Eurasian Mathematical Journal

2013, Volume 4, Number 2

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation)

Published by

the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), O.V. Besov (Russia), B. Bojarski (Poland), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), R.C. Brown (USA), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), A.V. Mikhalev (Russia), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia) sia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), B. Viscolani (Italy), Masahiro Yamamoto (Japan), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Executive Editor

D.T. Matin

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ will also publish survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Mathematical Reviews, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

Title page. The title page should start with the title of the paper and authors' names (no degrees). It should contain the Keywords (no more than 10), the Subject Classification (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the Abstract (no more than 150 words with minimal use of mathematical symbols).

<u>Figures</u>. Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

<u>Honorarium.</u> An honorarium will be paid to the authors (at 50 \$ per page, but no more than 2000 \$ for a paper) and to the reviewers (at 50 \$ per review). All papers will be edited with regard to usage of English. If severe editing is required, the honorarium may be reduced to 40 \$ per page. Papers may be submitted in Russian. They will be translated into English, and in this case the honorarium will be 25 \$ per page.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors. Only original papers are accepted for consideration. In particular, translations into English of papers already published in another language are not accepted. No other forms of scientific misconduct are allowed, such as plagiarism, falsification, incorrect interpretation of other works, incorrect citations, etc.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)

The Editorial Office

The L.N. Gumilyov Eurasian National University,

Main Building

Room 355

Tel.: +7-7172-709500 extension 31313

2 Mirzoyan Street 010008 Astana Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 4, Number 2 (2013), 49 – 56

ON ANGULAR BOUNDARY LIMITS OF NORMAL SUBHARMONIC FUNCTIONS

S. Berberyan

Communicated by H. Begehr

Key words: subharmonic and logarithmic subharmonic functions, normal functions, angular limits, cluster sets, non-Euclidean distance.

AMS Mathematics Subject Classification: 31B05.

Abstract. The paper considers normal subharmonic functions defined in the unit circle. New necessary and sufficient conditions for the existence of angular limits at arbitrary points of the unit circumference are obtained. The obtained conditions are less strong than in the previous results of different authors. Examples confirming the significance of these conditions are given.

1 Introduction

A number of papers investigate the angular limits at an arbitrary point of the unit circumference for harmonic and subharmonic functions defined in the unit circle, see [2-6, 8-16].

We need the following notation (see [7]). We denote by D the unite circle |z| < 1, by Γ denote its circumference |z| = 1, by $h(\xi, \varphi)$ the chord of D with the endpoint $\xi = e^{i\theta} \in \Gamma$, and by φ the angle between this chord and the radius at $\xi, -\frac{\pi}{2} < \varphi < \frac{\pi}{2}$. Let $\Delta(\xi, \varphi_1, \varphi_2)$ be a subdomain of D bounded by the chords $h(\xi, \varphi_1)$ and $h(\xi, \varphi_2)$. The domain $\Delta(\xi, \varphi_1, \varphi_2)$ is called the *Stoltz angle* with the vertex $\xi = e^{i\theta} \in \Gamma$. If the opening of the angle is not important, then for brevity we write $\Delta(\xi)$ instead of $\Delta(\xi, \varphi_1, \varphi_2)$.

Considering the circle D as a model of the Lobachevski plane, we denote by $\sigma(z_1, z_2)$ the non-Euclidean distance between the points z_1, z_2 in the circle D:

$$\sigma(z_1, z_2) = \frac{1}{2} \ln \frac{1+u}{1-u}$$
, where $u = \left| \frac{z_1 - z_2}{1 - z_1 z_2} \right|$.

Consider a real-valued function f(z). Let $\xi \in \Gamma$ be a cluster point of a subset $S \subset D$. By $C(f, \xi, S)$ we denote the cluster set of the function f(z) at point ξ with respect to the set S, i.e.

$$C(f,\xi,S) = \bigcap \overline{f(S \cap U(\xi))},$$

where the intersection is taken over all neighborhoods $U(\xi)$ of the point ξ , and the overline stands for the set closure with respect to the two-points compactification \overline{R} of the set $R = (-\infty, +\infty)$ by adding two symbols $-\infty$ and $+\infty$.

We say that a point $\xi \in \Gamma$ belongs to the set F(f), if $C(f, \xi, \Delta(\xi))$ consists of the unique value α . In this case α is called the angular limit of the function f(z) at the point $\xi \in \Gamma$. The set F(f) is called the set of the Fatou points for the function f(z). We say that a point $\xi \in \Gamma$ belongs to the set K(f) for a function f(z), if for any pair of angles $\Delta(\xi, \varphi_1, \varphi_2)$ and $\Delta(\xi, \varphi'_1, \varphi'_2)$ with common vertex ξ we have

$$C(f, \xi, \Delta(\xi, \varphi_1, \varphi_2)) = C(f, \xi, \Delta(\xi, \varphi'_1, \varphi'_2)).$$

A meromorphic function is called normal, if it generates a normal family in the group T of all conform automorphisms of its domain of definition. This notion was generalized to harmonic and subharmonic functions (see [15]). In the case of the unit circle D the group T has the following form

$$T = \left\{ S(z) : S(z) = e^{i\alpha}(z+a)(1+\overline{a}z)^{-1}, \ a \in D, \ \alpha \text{ is arbitrary real number} \right\}.$$

Using the notation from the paper [7], we say that a real-valued function f(z) belongs to the class \Re , if in the group T of all conformal automorphisms of the unit circle D the function f(z) generates a family $\Phi: \{f(S(z)): S(z) \in T\}$, which is normal in D in Montél's sense, i.e. for any sequence $\{f(S_n(z))\}$ from Φ , where $S_n(z) \in T$, there exists a subsequence $\{f(S_{n_k}(z))\}$, which uniformly converges in any compact K in D or uniformly diverges in K to $-\infty$ or $+\infty$.

By meas M we denote the Lebesgue measure of a set M. If a property holds everywhere on M, meas M > 0, except a set $E \subset M$, meas E = 0, then we say that this property holds almost everywhere on M. A non-negative subharmonic function f(z) is called *logarithmic subharmonic*, if $\ln f(z)$ is subharmonic.

We need the following theorem from [4].

Theorem A. Let f(z) be a subharmonic function in the class \Re . Then the function f(z) possesses an angular limit α at a point $\xi \in \Gamma$ exits if and only if the following two conditions are fulfilled:

- 1) the cluster set $C(f, \xi, \Delta(\xi))$ is bounded from above by α ,
- 2) there exists a Jordan curve L which completely lies in some angle $\Delta(\xi)$ with the vertex at the point ξ and is such that

$$\lim_{z \to \xi, z \in L} f(z) = \alpha.$$

2 Main result

The main result of the present paper is the following theorem.

Theorem 2.1. Let f(z) be a subharmonic function in the class \Re . The function f(z) possesses an angular limit α at a point $\xi \in \Gamma$ if and only if:

1) there exists a sequence $z_n \to \xi \in \Gamma$ belonging to an angle $\Delta(\xi, \varphi_1, \varphi_2)$, such that the limit $\lim_{n\to\infty} f(z_n)$ exists and

$$\overline{\lim_{n\to\infty}}\sigma(z_n, z_{n+1}) \le M < +\infty; \tag{2.1}$$

and

2) the cluster set $C(f, \xi, \Delta(\xi))$ is bounded from above by the number $\alpha \in C(f, \xi, \Delta(\xi))$ for any angle $\Delta(\xi)$ which contains the sequence $\{z_n\}$.

Proof. The necessity is obvious. The sufficiency follows by the following lemma. \Box

Lemma 2.1. Let f(z) be a subharmonic function in the class \Re defined in D. If there exists a sequence $z_n \to \xi \in \Gamma$ such that:

 $\{z_n\}$ belongs to an angle $\Delta(\xi)$,

 $\{z_n\}$ satisfies the condition (2.1),

there exists the limit $\lim_{n\to\infty} f(z_n)$

the cluster set $C(f, \xi, \Delta(\xi))$ is bounded from above by some number $\alpha \in C(f, \xi, \Delta(\xi))$

for any angle $\Delta(\xi)$ which contains the sequence $\{z_n\}$, then the function f(z) has the angular limit α at point $\xi \in \Gamma$.

Proof. Without loss of generality, we can assume that $\xi = 1$. Connecting the points of the sequence $\{z_n\}$ by non-Euclidean segments, we obtain a curve L, which lies in some angle $\Delta(1, \varphi'_1, \varphi'_2)$.

First we prove that the number α is the least upper bound of the cluster set $C(f, \xi, \Delta(\xi))$ for every angle $\Delta(\xi)$, which contains the curve L. Indeed, assuming the contrary we obtain that there exist an angle $\Delta(\xi, \varphi_1, \varphi_2)$, which contains the curve L, and a number $\beta \neq \alpha$, which is the least upper bound of the cluster set $C(f, \xi, \Delta(\xi, \varphi_1, \varphi_2))$. Since for continuous function f(z) the cluster set $C(f, \xi, \Delta(\xi))$ is closed and connected in any angle $\Delta(\xi)$, then the number β belongs to the cluster set $C(f, \xi, \Delta(\xi, \varphi_1, \varphi_2))$. There exist elements from this set, which are greater than α . But this the contradicts the conditions of Lemma 2.1.

In the case $\beta < \alpha$, since the cluster set $C(f, \xi, \Delta(\xi, \varphi_1, \varphi_2))$ is closed and connected in any angle, there exist the elements from this set, which are greater than β and less than or equal to α . But this contradicts the assumption that $\beta = \sup C(f, \xi, \Delta(\xi, \varphi_1, \varphi_2))$.

Now consider an angle $\Delta(\xi, \varphi'_1, \varphi'_2) \supset \Delta(\xi, \varphi_1, \varphi_2)$ and a sequence $l_n \in \Delta(\xi, \varphi_1, \varphi_2)$ such that $l_n \to \xi$ and $f(l_n) \to \alpha$ as $n \to \infty$. Through l_n we draw the non-Euclidean perpendiculars E_n to the radius through the point ξ . By q_n denote the intersection point $L \cap E_n$. By properties of the non-Euclidean geometry of the circle $\sigma(l_n, q_n) \leq M_1$ for $n \in N$, where N is the set of natural numbers and M_1 is some finite number, the points q_k lie between z_{n_k} and z_{n_k+1} for $n \in N$. For any $n \in N$ consider the following map

$$S_n(z) = \frac{z + z_n}{1 + \overline{z_n} z}.$$

Obviously we have $S_n(0) = z_n$ for any n. By l'_n and q'_n we denote the pre-images: $S_n(l'_n) = l_n$ and $S_n(q'_n) = q_n$. Consider the compact

$$K = \{z : |z| \le \tanh(M + M_1 + 1)\},\$$

for which the set $S_n(K)$ lies in some angle $\Delta(\xi) \supseteq \Delta(\xi, \varphi'_1, \varphi'_2)$. By properties of the non-Euclidean geometry of the circle D, the set K is a closed non-Euclidean circle

with the center at origin and the non-Euclidean radius $M+M_1+1$. The metric σ is invariant with respect to the maps $S_n(z)$, $n \in N$. Therefore, q'_n and l'_n with their cluster points lie within K. Since f(z) is the subharmonic function from class R in D, there exists a subsequence $f(S_{n_k}(z))$, which uniformly converges in the compact K to subharmonic function F(z) or uniformly diverges in K to $-\infty$ or to $+\infty$. Since $S_n(K) \subset \Delta(\xi)$ and the cluster set $C(f, \xi, \Delta(\xi))$ is bounded from above by the number α , then $F(z) \leq \alpha$. If $F(z_0) = \alpha$ for a cluster point z_0 of the sequence l'_n , then using the maximum principle for subharmonic functions we get $F(z) \equiv \alpha$ for $z \in K$. Therefore,

$$F(0) = \lim_{k \to \infty} f(S_{n_k}(0)) = \lim_{k \to \infty} f(z_{n_k}) = \alpha.$$

By the conditions of Lemma 2.1 we get

$$\lim_{n \to \infty} f(z_n) = \alpha. \tag{2.2}$$

In the case $\alpha = +\infty$, by definition of normality we have $F(z) \equiv +\infty$ for $z \in K$, hence (2.2) is valid. Let us prove that

$$\lim_{z \to \mathcal{E}. \ z \in L} f(z) = \alpha. \tag{2.3}$$

Assuming the contrary we have a sequence $\{t_n\}$ such that $t_n \to \xi$, $t_n \in L$ and $\lim_{n \to \infty} f(t_n) = \beta \neq \alpha$. Without loss of generality, we can assume that the sequences $\{t_k\}_{k=1}^{\infty}$ and $\{z_n\}_{n=1}^{\infty}$ are not the same and the points t_k lie between z_{n_k} and z_{n_k+1} for any k. Therefore,

$$\sigma(t_k, z_{n_k}) \le \sigma(z_{n_k}, z_{n_k+1}) \le M < +\infty.$$

For arbitrary $k \in N$ consider the following map

$$S_{n_k}(z) = \frac{z + z_{n_k}}{1 + \overline{z_{n_k}}} z.$$

It is obvious, that for any k we have $S_{n_k}(0) = z_{n_k}$. Using the invariance of the metric σ we get that the points t'_k , where $S_{n_k}(t'_k) = t_k$, with their cluster points lie within the compact K. Repeating the above argument we obtain

$$\lim_{k \to \infty} F(t'_k) = \lim_{k \to \infty} f(S_{n_k}(t'_k)) = \lim_{k \to \infty} f(t_k) = \alpha,$$

which contradicts $\beta \neq \alpha$. Thus the conditions of Theorem A are fulfilled. By Theorem A the function f(z) has the angular limit α .

Remark 2.1. Stronger conditions for the existence of angular limits at an arbitrary point $\xi \in \Gamma$ for subharmonic functions in the class \Re were obtained by J. Meek in [14].

3 Applications

The following theorem is an application of Theorem 2.1.

Theorem 3.1. Let f(z) be a subharmonic function in the class \Re . The function f(z) possesses the angular limit at a point $\xi \in K(f)$ if and only if there exists a sequence $z_n \to \xi \in \Gamma$ such that $\{z_n\}$ belongs to an angle $\Delta(\xi, \varphi_1, \varphi_2)$, there exists the limit $\lim_{n\to\infty} f(z_n)$ and

$$\overline{\lim_{n\to\infty}}\sigma(z_n,z_{n+1}) \le M < +\infty.$$

Proof. Since $\xi \in K(f)$, then for any angle $\Delta(\xi)$ the cluster set $C(f, \xi, \Delta(\xi))$ is bounded from above by some number $\alpha \in C(f, \xi, \Delta(\xi))$. It remains to apply Theorem 2.1.

Remark 3.1. Note that for an arbitrary function f(z) defined in D, the Lebesgue measure of the set K(f) is equal to 2π , and almost everywhere in Γ the cluster set of a normal subharmonic function $|\mu(z)|$ is $[0, +\infty]$, where $\mu(z)$ is a modular function. Hence in Theorems 2.1 and 3.1 we can not change the sequence $\{z_n\}$ satisfying the condition (2.1) by an arbitrary sequence $\{z_n\} \to \xi$, $z_n \in \Delta(\xi)$. The example $f(z) = \arg(1-z)$ shows that in Theorems 2.1 and 3.1 we cannot omit the condition $\alpha \in C(f, \xi, \Delta(\xi))$ for any angle $\Delta(\xi)$.

Let f(z) be a bounded subharmonic function in D, $h(\xi,\varphi)$ be the chord of D with endpoint $\xi = e^{i\theta} \in \Gamma$, $\xi \in K(f)$ and assume there exist the coinciding chordal limits $\lim_{z \in h(\xi,\varphi)} f(z) = 0$ for almost all $\varphi \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Let us show that in this case the existence of the angular limit is important. To this end consider a subharmonic function constructed by M. Tsuji [16], p. 175. This function possesses the following properties: $-1 \le f(z) \le 0$ and almost everywhere in Γ except a set E_1 , meas $E_1 = 0$ the function f(z) has chordal limits

$$\lim_{z \to \xi \in \Gamma, \ z \in h(\xi, \varphi)} f(z) = 0$$

for almost all $\varphi \in (-\frac{\pi}{2}, \frac{\pi}{2})$. However, at each point $\xi \in \Gamma \setminus E_1$, hence in the set

$$E_2 = K(f) \cap (\Gamma \setminus E_1), \quad meas \ E_2 = 2\pi,$$

the function f(z) has the vanishing chordal limits for almost all $\varphi \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Therefore, at almost each point $\xi \in K(f)$ the function f(z) has the vanishing chordal limits for almost all $\varphi \in (-\frac{\pi}{2}, \frac{\pi}{2})$. However, at each such point the function f(z) has not the angular limit, because in any angle $\Delta(\xi)$ there exists a sequence $z_n \to \xi$ such that $\lim_{n \to \infty} f(z_n) = -1$.

From Lemma 2.1 and Theorem 3.1 we can obtain the following theorem.

Theorem 3.2. Let f(z) be a subharmonic function defined in D in the class \Re . If $\xi \in K(f)$ and there exists a sequence $z_n \to \xi \in \Gamma$ from some angle $\Delta(\xi, \varphi_1, \varphi_2)$ such that $\lim_{n\to\infty} f(z_n) = \alpha$ and condition (2.1) holds, then α is the angular limit of the function f(z) at the point ξ .

Remark 3.2. Note that in [5] an analog of Theorem 3.2 was obtained, under the condition that a non-tangent curve L non-tangent to Γ is considered instead of the sequence $\{z_n\}$.

Remark 3.3. In [15] D. Rung studied the problem of the existence of the vanishing angular limits for logarithmic subharmonic functions from the class \Re at arbitrary point $\xi \in \Gamma$. Later on the authors in [6] reduced the curve L non-tangential to Γ to a sequence $z_n \to \xi \in \Gamma$ from some angle $\Delta(\xi, \varphi_1, \varphi_2)$ satisfying the condition $\lim_{n \to \infty} \sigma(z_n, z_{n+1}) = 0$.

Theorem B. Let f(z) be a logarithmic subharmonic function in the class \Re . If there exists a sequence $z_n \to \xi \in \Gamma$ in some angle $\Delta(\xi, \varphi_1, \varphi_2)$ such that $\lim_{n \to \infty} \sigma(z_n, z_{n+1}) = 0$ and $\lim_{n \to \infty} f(z_n) = 0$, then the function f(z) has the angular limit at the point ξ and this limit is equal to 0.

The assertion of Theorem B is not valid for the weaker condition (2.1). Indeed, F. Bagemihl and W. Seidel constructed in [1] a Blaschke product B(z) with zeros $\{z_n\}$, which lie on the radius at the point $\xi = 1$ and satisfy condition (2.1). The function B(z) is bounded in D, and hence B(z) is the normal analytic function. Therefore, the module of B(z) is the normal logarithmic subharmonic function, which vanishes on the sequence $\{z_n\}$, but at the point $\xi = 1$ has not even a radial limit.

As a corollary of Theorem 3.2 we obtain the following theorem.

Theorem 3.3. Let f(z) be a logarithmic subharmonic function defined in D in the class \Re . If $\xi \in K(f)$ and there exists a sequence $z_n \to \xi \in \Gamma$ from some angle $\Delta(\xi, \varphi_1, \varphi_2)$ such that $\lim_{n \to \infty} f(z_n) = 0$ and condition (2.1) holds, then the function f(z) has the angular limit at the point ξ and this limit is equal to 0.

Let us prove that in Theorems 3.2 and 3.3 the condition $f(z) \in \Re$ is important. To this end we need the following lemma.

Lemma 3.1. Let $\ln p(r)$, $0 \le r < 1$ be a positive monotonically increasing function, $\ln p(r) \to +\infty$ as $r \to 1$. Then there exists a logarithmic subharmonic function $f(z) \neq \infty$ 0 in D such that

- 1) f(z) < p(|z|),
- 2) $\lim_{r \to 1} f(re^{i\theta}) = 0$ for almost all $\theta \in [0, 2\pi]$.

Proof. Lemma 3.1 and Theorem D13 of [6] imply that there exists an analytic function g(z) = u(z) + iv(z), such that

- 1. $q(z) < \ln p(|z|)$,
- 2. $\lim_{r\to 1} u(re^{i\theta}) = \lim_{r\to 1} Re \ g(re^{i\theta}) = -\infty$ for almost all $\theta \in [0, 2\pi]$. Consider a logarithmic subharmonic function $f(z) = \exp[u(z)]$. We have

$$u(z) < |g(z)| < \ln p(|z|), \quad f(z) < \exp[\ln p(|z|)] = p(|z|),$$

i.e. property 1) holds. On the other hand

$$\lim_{r \to 1} f(re^{i\theta}) = \lim_{r \to 1} \exp[u(re^{i\theta})] = 0$$

for almost all $\theta \in [0, 2\pi]$, i.e. the property 2) holds.

Now we can prove that in Theorems 3.2 and 3.3 the condition $f(z) \in \Re$ is important, and it can not be omitted even in the case, where $\xi \in K(f)$ and the radial limit of the function f(z) at the point ξ is equal to 0. By $E_1 \subset \Gamma$ we denote a set of points, at which the property 2) of Lemma 3.1 does not hold. Obviously $meas\ E_1 = 0$. Consider the set $E_2 = K(f) \cap (\Gamma \setminus E_1)$, we have $meas\ E_2 = 2\pi$. Property 2) of Lemma 3.1 holds at any point of set E_2 . Therefore, at almost every point $\xi \in K(f)$ the radial limit of function f(z) exists and equals 0. However, at almost every point $\xi \in K(f)$ the function f(z) have not a vanishing angular limit, because otherwise by uniqueness theorem for logarithmic subharmonic functions [12] we get $f(z) \equiv 0$, which contradicts our assumptions.

References

- [1] F. Bagemihl, W. Seidel, Sequential and continuous limits of meromorphic functions, Annal. Acad. Scien. Fennicae, ser.A, 280 (1960), 1 17.
- [2] S.L. Berberyan, On boundary properties of subharmonic functions generating the normal families in the subgroups of automorphisms of the unit circle (in Russian), Izvestiya AN ArmSSR, Matematika, 15 (1980), no. 4, 395 402.
- [3] S.L. Berberyan, A classification of boundary singularities of normal subharmonic functions and its applications (in Russian), Uspekhi Mat. Nauk, 62 (2007), no. 3, 207 208.
- [4] S.L. Berberyan, On angular boundary values of subharmonic functions from the class N, Mathematica Montisnigri, 20-21 (2007-2008), 5 14.
- [5] S.L. Berberyan, On angular boundary values of normal continuous functions, Izvestiya Vuzov, Matematika, 3 (1986), 22 28.
- [6] E.F. Collingwood, A.J. Lohwater, *The theory of cluster* sets. Cambridge Univ. Press, Cambridge (1966).
- [7] V.I. Gavrilov, Normal functions and almost periodic functions (in Russian), Doklady AN USSR, 240 (1978), no. 4, 768 770.
- [8] V.I. Gavrilov, V.S. Zakaryan, A.V. Subbotin, *Linear-topologic properties of maximal Hardy spaces of harmonic functions in the circle* (in Russian), Doklady AN Armenii, 102 (2002), no. 3, 203 209.
- [9] P. Lappan, Some results on harmonic normal functions, Math. Zeitschr. 90 (1965), no. 1, 155 159.
- [10] P. Lappan, Fatous points of harmonic normal functions and uniformly normal functions, Math. Zeitschr., 102 (1967), no. 3, 110 114.
- [11] A.J. Lohwater, Boundary behaviour of analytic functions (in Russian), Itogi Nauki i Tekh., VINITI, Matem. Analiz, 10 (1973), 99 260.
- [12] S.M. Lozinski, On subharmonic functions and their applications to surface theory (in Russian), Izvestiya AN USSR, ser. Matem, 8 (1944), no. 4, 175 194.
- [13] J. Meek, Subharmonic versions of Fatous theorem, Proc. Amer. Math. Soc., 30 (1973), no. 2, 313-317.
- [14] J. Meek, On Fatous points of normal harmonic functions, Math. Japonica, 22 (1971), no. 3, 309 – 314.
- [15] D.C. Rung, Asymptotic values of normal subharmonic functions, Math. Zeitschr., 84 (1964), no. 1, 9 – 15.
- [16] M. Tsuji, Potential theory of modern function theory, Maruzen, Tokyo, (1959).

Samvel Levonovich Berberyan Russian-Armenia (Slavonic) University Armenia, Yerevan 0051, Ovsep Emin st.,123 E-mail: samvel357@mail.ru

Received: 12.11.2010

EURASIAN MATHEMATICAL JOURNAL

2013 – Том 4, № 2 – Астана: ЕНУ. – 144 с. Подписано в печать 5.07.2013 г. Тираж – 150 экз.

Адрес редакции: 010008, Астана, ул. Мирзояна, 2, Евразийский национальный университет имени Л.Н. Гумилева, главный корпус, каб. 355 Тел.: +7-7172-709500 добавочный 31313

Дизайн: К. Булан

Отпечатано в типографии ЕНУ имени Л.Н.Гумилева

С Евразийский национальный университет имени Л.Н. Гумилева