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Abstract. We study the approximate differentiability of measurable mappings of
Carnot—Carathéodory spaces. We show that the approximate differentiability almost
everywhere is equivalent to the approximate differentiability along the basic horizontal
vector fields almost everywhere. As a geometric tool we prove the generalization of
Rashevsky—Chow theorem for C'-smooth vector fields. The main result of the paper
extends theorems on approximate differentiability proved by Stepanoff (1923, 1925) and
Whitney (1951) for Euclidean spaces and by Vodopyanov (2000) for Carnot groups.

1 Introduction

In 1919 Rademacher proved a theorem that is the well-known result in the theory of
functions of a real variable.

Theorem 1.1 ([23]). If U is an open subset of R™ and f : U — R™ is a Lipschitz
mapping, then f is differentiable at almost all points of the set U.

The result allows many enhancements and generalizations. Most natural is to con-
sider an arbitrary measurable set as the domain of the function together with a weaker
assumption on the function. The Stepanoff theorem is such a result.

Theorem 1.2 ([27]). If A C R" is a measurable set and a function f : A — R™
satisfies the condition

lim M < oo for every point a € A, (1.1)
Tr—a Tr — a

then f is differentiable at almost all points of the set A.
The density of a measurable set Y C R™ at a point x € R" is the limit

lim H"(Y N B(x,r))
r—+0  H"(B(x,r))

in case it exists (here H™ is the n-dimensional Hausdorff measure).
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It is known that almost all points of a measurable set Y are density points (i. e. the
density of the set is equal to 1 at those points) and almost all points of the set R™ \ Y’
are the points of density 0.

A value y € R™ is called the approzimate limit of a function f: E C R” — R™ at a
density point 2o € E (denoted by y = ap lim f(z)) if the set E'\ f~*(W) has density

r—x0

0 at the point z( for every neighborhood W C R™ of the point y. The approximate
limit is unique [4].

The idea of the approximate limit is tightly related to the fundamental notion of the
geometric measure theory: the notion of measurability. Namely, for a mapping of the
Euclidean space to be measurable, it is necessary and sufficient that it is approximately
continuous almost everywhere (see, for instance, [4]).

fl+tv) = /() to the value L(v)

of a linear mapping L : R” — R™ in different topologies oft the unit ball B(0,1) C R”
then we arrive at to different notions of differentiability. The convergence to L in the
uniform topology C'(B(0,1)) gives us the classical differentiability. The convergence
to L in measure gives just the notion of approximate differentiability of the Euclidean
space, see for instance [25].

With the approximate differential introduced by Stepanoff, the following result was
obtained in his work:

If we consider the convergence of the relation

Theorem 1.3 ([28]). A function f: R"™ — R™ is approzimately differentiable almost
everywhere if and only if it has approximate derivatives with respect to each variable
almost everywhere.

It worth noting that if a mapping has a classical differential then it has an ap-
proximate one and these differentials coincide. Therefore, the approximate differential
generalizes the concept of the classical differential.

With use of the approximate differential Theorem 1.2 can be further extended in
the following direction. For doing this we apply a result of [4]:

Theorem 1.4. [fACR", f: A— R™ and

i ) = F(0)

| | < oo for every point a € A, (1.2)
e—a  |r—a

then A is the union of a countable family of disjoint measurable sets A; and a set of
measure zero such that every restriction f|a, is a Lipschitz mapping.

Hence, for a function f meeting condition (1.2), by Theorem 1.1, we have that
every restriction f|4, is differentiable almost everywhere in A;. The density points of
the sets A; are also the density points of the set A. Therefore, one can conclude that
the mapping f is approximately differentiable almost everywhere in A.

Condition (1.2) is the weakest one because it obviously holds for approximately
differentiable function.

The final representation of the theorem is how it was stated by Whitney.
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Theorem 1.5 ([40]). Let the set P C R™ be measurable and bounded, f : P — R™ be
a measurable function. The following conditions are equivalent:

1) the mapping f is approximately differentiable almost everywhere in P;

2) the mapping [ has approximate derivatives with respect to each variable almost
everywhere in P;

3) there is a countable family of disjoint sets Q1,Qa, ... such that |P\ |J @Q;| =0
i=1

and every restriction f|o, s a Lipschitz mapping;
4) for every € > 0, there are a closed set Q C P such that |P\ Q| < € and a
Cl-smooth mapping g : P — R™ such that g = f in Q.

An appropriate concept of differentiability for mappings of Carnot groups was intro-
duced by P. Pansu in [20]. Now it is called the P-differentiability. It was introduced in
order to establish some results of the theory of quasiconformal mappings [20, 14]. Some
classes of P-differentiable mappings of Carnot groups were described in [38, 31, 16] with
purpose to obtain some formulas of geometric measure theory and some crucial results
of quasiconformal analysis [29, 39, 30, 32, 34, 21].

Later, in [33, 12] the concept of P-differentiability was extended for mappings of
Carnot—Carathéodory spaces for proving Rademacher and Stepanoff type theorems.

In this work we obtain a partial generalization of Theorem 1.5 for mappings of
Carnot—Carathéodory spaces.

Theorem 1.6. Let M, MAQG Carnot—Carathéodory spaces, E C M be a measurable
subset of M and f : E — M be a measurable mapping. The following conditions are
equivalent:

1) the mapping [ is approximately differentiable almost everywhere in E;

2) the mapping f has approximate derivatives along the basic horizontal vector fields
almost everywhere in E;

3) there is a sequence of disjoint sets Q1,Qs, ... such that }E\ U QZ‘ = 0 and every
i=1

restriction f|g, is a Lipschitz mapping.

The proof of Theorem 1.6 is a significant modification of the arguments of the work
[31] where a similar result was proved for mappings of Carnot groups. In the proof we
essentially use metric properties of the initial and nilpotentized vector fields established
in [12, 9, 10, 6, 13].

2 Geometry of Carnot—Carathéodory spaces

We split our work in four sections. In the first one we give the basic notions and
structures concerning Carnot-Carathéodory spaces. In Subsections 2.2 and 2.4 we
have a look at different ways of specifying a metric and coordinate system in the
Carnot—Carathéodory spaces. In Subsection 2.5 we build a special coordinate system
of the second kind based on the compositions of the integral lines of the horizontal
vector fields. As the consequence of this result we obtain Chow—Rashevsky theorem for
C'-smooth vector fields. We formulate also local approximation theorem for Carnot—
Carathéodory metric.
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In Section 2 we introduce definitions of measure, approximate limit, differentiability
and approximate differentiability, and formulate necessary results obtained earlier.

The third section is devoted to the proof of the theorem on approximate differ-
entiability. We state the theorem and show trivial implications. Then we formulate
the key steps of the theorem. Main steps of its proof are carried out in separate
lemmas. In this proof we make use of special coordinate system of the 2nd kind
(a1,...,an) — Py(an) o --- o ®Py(ay) constructed in Subsection 2.5. First, in Sub-
section 4.1 we show that a function having approximate derivatives along the basic
horizontal vector fields has approximate derivatives along the vector fields Yy (¢) which
generate the coordinate functions ®(t) = exp(Yx(t)). In the next subsection with use
of this coordinate system we build a mapping of local Carnot groups and study its prop-
erties. Finally, in Subsection 4.3 we prove that this mapping is really the differential
of the initial mapping.

As an application of our results, in the last section we prove an area formula for
approximately differentiable mappings.

2.1 Carnot—Carathéodory spaces

Recall the definition of Carnot—Carathéodory space satisfying the condition of the
equiregularity ([7, 19, 12]). Fix a connected Riemannian C*°-manifold M of topological
dimension N. The manifold M is called a Carnot-Carathéodory space if the tangent
bundle 7'M has a filtration

HM=HMC - CHMC - C HyM =TM

by subbundles such that every point g € M has a neighborhood U(g) C M equipped
with a collection of Cl-smooth vector fields X7, ..., Xy, constituting a basis of T, M
in every point v € U(g) and meeting the following two properties. For every v € U(g),

(1) HEM(v) = H;(v) = span{X;1(v),..., Xammu,(v)} is a subspace of T, M of a
constant dimension dim H;, 2 =1,..., M,

(2) Hj+1 = span{Hj, [Hl, Hj], [HQ, Hj—l]) ceey [Hk, Hj—l—l—k]} where k = LJ%IJ, ] =
1., M—1.

The subbundle HM is called horizontal.

The number M is called the depth of the manifold M.

The degree deg X, is defined as min{m | X} € H,,}.

Remark 2.1. Condition (2) implies that we have the following “commutator table”:

[Xi, Xjl(v) = > Cijk(v) X (v). (2.1)

k: deg X <deg X;+deg X;

Note, that (2.1) is weaker than condition (2) as it just implies [H;, H;] C H;4;.

2.2 The coordinates of the 1st kind

In the sequel we denote by B,(a,r) an open Euclidean ball centered at the point a € RY
and with radius 7. From the theorems on smooth dependence of solutions of ordinary
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differential equations on a parameter it follows (see e. g. [1]) that the mapping

Oy (z1,...,28) — exp(ZwiXZ) (9), 0,0)=286,0,...,0) =g,

is a C'-smooth diffeomorphism of a ball B.(0,¢,) in RY, where ¢, is a sufficiently small
positive number, into the neighborhood O, of the point g € M.

The collection of numbers {z;}, ¢ = 1,..., N, where (z1,...,2y) = Hg_lu €

N
B.(0,¢,), is called the coordinates of the 1st kind of the point u = exp(Z :L'Z'Xi> (9).
i=1

The neighborhood U(gp) of the point gy can be chosen in such a Way_that U(go) C

(1 O,. Then for every couple of points u,g € U(go) there is the unique N-tiple of
9€U(g0)

N
numbers (yi, ..., yy) such that u = exp(Z ini> (g). For every couple of points u and
i=1
g we define the non-negative quantity
doo(u, g) = max{|yi|1/degxi ti=1,...,N}.

An open ball in the quasidistance d, of radius r centered at g € M is denoted by
Box(g,r).

2.3 Local geometry of Carnot—Carathéodory spaces

Using the normal coordinates 6, we define the dilation A? : B(g,r) — B(g,er),
N

0 <r <ry toan element z = exp(Z :ciX¢> (g9) we assign
i=1

N
Atz = exp( 3 w0, ) (g)

in the case when the right-hand side makes sense. The following theorem generalizes
a result established under additional smoothness of vector fields in [17, 26, 7].

Theorem 2.1. Let g be a point in the Carnot-Carathéodory space M. The following
statements hold:
(1) Coefficients

0 otherwise;

% {cijk(g), if deg X; + deg X; = deg Xj;

where c¢;;i(+) are the functions from commutator table (2.1), define the structure of
nilpotent graded Lie algebra on T,M.

(2) There are vector fields {X?} with the initial conditions X?(g) = Xi(g), i =
1,..., N, taking place in Box(g,r,) that constitute a basis of the nilpotent graded Lie
algebra V (g) with the following “commutator table™:

(X7, X9) = chkxk = > cin(9) XY, (2.2)

deg X, =deg X;+deg X
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(3) For x € Box(g,r,) consider the vector fields
X{(z) = (AY), %N X, (A%), i=1,...,N.

Then the following equality holds
—~ N ~
Xi(x) = X{(2) + ) ay(2)X{ () (2.3)
j=1

where a;j(z) = o(emax{0des Xj—dee Xi}) for v € Box(g,r,) ase — 0.
Moreover, given a compact set K C M there exists r > 0 such that relation (2.3)
holds for all g € K with x € Box(g,r) and o(-) is uniform in g belonging to IKC as e — 0.

The first statement of the theorem is proved in [12]. The second follows from the
classical Lie theorem [15, 22]. The third statement is obtained in [10] for C'*-smooth
vector fields and in [6] for C''-smooth vector fields.

Equality (2.3) implies Gromov’s nilpotentization theorem with respect to the coor-
dinates of the first kind. Notice that for the first time it was formulated in [7, p. 130]
in the coordinates of the second kind.

Theorem 2.2 ([10, 6]). The uniform convergence X§ — )/(\'f’ ase —0,1=1,...,N,
holds at the points of Box(g,7,) and this convergence is uniform in g belonging to some
compact neighborhood.

The Lie algebra in Theorem 2.1 can be constructed as a graded nilpotent Lie algebra

V' of vector fields ()A(jg)’ in RV, j = 1,..., N, such that the exponential mapping
N ~
(x1,...,2N) — exp(Z xi(Xf)’> (0) equals identity [22, 2|.
i=1
The connected simply connected Lie group G4 M with the nilpotent graded Lie
algebra V' is called the nilpotent tangent cone of the Carnot—Carathéodory space M
at the point g € M. Ccondition (2) in the definition of Carnot—Carathéodory space
provides that GyM is a Carnot group, i. e. if we denote Vi, = span{(X7)' : deg X; = k}
then

V/:%@%@@VM7 [‘/17%]:‘/]%&-17 kzla"‘7M_17
Vi, V] = {0}

~

By means of the exponential map we can push-forward the vector fields (X Jg )

onto some neighborhood of g € M for obtaining the vector fields X 1(0y(x)) =
DO, (2){(X?)).

To the Carnot group G4 M corresponds a local Carnot group GY with the nilpotent
Lie algebra with the basic vector fields X{, ..., X.. Define it so that the mapping 6, is
a local group isomorphism between some neighborhoods of the identity elements of the

N ~
groups G, M and G9. The group operation for the elements x = exp <Z x; X! > (9) € g9
i=1
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and y = exp<

)

N
yi X7 ) (g) € GY is defined by means of local group isomorphism:
=1

N N
-y =exp (Z yfg) 0 exp (Z xfg) (9)

=0 0exp (ZJ_V: yi()?g);) 0 exp (ﬁ: ﬂfi(}?gx) (0).

Define the one-parameter dilation group 47 on G9:

N
to an element z = exp(z xiXig) (g9) € GY we assign
=1

N
6z = exp(z xitdegxi)?ig) (9) € G, te(0,t(z)).
i=1

The relation 6fx - 092 = 6.« is defined for ¢, 7 such that ¢, 7, t7 € (0,t(x)).
We extend the definition of ] on negative t, setting 67z = 6|gt‘(az_1) for t < 0.
Since the local Carnot group G7 itself is a Carnot-Carathéodory space with the
collection of vector fields { X7}, it is endowed with the quasidistance dJ,(z,y).
Throughout the paper we use the following properties.

Property 2.1 ([12]). Geometric properties of the local Carnot group:

(1) The mapping 07 is a group automorphism: for all elements x,y € GI and
numbers t € (0, min{t(z), t(y), t(x - y)}) we have 6}z - 6]y = 67 (x - y).

(2) The function G > © — d9_(g,x) is a local homogeneous norm on G, i. e., it
meets the following conditions:

(a) d2.(g,z) >0 for x € G and d? (g,x) = 0 if and only if x = g;

(b) d2.(g,06ix) = td9_(g,x) for everyt € (0,t(x));

(c) d2%(g,z - y) < Q1(d%(g,2) + d%(9,y)) for allz, y, x -y € GI. The constant
1s bounded with respect to g in some compact set in M.

(3) The quantity d9_(a,b) = d9.(g,b~" - a) is a left invariant distance on G9: dJ_(z -
a,z-b) = d? (a,b) for all a, b, x € GY for which the left- and right-hand sides of the

equality make sense.
Property 2.2 ([12]). Let g € M. Then
N N
exp (Z aiXi> (9) = exp <Z a; X! ) (9)
i=1 i=1
for all la;| <ry, i=1,...,N.
Observe, that the latter implies d? (g, ) = dx(g, ).

Proposition 2.1 ([12, 13]). The quantity d is a quasimetric in the sense of [19]
that is the following relations hold for all points of the neighborhood U(go):
1) doo(u, 9) > 0, deo(u, g) = 0 if and only if u = g;
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2) doo(u, g) = doo(g, u);
3) there is a constant Q > 1 such that, for every triple of points u, w, v € U(gy), we
have

doo(u, V) < Q(doo(u, w) + doo(w,v)).

An essential distinction between the geometry of a sub-Riemannian space and the
geometry of a Riemannian space is that the metrics of the initial space and of the nilpo-
tent tangent cone are not bi-Lipschitz equivalent. Therefore, in studying the questions
of the local behavior of the geometric objects, it is important to know estimates of the
deviation of one metric from another.

Theorem 2.3 (|13, Theorem 8|). Assume that g, wy € U(go) satisfy dso (g, wo) = Ce.
For a fivred L € N, consider the points

N N

~e deg X; g ~¢ e _ deg X; 5

w5 = exp( E w; ;€ JXj>(wj_1), w; = exp( E w; ;€ JXj)(wj_l),
=1 i=1

Wy =wi=wo, j=1,..., L. Then

A~

masc{d (T, w5), doo (@5, 05)} = o) as € — 0,
where o(e) is uniform in g, wy € U(go) and {w; ;},i=1,...,N,j=1,..., L, in some
compact neighborhood of 0 and € > 0.

Theorem 2.4 ([13, Theorem 6]). Consider points g € M and u, v € Box(g,¢),
where € € (0,1,). Then

|d (u,v) — doo(u,v)| = 0(e) ase—0,

where o(€) is uniform in u, v € Box(g,e) and g belonging to some compact set.

2.4 The coordinates of the 2nd kind

In the neighborhood of a point gy consider the same family of the basic vector fields
{X1, ..., Xaim#y XdimHy+1, - - -, Xy} as in the definition of the coordinates of the first
kind. It is known that the mapping

(a1,...,ayn) — explayXy)o---oexp(a; Xi)(g) (2.4)

is a C'-diffeomorphism of some neighborhood B, (0,&) C RY to a neighborhood V'(g) of

g (the so-called coordinates of the second kind). Similarly to the case of the coordinates

of the first kind we can choose a neighborhood U(gp) such that U(gy) C () V(g).
9€U(90)
For the points u, g € U(go), u = exp(ayXny) o -+ - o exp(a1X1)(g), by means of the

coordinates of the 2nd kind we can define the quantity

ti=1,...,N}.

ds(u, g) = max{|a,|"/ 4

Next we show that the quantity ds(u,g) is comparable with the quasimetric dy(u, g)
in a neighborhood U(gp) i. e.

C1doo (U, g) < do(u, g) < cadoo(u, g) (2.5)

for all points u, g € U(go) and positive constants ¢; and ¢, independent of u, g € U(gp).
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Remark 2.2. For Carnot groups the equivalence of d., and dy is known (see, for
instance, [5]). This means that if d%, and dj are quasimetrics in the local Carnot group
GY9, g € M, then there are constants ¢{ and ¢ such that

A (u,0) < dY(u,0) < A (w,0) (2.6)
for all u, v € G9.

Proposition 2.2. There are constants ¢y and co such that inequalities (2.5) hold for
all points u, g in some neighborhood U(gy) in which quasimetrics do, and dy are defined.

Proof. Let u, g € U(go) be arbitrary points and dy(u, g) = r. Assuming that yo = g,
y1 = exp(a1X1)(Yo), - - -, yn = explanXn)(yn—_1) by the generalized triangle inequality
(see Proposition 2.1) we have the following relations

dso(u, g) < QY1 (jv: oo (Y, yk—l))

N
<N <Z |a;
i—1

Thus the left inequality in (2.5) is proved with ¢; = (NQ~~1)~1.

Next, suggest that the right inequality in (2.5) does not hold in some closed ball
Box(go, 2r9). Then there are sequences of points x,,, ¥, € Box(go, 7o) converging to the
same point ¢ € Box(go, 7), such that

W) S NQV T = NQV'dy(ug).  (27)

En = d2(~rn7 yn) > ndoo(xmyn)7

where €, — 0 as n — oo (otherwise the right inequality in (2.5) would be fulfilled
in Box(go,70)). Define on Box(go, 7o) dilations D7 and Df as follows: to an element
r=-exp(zyXy)o---oexp(x1Xy)(g) € Box(go,r0) assign

Dz = exp(znt*® ¥ Xy) o+ 0 exp(11X1)(9)
and to an element & = exp(a:N)A(]‘(,) o---oexp(z1XY)(g) € Box(go, o) N GY assign
D93 = exp(antS XN XY ) o -+ o exp(a1tXY)(g).
Observe that dy(g, D9z) = tdy(g, z) and d(g, DIz) = tdi(g,z). Let
0<d=sup{t>0: D92, D92 € Box(go, 2ro) for all z, g € Box(go, 7o)}

Then ©§7anyn € m(907 2rg) and

)
da (2, D) Yn) = g—dg(l'n, Yn) =0 > 0. (2.8)

n

Represent 1y, in coordinates of the 2nd kind as y, = exp(yu,nXn) o -+ 0
exp(yn1X1)(x,) and define

Zn = eXP(Yan X 5) © - -+ 0 exp(Yn1 X7 (20)-
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Since doo (Tn, Yn) = d22 (25, yn) < =2, by (2.6) it follows
" (s ) < 5" d% (0, ya) < 5" = O( )

where O(+) is uniform in Box(go, 79). This means that in the representation

Yn = eXp(vnN)A(]‘((f) 0---0 exp(vnl)?f)(xn)

the coordinates v; meet the property |v,;|9€*i = O(=2). Then we can apply Theo-
rem 2.3 to the points y, and 2, and derive that d3 (y,, 2,) = o(%*). Consequently,

422 (0, 2) < O (20, ) + A2 (g, 20)) = O( ) +0( =) =01,

n n n

By Theorem 2.3 it also follows d3; (D57, yn, 5;}7&”2”) = o(%). Therefore,

&5 (20, D7 ya) < Co (3 (20, DY 20) + d5" (DI 20, D37 yn))

("
o
¢

< (4

wn

d fEn, Zn dgn( ?75 Z”’ ©§7€nyn>>
da:n xn? Zn d:C" (©§7an Zny ©§7Enyn)>

o) ro(d) 0ty =0 wn-e

where C}, Cy < 0o are bounded, all O(+) are uniform in Box(go, ro).
Hence we come to a contradiction with (2.8), and, therefore, the right inequality in
(2.5) is proved. O

Corollary 2.1. The quantity ds is a quasimetric in the sense of [19], i. e. the following
conditions hold for the points of the neighborhood U(gy):

1) do(u,g) >0, dao(u,g) =0 if and only if u = g;

2) dy(u, g) < ¢ cada(g,u), where the constants c; and ¢, are the ones from the propo-
sitton 2.2,

3) there is a constant Qs > 1 such that for every triple of the points u, w, v € U(go)
we have

d2(u7 U) S Q2<d2(u7 w) + d2<w7 U))a

where Qy = ¢ c2Q and Q is a constant in the generalized triangle inequality for du;
(4) do(u,v) is continuous with respect to the first variable.

Proof. We prove for example the second property: do(u,g) < codoo(u,g) =
Codoo(g,u) < ¢;'cady(g,u). The third property can be proved using the same pro-
cedure. The last property follows from the continuous dependence of solutions of ODE
on the initial data. O
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2.5 Special coordinate system of the 2nd kind and Rashevsky—
Chow Theorem

The goal of this section is to modify the coordinate system of the 2nd kind

(t1,...,tn) — exp(tyXn) o+ oexp(t1 X1)(9)

in the following way. We prove that exponents of nonhorizontal vector fields Xy,
k =dim H,+1,..., N, can be replaced by compositions of exponents of some family of
horizontal vector fields X7, ..., Xqm g, and the resulting mapping still covers a neigh-
borhood of g. For Carnot groups this property is known as the following statement.

Lemma 2.1 ([5]). Let G = (RY,) be a Carnot group and let vector fields Yr,...,Y,
be a basis of horizontal subspace Vi of its Lie algebra. Then every point v € G can be
represented as

v = H exp(aY;, )(0)

where 1 < iy < n, |ag| < ¢1]|v||0o, constants L and ¢; are independent of v.

Lemma 2.2. Fix g € M. There exists a mapping 59 : B.(0,e) — GY defined as

~

D, (t1,...,tn) — On(tn) 0+ 0 P pry 41 (Bdim Hy+1)

o exp(Xdmm,) 0 oexp(X{)(g) (2.9)

which is a homeomorphism of a ball B.(0,e) onto the neighborhood V(g) C GY of a
point g with the mappings @y satisfying

~ exp(aL,kt)?fjk) 0--:0 exp(alﬁkt)?ik)(), t>0,
exp(a pt X7 ;) o oexp(ap st X7 ,)(-), ¢ <0,

where |a; x| < ¢ for all k = dimHy +1,...,N, i = 1,...,L, every )A(ng is from
{(X{, - X, J-
Proof. Consider coordinate system of the 2nd kind on the nilpotent tangent cone G, M.

O,(t1, ... tx) = exp(tn(X%)) o - - - o exp(t1(XY))(0).

The mapping O, is a diffeomorphism of RY. For every nonhorizontal vector field ()/(\' 7y
fix the decomposition given by Lemma 2.1

~ -~ ~

exp((X{))(0) = exp(arr(X] )') o -+ - 0 exp(ar (X7 ,)")(0).

Here |a; x| < ¢y foralli=1,...,L, k =dim H; + 1,..., N, and every ()?ng)’ is in the
set {(X9),..., ()?gim 1)’} Applying the dilation 49 to this decomposition we obtain
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the following representation

o7 exp((X7)')(0) = exp(t* ¥ (X)) (0)
= eXp(aL kt( ) ) ©r 0 exp(al,kt(Xlg,k),) (O)a t> 07
37 expl(R7))(0) = exp(—#1**5(£7))(0)
= exp(ath(ka) )o---oexp(ar, kt(XL »)0), t<0.  (2.10)
Since the vector fields (X 7Y are left-invariant, representation (2.10) holds also if we

replace 0 by arbitrary x € G,M.
Next, we push-forward representation (2.10) using the local group isomorphism 6.

Define the mappings @ : [—¢, ] x Box(g,¢) — G by

~ B {exp(aL,kt)?g’k) 0---0 eXp(ath)?f’k)(w), t>0, (2.11)

Pp(t)(w) = ~ ~
H(2)(w) exp(ayxt X7 ;) o oexplag xt X7 ) (w), t<0
where, by definition,
exp(aX?) o exp(bX?) = 6, 0 exp(a(X?)') o exp(b(X?)') 0 0

and € > 0 is sufficiently small so that (2.11) makes sense for all k = dim H; +1,..., N,
t € [—¢,¢] and w € Box(g, ¢).
Consider a mapping ®, defined as in (2.9). Since, by construction,

Dy(ty,. .. tn) = 0,0 O (118X 15BN,

the mapping </Isg is a homeomorphism of a ball B,(0,e) C RY onto the neighborhood
V(g) C M NGY. The lemma is proved. O

For every point g € U(go) define the mappings @y : [—¢,¢] — M by

tX e tX . t>0
@k(t)( _ {exp(a[/,k’ L,k) o o exp(a’l,k l,k)( )’ - Yy (212)

exp(ayptXix) o---oexp(arptXpp)(-), t <0,
where the coefficients a;;, @ = 1,...,L, k = dim H; + 1,..., N, are taken from the
representation (2.10). Define also the mapping @, : B.(0,e) — M by

(I)g : (th cee atN) = CI)N(tN) ©---0 (I)dimHlJrl(tdimHlJrl)
0 exP(tdim i, Xdim i, ) © - 0 exp(t1.X1)(g). (2.13)

Next, we prove that @, is the desired mapping, i. e. there is a neighborhood V' (g) such
that V(g) C ®(B.(0,¢)).

Theorem 2.5. Fiz a point g9 € M. Let Xy,..., Xaimn, be a basis in Hy. Then there
is a neighborhood U(go) such that for every point g € U(go) an element v € U(gy) can
be represented as

v=exp(arX;,)o---oexp(asX;,) oexp(a1X;, )(g), (2.14)

where 1 < j; <dimHy,i=1,...,L, L €N, |a;| < ¢adoo(g,v), and constants L and cy
are independent of g and v.
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Proof. Fix gy € M. Let ®,(t)(-) and ®4(¢)(-) be defined as in (2.10) and (2.12). By
Theorem 2.3 we have

oo (D () (w), B (t)(w)) = oft) ast— 0

where o(t) is uniform with respect to g, w in a compact neighborhood U(gy).

Let B.(0,7) be an Euclidean ball in R and mappings EISQ and ¢, : B.(0,7) — M
be defined as in (2.9) and (2.13). Observe that both mappings are continuous and that
doo(Py(), 69@)) = o(r) as r — 0 where o(r) is uniform in g € U(gy) and = € B.(0, 7).
Moreover, <T>g is a homeomorphism of B, (0, ) onto a neighborhood V(g) € M NG9,

Define ¢ = (IDQOZI\Jg‘l. The mapping ¢ : V(g) — M is continuous and d (v, (v)) =
0(ds(g,v)) as v — g where o(-) is uniform in g,v € U(gy). Choose gy > 0 such that
doo(v,¥(v)) < 55 for every v € Box(g,¢), 0 <& < g9 and g € U(go), where @ > 1is a
constant in the generalized triangle inequality for d.,. Next, we prove that ¢)(Box(g,¢))
is a neighborhood of g¢.

Consider the homotopy v(v) = 67_,1(v), t € [0,1]. It is clear that 1y(v) = ¥ (v)
and 1 (v) = v. Fix a point w € Box(g, %) Then for every v € 9Box(g, £) we have

£ =d(9,v) < Q(doo(g, W) + dos(w,v)) < g + Qdoo (w, v).

Hence, do(w,v) > 55. On the other side, for all v € 9Box(g, €) we also have

oo (1(0), 0) = doc (071 (v), V)
= Ao (07 (v),v) = (1 = 1)d (¥ (v),v)
d

€
<d! < —.

< d3(Y(v),v) = dos(p(v),v) < 20

Consequently, w ¢ w(aBox(g, 5)) for all ¢ € [0, 1]. Therefore, the topological degree of
Yy at w is invariant for all ¢ € [0,1]. Since

deg(w7 BOX(97 8)7 ¢) = deg(wv BOX(QJ 8)7 ¢1) = deg(w7 BOX(Qv 5)7 ¢0) = 17

we conclude w € ¥(Box(g,€)). In other words Box(g, 35) C ®4(Boxc(0,¢)), where
Box.(0,6) = {x € RN : |2y < ¢,i=1,..., N} is an Euclidean cube.
Let U(go) be a neighborhood of gy small enough that

Ulgo) € () Box(g,53).

9€U(go)

Let ¢ = dw(g,v) where g,v € U(gy). Then there exists an N-tiple of numbers
(t1,...,ty) such that |t;] < 2Qe and v = ®,(ty,...,tyx). This completes the proof. [

An absolutely continuous curve v : [0,7] — M is said to be horizontal if 4(t) €
H,yM for almost all t € [0, T].

As an immediate consequence of Theorem 2.5 we obtain the following generaliza-
tion of Rashevsky—Chow theorem [24, 3, 12|. For C'-smooth fields X;,..., X this

statement is new.
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Theorem 2.6. 1) Let g € M. There exists a neighborhood U of a point g such that
every pair of points u, v € U in a Carnot-Carathéodory space M can be joined by an
absolutely continuous horizontal curve v constituted of at most L segments of integral
lines of basic horizontal fields where L is independent of the choice of points x, y € U.

2) Every pair of points u, v in a connected Carnot—Carathéodory space M can be
joined by an absolutely continuous horizontal curve v constituted of finite number of
segments of integral lines of basic horizontal fields.

2.6 Carnot—Carathéodory metric and Ball-Box Theorem

The Carnot—Carathéodory distance between two points x, y € M is defined by

dee(z,y) = inf{T > 0 : there exists a horizontal path v : [0,7] — M,
7(0) = 2,9(T) =y, [7(t)] < 1}.
Theorem 2.6 guarantees that d..(x,y) < oo for all z, y € M. An open ball in Carnot—
Carathéodory metric of radius r centered at x is denoted as B.(z, ).
The following statement is called the local approximation theorem. It was formu-
lated in |7, p. 135] for “sufficiently smooth vector fields”. It was proved in [37] for

Chesmooth vector fields but the same arguments work for the case of C'-smooth
vector fields since they are based on the property (2.3) [13, Theorem 7|.

Theorem 2.7 ([37, 13]). Let g € M. Then for every two points u, v € Be.(g,e) we
have

|dec(u,v) — d9,(u,v)| =0(e) ase—0

where o(g) is uniform in u, v € B(g,e) and g belonging to some compact set.

As a corollary we obtain a comparison of metric d.. and quasimetric d.,, and Ball-
Box theorem.

Theorem 2.8 ([13, Theorem 11]). Let g € M. There exists a compact neighborhood
U(g) C M and constants 0 < C7 < Cy < 0o independent of u, v € U(g) such that

Crdoo(u, v) < dee(u,v) < Codoo(u,v) (2.15)
for allu, v e U(g).

The following statement was proved for sufficiently smooth vector fields in [19, 7],
for Ct*-smooth vector fields, a € (0, 1], in [12] and for C*-smooth vector fields in [13].

Corollary 2.2 (Ball-Box theorem [13]). Given a compact neighborhood U € M,
there exist constants 0 < C7; < Cy < 00 and rog > 0 independent of x € U such that

Box(z, C1r) C Bee(x,r) C Box(z, Cor)

for allr € (0,19) and x € U.



24 S.G. Basalaev, S.K. Vodopyanov

3 Approximate limit and differentiability

3.1 Hausdorff measure
The (spherical) k-dimensional Hausdorff measure of the set E with respect to the metric

d.. is the quantity

HME) = EliI&inf{er :FE C UBCC(%’,H),H < 5}.

Theorem 3.1 ([18, 12]|). The Hausdorff dimension of M with respect to d.. is equal

to
M

N
v = Zdeng = Zi(dim H; —dim H; )
k=1

=1

where dim Hy = 0.
Ball-Box theorem implies the double property of measure.

Proposition 3.1. We have
H”(Bee(x,2r)) < OHY(Bee(x, 1))

where C' < 0o is bounded in r € (0,10] and x belonging to some compact part V.C M.

3.2 Approximate limit and its properties

The density of a set Y at x € M is a limit

. HY(Bee(z,r)NY)
iy H?(Beo(, 7))

if it exists at = (where v is the Hausdorff dimension of the space M).
Let £ C M be a measurable set and f : E — M be a mapping to a metric space
M.
A point y € M is called the approzimate limit of the mapping f at the point g € F
of density 1 and is denoted by y = ap lim f(z) if the density of set E \ f~(W) at g
T—g

equals zero for every neighborhood W' of the point y.
In the case M = R we also define the approzimate upper limit of the function f at
the point g € F, denoted by ap lim f(z), as the greatest lower bound of the set of all
T—g

numbers s for which the density of the set {z € M : f(z) > s} at the point g equals

zero. By definition, ap lim f(z) = —ap lim(—f(z)) is the approzimate lower limit. It
T—g r—g

is easy to verify that ap lim f(z) < ap lim f(z) and that ap lim f(x) exists if and only
T—g T—g T—g

if ap lim f () = ap lim f(2).

T—g r—g
Next we state several properties regarding measurability and approximate limit
which we need in further arguments.
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Property 3.1. Let S be a H” X H” -measurable set in M x M and 2o be a fized point
i M. For everye >0 and d > 0 define T as a set of the points x for which

H{z: (2,2) € S, dee(20,2) <7} <er”  forall 0<r <6.
Then the set T is measurable.

Really, for any r > 0, a set

S, = SN {(2,2) : dee(20,2) <7} = 5N (M X Beel(20,7))

is H” x H”-measurable. By Tonelli-Fubini theorem the set {z : (z,z) € S,} is H"-
measurable for H"-almost all  and

//Xsrxzdxdz—//Xerzdzdx—/H”{z z,z) € S, }dx.

MxM
Consequently, the mapping

QT /XST(CC,Z) dz =H"{z: (x,2) € S,}

is ‘H”-measurable. Then we have
T = ﬂ {z:¢(x) <er’}
re(0,6)NQ
where Q denotes the set of rational numbers. It remains only to note that every set
{z : p(x) < er'} is HY-measurable.
Property 3.2. Ifo : M x M — R is H” x H”-measurable real-valued mapping and
2o 18 a point in M then

ap lim o(z,2) and ap lim o(x, 2)

z—20 2—20

are H"-measurable mappings of argument x.

First, notice that

{r € M :ap lim o(z, z)<¢}—ﬂAt ﬂA

z—20
t>1

where A; is a set of the points x € M for which the set {z € M : o(z,z) >t} has the
density zero at zy. We have to make sure that A; is measurable. In order to do this
we apply Property 3.1 to the set

Sy ={(r,2) e M x M:0(z,2) >t}
and derive that the set Ti(m, k) of the points x € M for which

v

H{z: (2,2) € Sy, duel20,2) <7} < % forall 0 <r < k™,

is measurable for all positive integers m and k. It remains only to observe that

A= () () Ti(m, k).

m=1 k=1
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3.3 Differentiability in the sub-Riemannian geometry

Fix £ C R and a limit point s € E. The mapping v : £ — M has sub-Riemannian
derivative at the point s if there is an element a € G7©) such that

&9 (y(s+1),60%a) =o(t) ast —0, s+t€E. (3.1)
We use the notation a = %subv(t + 8)|t=0- A derivative is called horizontal if a €

eXp(H,Y(S)M), 1. e.

dim H; dim H1

a= exp( Z ozj)?;(s))(v(s)) = exp( Z anj>(7(S))

j=1 j=1

for certain a; € R.
Recall that v : E C R — M is called a Lipschitz mapping if there is a constant
C > 0 such that the inequality

dcc(ﬁ)/(‘r)afy(y)) S ny - y’
holds for all x,y € F.

Theorem 3.2 ([33]). Every Lipschitz mapping v : E — M, where the set E C R is
closed, has horizontal derivative almost everywhere in E.

The mapping f: FEC M — M of two Carnot—Carathéodory spaces is called [35]
differentiable at the point ¢ € F if there is horizontal homomorphism L : G¢ — G/
of the local Carnot groups such that

dl9(f(v), L(v)) = 0(d%(g,v)) as ENG' 3 v — g. (3.2)

Recall that the horizontal homomorphism of Carnot groups is a homomorphism L :
G — G such that DL(0)(HG) C HG.

Local approximation theorem (Theorem 2.7) gives an opportunity to use both met-
rics of the initial space and of local Carnot group in the definition (3.2). Indeed, by
Theorem 2.7 we have

dee(f(v), L(v)) = dI9 (f(v), L(v)) + o(d1 (f(g), f(v))) + o(dI(f(g), L(v))).
Using the triangle inequality

dec(f(9), f(v)) < dee(f(9), L(v)) + dee(L(v), f(v)),

and homogeneity of L we obtain

dee(f(v), L(v)) = dI9(f(v), L(v)) + (19 (f(g), f())) + o(dL(f(g), L(v)))
= [+ oD (f(v), L) + o(dEu(v.g) s dED(f(g), L(w)))

u: d2.(u,g)=1

= o(d%,(9.v)) = o(dec(g.v))- (3.3)
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The homomorphism L : G9 — G719 satisfying (3.2) is called the differential of the
mapping f and is denoted by D,f. One can show that if g is the density point then
the differential is unique. Moreover, it is easy to verify that differential commutes with
the one-parameter dilation group:

519 o Dyf = Dyf o 6. (3.4)

If v € G9 and 6Jv € GY then, by (3.4), we have

AL (f(57v),6]9' D, f(v)) = A9 (f(57v), D,y f(57v))
o(d?,(g,6{v)) = d2,(g,v)o(t), (3.5)

i. e. element D, f(v) is a derivative of the curve y(t) = f(év) at t = 0.
By the derivative of the mapping f along the horizontal vector field X at the point
g we mean the derivative of the curve

y(t) = f(6] exp X9(g)) = f(exptX(g))

for t = 0. We use the notation X f(g) to denote this derivative. To be more pre-
cise we have to write expX f(g) since usually X f(g) is the Riemannian derivative
L fexp(tX)(g))] +—o- To simplify notations we will use X f(g) for the sub-Riemannian
derivative except of the cases when the opposite is stated explicitly.

The mapping f : £ C M — M of two Carnot-Carathéodory spaces is called a
Lipschitz mapping if there is a constant C' > 0 such that the inequality

dec(f (), f(y)) < Cdee(z,y)

holds for all z,y € F.
In the work [33] there were generalized the classical Rademacher [23| and Stepanoff
[27] theorems to the case of Carnot—Carathéodory spaces.

Theorem 3.3 ([33, Theorem 4.1]). Let E be a set in M and let f : E — M be a
Lipschitz mapping. Then f is differentiable almost everywhere in E and the differential
1S UNLQUeE.

Theorem 3.4 ([33, Theorem 5.1]). Let E be a set in M and let a mapping f : E —
M satisfy the condition

— deelf(a), f(2))
x—}CILI?EE dec(a, x) =

for almost all a € E. Then f is differentiable almost everywhere in E and the differ-
ential is unique.

Here we will write an alternative proof of Theorems 3.3 and 3.4 using the theorem
on approximate differentiability.
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3.4 Approximate differentiability

Now we replace a regular limit in (3.1) by the approximate one. This leads us to
definition of an approximate (horizontal) derivative as an element a € exp HG"®) such
that

d’YC(S) t 57(3)
ap lim - ((s+4),9, "a) =0,
t—0 |t|

1. e. the set
{te(=rr): 9 (s+1),6Ya) > Jt|e}

has density zero at the point ¢ = 0 for an arbitrary ¢ > 0.
Similarly an approximate differential is the horizontal homomorphism L : G —
Gf(9) of the local Carnot groups such that

Al (f(v), L(v))
ab 111112 d?.(g,v)

=0,

1. e. a set _
{v € Beelg, 1) N G7 - i (f(v), L(v)) > d,(g,v)e}

has ‘H"-density zero at the point v = g for any € > 0. We denote such homomorphism
as ap D, f.

Using the notion of an approximate differential we can generalize Theorem 3.4 in
the following direction.

Theorem 3.5. Let E be a set in M and let f: E — M meet the condition

ap T dee(f(9), f () <> (3.6)

=9 dcc(g’ .Z‘)

Then f is approximately differentiable almost everywhere in E.
For proving Theorem 3.5 we need the following statement.

Theorem 3.6. Let E' be a measurable subset in M and f : E — M be a measurable
mapping enjoying (3.6) for all points g € E. Then there is a sequence of disjoint

sets Eg, Eq,..., such that E = EyU |J E;, H"(Ey) = 0 and every restriction f
i=1

E;

1=1,2,..., 1s a Lipschitz mapping.

Proof. Since our considerations are local, we focus our arguments on the case when
E C U where U is an open subset in M. Consider a sequence of sets

Un=1{2 €U :de(x,0U) >2m '}, meN
Each U, is closed and |J U,, = U. For all distinct points u and v of U the relation
m=1

HV(-BCC(UJ dcc(“v U)) ﬂ BCC(UJ dCC(u7 U)))
dee(u, v)? ’

h(u,v) = u# v,
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is a continuous real-valued function. For every m define a constant
Y = Inf{h(u,v) : u,v € Uy, dee(u,v) <m™'}

Let de.(u,v) = I. By definition of d.. for an arbitrary number ¢ > 0 there exists
a piecewise smooth path 7 : [0,1 + ¢] — M such that v(0) = u, y(I + ) = v and
9] < 1. Let w = (%), Then de(u,w) < B¢ and de.(v,w) < HE. Consequently,
Be(w, l_TE) C Bee(u,l) and Be.(w, Z_Ta) C Bee(v,1). Hence,

HV(Bcc;:Uv l—_a)) > Ol(lly%e)y > 0,

h(u,v) >

where €'} > 0 is a constant from Ball-Box theorem. Since € > 0 is arbitrary, we infer
o > C127% > 0.

For every m € N, let E™ be a set of all density points of EN (U, \ Uy,—1) (assuming
Up = 0). The sequence E™ is a disjoint family and H*(E'\ U E,.) = 0.

m=1

ForkeN,uc E,0<r <m™! define

Q' (u,7) = Bee(u,r) N s @ & E™ or dee(f(2), f(u) > K dee(w, u)}

and also define
B'=EnN {u CHY(QE (u, 1)) < ’ym% forall 0 <r < min{k’l,m’l}}.

o0

By Property 3.1, all B} are measurable and E™ = Bj*. Next, if u,v € B} and
k=1
r = dee(u,v) < min{k~!,m~'} we have

HY(QF (u, r) U QR (v,7)) < Yt < HY(Bee(u, ) N Bee(v,1)).
Hence we can choose a point

€ (Bee(u, ) N Bee(v, 1)) \ (@ (u,7) U Q1 (v, 7))

For this point

dec(f (u), F(v)) < deol f(u), (2)) + dec(f (2), £ (v))
< kdee(u, ) + kdee(x,v) < 2kr = 2kdee(u, v).

Consequently, representing B;" as an union of a countable family of measurable sets
By, whose diameters are less than min{k~', m™'}, we see that every restriction f| By,
is a Lipschitz mapping. [

Proof of Theorem 3.5. By Theorem 3.6 the domain of f is the union of a countable
family of disjoint sets E; (up to the set of measure 0) such that every restriction f|g, is
a Lipschitz mapping. By Theorem 3.3 every f|g, is differentiable almost everywhere in
FE;. For the density points of E; this is equivalent to the approximate differentiability
in F. O
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4 Theorem on approximate differentiability

Now we have all necessary tools for formulating and proving the main result.

Theorem 4.1. Let E C M be a measurable subset of the Carnot-Carathéodory space
M and let f : E — M be a measurable mapping. The following statements are
equivalent:

1) The mapping [ is approximately differentiable almost everywhere in E.

2) The mapping f has approximate derivatives ap X;f along the basic horizontal
vector fields X1, ..., Xdaimm, almost everywhere in E.

3) There is a sequence of disjoint sets Q1,Qs, ... such that H'(E\ |J Qi) = 0 and
i=1

every restriction f|qg, s a Lipschitz mapping.

i

Proof of the implication 1) = 3). Let g € M be a density point of £ and Let f be
approximately differentiable in g. Fix a point v in a set

C.9)={ve BCC<g7rg) ngs: cic(f(v),ap Dgf(”)) < éede(g,v)}, €>0.

By Theorem 2.7 we have
I (f(v),ap Dy f(v)) < deel f(v),ap Dy f (v )[ +o(1)]
< dee(v, 9)[e + 0(e)] = dZ,(v, g)[e + o(e)].

From the definition of an approximate differential it follows that H"-density of the set
B..(g,74) \ C:(g) equals zero for any € > 0. In other words

ap lim =0.
vy d00(9> )
Therefore,
i 4l ). )
v—g cc(gv )
dec(f(9), Dy f (v)) — dee(Dy f(v), [(v))
< ap lim 1
P vlg; delgrr) T de(gv)
— dec(f(9), Dy f (v))
=1
v1—>n; d?.(g,v) +0
< i 427 (f(9), Do (v)[1 + 0(1)
v—g d;?c(g, v)
=[1+o1)] sup dl(f(g), Dyf(v)) < 00
v:d2.(v,9)=1
for almost all g € E. Hence, the conditions of Theorem 3.6 are fulfilled. O

The implication 3) = 2) is proved as Corollary 4.1 in the next subsection.
The implication 2) = 1) is a direct corollary of the following crucial
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Theorem 4.2. Let f : M — M be a measurable mapping of Carnot—Carathéodory
spaces. Then

A; =domap X, f is a measurable set,

ap X;f: A; — éiﬁ(H./f\;l/) is a measurable mapping in Aj;,

forall j =1,...,dim Hy, and f is approzimately differentiable almost everywhere on
dim H;
the set A= () A;. Moreover, if g € A is a point of an approzimate differentiability
j=1

of the mapping f and in the neighborhood of g we have representation from Theorem 2.5

v =exp(arX;,)o- - oexp(a1 X} )(9)
where 1 < j; <dimH,,i=1,...,L, L € N, then

L
ap D, f(v) = [[ 8/ ap X;,f(g) € G'19).

i=1

We follow the proof in [31] where the similar result was established for Carnot groups
(which in turn was inspired by the proof [4] of the similar theorem for mappings of
Euclidean spaces). The essential steps of the proof are carried out in separate lemmas
which are proved below and the proof of the theorem itself is located in the subsection
4.3 just after proofs of lemmas.

4.1 Approximate derivatives

Lemma 4.1. Let E C M be a measurable set and f : £ — M be a measurable
mapping. Then

Cfivcc( f(ZL’), f(exthj(x)))
I

ap X, f: A — M is defined almost everywhere and is measurable;

ap X, f(g) € effﬁ(Hgﬂ) for almost all g € A;

A ={reFE: apﬁ < o0} is measurable;

for every j =1,...,dim Hy.
Proof. Fix j € {1,...,dim H;}. A mapping

t i [t e f(2), fexptX;(x)))

is measurable and by Property 3.2 the set A; is measurable. For every x € E define
A, as a set of real numbers ¢ such that exptX;(x) € A;. In the case A, # () define also

the mapping & : A, — M by the rule h(t) = f(exptX,(x)).
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If y=exptX;(z), t € A, we have

ap Tim dec(h(t), h(t + 7))
T

T G XD 1X (@), Fexp(t +7)X; ()

750 7]
dee(f (exp £X; (), f (exp 7 (exp X, (2))))

= ap lim —
— ap 1y 7|

_ apTim doo(f(y), flexpTX;(1)))

- g

< 0Q.

Hence, h meets the conditions of Theorem 3.6. Therefore, A, = By U |J B;, where
i=1
H"(By) =0, all B;, i =1,...,00, are measurable and restriction of h to every B; is a

Lipschitz mapping. If h : B; — M is one of these restrictions then by Theorem 3.2 the
sub-Riemannian derivative

d o —~
Esubh(t + 7') S eXth(t)M

=

HTTGBZ'

exists for almost all £. If ¢ is a density point for the set B; then

d d
—  h(t =ap— h(t
dT sub (t+7) T, ap dT sub (t+7) =0
d
=ap - flexprX;(y)| = apX;f(y).
Thus, ap X f(y) exists at {y = exptX;(z) : t € A,} for almost all ¢ € A,. This
provides existence of the derivative ap X f almost everywhere in A;. ]

Corollary 4.1. A Lipschitz mapping [ has approzimate deriwatives ap X;f along the
horizontal vector fields X; almost everywhere and ap X;f(g) € exp(Hy,M) for almost
all g € dom f.

Remark 4.1. Note that if ap X, f(g) defined at ¢ € M then ap(aX;)f(g) is also
defined for all real numbers a. Moreover

ap(aX;)f(g) = 0] ap X f(g).

Let the coordinate system (2.13) be defined in a neighborhood of a point g € M.
Consider a curve

Ik(g:t) = r(t)(9)- (4.1)

We say that the mapping f is approzimately differentiable along the curve I'y(g;t) at
t = 0 if there is an element a € G79 N M such that

Hdeng{t c (_74’7,.) . (.];O k(ga )7 t CL)

de(9,Tr(g;1))

rdeg X
We denote this derivative by a = ap dgu(foTx)(g). If k =1,...,dim Hy, this definition
coincides with the definition of the approximate derivative from Subsection 3.4.

>5}—>0 as r — 0.
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Lemma 4.2. Let E C M be a bounded measurable set and f : E — M be a measurable
mapping. Let also the coordinate system (2.13) be defined in a neighborhood of a point
g € U with functions ®y satisfying (2.12). Then the mapping f is approximately

differentiable along the curve I'y(g;t) defined by (4.1), k =dim H;+1,...,N, att =0
dim H,
almost everywhere in A = (| domap X;f. Moreover, the approzimate derivative can
j=1
be written as

ap dyu(f 0 Tk)(9) = ap(s1, X7, )f o+~ 0ap(s1X7) f(9)
= ap(1.X2)f(9) - .- ap(sp, XY, )f(9) €67 (42)

almost everywhere. Here Ly < L and s; = 1 are from the representation (2.12). Also
the following estimate

dilo (f(9),ap dsus(f o Tk)(9))
< Lymax{d..(f(g9),ap X;f(9)) : j = 1,...,dim H,} (4.3)

holds for all k = dim Hy +1,..., N.

A sketch of the proof:

At the first step we apply Luzin’s and Egorov’s theorems to a bounded set A and
obtain a set A’ C A that differs from A on a set of a measure small enough and on
which the limit ap 151(1) 6{,(517) f(exptX;)(g) converges to ap X, f(g) uniformly.

Next we assure that the set of real numbers ¢, for which the relation (4.2) does not
hold, is negligible. B

At last, we prove that ap 11_1)% (5{_(’1})]” o I'k(g;t) converges uniformly to (4.2) in A’.

Proof. By Lemma 4.1 the sets A; = domap X f C E are measurable and the mappings
ap X, f are measurable in A; for all j =1,...,dim H;.

We have H"(A;) < HY(E) < oo. Fix € > 0. Applying Luzin’s theorem we find a
closed set £/ C A such that H"(A\ E') < ¢/2 and all ap X f are uniformly continuous
in £

Consider a sequence of functions {¢J : ' — R}, ey defined as

i (f(exp(tX;)(9)). 5] ap X, £ (9))
2] ’

@l (g) = sup j=1,.... dimH,.

1
[t]<s

Since ¢’ (g) — 0 as n — oo, by Egorov’s theorem we obtain a measurable set E” C E’
ap

such that HY(E'\ E") < ¢/2 and ¢’ (g) — 0 as n — oo uniformly on E”. Therefore,
the limits B B
e (f(exp(tX;)(9)). 8/ ap X, £ (9))
ap lim

=0
t—0 |t’

converge uniformly on E” for all j = 1,...,dim H;.
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For every positive integer m and for all x € E, r > 0 define a set

" (w,r) = {t € (=rr): dl® (f(exthj(x)),g,{(g) ap X, f(x)) > %}

For all positive integers p we introduce

B (p)=A; N {x € E:HT(z,r)] <

f for a110<7“<p_1}.

r
m
By Property 3.1 the sets BY"(p) are measurable for all j = 1,...,dim H;. We have also
U Bj"(p) = A;.

p=1

Moreover, Bf*(p) C Bj*(p + 1). Hence, we can choose a sequence of numbers
P1, D2, - - - such that H”(E" \ B}"(pn)) < 5w holds. Therefore,

dimHl [e.e]
HY(E"\ F) < e-dim H;, where F = ﬂ ﬂ B (pm)-
j=1 m=1

Next, for all x € F', r > 0 define a set
Zij(z,r) ={y =exptXj(z): [t| <randy & F}, j=1,...,dimH;.
For all positive integers m and ¢ define the sets

() = F o e B:HZ(w,n)] < o forall 0<r < 7'},

J

By Property 3.1 all Cj*(q) are measurable. Also H” <F\ U C]m(q)): 0.
q=1

Moreover, C7*(q) C Cj*(q + 1). Hence, we can choose a sequence of numbers
Q1, G2, - - - such that H”(F'\ CJ"(gm)) < 5w holds. Therefore,

dim H; oo

HY(F \ F) <me, where F} = ﬂ ﬂ CH(qn).

j=1 n=1
Next, we prove that the function f is approximately differentiable along the curve
I'k(g;t) uniformly in F; and the mapping g — ap%subf(Fk(g; t))’ is uniformly con-
tinuous in Fj.
Fix m € N, 0 <r < min{p,;!, ¢!} and a density point g € F;. Denote

u(t) = exp(ts1 X;,)(9),
Uz(t) = exp(tsini)(ui_l(t)), 1= 2, ce Lk

t=0

Then uy, (t) = T'k(g;t). Define the set S™ C (—r,r) as follows:
teS™, if sit €T (g,7),
or sit € T7"(ui—1(t),7),

Oru1(>€Zj1(g7 )7
or u;(t) € Z;,(ui—1(t),7), 1=2,..., L.
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m

Since H'T[(g,7)] <
- 1(t) € F1,1=2,..., Ly, we have

L H'Z;(g,7)] < L and since H'[T}"(ui—1(2),7)] < &
HZ,, (i (8),7)] < Z i u,

HLU(S™) < 2Ly —.
m
Now we estimate H4° Xk-measure of the set S™. Fix arbitrary numbers
§>0and A > 2L,—. (4.4)
m

Cover the set S with a countable family of intervals (ae, b¢) so that

bf —ag < 5, Z(bg — CLE) < A.
3
Then
‘bﬁ _ a5|deng < 5(2r)deng717 Z ’bg . aéldeng < A(2T)deng71'
3
Since ¢ and A are arbitrary numbers of (4.4), we have

deg Xk

Hdeng(Sm> S 2dengLkT

Now we show that the expression (4.2) is really the derivative of the composition
f oD'y. For the points u,v € F} we have

Jf(g) ( S (exp(ts; Xi)(v)), ap(tSiXi)f(U)) < i),
a5 (ap(ts:X) f(w), ap(tsiX)f(v) ) < toi(dec(u,v),
where S‘”T(t) — 0 as t — 0 uniformly for v € F} and w;(t) are moduli of continuity of
the mappings ap(s; X;)f(-) in Fy,i=1,...,dim H;.
If |t] <r and t € S™ we obtain

A9 (f o ur(t), 5] ap(s1.X1) £(9))

= A9 (f o exp(tsi X1)(g), ap(tsi X1)f(g))
< oi(t) = Ci(1).

Further, by induction:
J
ato (fout), 6 T an(s:X)1(9))
i=1

= d/¥ (fOeXP(tSij)(Uj 1(£)), ap(ts; X;)f o Hap tsiX;) >
< d9(f o exp(ts; X;)(u;_1(1)), ap(tSjX')f(Uj 1(15)))

o+ L (ap(ts; X,) w1 (1), ap(ts; X; foHap (t5:X:)(9))

< @;(t) + tw; (Ci (1) = C5(t),
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where < t( ) S 0ast—0 uniformly for g € F.
Therefore, for t € (—r,r) \ S™ we have an evaluation

39 (£, 51 [[on(s.X059)) = olt),

i. e. the equality
Ly,

d
apo.  f(Tu(g:1) = [ Jan(s:X) £ (9)
s i=1
holds for g € F. Since r, m, € are arbitrary the latter takes place almost everywhere in
E. The inequality (4.3) follows from (4.2) and the generalized triangle inequality. [

Remark 4.2. Consider in the previous lemma the curve Il (g;t) = Ii(g; At), A €
R\ {0}, instead of I'x(g;t). The following representation takes place

[.(9:t) = exp(Mtsp, X, ) o - o exp(AtsiX;,)(9),

where s; = £1, 1 < j; < dim H;. Then if there is ap dgu,(f 0I'x)(g) defined at the point
g € M the derivative ap dgys( f oI.)(g) is also defined and we have

ap dsup(f 0 T%) (g Hap (As; X
— 5] H ap(5:X;)f(g9) = 019 ap dau(f o Ti)(g).  (4.5)

4.2 Construction and properties of a mapping of local groups

Consider the system of the coordinates of the second kind (2.9) in a neighborhood
V(g) C G of g. Define a mapping L, : V(g ) — G119 as follows:

Ly:0=®,(ty,... tx HH(S ap deus(f 0 T1) (9). (4.6)

Declare some properties of this mapping.
Property 4.1. The mapping Ly is continuous.
It follows directly from (4.6).
Property 4.2. 5{(9) oL,=1L,00.
Really, for © = @Q(tl, ..., ty) we have
890 = 890, (t,. .., ty)
= 5§$N(tN) 0-+-0 EI;dimH1+l<tdimH1+l)
0 exp(taim iy X 11,) © - - 0 exp(t1 X7) (g)
= dy(Aty) oo 6dimHlﬂ()\tdlimlaﬁﬂ)
0 exp(Mdim i1, X g1,) © - © exp(A1 X7) (g)
D, ( My, ..., Aty).
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Then, taking into account (4.5), we get

H 5 ap dsub O Fk) (g)

=5l 9>H5f<9 ap daus(f 0 Tw)(g) = 6{ 9 L, (8).

Property 4.3. The mapping Ly is bounded.
By Property 4.2 the mapping L, is homogeneous, so

ch(g) L,(g), L,(v
L) = s (Lo(9). L)) _ gy @ (1, (), Ly ().
v#g

dé(g,v) d2.(g,0)=1

The latter is finite because of continuity of L.

Property 4.4. Let u, v € G9 be such that d?.(u,v) = o(d%.(g,u)) as u — g. Then
AL (Lg(w), Ly(v)) = oldZ(g. w)).

Let w(t) be a modulus of continuity of the mapping L, : Be.(g,2) — G/9. Then if
we define r = max{d?.(g,u),d%.(g,v)} by Property 4.2 we have

AL (Ly(u), Ly(v)) = O(r) Al (Ly (87 ), Ly (52 10))
u,v)

< O(T)w<di’c( :

= 1 0.
. ) ro(l) asr—

Lemma 4.3. Let E C M be a bounded measurable set and let f : E — M be a
measurable mapping. Let the coordinate system of the 2nd kind (2.13) be defined in

a neighborhood of g € M. Then the mapping f is approzimately differentiable along
dim H;

the curves I'y(g;t), k =1,..., N, almost everywhere in A= () domap X;f and the
j=1

equality

37 (9)

holds for almost all g € A, where L, is the mapping defined by the formula (4.6).

Proof. By Lemma 4.1 all sets A; = domap X f are measurable and by Lemma 4.2 f
is approximately differentiable along the curves I'y, K = 1,..., N, almost everywhere
in A.

Fix ¢ > 0. By Luzin’s theorem there is a measurable set £’ C A such that H(A\
E') < ¢/2 and the mapping E’ 5 © — ap dgu(f o I'x)(x) is uniformly continuous for all
k=1,...,N.

Consider a sequence of functions {F : E' — R}, cy defined as

a5 (f(T(v;1)), 67 ap dous(f © T1) (v))
] ’

©"(g) = sup k=1,...,N.

1
[t|<
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We have ¢F(g) —0 as n — oo in E’. By Egorov’s theorem there is E” C E’ such that
ap

H"(E'\ E") < &/2 and ¢¥(g) — 0 as n — oo uniformly on E”.
For every positive integer m and for all z € E, r > 0, we define the set

Tt(e,r) = {1 € (o) - 8O (P 00), 5/ apdun(f o T)(@) > 10}

For all positive integers p, we define the set

deg Xy,

Br(p) = An{z € B HO S 17 (2,1)] < for all r € (0,p7")}.

m

In the case k& > 1 we also define Z*(z,7;p), as the set of the points z =
(21,..,21-1,0,...,0) € RY such that 2 € B(0,7) and ®,(z) ¢ B{(p). Finally, for
every positive integer ¢, we define the set

Thk—l

Ci(p,q) = Bi'N {x cFE: Hhk_l[Z]T(ZE,T;p)] < for all r € (O,q_l)}

m

k
where hy = > deg X.
i=1
By Property 3.1, the sets B}*(p), C}*(p, q) are measurable and

A=JBrw),
p=1
H”(B,T(p) U c,g“(p,q)) =0 forallk=1,...,N and m € N.
q=1

Moreover, Bj*(p) C Bj*(p+1), Ci*(p,q) C Ci*(p, ¢+1). Hence, we can choose sequences
of numbers py, ps, ... and qi,qs, ... such that

1 m €
H(E"\ B () < 5

1/ m m €
H(E" 0 B (o) \ CF (s ) < 5=

forall k=1,..., N and for every m. Then

N oo
HY(E"\ F) < 2Ne where F = ﬂ ﬂ CP (Pms Gm)-

k=1m=1

Next we show that the limit (4.7) converges uniformly in F'. Really, we have uniform
estimates:

A9 (F(Tu(vit), 6/ ap des(f 0 1) (v) < @r(2),
Jgfgg) (5,{(1‘) ap dsup(f o ) (u), 5{(1}) ap dgup(f © I‘k)(v)) < twi(dee(u, v))

forall k=1,...,N, u,v € F, Where@HOastHOuniformlyforveF, wi(+) is a

modulus of the continuity of the mapping ap dsu(fo'x), k=1,..., N.
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Fix a density point ¢ € F, m € N and 0 < r < min{p,.},¢,'}. For every k =
1,..., N define S C RY as the set of the points (t,...,ty) € B(0,7) such that

either £ > 1 and (ty,...,tk—1) € Z(9,7; Pm),
or ty € T,?l(q)g(tl, vy te—1,0, ... ,O),T).

Since H™=1[Z1(g,7;pm)] < 1 and since HAs X[ (3, r)] < TR Gf g o=

m

D, (t1,...,t6-1,0,...,0) € Bi*(pm), we have

hi_1 N Tdeng des X Vv
e 4 G prdesXe < o
m

m

N
If we use the notation W = J Sy then H”(W) < C4=. Denote
k=1

up = I'1(g;t1),
up = Dp(ug_1;tg) forallk=2,... N.

Now, if v € FF\ W and uy(t) € F\ W, we have

dI9 (F(Ty(g;t1)), 619 ap dews(f 0 T1)(9)) < 1(t1) = Ca(|ta]),

and then, by induction,

k
at (f (), TT 01 ap duus(f 0 T1)(9))

=1

< ggc(g) (f(rk(ukfﬁtk)) gf(Ukil)apdsub<fOFk)(uk 1))
k

+ (5 ap dyun(f 0 Te) (i), TT 01 ap dau( 0 T1)(9))
=1

< @iltr) + [trlwe(Coor(ftr] + -+ + [te-1])) = Cul[ta] + - + [t]),
where max{|t,], ..., |[ts|} ' Cr(|t:] + -+ + |tx]) — 0 as t — 0 uniformly for g € F.
Denoting v = ®4(ty,...,tx) we finally obtain
A (f(v), Ly (0
op i B 0), Ly(0)
v—g d?c(g,v)
Ifv=®,(ty,...,tn) € FNGY then d?.(v,v) = o(d9,(g,v)) as v — g by Theorem 2.3.
Hence, using Property 4.4 of the mapping L, we have
A9 (f(0), Ly(0)) < A1 (f(0), Lg(0)) + dL¥ (Ly(v), Lg(0)) = 0(d(g,v))
as v — ¢. Since r, m, € are arbitrary we have
¥ (f(v), L
op i U ). L)
v—g d?.(g,v)
for almost all g € A. O]

=0.

=0
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4.3 Proof of theorem on approximate differentiability

Lemma 4.4. Let E C M be a measurable set, f : E — M be a measurable mapping,
g be a density point of E and let

1(9)
L ORAG)

=0 4.8
v—g d?(g,v) ’ (4.8)

where Ly : G9NM — G/ enjoys Properties 4.1 — 4.4. If there aren >0, 0 < K < 00
such that

dec(f (w), £ (v)) < Kdee(u,v)
for all u,v € B(g,n), then there exists the uniform limit

&' (f(v), Ly(v))
d?

L =0 (4.9)

lim

v—g

Proof. Let w(t) be a modulus of continuity of L, : B(g,2) NG9 — G/¥. Then if
dd.(u,v) < d4,(g,v) < n, by Property 4.2, we have

dll9 (L(u), L(v)) = df(g,v) dZ9 (L(85, ) 1) L% (g0

dze(u, v)
< dgc(g> U) w(dgc((sggc(g,v)flu7 6226(971,)71@)) = dgc(g7 U) w(dgc(g U) > :

Suppose 0 < ¢ < 1. Fulfillment of the condition (4.8) means there exists § > 0 such
that, for the set B
W ={z € E:d{f?(f(2), Ly(2)) < edl(g, 2)}

we have H”(B(g,r)\W) < r’e” for any 0 < r < 0. If we take z € B(g,0(1—¢))NE and
r=d?.(g,z)/(1—¢) then B(z,re) C B(g,r). It follows B(z,re)NW # (), hence, we can
choose z € B(z,re)NE. By Theorem 2.4 we have d..(x, z) = 0(d..(g,2)) = o(d?.(g, x))
and

dl9(f(x), f(2) = del £ (2), f(2)) + 0(decl f(9), [ ()

= dcc(f(x)v f(Z)) + O(dgc(ga l’)),
where all o(+) are uniform. Thus, we infer
A1 (Ly(x), f())
< Al (Ly(w), Ly(2)) + L (Lo (2), [ (2)) + AL (2), f ()
o)) )+ Al ), () + ol )

)
< di(g,v)w(l) +edl(g,x) + e d(x, 2) + Kdee(, 2) + 0(df(g, 7))
J(w(1)+ e+ (e + K+ 1)o(1))

where all o(+) are uniform. O
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Remark 4.3. If we prove that the mapping L, is the approximate differential of f
then from Lemma 4.4 it follows that the Lipschitz mapping is differentiable almost
everywhere since the claims of Lemmas 4.1, 4.2, 4.3 and 4.4 hold almost everywhere in
dom f. This gives us an alternative proof of Theorem 3.4.

Now we have all necessary tools to complete the proof of Theorem 4.2.

Proof of Theorem 4.2. 1ST STEP. In the conditions of Theorem 4.2 the claims of
Lemmas 4.1, 4.2 and 4.3 hold. In particular A; = domap X, f is a measurable set,
j=1,...,dim Hy, f is approximately differentiable along the curves I'y(g;t) at t = 0,
dim H;
k=1,...,N almost everywhere in the set A = [\ A; and relations (4.2) and (4.7)
i=1

hold.

If (4.7) holds at the point g € A then, in view of structure of L, (4.6), estimate
(4.3) implies

— deo(f(9), f(v))
ap llzlirslv dee(g,v)

< aplim A2V (£(9), Ly(v)) + dL (Ly(v), F(0))) + o(d5P (Ly(v), f(v)))
B v dgc(ga U)

N

<C sup (H S,f;(g) ap dsup(f © Fk)(g)> < 00. (4.10)

dgc(gzv)gl k:1

Hence, the left hand side of (4.10) is finite almost everywhere in A. Applying Theo-
rem 3.6, we obtain a countable family of measurable sets covering A up to the set of
measure 0 such that the restriction of f to each of them is a Lipschitz mapping.

Let E be one set of this countable family and let L, : g9 " M — G719 be defined
at almost all points of E C A. For proving the theorem it remains to verify that L,
is a homomorphism of the Lie groups. In particular, we need to prove that given two
points 4,0 € GY9 we have

Ly(ii- ) = Ly(a) - Ly (D). (4.11)

2ND STEP. Let g € E be a density point where (4.7) holds and suppose B..(g,r,) C
GY9. Then given v € B.(g,r,), t € [—1y, 14| there exists v; = v;(g9) € E, such that
d?.(6{0,v;) = o(t). By Lemma 4.4, we have

ap lim P2 Ly0D) o el (F(00), Ly(v)

t—0 t t—0 t

=0.

Then, using Property 4.4 of the mapping L,, we derive

19 (f(v)), Ly(870)) < d29(f(v}), Ly(v})) + d2O(Ly(v}), Ly(570))
= o(d?,(g,v})) + o(d%,(g,600)) = o(t) ast— 0,



42 S.G. Basalaev, S.K. Vodopyanov

Next, consider two points 4, 0 € Bg(g,74/2) and their product @ - 0. If @ =

59(51, ...,8y) and 0 = Cf>g(r1, ...,ry) then define by induction
uy (£)(+) = Pa(ts1)(:);
ur(t)(-) = Pr(tsr) oup_1()(-), k=2,...,N;
vr(t)(+) = @a(tr)();
vp(t)(-) = Pr(try) ovp_1(H)(-), k=2,...,N.

From the structure of functions ®x(-) and from Theorem 2.3 it follows

dZ.(un(t)(9), 0/t) = o(t),
dg.(vn(t)(9),0{0) = o(t)
df.(on(t) oun(t)(g), 67 (- 0)) = oft) ast— 0.

As long as ¢ is a density point of E we can find wj(t), k& = 1,...,2N, such that
df. (ur(t)(g), wi,(t)) = o(t) and d2(v.(t)(un(t)(9)), Wi ii(t)) = oft) as t — 0, k =

1,..., N. By the same arguments as above we conclude that
AL (f (i (£), Lo(7 [ - ])) = o(t) as t — 0.
All we need is to verify that
AL (f (i (1), Lo(6710) - Ly(678)) = o(t) ast — 0. (4.12)

3RD STEP. For proving (4.12) we assume HY(E) < oo and restrict the set E
applying Egorov’s and Luzin’s theorems.

Recall that the mapping = +— apdgf o I'k(z), defined in E, is measurable. By
Lemma 4.4 we get

lim dl{*)(f o ®(t)(x), 6/ ap dyus(f 0 Ti) () = 0 (4.13)

for every density point x € F as t — 0, ®x(t)(z) € E.
First, by Luzin’s theorem there is a closed set F; C E such that H"(E'\ Ey) < ¢/3
and

(a) all the mappings = +— apdgsf o I'k(z) are uniformly continuous in E;, k =
1,....N.

Next, by Egorov’s theorem there is a measurable set Ey C FEj such that H”(E; \
Ey) <¢/3 and

(b) the limit (4.13) converges uniformly on Fy, k=1,... N.

Now we consider a family of measurable functions

H” (Beo(z, 1) \ E)
Ey s x —y(x) = HY (Bee(z,1))

We have that Pr% Yi(z) = 0 at almost all points of x € Fy. By Egorov’s theorem there
exists a measurable set F3 C FEs such that H”(Fs \ E3) < £/3 and the limit
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(c) lir% Y(z) = 0 is uniform in FEs.

Property (c) allows us to repeat the arguments of the 2nd step with all o(-) uniform
in E3. Therefore, if x € E3 we have

(£, (8)()), 65 ap daus(f 0 T1) () = o(1),
AL (f (wi(t)(wh_, (1)) (), 523,1”’““” ap duus(f © rk><wk (1)) = <t>
( () (wh () (@), 55N ap s (f 0 1) (wiy (1)) =
AL (why 1) (Wi r(£) @), O N D dsub<fork><wN+k,1<t>>>) =o(t)

ast — 0, k = 2,...,N, and all o(-) are uniform with respect to x € FEj3. Here the
coefficients o, and 7, are defined from (4.6) for the points @ and © respectively. Then,
by properties (a) and (b), the relation

aL (gt Haz;:) ap dun(f 0 i) H(s{f; ap dus(f 0 T) (@)

= dI{") (f (whn(t ><x>>, 5] Ly () - 67 L, (0)) = o(t)
is uniform with respect to x € Fs3. Finally,
td!@ (Lo (- 9), Ly () - Lx(ﬁ))
= d! (5] L (0o
< dl@ (6L, (a0 ,f<w;N<t><x>>)
+ I (f(why () (@), 6] Lo (@) - 67 Lo (8)) = o(t)

and (4.10) is proved for = € Ej5. Since ¢ is an arbitrary positive number, the Theorem
is proved. O

5 Application: an area formula

N
Suppose that z = exp(Z xiXi> (g9). Define a quantity

dim Hy 1 dim Ho 1
2 4
dy(gw) =max{ (3" [x)% (X ImP)
j=1 j=dim H;+1

N

(Y wR)™) ey

J=dim Hpr_1+1

It is easy to see that d, is locally equivalent to d. Since we have already proved
that d. and d.. are locally equivalent, the following statement also holds.
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Proposition 5.1. Let g € M. There is a compact neighborhood U(g) C M such that
c1dec(u,v) < dy(u,v) < cadec(u,v)

for all u, v in U(g), where constants 0 < ¢; < ¢y < 00 independent of u, v € U(g).

Corollary 5.1. Quantity d, is a quasimetric.

Denote an open ball in the quasimetric d, of radius r with center in = as Box,(z, 7).
Define the (spherical) Hausdorff measure of a set £ with respect to metric d, as

e—0+

H’;(E) = lim inf{z r¥ i EC UBOXP(ZEZ',T,'),TZ' < 5}.

(2

For Lipschitz mappings of Carnot—Carathéodory mappings the following area for-
mula holds.

Theorem 5.1 ([11]). Suppose E C M is a measurable set, and the mapping p : E —

M is Lipschitz with respect to sub-Riemannian quasimetrics d, and d,. Then the area
formula

/ f<x>JSR<so,x>de<x>=/ S ) (5.2)

o(E) ¥ z€p~1(y)

holds, where f : F'— M (here M is an arbitrary Banach space) is such that function
f(2) T (p, x) is integrable, and

T, x) = V/det(Dp(x)* Dp(x)) (5.3)
1s the sub-Riemannian Jacobian of ¢ at x.

As an immediate corollary of 5.1 and 4.2 we obtain the following result.

Theorem 5.2. Suppose E C M is a measurable set, and the mapping ¢ : £ — M is
approximately differentiable almost everywhere. Then the area formula

/ £(2) ap TR (g, )dH: (z) = / S f@)dHy)

M TrEeT NS

holds, where f : F — M (here M is an arbitrary Banach space) is such that function
f(x)ap T*% (@, x) is integrable, H4(X) = 0 and

ap J (¢, z) = \/det(ap Dy(z)* ap Dy(x))

is the approximate sub-Riemannian Jacobian of ¢ at x.
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Proof. By Theorem 4.2, there is a sequence of disjoint sets X, E;, Es,... such that
EFE=% UiL:JlEZ-, Hy (%) =
by Theorem 5.1, we have

/ F() ap TR (p, 2)dH: (x Z / F(2) TSR (i, ) ()

= / f@arg = [ Y @),

=1 5 e (yNE; o Tl y\E

]

Remark 5.1. Since Ball-Box theorem holds, the Hausdorff measure, constructed by
the metric d,., is absolutely continuous with respect to the Hausdorff measure, con-
structed by the distance d,, and vice versa. Therefore we have

dHZ(.T) =D, (v)dH..(x), =€ M,

where 0 < a < D, () < f < oo is measurable function. So, the area formula
of Theorem 5.2 can be written also for the Hausdorff measure, constructed by the
distance d,.
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