.5), multiplying (2.4) by (1− |z|)1+α we have

(1− |z|)1+α ln |f(z)| = s · Γ(1 + α)(1− |z|)1+α ·Re
[

2ei(1+α)θ

(eiθ − z)1+β
− 1

]
Hence, by lemma 1, we obtain

lim(1− |z|)1+α ln |f(z)| = 2sΓ(1 + α)

where z → eiθ through the radius (0, eiθ).
It is shown in [6] that for existence of a function in a class Aα(−1 < α < 0), for

which radial boundary values on Borel measurable set E on a circle does not exist or
are equal to zero, it is necessary and sufficient that the (1 + α)- capacity of E is equal
to zero.

Analogously we prove the following statement.

Theorem 2.2. Let the function V (z) be harmonic in the U . If for some −1 < α < 0

lim(1− |z|)1+α · |V (z)| = d > 0 (2.6)

as z → eiθ along the tangent to the circle |z| = 1, then V (z) does not belong to Uα.
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Proof. Without loss of generality we assume θ = 0. Thus z → 1 along the ray Lβ
forming the angle 0 < β < π

2
with the radius passing through the point 1. Therefore,

in view of Lemma 1, relation (l) takes place. Now assume the contrary, i.e. V (z) ∈ Nα.
Then it follows (see [4]) that V (z) can be represented in the form

V (z) = V1(z) + sΓ(1 + α)<
[

2

(1− z)1+α
− 1

]
, (2.7)

where 2πs is the jump of the function ψ(θ) at the point θ = 0 and (A) is such a function
that

lim
z→1

(1− |zn|)1+α|V1(z)| = 0. (2.8)

Multiplying (2.7) by (1− |z|)1+α we get

(1− |z|)1+αV (z) = (1− |z|)1+αV1(z) + sΓ(1 + α)(1− |z|)1+α<
[

2

(1− z)1+α
− 1

]
.

Hence

(1− |z|)1+α|V (z)| ≤ (1− |z|)1+α|V1(z)|+ sΓ(1 + α)(1− |z|)1+α

∣∣∣∣< [ 2

(1− z)1+α
− 1

]∣∣∣∣ .
(2.9)

Further, in view of (2.6), there is a sequence {zn}∞1 ⊂ U such that zn → 1 as n → 1
and all terms zn, n = 1, 2, ... lie on some tangent to the circle |z| = 1, and

lim
z→∞

(1− |zn|)1+α|V (zn)| = d > 0. (2.10)

By (2.8) it follows that

lim
z→∞

(1− |zn|)1+α|V (zn)| = 0. (2.11)

Now, we calculate the limit

lim
z→∞

(1− |zn|)1+α

∣∣∣∣< [ 2

(1− |zn|)1+α
− 1

]∣∣∣∣ . (2.12)

It is easily seen, that every point zn, n = l, 2, ... lies on some ray Lβn , which was
defined in the proof of Lemma 2.1. Since zn → 1 as n → ∞ along the tangent to the
circle |z| = 1 then βn → π

2
. Thereby using (2.l) we have

(1− |zn|)1+α

∣∣∣∣< [ 2

(1− |zn|)1+α
− 1

]∣∣∣∣ ∼ 2(cos βn)| cos[(1 + α)βn]| as n→∞.

Therefore, in view of (2.9), for the sequence zn we obtain

(1− |zn|)1+α|v(zn)| ≤ (1− |zn|)1+α|v1(zn)|+ 2sΓ(1 + α)(cos βn)| cos[(1 + α)βn]|,

n = 1, 2, ..., which implies that

s ≥ (1− |zn|)1+α|v(zn)| − (1− |zn|)1+α|v1(zn)|
2Γ(1 + α)(cos βn)1+α| cos[(1 + α)βn]|

, n = 1, 2, ....
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As we mentioned βn → π
2

as n→∞. Thus, in view of (8) and (10), passing to the
limit as n→∞ we obtain s = +∞, but the jump of a function with a finite variation
cannot be infinite. Therefore we arrive at a contradiction which completes the proof
of theorem 2.2.

Remark. For Nevanlinna classes A0 ≡ N this theorem was proved in [4].
By this theorem and Lemma 1 the following statements hold.

Theorem 2.3. If f(z) ∈ Aα (−1 < α < 0) has no zeros and z = reiϕ → eiθ along any
tangent path, then

lim(1− |z|)1+α · ln |f(z)| = 0

for all θ ∈ [0, 2π].

Theorem 2.4. Let f(z) ∈ Aα (−1 < α < 0) and have no zeros. If

lim(1− |z|)1+α · ln |f(z)| = d 6= 0,

then the angular boundary values (see [5]) of the function (1 − |z|)1+α · In|f(z)| as
z → eiθ do not exist. Furthermore, the (1 + α) - capacity of the set where angular
boundary values do not exist is equal to zero.
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