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Abstract. The paper considers normal subharmonic functions defined in the unit
circle. New necessary and sufficient conditions for the existence of angular limits at
arbitrary points of the unit circumference are obtained. The obtained conditions are
less strong than in the previous results of different authors. Examples confirming the
significance of these conditions are given.

1 Introduction

A number of papers investigate the angular limits at an arbitrary point of the unit
circumference for harmonic and subharmonic functions defined in the unit circle, see
[2-6, 8-16].

We need the following notation (see [7]). We denote by D the unite circle |z| < 1,
by I' denote its circumference |z| = 1, by h({, ) the chord of D with the endpoint
¢ =€ €T, and by ¢ the angle between this chord and the radius at &, —5<p<3.
Let A(&, ¢1,¢2) be a subdomain of D bounded by the chords h(&, ¢1) and h(§, p2).
The domain A(E, 1, ps) is called the Stoltz angle with the vertex & = ¢ € I'. If
the opening of the angle is not important, then for brevity we write A(£) instead of
A(gw 1, 902)

Considering the circle D as a model of the Lobachevski plane, we denote by o(z1, 22)
the non-Euclidean distance between the points z1, 25 in the circle D:

1. 14w

o(z1,29) = §ln T

21 — 22

,  Where u=

— 2172

Consider a real-valued function f(z). Let £ € I" be a cluster point of a subset S C D.
By C(f,&,S) we denote the cluster set of the function f(z) at point £ with respect to
the set S, i.e.

C(1,¢,9) =(f(SNU©),

where the intersection is taken over all neighborhoods U(§) of the point &, and the
overline stands for the set closure with respect to the two-points compactification R of
the set R = (—o0, +00) by adding two symbols —oco and +o0.
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We say that a point & € T' belongs to the set F(f), if C(f,&, A(£)) consists of the
unique value a. In this case « is called the angular limit of the function f(z) at the
point £ € I'. The set F'(f) is called the set of the Fatou points for the function f(z).
We say that a point £ € I' belongs to the set K(f) for a function f(z), if for any pair
of angles A(&, @1, o) and A(, ¢}, ph) with common vertex & we have

C(f7 ga A(ga P15 ()02)) = C(f7 57 A(f, ()0/17 90/2))

A meromorphic function is called normal, if it generates a normal family in the group T’
of all conform automorphisms of its domain of definition. This notion was generalized
to harmonic and subharmonic functions (see [15]). In the case of the unit circle D the
group 1" has the following form

T ={5(z):S(z) =€*(z+a)(1 +az)"", a € D, «is arbitrary real number} .

Using the notation from the paper [7], we say that a real-valued function f(z) belongs
to the class R, if in the group 7' of all conformal automorphisms of the unit circle D
the function f(z) generates a family ® : {f(S(z)) : S(z) € T'}, which is normal in D
in Montél’s sense, i.e. for any sequence {f(S,(z))} from ®, where S,(z) € T, there
exists a subsequence {f(S,,(z))}, which uniformly converges in any compact K in D
or uniformly diverges in K to —oo or +o00.

By meas M we denote the Lebesgue measure of a set M. If a property holds
everywhere on M, meas M > 0, except a set £ C M, meas EE = 0, then we say that
this property holds almost everywhere on M. A non-negative subharmonic function
f(2) is called logarithmic subharmonic, if In f(z) is subharmonic.

We need the following theorem from [4].

Theorem A. Let f(z) be a subharmonic function in the class R. Then the function
f(2) possesses an angular limit o at a point & € T exits if and only if the following two
conditions are fulfilled:
1) the cluster set C(f, &, A(E)) is bounded from above by «,
2) there exists a Jordan curve L which completely lies in some angle A(§) with the
vertex at the point & and s such that
lim f(z) =«a.

z—E&,z€L

2 Main result

The main result of the present paper is the following theorem.

Theorem 2.1. Let f(z) be a subharmonic function in the class R. The function f(z)
possesses an angular limit o at a point € € U if and only if:

1) there exists a sequence z, — £ € T belonging to an angle A(§, p1,p2), such that
the limit lim f(z,) exists and

n—oo

lim o(2p, 2n41) < M < +o0; (2.1)

n—oo
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and
2) the cluster set C(f,&,A(£)) is bounded from above by the number o €
C(f, & AE)) for any angle A(§) which contains the sequence {z,}.

Proof. The necessity is obvious. The sufficiency follows by the following lemma. O

Lemma 2.1. Let f(z) be a subharmonic function in the class R defined in D. If there
exists a sequence z, — £ € I' such that:

{zn} belongs to an angle A(§),

{zn} satisfies the condition (2.1),

there exists the limit hm f(zn)

the cluster set C’(f f A(é)) is bounded from above by some number o €
C(f,€,A(6))
for any angle A(§) which contains the sequence {z,}, then the function f(z) has
the angular limit o at point & € T'.

Proof. Without loss of generality, we can assume that £ = 1. Connecting the points of
the sequence {z,} by non-Euclidean segments, we obtain a curve L, which lies in some
angle A(L, ¢, ).

First we prove that the number « is the least upper bound of the cluster set
C(f, & A()) for every angle A(£), which contains the curve L. Indeed, assuming
the contrary we obtain that there exist an angle A(&, 1, 2), which contains the
curve L, and a number 3 # «, which is the least upper bound of the cluster set
C(f, & A, v1,p2)). Since for continuous function f(z) the cluster set C(f,&, A(§))
is closed and connected in any angle A(§), then the number 5 belongs to the cluster
set C(f,&, A(E, v1,92)). There exist elements from this set, which are greater than «.
But this the contradicts the conditions of Lemma 2.1.

In the case § < «, since the cluster set C(f,&, A(, p1,¢2)) is closed and con-
nected in any angle, there exist the elements from this set, which are greater than
G and less than or equal to a. But this contradicts the assumption that § =
sup C(f, &, A(&, 1, 92)).-

Now consider an angle A(&, ¢!, ¢5) D A(E, 1, p2) and a sequence 1, € A(&, @1, p2)
such that [, — ¢ and f(l,) — « as n — oo. Through [,, we draw the non-Euclidean
perpendiculars £, to the radius through the point £&. By ¢, denote the intersection
point LN E,. By properties of the non-Euclidean geometry of the circle o(l,,, g,) < M;
for n € N, where N is the set of natural numbers and M; is some finite number, the
points g lie between z,, and z,,+1 for n € N. For any n € N consider the following

map
Z+ zn

147, 2
Obviously we have S,(0) = z, for any n. By [, and ¢/, we denote the pre-images:
Sp(ll) =1, and S, (q),) = ¢,. Consider the compact

Sn(z) =

K ={z: |z| < tanh(M + M, + 1)},

for which the set S,,(K) lies in some angle A(§) 2 A(&, ¢}, ¢h). By properties of the
non-Euclidean geometry of the circle D, the set K is a closed non-Euclidean circle
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with the center at origin and the non-Euclidean radius M + M; + 1. The metric o
is invariant with respect to the maps S,(z), n € N. Therefore, ¢/, and [/, with their
cluster points lie within K. Since f(z) is the subharmonic function from class R in
D, there exists a subsequence f(S,, (z)), which uniformly converges in the compact K
to subharmonic function F(z) or uniformly diverges in K to —oo or to +oo. Since
Sn(K) C A(€) and the cluster set C(f, &, A()) is bounded from above by the number
a, then F(2) < a. If F(zy) = a for a cluster point zy of the sequence [/, then using the
maximum principle for subharmonic functions we get F(z) = « for z € K. Therefore,

F(0) = lim f(S,,(0)) = im f(z,,) = a.

k—oo k—oo

By the conditions of Lemma 2.1 we get

lim f(z,) = . (2.2)

n—oo

In the case & = 400, by definition of normality we have F(z) = 400 for z € K, hence
(2.2) is valid. Let us prove that

lim f(z) =a. (2.3)

z—E&, z€L

Assuming the contrary we have a sequence {t,} such that t, — & ¢, € L and
lim f(t,) = B # a. Without loss of generality, we can assume that the sequences

{te}32, and {z,}22, are not the same and the points t; lie between z,, and z,, 1 for
any k. Therefore,
0 (tes 2ny,) < 0(2Zngs 2Zngt1) < M < +00.

For arbitrary £ € N consider the following map

B zZ+ Zp,
I

S (2)

It is obvious, that for any k£ we have S, (0) = z,,. Using the invariance of the metric
o we get that the points t, where S, (t;,) = tx, with their cluster points lie within the
compact K. Repeating the above argument we obtain

lim F(t;c) = kh_)m f(STLk (t;:)) = ]}Lm f(tk) =,

k—o0

which contradicts G # «. Thus the conditions of Theorem A are fulfilled. By Theorem
A the function f(z) has the angular limit «. O

Remark 2.1. Stronger conditions for the existence of angular limits at an arbitrary
point £ € I" for subharmonic functions in the class & were obtained by J. Meek in [14].

3 Applications

The following theorem is an application of Theorem 2.1.
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Theorem 3.1. Let f(z) be a subharmonic function in the class R. The function f(z)
possesses the angular limit at a point £ € K(f) if and only if there ezists a sequence

zn — & € T such that {z,} belongs to an angle A(§, p1,p2), there exists the limit
lim f(z,) and

n—:o0

lim o (2, 2n41) < M < +00.
Proof. Since £ € K(f), then for any angle A(§) the cluster set C(f, £, A(§)) is bounded
from above by some number a € C(f, &, A(&)). It remains to apply Theorem 2.1. [

Remark 3.1. Note that for an arbitrary function f(z) defined in D, the Lebesgue
measure of the set K(f) is equal to 27, and almost everywhere in I" the cluster set of a
normal subharmonic function |u(2)] is [0, +00], where p(2) is a modular function. Hence
in Theorems 2.1 and 3.1 we can not change the sequence {z,} satisfying the condition
(2.1) by an arbitrary sequence {z,} — &, 2z, € A(§). The example f(z) = arg(l — 2)
shows that in Theorems 2.1 and 3.1 we cannot omit the condition o € C(f,&, A(€))
for any angle A(¢).

Let f(z) be a bounded subharmonic function in D, h(§, ) be the chord of D
with endpoint & = ¢ € T', ¢ € K(f) and assume there exist the coinciding chordal

T T

limits ligl )f(z) = 0 for almost all ¢ € (—7,5). Let us show that in this case
ze 2

the existence of the angular limit is important. To this end consider a subharmonic
function constructed by M. Tsuji [16], p. 175. This function possesses the following
properties: —1 < f(z) < 0 and almost everywhere in I" except a set Ey, meas E; = 0
the function f(z) has chordal limits

lim z)=20
z—E&€l, zeh(&,p) f )

for almost all ¢ € (=7, 7). However, at each point { € I'\ 1, hence in the set
Ey,=K(f)yn(T'\ E1), meas Ey =2,

the function f(z) has the vanishing chordal limits for almost all ¢ € (=%, Z). Therefore,

T 22
at almost each point & € K(f) the function f(z) has the vanishing chordal limits for
almost all p € (—F,7). However, at each such point the function f(z) has not the

angular limit, because in any angle A() there exists a sequence z, — £ such that
lim f(z,) = —1.
From Lemma 2.1 and Theorem 3.1 we can obtain the following theorem.

Theorem 3.2. Let f(z) be a subharmonic function defined in D in the class R. If
¢ € K(f) and there exists a sequence z, — & € T from some angle A(&, @1, ¢2) such
that lim f(z,) = « and condition (2.1) holds, then « is the angular limit of the function

f(2) at the point €.

Remark 3.2. Note that in [5] an analog of Theorem 3.2 was obtained, under the
condition that a non-tangent curve L non-tangent to I' is considered instead of the
sequence {z,}.
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Remark 3.3. In [15] D. Rung studied the problem of the existence of the vanishing
angular limits for logarithmic subharmonic functions from the class R at arbitrary point
¢ € I'. Later on the authors in [6] reduced the curve L non-tangential to I" to a sequence
zp — & € T from some angle A(&, @1, o) satisfying the condition lim o(z,, z,41) = 0.

n—oo

Theorem B. Let f(z) be a logarithmic subharmonic function in the class R. If there
exists a sequence z, — & € I' in some angle A(&, @1, p2) such that lim o(z,, z,41) =0

and lim f(z,) = 0, then the function f(z) has the angular limit at the point £ and this

limit 1s equal to 0.

The assertion of Theorem B is not valid for the weaker condition (2.1). Indeed,
F. Bagemihl and W. Seidel constructed in [1] a Blaschke product B(z) with zeros {z,},
which lie on the radius at the point £ = 1 and satisfy condition (2.1). The function
B(z) is bounded in D, and hence B(z) is the normal analytic function. Therefore, the
module of B(z) is the normal logarithmic subharmonic function, which vanishes on the
sequence {z,}, but at the point £ = 1 has not even a radial limit.

As a corollary of Theorem 3.2 we obtain the following theorem.

Theorem 3.3. Let f(z) be a logarithmic subharmonic function defined in D in the
class ®. If £ € K(f) and there exists a sequence z, — & € I' from some angle
A(&, @1, 92) such that lim f(z,) = 0 and condition (2.1) holds, then the function f(z)

has the angular limit at the point & and this limit is equal to 0.

Let us prove that in Theorems 3.2 and 3.3 the condition f(z) € R is important. To
this end we need the following lemma.

Lemma 3.1. Let Inp(r), 0 < r < 1 be a positive monotonically increasing function,
Inp(r) — +oo asr — 1. Then there exists a logarithmic subharmonic function f(z) #
0 in D such that

1) £(2) < pll2),
2) hgi f(rei?) =0 for almost all 6 € [0, 27].

Proof. Lemma 3.1 and Theorem D13 of [6] imply that there exists an analytic function
g(z) = u(z) +iv(z), such that

1. g(z) <Inp(|z]), |
2. limu(re?) = lin% Re g(re"?) = —oo for almost all 6 € [0, 27].

7‘—>1

Consider a logarithmic subharmonic function f(z) = explu(z)]. We have
u(z) <lg(z)] <Inp(lz]), [f(z) <exp[np(|z])] = p(]2]),
i.e. property 1) holds. On the other hand

lim f(re?) = lim exp[u(re™®)] = 0

r—1 r—1

for almost all 6 € [0, 27|, i.e. the property 2) holds. O
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Now we can prove that in Theorems 3.2 and 3.3 the condition f(z) € R is important,
and it can not be omitted even in the case, where £ € K(f) and the radial limit of the
function f(z) at the point & is equal to 0. By E; C I' we denote a set of points, at
which the property 2) of Lemma 3.1 does not hold. Obviously meas FE; = 0. Consider
the set By = K(f) N (I'\ Ey), we have meas Ey = 2m. Property 2) of Lemma 3.1
holds at any point of set Ey. Therefore, at almost every point £ € K(f) the radial
limit of function f(z) exists and equals 0. However, at almost every point £ € K(f)
the function f(z) have not a vanishing angular limit, because otherwise by uniqueness
theorem for logarithmic subharmonic functions [12] we get f(z) = 0, which contradicts
our assumptions.
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