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Abstract. We study the approximate differentiability of measurable mappings of
Carnot–Carathéodory spaces. We show that the approximate differentiability almost
everywhere is equivalent to the approximate differentiability along the basic horizontal
vector fields almost everywhere. As a geometric tool we prove the generalization of
Rashevsky–Chow theorem for C1-smooth vector fields. The main result of the paper
extends theorems on approximate differentiability proved by Stepanoff (1923, 1925) and
Whitney (1951) for Euclidean spaces and by Vodopyanov (2000) for Carnot groups.

1 Introduction

In 1919 Rademacher proved a theorem that is the well-known result in the theory of
functions of a real variable.

Theorem 1.1 ([23]). If U is an open subset of Rn and f : U → Rm is a Lipschitz
mapping, then f is differentiable at almost all points of the set U .

The result allows many enhancements and generalizations. Most natural is to con-
sider an arbitrary measurable set as the domain of the function together with a weaker
assumption on the function. The Stepanoff theorem is such a result.

Theorem 1.2 ([27]). If A ⊂ Rn is a measurable set and a function f : A → Rm

satisfies the condition

lim
x→a

|f(x)− f(a)|
|x− a|

<∞ for every point a ∈ A, (1.1)

then f is differentiable at almost all points of the set A.

The density of a measurable set Y ⊂ Rn at a point x ∈ Rn is the limit

lim
r→+0

Hn(Y ∩B(x, r))

Hn(B(x, r))
,

in case it exists (here Hn is the n-dimensional Hausdorff measure).
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It is known that almost all points of a measurable set Y are density points (i. e. the
density of the set is equal to 1 at those points) and almost all points of the set Rn \ Y
are the points of density 0.

A value y ∈ Rm is called the approximate limit of a function f : E ⊂ Rn → Rm at a
density point x0 ∈ E

(
denoted by y = ap lim

x→x0

f(x)
)

if the set E \ f−1(W ) has density
0 at the point x0 for every neighborhood W ⊂ Rm of the point y. The approximate
limit is unique [4].

The idea of the approximate limit is tightly related to the fundamental notion of the
geometric measure theory: the notion of measurability. Namely, for a mapping of the
Euclidean space to be measurable, it is necessary and sufficient that it is approximately
continuous almost everywhere (see, for instance, [4]).

If we consider the convergence of the relation
f(x+ tv)− f(x)

t
to the value L(v)

of a linear mapping L : Rn → Rm in different topologies of the unit ball B(0, 1) ⊂ Rn

then we arrive at to different notions of differentiability. The convergence to L in the
uniform topology C(B(0, 1)) gives us the classical differentiability. The convergence
to L in measure gives just the notion of approximate differentiability of the Euclidean
space, see for instance [25].

With the approximate differential introduced by Stepanoff, the following result was
obtained in his work:

Theorem 1.3 ([28]). A function f : Rn → Rm is approximately differentiable almost
everywhere if and only if it has approximate derivatives with respect to each variable
almost everywhere.

It worth noting that if a mapping has a classical differential then it has an ap-
proximate one and these differentials coincide. Therefore, the approximate differential
generalizes the concept of the classical differential.

With use of the approximate differential Theorem 1.2 can be further extended in
the following direction. For doing this we apply a result of [4]:

Theorem 1.4. If A ⊂ Rn, f : A→ Rm and

ap lim
x→a

|f(x)− f(a)|
|x− a|

<∞ for every point a ∈ A, (1.2)

then A is the union of a countable family of disjoint measurable sets Ai and a set of
measure zero such that every restriction f |Ai

is a Lipschitz mapping.

Hence, for a function f meeting condition (1.2), by Theorem 1.1, we have that
every restriction f |Ai

is differentiable almost everywhere in Ai. The density points of
the sets Ai are also the density points of the set A. Therefore, one can conclude that
the mapping f is approximately differentiable almost everywhere in A.

Condition (1.2) is the weakest one because it obviously holds for approximately
differentiable function.

The final representation of the theorem is how it was stated by Whitney.
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Theorem 1.5 ([40]). Let the set P ⊂ Rn be measurable and bounded, f : P → Rm be
a measurable function. The following conditions are equivalent:

1) the mapping f is approximately differentiable almost everywhere in P ;
2) the mapping f has approximate derivatives with respect to each variable almost

everywhere in P ;

3) there is a countable family of disjoint sets Q1, Q2, . . . such that |P \
∞⋃
i=1

Qi| = 0

and every restriction f |Qi
is a Lipschitz mapping;

4) for every ε > 0, there are a closed set Q ⊂ P such that |P \ Q| < ε and a
C1-smooth mapping g : P → Rm such that g = f in Q.

An appropriate concept of differentiability for mappings of Carnot groups was intro-
duced by P. Pansu in [20]. Now it is called the P-differentiability. It was introduced in
order to establish some results of the theory of quasiconformal mappings [20, 14]. Some
classes of P-differentiable mappings of Carnot groups were described in [38, 31, 16] with
purpose to obtain some formulas of geometric measure theory and some crucial results
of quasiconformal analysis [29, 39, 30, 32, 34, 21].

Later, in [33, 12] the concept of P-differentiability was extended for mappings of
Carnot–Carathéodory spaces for proving Rademacher and Stepanoff type theorems.

In this work we obtain a partial generalization of Theorem 1.5 for mappings of
Carnot–Carathéodory spaces.

Theorem 1.6. Let M, M̃ be Carnot–Carathéodory spaces, E ⊂ M be a measurable
subset of M and f : E → M̃ be a measurable mapping. The following conditions are
equivalent:

1) the mapping f is approximately differentiable almost everywhere in E;
2) the mapping f has approximate derivatives along the basic horizontal vector fields

almost everywhere in E;

3) there is a sequence of disjoint sets Q1, Q2, . . . such that
∣∣E \ ∞⋃

i=1

Qi

∣∣ = 0 and every

restriction f |Qi
is a Lipschitz mapping.

The proof of Theorem 1.6 is a significant modification of the arguments of the work
[31] where a similar result was proved for mappings of Carnot groups. In the proof we
essentially use metric properties of the initial and nilpotentized vector fields established
in [12, 9, 10, 6, 13].

2 Geometry of Carnot–Carathéodory spaces

We split our work in four sections. In the first one we give the basic notions and
structures concerning Carnot–Carathéodory spaces. In Subsections 2.2 and 2.4 we
have a look at different ways of specifying a metric and coordinate system in the
Carnot–Carathéodory spaces. In Subsection 2.5 we build a special coordinate system
of the second kind based on the compositions of the integral lines of the horizontal
vector fields. As the consequence of this result we obtain Chow–Rashevsky theorem for
C1-smooth vector fields. We formulate also local approximation theorem for Carnot–
Carathéodory metric.
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In Section 2 we introduce definitions of measure, approximate limit, differentiability
and approximate differentiability, and formulate necessary results obtained earlier.

The third section is devoted to the proof of the theorem on approximate differ-
entiability. We state the theorem and show trivial implications. Then we formulate
the key steps of the theorem. Main steps of its proof are carried out in separate
lemmas. In this proof we make use of special coordinate system of the 2nd kind
(a1, . . . , aN) 7→ ΦN(aN) ◦ · · · ◦ Φ1(a1) constructed in Subsection 2.5. First, in Sub-
section 4.1 we show that a function having approximate derivatives along the basic
horizontal vector fields has approximate derivatives along the vector fields Yk(t) which
generate the coordinate functions Φk(t) = exp(Yk(t)). In the next subsection with use
of this coordinate system we build a mapping of local Carnot groups and study its prop-
erties. Finally, in Subsection 4.3 we prove that this mapping is really the differential
of the initial mapping.

As an application of our results, in the last section we prove an area formula for
approximately differentiable mappings.

2.1 Carnot–Carathéodory spaces

Recall the definition of Carnot–Carathéodory space satisfying the condition of the
equiregularity ([7, 19, 12]). Fix a connected Riemannian C∞-manifoldM of topological
dimension N . The manifold M is called a Carnot–Carathéodory space if the tangent
bundle TM has a filtration

HM = H1M ( · · · ( HiM ( · · · ( HMM = TM

by subbundles such that every point g ∈ M has a neighborhood U(g) ⊂M equipped
with a collection of C1-smooth vector fields X1, . . . , XN , constituting a basis of TvM
in every point v ∈ U(g) and meeting the following two properties. For every v ∈ U(g),

(1) HiM(v) = Hi(v) = span{X1(v), . . . , XdimHi
(v)} is a subspace of TvM of a

constant dimension dimHi, i = 1, . . . ,M ;
(2) Hj+1 = span{Hj, [H1, Hj], [H2, Hj−1], . . . , [Hk, Hj+1−k]} where k = b j+1

2
c, j =

1, . . . ,M − 1.
The subbundle HM is called horizontal.
The number M is called the depth of the manifold M.
The degree degXk is defined as min{m | Xk ∈ Hm}.

Remark 2.1. Condition (2) implies that we have the following “commutator table”:

[Xi, Xj](v) =
∑

k: degXk≤degXi+degXj

cijk(v)Xk(v). (2.1)

Note, that (2.1) is weaker than condition (2) as it just implies [Hi, Hj] ⊆ Hi+j.

2.2 The coordinates of the 1st kind

In the sequel we denote by Be(a, r) an open Euclidean ball centered at the point a ∈ RN

and with radius r. From the theorems on smooth dependence of solutions of ordinary
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differential equations on a parameter it follows (see e. g. [1]) that the mapping

θg : (x1, . . . , xN) → exp
( N∑
i=1

xiXi

)
(g), θg(0) = θg(0, . . . , 0) = g,

is a C1-smooth diffeomorphism of a ball Be(0, εg) in RN , where εg is a sufficiently small
positive number, into the neighborhood Og of the point g ∈M.

The collection of numbers {xi}, i = 1, . . . , N , where (x1, . . . , xN) = θ−1
g u ∈

Be(0, εg), is called the coordinates of the 1st kind of the point u = exp
( N∑
i=1

xiXi

)
(g).

The neighborhood U(g0) of the point g0 can be chosen in such a way that U(g0) ⊂⋂
g∈U(g0)

Og. Then for every couple of points u, g ∈ U(g0) there is the unique N -tiple of

numbers (y1, . . . , yN) such that u = exp
( N∑
i=1

yiXi

)
(g). For every couple of points u and

g we define the non-negative quantity

d∞(u, g) = max
{
|yi|1/degXi : i = 1, . . . , N

}
.

An open ball in the quasidistance d∞ of radius r centered at g ∈ M is denoted by
Box(g, r).

2.3 Local geometry of Carnot–Carathéodory spaces

Using the normal coordinates θ−1
g , we define the dilation ∆g

ε : B(g, r) → B(g, εr),

0 < r ≤ rg: to an element x = exp
( N∑
i=1

xiXi

)
(g) we assign

∆g
εx = exp

( N∑
i=1

xiε
degXiXi

)
(g)

in the case when the right-hand side makes sense. The following theorem generalizes
a result established under additional smoothness of vector fields in [17, 26, 7].

Theorem 2.1. Let g be a point in the Carnot–Carathéodory space M. The following
statements hold:

(1) Coefficients

ĉijk =

{
cijk(g), if degXi + degXj = degXk;

0 otherwise;

where cijk(·) are the functions from commutator table (2.1), define the structure of
nilpotent graded Lie algebra on TgM.

(2) There are vector fields {X̂g
i } with the initial conditions X̂g

i (g) = Xi(g), i =
1, . . . , N , taking place in Box(g, rg) that constitute a basis of the nilpotent graded Lie
algebra V (g) with the following “commutator table”:

[X̂g
i , X̂

g
j ] =

N∑
k=1

ĉijkX̂
g
k =

∑
degXk=degXi+degXj

cijk(g)X̂
g
k . (2.2)
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(3) For x ∈ Box(g, rg) consider the vector fields

Xε
i (x) = (∆g

ε−1)∗ε
degXiXi(∆

g
εx), i = 1, . . . , N.

Then the following equality holds

Xε
i (x) = X̂g

i (x) +
N∑
j=1

aij(x)X̂
g
j (x) (2.3)

where aij(x) = o(εmax{0,degXj−degXi}) for x ∈ Box(g, rg) as ε→ 0.
Moreover, given a compact set K ⊂ M there exists r > 0 such that relation (2.3)

holds for all g ∈ K with x ∈ Box(g, r) and o(·) is uniform in g belonging to K as ε→ 0.

The first statement of the theorem is proved in [12]. The second follows from the
classical Lie theorem [15, 22]. The third statement is obtained in [10] for C1,α-smooth
vector fields and in [6] for C1-smooth vector fields.

Equality (2.3) implies Gromov’s nilpotentization theorem with respect to the coor-
dinates of the first kind. Notice that for the first time it was formulated in [7, p. 130]
in the coordinates of the second kind.

Theorem 2.2 ([10, 6]). The uniform convergence Xε
i → X̂g

i as ε→ 0, i = 1, . . . , N ,
holds at the points of Box(g, rg) and this convergence is uniform in g belonging to some
compact neighborhood.

The Lie algebra in Theorem 2.1 can be constructed as a graded nilpotent Lie algebra
V ′ of vector fields (X̂g

j )
′ in RN , j = 1, . . . , N , such that the exponential mapping

(x1, . . . , xN) 7→ exp
( N∑
i=1

xi(X̂
g
j )
′
)
(0) equals identity [22, 2].

The connected simply connected Lie group GgM with the nilpotent graded Lie
algebra V ′ is called the nilpotent tangent cone of the Carnot–Carathéodory space M
at the point g ∈ M. Ccondition (2) in the definition of Carnot–Carathéodory space
provides that GgM is a Carnot group, i. e. if we denote Vk = span{(X̂g

i )
′ : degXi = k}

then

V ′ = V1 ⊕ V2 ⊕ · · · ⊕ VM , [V1, Vk] = Vk+1, k = 1, . . . ,M − 1,

[V1, VM ] = {0}.

By means of the exponential map we can push-forward the vector fields (X̂g
j )
′

onto some neighborhood of g ∈ M for obtaining the vector fields X̂g
j (θg(x)) =

Dθg(x)〈(X̂g
j )
′〉.

To the Carnot group GgM corresponds a local Carnot group Gg with the nilpotent
Lie algebra with the basic vector fields X̂g

1 , . . . , X̂
g
N . Define it so that the mapping θg is

a local group isomorphism between some neighborhoods of the identity elements of the

groups GgM and Gg. The group operation for the elements x = exp
( N∑
i=1

xiX̂
g
i

)
(g) ∈ Gg
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and y = exp
( N∑
i=1

yiX̂
g
i

)
(g) ∈ Gg is defined by means of local group isomorphism:

x · y = exp
( N∑
i=1

yiX̂
g
i

)
◦ exp

( N∑
i=1

xiX̂
g
i

)
(g)

= θg ◦ exp
( N∑
i=1

yi(X̂
g)′i

)
◦ exp

( N∑
i=1

xi(X̂
g)′i

)
(0).

Define the one-parameter dilation group δgt on Gg:

to an element x = exp
( N∑
i=1

xiX̂
g
i

)
(g) ∈ Gg we assign

δgt x = exp
( N∑
i=1

xit
degXiX̂g

i

)
(g) ∈ Gg, t ∈ (0, t(x)).

The relation δgt x · δgτx = δgtτx is defined for t, τ such that t, τ, tτ ∈ (0, t(x)).
We extend the definition of δgt on negative t, setting δgt x = δg|t|(x

−1) for t < 0.
Since the local Carnot group Gg itself is a Carnot–Carathéodory space with the

collection of vector fields {X̂g
j }, it is endowed with the quasidistance dg∞(x, y).

Throughout the paper we use the following properties.

Property 2.1 ([12]). Geometric properties of the local Carnot group:
(1) The mapping δgt is a group automorphism: for all elements x, y ∈ Gg and

numbers t ∈ (0,min{t(x), t(y), t(x · y)}) we have δgt x · δ
g
t y = δgt (x · y).

(2) The function Gg 3 x → dg∞(g, x) is a local homogeneous norm on Gg, i. e., it
meets the following conditions:

(a) dg∞(g, x) ≥ 0 for x ∈ Gg and dg∞(g, x) = 0 if and only if x = g;
(b) dg∞(g, δgt x) = tdg∞(g, x) for every t ∈ (0, t(x));
(c) dg∞(g, x · y) ≤ Q1

(
dg∞(g, x) + dg∞(g, y)

)
for all x, y, x · y ∈ Gg. The constant Q1

is bounded with respect to g in some compact set in M.
(3) The quantity dg∞(a, b) = dg∞(g, b−1 · a) is a left invariant distance on Gg: dg∞(x ·

a, x · b) = dg∞(a, b) for all a, b, x ∈ Gg for which the left- and right-hand sides of the
equality make sense.

Property 2.2 ([12]). Let g ∈M. Then

exp
( N∑
i=1

aiXi

)
(g) = exp

( N∑
i=1

aiX̂
g
i

)
(g)

for all |ai| < rg, i = 1, . . . , N .

Observe, that the latter implies dg∞(g, x) = d∞(g, x).

Proposition 2.1 ([12, 13]). The quantity d∞ is a quasimetric in the sense of [19]
that is the following relations hold for all points of the neighborhood U(g0):
1) d∞(u, g) ≥ 0, d∞(u, g) = 0 if and only if u = g;
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2) d∞(u, g) = d∞(g, u);
3) there is a constant Q ≥ 1 such that, for every triple of points u, w, v ∈ U(g0), we
have

d∞(u, v) ≤ Q(d∞(u,w) + d∞(w, v)).

An essential distinction between the geometry of a sub-Riemannian space and the
geometry of a Riemannian space is that the metrics of the initial space and of the nilpo-
tent tangent cone are not bi-Lipschitz equivalent. Therefore, in studying the questions
of the local behavior of the geometric objects, it is important to know estimates of the
deviation of one metric from another.

Theorem 2.3 ([13, Theorem 8]). Assume that g, w0 ∈ U(g0) satisfy d∞(g, w0) = Cε.
For a fixed L ∈ N, consider the points

ŵεj = exp
( N∑
i=1

wi,jε
degXjX̂g

j

)
(ŵεj−1), wεj = exp

( N∑
i=1

wi,jε
degXjXj

)
(wεj−1),

ŵε0 = wε0 = w0, j = 1, . . . , L. Then

max{dg∞(ŵεL, w
ε
L), d∞(ŵεL, w

ε
L)} = o(ε) as ε→ 0,

where o(ε) is uniform in g, w0 ∈ U(g0) and {wi,j}, i = 1, . . . , N , j = 1, . . . , L, in some
compact neighborhood of 0 and ε > 0.

Theorem 2.4 ([13, Theorem 6]). Consider points g ∈ M and u, v ∈ Box(g, ε),
where ε ∈ (0, rg). Then

|dg∞(u, v)− d∞(u, v)| = o(ε) as ε→ 0,

where o(ε) is uniform in u, v ∈ Box(g, ε) and g belonging to some compact set.

2.4 The coordinates of the 2nd kind

In the neighborhood of a point g0 consider the same family of the basic vector fields
{X1, . . . , XdimH1 , XdimH1+1, . . . , XN} as in the definition of the coordinates of the first
kind. It is known that the mapping

(a1, . . . , aN) 7→ exp(aNXN) ◦ · · · ◦ exp(a1X1)(g) (2.4)

is a C1-diffeomorphism of some neighborhood Be(0, ε) ⊂ RN to a neighborhood V (g) of
g (the so-called coordinates of the second kind). Similarly to the case of the coordinates
of the first kind we can choose a neighborhood U(g0) such that U(g0) ⊂

⋂
g∈U(g0)

V (g).

For the points u, g ∈ U(g0), u = exp(aNXN) ◦ · · · ◦ exp(a1X1)(g), by means of the
coordinates of the 2nd kind we can define the quantity

d2(u, g) = max
{
|ai|1/ degXi : i = 1, . . . , N

}
.

Next we show that the quantity d2(u, g) is comparable with the quasimetric d∞(u, g)
in a neighborhood U(g0) i. e.

c1d∞(u, g) ≤ d2(u, g) ≤ c2d∞(u, g) (2.5)

for all points u, g ∈ U(g0) and positive constants c1 and c2 independent of u, g ∈ U(g0).



18 S.G. Basalaev, S.K. Vodopyanov

Remark 2.2. For Carnot groups the equivalence of d∞ and d2 is known (see, for
instance, [5]). This means that if dg∞ and dg2 are quasimetrics in the local Carnot group
Gg, g ∈M, then there are constants cg1 and cg2 such that

cg1d
g
∞(u, v) ≤ dg2(u, v) ≤ cg2d

g
∞(u, v) (2.6)

for all u, v ∈ Gg.

Proposition 2.2. There are constants c1 and c2 such that inequalities (2.5) hold for
all points u, g in some neighborhood U(g0) in which quasimetrics d∞ and d2 are defined.

Proof. Let u, g ∈ U(g0) be arbitrary points and d2(u, g) = r. Assuming that y0 = g,
y1 = exp(a1X1)(y0), . . . , yN = exp(aNXN)(yN−1) by the generalized triangle inequality
(see Proposition 2.1) we have the following relations

d∞(u, g) ≤ QN−1
( N∑
i=1

d∞(yk, yk−1)
)

≤ QN−1
( N∑
i=1

|ai|
1

deg Xi

)
≤ NQN−1r = NQN−1d2(u, g). (2.7)

Thus the left inequality in (2.5) is proved with c1 = (NQN−1)−1.
Next, suggest that the right inequality in (2.5) does not hold in some closed ball

Box(g0, 2r0). Then there are sequences of points xn, yn ∈ Box(g0, r0) converging to the
same point x0 ∈ Box(g0, r0), such that

εn = d2(xn, yn) ≥ n d∞(xn, yn),

where εn → 0 as n → ∞ (otherwise the right inequality in (2.5) would be fulfilled
in Box(g0, r0)). Define on Box(g0, r0) dilations Dg

t and D̂g
t as follows: to an element

x = exp(xNXN) ◦ · · · ◦ exp(x1X1)(g) ∈ Box(g0, r0) assign

Dg
tx = exp(xN t

degXNXN) ◦ · · · ◦ exp(x1tX1)(g)

and to an element x̂ = exp(xNX̂
g
N) ◦ · · · ◦ exp(x1X̂

g
1 )(g) ∈ Box(g0, r0) ∩ Gg assign

D̂g
t x̂ = exp(xN t

degXN X̂g
N) ◦ · · · ◦ exp(x1tX̂

g
1 )(g).

Observe that d2(g,D
g
tx) = td2(g, x) and dg2(g, D̂

g
tx) = tdg2(g, x). Let

0 < δ = sup{t > 0 : Dg
tx, D̂

g
tx ∈ Box(g0, 2r0) for all x, g ∈ Box(g0, r0)}.

Then Dxn

δ/εn
yn ∈ Box(g0, 2r0) and

d2(xn,D
xn

δ/εn
yn) =

δ

εn
d2(xn, yn) = δ > 0. (2.8)

Represent yn in coordinates of the 2nd kind as yn = exp(ynNXN) ◦ · · · ◦
exp(yn1X1)(xn) and define

zn = exp(ynNX̂
g
N) ◦ · · · ◦ exp(yn1X̂

g
1 )(xn).
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Since d∞(xn, yn) = dxn
∞ (xn, yn) ≤ εn

n
, by (2.6) it follows

dxn
2 (xn, yn) ≤ cxn

2 dxn
∞ (xn, yn) ≤ cxn

2

εn
n

= O
(εn
n

)
where O(·) is uniform in Box(g0, r0). This means that in the representation

yn = exp(vnNX̂
g
N) ◦ · · · ◦ exp(vn1X̂

g
1 )(xn)

the coordinates vj meet the property |vnj|degXj = O( εn

n
). Then we can apply Theo-

rem 2.3 to the points yn and zn and derive that dxn
∞ (yn, zn) = o( εn

n
). Consequently,

dxn
∞ (xn, zn) ≤ C(dxn

∞ (xn, yn) + dxn
∞ (yn, zn)) = O

(εn
n

)
+ o
(εn
n

)
= O

(εn
n

)
.

By Theorem 2.3 it also follows dxn
∞ (Dxn

δ/εn
yn, D̂

xn

δ/εn
zn) = o( 1

n
). Therefore,

dxn
2 (xn,D

xn

δ/εn
yn) ≤ C1

(
dxn

2 (xn, D̂
xn

δ/εn
zn) + dxn

2 (D̂xn

δ/εn
zn,D

xn

δ/εn
yn)
)

= C1

( δ
εn
dxn

2 (xn, zn) + dxn
2 (D̂xn

δ/εn
zn,D

xn

δ/εn
yn)
)

≤ C2

( δ
εn
dxn
∞ (xn, zn) + dxn

∞ (D̂xn

δ/εn
zn,D

xn

δ/εn
yn)
)

= O
( 1

n

)
+ o
( 1

n

)
= O

( 1

n

)
→ 0 as n→∞,

where C1, C2 <∞ are bounded, all O(·) are uniform in Box(g0, r0).
Hence we come to a contradiction with (2.8), and, therefore, the right inequality in

(2.5) is proved.

Corollary 2.1. The quantity d2 is a quasimetric in the sense of [19], i. e. the following
conditions hold for the points of the neighborhood U(g0):

1) d2(u, g) ≥ 0, d2(u, g) = 0 if and only if u = g;

2) d2(u, g) ≤ c−1
1 c2d2(g, u), where the constants c1 and c2 are the ones from the propo-

sition 2.2;

3) there is a constant Q2 ≥ 1 such that for every triple of the points u, w, v ∈ U(g0)
we have

d2(u, v) ≤ Q2(d2(u,w) + d2(w, v)),

where Q2 = c−1
1 c2Q and Q is a constant in the generalized triangle inequality for d∞;

(4) d2(u, v) is continuous with respect to the first variable.

Proof. We prove for example the second property: d2(u, g) ≤ c2d∞(u, g) =
c2d∞(g, u) ≤ c−1

1 c2d2(g, u). The third property can be proved using the same pro-
cedure. The last property follows from the continuous dependence of solutions of ODE
on the initial data.
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2.5 Special coordinate system of the 2nd kind and Rashevsky–
Chow Theorem

The goal of this section is to modify the coordinate system of the 2nd kind

(t1, . . . , tN) 7→ exp(tNXN) ◦ · · · ◦ exp(t1X1)(g)

in the following way. We prove that exponents of nonhorizontal vector fields Xk,
k = dimH1 +1, . . . , N , can be replaced by compositions of exponents of some family of
horizontal vector fields X1, . . . , XdimH1 and the resulting mapping still covers a neigh-
borhood of g. For Carnot groups this property is known as the following statement.

Lemma 2.1 ([5]). Let G = (RN , ·) be a Carnot group and let vector fields Y1, . . . , Yn
be a basis of horizontal subspace V1 of its Lie algebra. Then every point v ∈ G can be
represented as

v =
L∏
k=1

exp(akYik)(0)

where 1 ≤ ik ≤ n, |ak| ≤ c1‖v‖∞, constants L and c1 are independent of v.

Lemma 2.2. Fix g ∈M. There exists a mapping Φ̂g : Be(0, ε) → Gg defined as

Φ̂g : (t1, . . . , tN) 7→ Φ̂N(tN) ◦ · · · ◦ Φ̂dimH1+1(tdimH1+1)

◦ exp(X̂g
dimH1

) ◦ · · · ◦ exp(X̂g
1 )(g) (2.9)

which is a homeomorphism of a ball Be(0, ε) onto the neighborhood V (g) ⊂ Gg of a
point g with the mappings Φ̂k satisfying

Φ̂k(t)(·) =

{
exp(aL,ktX̂

g
L,k) ◦ · · · ◦ exp(a1,ktX̂

g
1,k)(·), t ≥ 0,

exp(a1,ktX̂
g
1,k) ◦ · · · ◦ exp(aL,ktX̂

g
L,k)(·), t < 0,

where |ai,k| ≤ c1 for all k = dimH1 + 1, . . . , N , i = 1, . . . , L, every X̂g
i,k is from

{X̂g
1 , . . . , X̂

g
dimH1

}.

Proof. Consider coordinate system of the 2nd kind on the nilpotent tangent cone GgM.

Θg(t1, . . . , tN) = exp(tN(X̂g
N)′) ◦ · · · ◦ exp(t1(X̂

g
1 )′)(0).

The mapping Θg is a diffeomorphism of RN . For every nonhorizontal vector field (X̂g
k)
′

fix the decomposition given by Lemma 2.1

exp((X̂g
k)
′)(0) = exp(aL,k(X̂

g
L,k)

′) ◦ · · · ◦ exp(a1,k(X̂
g
1,k)

′)(0).

Here |ai,k| < c1 for all i = 1, . . . , L, k = dimH1 + 1, . . . , N , and every (X̂g
i,k)

′ is in the
set {(X̂g

1 )′, . . . , (X̂g
dimH1

)′}. Applying the dilation δg to this decomposition we obtain
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the following representation

δgt exp((X̂g
k)
′)(0) = exp(tdegXk(X̂g

k)
′)(0)

= exp(aL,kt(X̂
g
L,k)

′) ◦ · · · ◦ exp(a1,kt(X̂
g
1,k)

′)(0), t ≥ 0,

δgt exp((X̂g
k)
′)(0) = exp(−|t|degXk(X̂g

k)
′)(0)

= exp(a1,kt(X̂
g
1,k)

′) ◦ · · · ◦ exp(aL,kt(X̂
g
L,k)

′)(0), t < 0. (2.10)

Since the vector fields (X̂g
k)
′ are left-invariant, representation (2.10) holds also if we

replace 0 by arbitrary x ∈ GgM.
Next, we push-forward representation (2.10) using the local group isomorphism θg.

Define the mappings Φ̂k : [−ε, ε]× Box(g, ε) → Gg by

Φ̂k(t)(w) =

{
exp(aL,ktX̂

g
L,k) ◦ · · · ◦ exp(a1,ktX̂

g
1,k)(w), t ≥ 0,

exp(a1,ktX̂
g
1,k) ◦ · · · ◦ exp(aL,ktX̂

g
L,k)(w), t < 0

(2.11)

where, by definition,

exp(aX̂g
i ) ◦ exp(bX̂g

j ) = θg ◦ exp(a(X̂g
i )
′) ◦ exp(b(X̂g

j )
′) ◦ θ−1

g

and ε > 0 is sufficiently small so that (2.11) makes sense for all k = dimH1 +1, . . . , N ,
t ∈ [−ε, ε] and w ∈ Box(g, ε).

Consider a mapping Φ̂g defined as in (2.9). Since, by construction,

Φ̂g(t1, . . . , tN) = θg ◦Θg(t
degX1

1 , . . . , tdegXN

N ),

the mapping Φ̂g is a homeomorphism of a ball Be(0, ε) ⊂ RN onto the neighborhood
V (g) ⊂M∩ Gg. The lemma is proved.

For every point g ∈ U(g0) define the mappings Φk : [−ε, ε] →M by

Φk(t)(·) =

{
exp(aL,ktXL,k) ◦ · · · ◦ exp(a1,ktX1,k)(·), t ≥ 0,

exp(a1,ktX1,k) ◦ · · · ◦ exp(aL,ktXL,k)(·), t < 0,
(2.12)

where the coefficients ai,k, i = 1, . . . , L, k = dimH1 + 1, . . . , N , are taken from the
representation (2.10). Define also the mapping Φg : Be(0, ε) →M by

Φg : (t1, . . . , tN) 7→ ΦN(tN) ◦ · · · ◦ ΦdimH1+1(tdimH1+1)

◦ exp(tdimH1XdimH1) ◦ · · · ◦ exp(t1X1)(g). (2.13)

Next, we prove that Φg is the desired mapping, i. e. there is a neighborhood V (g) such
that V (g) ⊂ Φ(Be(0, ε)).

Theorem 2.5. Fix a point g0 ∈M. Let X1, . . . , XdimH1 be a basis in H1. Then there
is a neighborhood U(g0) such that for every point g ∈ U(g0) an element v ∈ U(g0) can
be represented as

v = exp(aLXjL) ◦ · · · ◦ exp(a2Xj2) ◦ exp(a1Xj1)(g), (2.14)

where 1 ≤ ji ≤ dimH1, i = 1, . . . , L, L ∈ N, |ai| ≤ c2 d∞(g, v), and constants L and c2
are independent of g and v.
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Proof. Fix g0 ∈ M. Let Φ̂k(t)(·) and Φk(t)(·) be defined as in (2.10) and (2.12). By
Theorem 2.3 we have

d∞
(
Φ̂k(t)(w),Φk(t)(w)

)
= o(t) as t→ 0

where o(t) is uniform with respect to g, w in a compact neighborhood U(g0).
Let Be(0, r) be an Euclidean ball in RN and mappings Φ̂g and Φg : Be(0, r) →M

be defined as in (2.9) and (2.13). Observe that both mappings are continuous and that
d∞(Φg(x), Φ̂g(x)) = o(r) as r → 0 where o(r) is uniform in g ∈ U(g0) and x ∈ Be(0, r).
Moreover, Φ̂g is a homeomorphism of Be(0, r) onto a neighborhood V (g) ∈M∩ Gg.

Define ψ = Φg ◦ Φ̂−1
g . The mapping ψ : V (g) →M is continuous and d∞(v, ψ(v)) =

o(d∞(g, v)) as v → g where o(·) is uniform in g, v ∈ U(g0). Choose ε0 > 0 such that
d∞(v, ψ(v)) ≤ ε

2Q
for every v ∈ Box(g, ε), 0 < ε ≤ ε0 and g ∈ U(g0), where Q ≥ 1 is a

constant in the generalized triangle inequality for d∞. Next, we prove that ψ(Box(g, ε))
is a neighborhood of g.

Consider the homotopy ψt(v) = δv1−tψ(v), t ∈ [0, 1]. It is clear that ψ0(v) = ψ(v)
and ψ1(v) = v. Fix a point w ∈ Box(g, ε

2Q
). Then for every v ∈ ∂Box(g, ε) we have

ε = d∞(g, v) ≤ Q
(
d∞(g, w) + d∞(w, v)

)
<
ε

2
+Qd∞(w, v).

Hence, d∞(w, v) > ε
2Q

. On the other side, for all v ∈ ∂Box(g, ε) we also have

d∞(ψt(v), v) = d∞(δv1−tψ(v), v)

= dv∞(δv1−tψ(v), v) = (1− t)dv∞(ψ(v), v)

≤ dv∞(ψ(v), v) = d∞(ψ(v), v) ≤ ε

2Q
.

Consequently, w 6∈ ψ
(
∂Box(g, ε)

)
for all t ∈ [0, 1]. Therefore, the topological degree of

ψt at w is invariant for all t ∈ [0, 1]. Since

deg(w,Box(g, ε), ψ) = deg(w,Box(g, ε), ψ1) = deg(w,Box(g, ε), ψ0) = 1,

we conclude w ∈ ψ
(
Box(g, ε)

)
. In other words Box(g, ε

2Q
) ⊂ Φg(Boxe(0, ε)), where

Boxe(0, ε) = {x ∈ RN : |xi| < ε, i = 1, . . . , N} is an Euclidean cube.
Let U(g0) be a neighborhood of g0 small enough that

U(g0) ⊂
⋂

g∈U(g0)

Box(g, ε0
2Q

).

Let ε = d∞(g, v) where g, v ∈ U(g0). Then there exists an N -tiple of numbers
(t1, . . . , tN) such that |ti| < 2Qε and v = Φg(t1, . . . , tN). This completes the proof.

An absolutely continuous curve γ : [0, T ] → M is said to be horizontal if γ̇(t) ∈
Hγ(t)M for almost all t ∈ [0, T ].

As an immediate consequence of Theorem 2.5 we obtain the following generaliza-
tion of Rashevsky–Chow theorem [24, 3, 12]. For C1-smooth fields X1, . . . , XN this
statement is new.
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Theorem 2.6. 1) Let g ∈ M. There exists a neighborhood U of a point g such that
every pair of points u, v ∈ U in a Carnot–Carathéodory space M can be joined by an
absolutely continuous horizontal curve γ constituted of at most L segments of integral
lines of basic horizontal fields where L is independent of the choice of points x, y ∈ U .

2) Every pair of points u, v in a connected Carnot–Carathéodory space M can be
joined by an absolutely continuous horizontal curve γ constituted of finite number of
segments of integral lines of basic horizontal fields.

2.6 Carnot–Carathéodory metric and Ball-Box Theorem

The Carnot–Carathéodory distance between two points x, y ∈M is defined by

dcc(x, y) = inf{T > 0 : there exists a horizontal path γ : [0, T ] →M,

γ(0) = x, γ(T ) = y, |γ̇(t)| ≤ 1}.

Theorem 2.6 guarantees that dcc(x, y) <∞ for all x, y ∈M. An open ball in Carnot–
Carathéodory metric of radius r centered at x is denoted as Bcc(x, r).

The following statement is called the local approximation theorem. It was formu-
lated in [7, p. 135] for “sufficiently smooth vector fields”. It was proved in [37] for
C1,α-smooth vector fields but the same arguments work for the case of C1-smooth
vector fields since they are based on the property (2.3) [13, Theorem 7].

Theorem 2.7 ([37, 13]). Let g ∈ M. Then for every two points u, v ∈ Bcc(g, ε) we
have

|dcc(u, v)− dgcc(u, v)| = o(ε) as ε→ 0

where o(ε) is uniform in u, v ∈ B(g, ε) and g belonging to some compact set.

As a corollary we obtain a comparison of metric dcc and quasimetric d∞, and Ball-
Box theorem.

Theorem 2.8 ([13, Theorem 11]). Let g ∈M. There exists a compact neighborhood
U(g) ⊂M and constants 0 < C1 ≤ C2 <∞ independent of u, v ∈ U(g) such that

C1d∞(u, v) ≤ dcc(u, v) ≤ C2d∞(u, v) (2.15)

for all u, v ∈ U(g).

The following statement was proved for sufficiently smooth vector fields in [19, 7],
for C1,α-smooth vector fields, α ∈ (0, 1], in [12] and for C1-smooth vector fields in [13].

Corollary 2.2 (Ball-Box theorem [13]). Given a compact neighborhood U ∈ M,
there exist constants 0 < C1 ≤ C2 <∞ and r0 > 0 independent of x ∈ U such that

Box(x,C1r) ⊂ Bcc(x, r) ⊂ Box(x,C2r)

for all r ∈ (0, r0) and x ∈ U .
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3 Approximate limit and differentiability

3.1 Hausdorff measure

The (spherical) k-dimensional Hausdorff measure of the set E with respect to the metric
dcc is the quantity

Hk(E) = lim
ε→0+

inf
{∑

i

rki : E ⊂
⋃
i

Bcc(xi, ri), ri < ε
}
.

Theorem 3.1 ([18, 12]). The Hausdorff dimension of M with respect to dcc is equal
to

ν =
N∑
k=1

degXk =
M∑
i=1

i(dimHi − dimHi−1)

where dimH0 = 0.

Ball-Box theorem implies the double property of measure.

Proposition 3.1. We have

Hν(Bcc(x, 2r)) ≤ CHν(Bcc(x, r))

where C <∞ is bounded in r ∈ (0, r0] and x belonging to some compact part V ⊂M.

3.2 Approximate limit and its properties

The density of a set Y at x ∈M is a limit

lim
r→+0

Hν(Bcc(x, r) ∩ Y )

Hν(Bcc(x, r))

if it exists at x (where ν is the Hausdorff dimension of the space M).
Let E ⊂ M be a measurable set and f : E → M be a mapping to a metric space

M.
A point y ∈ M is called the approximate limit of the mapping f at the point g ∈ E

of density 1 and is denoted by y = ap lim
x→g

f(x) if the density of set E \ f−1(W ) at g

equals zero for every neighborhood W of the point y.
In the case M = R we also define the approximate upper limit of the function f at

the point g ∈ E, denoted by ap lim
x→g

f(x), as the greatest lower bound of the set of all

numbers s for which the density of the set {z ∈ M : f(z) > s} at the point g equals
zero. By definition, ap lim

x→g
f(x) = − ap lim

x→g
(−f(x)) is the approximate lower limit. It

is easy to verify that ap lim
x→g

f(x) ≤ ap lim
x→g

f(x) and that ap lim
x→g

f(x) exists if and only

if ap lim
x→g

f(x) = ap lim
x→g

f(x).

Next we state several properties regarding measurability and approximate limit
which we need in further arguments.
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Property 3.1. Let S be a Hν ×Hν̃-measurable set in M×M̃ and z0 be a fixed point
in M̃. For every ε > 0 and δ > 0 define T as a set of the points x for which

Hν̃{z : (x, z) ∈ S, d̃cc(z0, z) ≤ r} ≤ εrν̃ for all 0 < r < δ.

Then the set T is measurable.

Really, for any r > 0, a set

Sr = S ∩ {(x, z) : d̃cc(z0, z) ≤ r} = S ∩ (M× B̃cc(z0, r))

is Hν × Hν̃-measurable. By Tonelli–Fubini theorem the set {z : (x, z) ∈ Sr} is Hν̃-
measurable for Hν-almost all x and∫∫

M×M̃

χSr(x, z) dx dz =

∫
M

∫
M̃

χSr(x, z) dz dx =

∫
M

Hν̃{z : (x, z) ∈ Sr} dx.

Consequently, the mapping

ϕ : x 7→
∫
M̃

χSr(x, z) dz = Hν̃{z : (x, z) ∈ Sr}

is Hν-measurable. Then we have

T =
⋂

r∈(0,δ)∩Q

{x : ϕ(x) ≤ εrν}

where Q denotes the set of rational numbers. It remains only to note that every set
{x : ϕ(x) ≤ εrν} is Hν-measurable.

Property 3.2. If σ : M× M̃ → R is Hν × Hν̃-measurable real-valued mapping and
z0 is a point in M̃ then

ap lim
z→z0

σ(x, z) and ap lim
z→z0

σ(x, z)

are Hν-measurable mappings of argument x.

First, notice that

{x ∈M : ap lim
z→z0

σ(x, z) ≤ τ} =
⋂
t>τ

At =
∞⋂
n=1

Aτ+ 1
n
,

where At is a set of the points x ∈M for which the set {z ∈ M̃ : σ(x, z) > t} has the
density zero at z0. We have to make sure that At is measurable. In order to do this
we apply Property 3.1 to the set

St = {(x, z) ∈M× M̃ : σ(x, z) > t}
and derive that the set Tt(m, k) of the points x ∈M for which

Hν{z : (x, z) ∈ St, d̃cc(z0, z) ≤ r} ≤ rν

m
for all 0 < r < k−1,

is measurable for all positive integers m and k. It remains only to observe that

At =
∞⋂
m=1

∞⋂
k=1

Tt(m, k).



26 S.G. Basalaev, S.K. Vodopyanov

3.3 Differentiability in the sub-Riemannian geometry

Fix E ⊂ R and a limit point s ∈ E. The mapping γ : E → M has sub-Riemannian
derivative at the point s if there is an element a ∈ Gγ(s) such that

dγ(s)cc (γ(s+ t), δ
γ(s)
t a) = o(t) as t→ 0, s+ t ∈ E. (3.1)

We use the notation a = d
dt sub

γ(t + s)|t=0. A derivative is called horizontal if a ∈
exp(Hγ(s)M), i. e.

a = exp
(dimH1∑

j=1

αjX̂
γ(s)
j

)
(γ(s)) = exp

(dimH1∑
j=1

αjXj

)
(γ(s))

for certain αj ∈ R.
Recall that γ : E ⊂ R → M is called a Lipschitz mapping if there is a constant

C > 0 such that the inequality

dcc(γ(x), γ(y)) ≤ C|x− y|

holds for all x, y ∈ E.

Theorem 3.2 ([33]). Every Lipschitz mapping γ : E →M, where the set E ⊂ R is
closed, has horizontal derivative almost everywhere in E.

The mapping f : E ⊂ M → M̃ of two Carnot–Carathéodory spaces is called [35]
differentiable at the point g ∈ E if there is horizontal homomorphism L : Gg → Gf(g)

of the local Carnot groups such that

d̃f(g)
cc (f(v), L(v)) = o(dgcc(g, v)) as E ∩ Gg 3 v → g. (3.2)

Recall that the horizontal homomorphism of Carnot groups is a homomorphism L :
G → G̃ such that DL(0)(HG) ⊂ HG̃.

Local approximation theorem (Theorem 2.7) gives an opportunity to use both met-
rics of the initial space and of local Carnot group in the definition (3.2). Indeed, by
Theorem 2.7 we have

d̃cc(f(v), L(v)) = d̃f(g)
cc (f(v), L(v)) + o

(
d̃f(g)
cc (f(g), f(v))

)
+ o
(
d̃f(g)
cc (f(g), L(v))

)
.

Using the triangle inequality

d̃cc(f(g), f(v)) ≤ d̃cc(f(g), L(v)) + d̃cc(L(v), f(v)),

and homogeneity of L we obtain

d̃cc(f(v), L(v)) = d̃f(g)
cc (f(v), L(v)) + o

(
d̃f(g)
cc (f(g), f(v))

)
+ o
(
d̃f(g)
cc (f(g), L(v))

)
= [1 + o(1)]d̃f(g)

cc (f(v), L(v)) + o
(
d̃gcc(v, g) sup

u: dg
cc(u,g)=1

d̃f(g)
cc (f(g), L(u))

)
= o(dgcc(g, v)) = o(dcc(g, v)). (3.3)
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The homomorphism L : Gg → Gf(g) satisfying (3.2) is called the differential of the
mapping f and is denoted by Dgf . One can show that if g is the density point then
the differential is unique. Moreover, it is easy to verify that differential commutes with
the one-parameter dilation group:

δ̃
f(g)
t ◦Dgf = Dgf ◦ δgt . (3.4)

If v ∈ Gg and δgt v ∈ Gg then, by (3.4), we have

d̃f(g)
cc (f(δgt v), δ̃

f(g)
t Dgf(v)) = d̃f(g)

cc (f(δgt v), Dgf(δgt v))

= o(dgcc(g, δ
g
t v)) = dgcc(g, v)o(t), (3.5)

i. e. element Dgf(v) is a derivative of the curve γ(t) = f(δgt v) at t = 0.
By the derivative of the mapping f along the horizontal vector field X at the point

g we mean the derivative of the curve

γ(t) = f(δgt exp X̂g(g)) = f(exp tX(g))

for t = 0. We use the notation Xf(g) to denote this derivative. To be more pre-
cise we have to write ẽxpXf(g) since usually Xf(g) is the Riemannian derivative
d
dt
f(exp(tX)(g))

∣∣
t=0

. To simplify notations we will use Xf(g) for the sub-Riemannian
derivative except of the cases when the opposite is stated explicitly.

The mapping f : E ⊂ M → M̃ of two Carnot–Carathéodory spaces is called a
Lipschitz mapping if there is a constant C > 0 such that the inequality

d̃cc(f(x), f(y)) ≤ Cdcc(x, y)

holds for all x, y ∈ E.
In the work [33] there were generalized the classical Rademacher [23] and Stepanoff

[27] theorems to the case of Carnot–Carathéodory spaces.

Theorem 3.3 ([33, Theorem 4.1]). Let E be a set in M and let f : E → M̃ be a
Lipschitz mapping. Then f is differentiable almost everywhere in E and the differential
is unique.

Theorem 3.4 ([33, Theorem 5.1]). Let E be a set in M and let a mapping f : E →
M̃ satisfy the condition

lim
x→a,x∈E

d̃cc(f(a), f(x))

dcc(a, x)
<∞

for almost all a ∈ E. Then f is differentiable almost everywhere in E and the differ-
ential is unique.

Here we will write an alternative proof of Theorems 3.3 and 3.4 using the theorem
on approximate differentiability.
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3.4 Approximate differentiability

Now we replace a regular limit in (3.1) by the approximate one. This leads us to
definition of an approximate (horizontal) derivative as an element a ∈ expHGγ(s) such
that

ap lim
t→0

d
γ(s)
cc (γ(s+ t), δ

γ(s)
t a)

|t|
= 0,

i. e. the set
{t ∈ (−r, r) : dγ(s)cc (γ(s+ t), δ

γ(s)
t a) > |t|ε}

has density zero at the point t = 0 for an arbitrary ε > 0.
Similarly an approximate differential is the horizontal homomorphism L : Gg →

Gf(g) of the local Carnot groups such that

ap lim
v→g

d̃
f(g)
cc (f(v), L(v))

dgcc(g, v)
= 0,

i. e. a set
{v ∈ Bcc(g, r) ∩ Gg : d̃f(g)

cc (f(v), L(v)) > dgcc(g, v)ε}

has Hν-density zero at the point v = g for any ε > 0. We denote such homomorphism
as apDgf .

Using the notion of an approximate differential we can generalize Theorem 3.4 in
the following direction.

Theorem 3.5. Let E be a set in M and let f : E → M̃ meet the condition

ap lim
x→g

d̃cc(f(g), f(x))

dcc(g, x)
<∞. (3.6)

Then f is approximately differentiable almost everywhere in E.

For proving Theorem 3.5 we need the following statement.

Theorem 3.6. Let E be a measurable subset in M and f : E → M̃ be a measurable
mapping enjoying (3.6) for all points g ∈ E. Then there is a sequence of disjoint

sets E0, E1, . . . , such that E = E0 ∪
∞⋃
i=1

Ei, Hν(E0) = 0 and every restriction f |Ei
,

i = 1, 2, . . . , is a Lipschitz mapping.

Proof. Since our considerations are local, we focus our arguments on the case when
E ⊂ U where U is an open subset in M. Consider a sequence of sets

Um = {x ∈ U : dcc(x, ∂U) ≥ 2m−1}, m ∈ N.

Each Um is closed and
∞⋃
m=1

Um = U . For all distinct points u and v of U the relation

h(u, v) =
Hν(Bcc(u, dcc(u, v)) ∩Bcc(v, dcc(u, v)))

dcc(u, v)ν
, u 6= v,
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is a continuous real-valued function. For every m define a constant

γm = inf{h(u, v) : u, v ∈ Um, dcc(u, v) ≤ m−1}.

Let dcc(u, v) = l. By definition of dcc for an arbitrary number ε > 0 there exists
a piecewise smooth path γ : [0, l + ε] → M such that γ(0) = u, γ(l + ε) = v and
|γ̇| ≤ 1. Let w = γ( l+ε

2
). Then dcc(u,w) ≤ l+ε

2
and dcc(v, w) ≤ l+ε

2
. Consequently,

Bcc(w,
l−ε
2

) ⊂ Bcc(u, l) and Bcc(w,
l−ε
2

) ⊂ Bcc(v, l). Hence,

h(u, v) ≥
Hν
(
Bcc(w,

l−ε
2

)
)

lν
≥
C1(

l−ε
2

)ν

lν
> 0,

where C1 > 0 is a constant from Ball–Box theorem. Since ε > 0 is arbitrary, we infer
γm ≥ C12

−ν > 0.
For every m ∈ N, let Em be a set of all density points of E∩ (Um \Um−1) (assuming

U0 = ∅). The sequence Em is a disjoint family and Hν(E \
∞⋃
m=1

Em) = 0.

For k ∈ N, u ∈ E, 0 < r < m−1 define

Qm
k (u, r) = Bcc(u, r) ∩ {x : x 6∈ Em or d̃cc(f(x), f(u)) > k dcc(x, u)}

and also define

Bm
k = E ∩

{
u : Hν(Qm

k (u, r)) < γm
rν

2
for all 0 < r < min{k−1,m−1}

}
.

By Property 3.1, all Bm
k are measurable and Em =

∞⋃
k=1

Bm
k . Next, if u, v ∈ Bm

k and

r = dcc(u, v) < min{k−1,m−1} we have

Hν(Qm
k (u, r) ∪Qm

k (v, r)) < γmr
ν ≤ Hν(Bcc(u, r) ∩Bcc(v, r)).

Hence we can choose a point

x ∈ (Bcc(u, r) ∩Bcc(v, r)) \ (Qm
k (u, r) ∪Qm

k (v, r)).

For this point

d̃cc(f(u), f(v)) ≤ d̃cc(f(u), f(x)) + d̃cc(f(x), f(v))

≤ kdcc(u, x) + kdcc(x, v) ≤ 2kr = 2kdcc(u, v).

Consequently, representing Bm
k as an union of a countable family of measurable sets

Bm
k,j, whose diameters are less than min{k−1,m−1}, we see that every restriction f |Bm

k,j

is a Lipschitz mapping.

Proof of Theorem 3.5. By Theorem 3.6 the domain of f is the union of a countable
family of disjoint sets Ei (up to the set of measure 0) such that every restriction f |Ei

is
a Lipschitz mapping. By Theorem 3.3 every f |Ei

is differentiable almost everywhere in
Ei. For the density points of Ei this is equivalent to the approximate differentiability
in E.
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4 Theorem on approximate differentiability

Now we have all necessary tools for formulating and proving the main result.

Theorem 4.1. Let E ⊂M be a measurable subset of the Carnot–Carathéodory space
M and let f : E → M̃ be a measurable mapping. The following statements are
equivalent:

1) The mapping f is approximately differentiable almost everywhere in E.
2) The mapping f has approximate derivatives apXjf along the basic horizontal

vector fields X1, . . . , XdimH1 almost everywhere in E.

3) There is a sequence of disjoint sets Q1, Q2, . . . such that Hν(E \
∞⋃
i=1

Qi) = 0 and

every restriction f |Qi
is a Lipschitz mapping.

Proof of the implication 1) ⇒ 3). Let g ∈ M be a density point of E and Let f be
approximately differentiable in g. Fix a point v in a set

Cε(g) = {v ∈ Bcc(g, rg) ∩ Gg : d̃cc(f(v), apDgf(v)) < εdcc(g, v)}, ε > 0.

By Theorem 2.7 we have

d̃f(g)
cc (f(v), apDgf(v)) ≤ d̃cc(f(v), apDgf(v))[1 + o(1)]

< dcc(v, g)[ε+ o(ε)] = dgcc(v, g)[ε+ o(ε)].

From the definition of an approximate differential it follows that Hν-density of the set
Bcc(g, rg) \ Cε(g) equals zero for any ε > 0. In other words

ap lim
v→g

d̃cc(f(v), Dgf(v))

dcc(g, v)
= 0.

Therefore,

ap lim
v→g

d̃cc(f(g), f(v))

dcc(g, v)

≤ ap lim
v→g

d̃cc(f(g), Dgf(v))

dcc(g, v)
+ ap lim

v→g

d̃cc(Dgf(v), f(v))

dcc(g, v)

= lim
v→g

d̃cc(f(g), Dgf(v))

dgcc(g, v)
+ 0

≤ lim
v→g

d̃
f(g)
cc (f(g), Dgf(v))[1 + o(1)]

dgcc(g, v)

= [1 + o(1)] sup
v: dg

cc(v,g)=1

d̃f(g)
cc (f(g), Dgf(v)) <∞

for almost all g ∈ E. Hence, the conditions of Theorem 3.6 are fulfilled.

The implication 3) ⇒ 2) is proved as Corollary 4.1 in the next subsection.
The implication 2) ⇒ 1) is a direct corollary of the following crucial
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Theorem 4.2. Let f : M → M̃ be a measurable mapping of Carnot–Carathéodory
spaces. Then

Aj = dom apXjf is a measurable set,

apXjf : Aj → ẽxp(HM̃) is a measurable mapping in Aj,

for all j = 1, . . . , dimH1, and f is approximately differentiable almost everywhere on

the set A =
dimH1⋂
j=1

Aj. Moreover, if g ∈ A is a point of an approximate differentiability

of the mapping f and in the neighborhood of g we have representation from Theorem 2.5

v = exp(aLXjL) ◦ · · · ◦ exp(a1Xj1)(g)

where 1 ≤ ji ≤ dimH1, i = 1, . . . , L, L ∈ N, then

apDgf(v) =
L∏
i=1

δf(g)
ai

apXjif(g) ∈ Gf(g).

We follow the proof in [31] where the similar result was established for Carnot groups
(which in turn was inspired by the proof [4] of the similar theorem for mappings of
Euclidean spaces). The essential steps of the proof are carried out in separate lemmas
which are proved below and the proof of the theorem itself is located in the subsection
4.3 just after proofs of lemmas.

4.1 Approximate derivatives

Lemma 4.1. Let E ⊂ M be a measurable set and f : E → M̃ be a measurable
mapping. Then

Aj = {x ∈ E : ap lim
t→0

d̃cc( f(x), f(exp tXj(x)) )

|t|
<∞} is measurable;

apXjf : Aj → M̃ is defined almost everywhere and is measurable;

apXjf(g) ∈ ẽxp(HgM̃) for almost all g ∈ Aj

for every j = 1, . . . , dimH1.

Proof. Fix j ∈ {1, . . . , dimH1}. A mapping

t 7→ |t|−1d̃cc( f(x), f(exp tXj(x)) )

is measurable and by Property 3.2 the set Aj is measurable. For every x ∈ E define
Ax as a set of real numbers t such that exp tXj(x) ∈ Aj. In the case Ax 6= ∅ define also
the mapping h : Ax → M̃ by the rule h(t) = f(exp tXj(x)).
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If y = exp tXj(x), t ∈ Ax, we have

ap lim
τ→0

d̃cc(h(t), h(t+ τ))

|τ |

= ap lim
τ→0

d̃cc(f(exp tXj(x)), f(exp(t+ τ)Xj(x)))

|τ |

= ap lim
τ→0

d̃cc(f(exp tXj(x)), f(exp τXj(exp tXj(x))))

|τ |

= ap lim
τ→0

d̃cc(f(y), f(exp τXj(y)))

|τ |
<∞.

Hence, h meets the conditions of Theorem 3.6. Therefore, Ax = B0 ∪
∞⋃
i=1

Bi, where

Hν(B0) = 0, all Bi, i = 1, . . . ,∞, are measurable and restriction of h to every Bi is a
Lipschitz mapping. If h : Bi → M̃ is one of these restrictions then by Theorem 3.2 the
sub-Riemannian derivative

d

dτ sub
h(t+ τ)

∣∣∣
τ=0
t+τ∈Bi

∈ ẽxpHh(t)M̃

exists for almost all t. If t is a density point for the set Bi then

d

dτ sub
h(t+ τ)

∣∣∣
τ=0
t+τ∈Bi

= ap
d

dτ sub
h(t+ τ)

∣∣∣
τ=0

= ap
d

dτ sub
f(exp τXj(y))

∣∣∣
τ=0

= apXjf(y).

Thus, apXjf(y) exists at {y = exp tXj(x) : t ∈ Ax} for almost all t ∈ Ax. This
provides existence of the derivative apXjf almost everywhere in Aj.

Corollary 4.1. A Lipschitz mapping f has approximate derivatives apXjf along the
horizontal vector fields Xj almost everywhere and apXjf(g) ∈ ẽxp(HgM) for almost
all g ∈ dom f .

Remark 4.1. Note that if apXjf(g) defined at g ∈ M then ap(aXj)f(g) is also
defined for all real numbers a. Moreover

ap(aXj)f(g) = δ̃f(g)
a apXjf(g).

Let the coordinate system (2.13) be defined in a neighborhood of a point g ∈ M.
Consider a curve

Γk(g; t) = Φk(t)(g). (4.1)

We say that the mapping f is approximately differentiable along the curve Γk(g; t) at
t = 0 if there is an element a ∈ Gf(g) ∩ M̃ such that

1

rdegXk
HdegXk

{
t ∈ (−r, r) :

d̃
f(g)
cc (f ◦ Γk(g; t), δ̃

f(g)
t a)

dgcc(g,Γk(g; t))
> ε
}
→ 0 as r → 0.

We denote this derivative by a = ap dsub(f ◦Γk)(g). If k = 1, . . . , dimH1, this definition
coincides with the definition of the approximate derivative from Subsection 3.4.
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Lemma 4.2. Let E ⊂M be a bounded measurable set and f : E → M̃ be a measurable
mapping. Let also the coordinate system (2.13) be defined in a neighborhood of a point
g ∈ U with functions Φk satisfying (2.12). Then the mapping f is approximately
differentiable along the curve Γk(g; t) defined by (4.1), k = dimH1 + 1, . . . , N , at t = 0

almost everywhere in A =
dimH1⋂
j=1

dom apXjf . Moreover, the approximate derivative can

be written as

ap dsub(f ◦ Γk)(g) = ap(sLk
X̂g
jLk

)f ◦ · · · ◦ ap(s1X̂
g
j1

)f(g)

= ap(s1X̂
g
j1

)f(g) · . . . · ap(sLk
X̂g
jLk

)f(g) ∈ Gf(g) (4.2)

almost everywhere. Here Lk ≤ L and si = ±1 are from the representation (2.12). Also
the following estimate

d̃f(g)
cc

(
f(g), ap dsub(f ◦ Γk)(g)

)
≤ Lk max{d̃cc

(
f(g), apXjf(g)

)
: j = 1, . . . , dimH1} (4.3)

holds for all k = dimH1 + 1, . . . , N .

A sketch of the proof:
At the first step we apply Luzin’s and Egorov’s theorems to a bounded set A and

obtain a set A′ ⊂ A that differs from A on a set of a measure small enough and on
which the limit ap lim

t→0
δ̃
f(g)

t−1 f(exp tXj)(g) converges to apXjf(g) uniformly.
Next we assure that the set of real numbers t, for which the relation (4.2) does not

hold, is negligible.
At last, we prove that ap lim

t→0
δ̃
f(g)

t−1 f ◦ Γk(g; t) converges uniformly to (4.2) in A′.

Proof. By Lemma 4.1 the sets Aj = dom apXjf ⊂ E are measurable and the mappings
apXjf are measurable in Aj for all j = 1, . . . , dimH1.

We have Hν(Aj) ≤ Hν(E) < ∞. Fix ε > 0. Applying Luzin’s theorem we find a
closed set E ′ ⊂ A such that Hν(A \E ′) < ε/2 and all apXjf are uniformly continuous
in E ′.

Consider a sequence of functions {ϕjn : E ′ → R}n∈N defined as

ϕjn(g) = sup
|t|< 1

n

d̃
f(g)
cc

(
f(exp(tXj)(g)), δ̃

f(g)
t apXjf(g)

)
|t|

, j = 1, . . . , dimH1.

Since ϕjn(g)→
ap

0 as n→∞, by Egorov’s theorem we obtain a measurable set E ′′ ⊂ E ′

such that Hν(E ′ \ E ′′) < ε/2 and ϕjn(g) → 0 as n → ∞ uniformly on E ′′. Therefore,
the limits

ap lim
t→0

d̃
f(g)
cc

(
f(exp(tXj)(g)), δ̃

f(g)
t apXjf(g)

)
|t|

= 0

converge uniformly on E ′′ for all j = 1, . . . , dimH1.
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For every positive integer m and for all x ∈ E, r > 0 define a set

Tmj (x, r) =
{
t ∈ (−r, r) : d̃f(x)

cc

(
f(exp tXj(x)), δ̃

f(g)
t apXjf(x)

)
>
|t|
m

}
.

For all positive integers p we introduce

Bm
j (p) = Aj ∩

{
x ∈ E : H1[Tmj (x, r)] ≤ r

m
for all 0 < r < p−1

}
.

By Property 3.1 the sets Bm
j (p) are measurable for all j = 1, . . . , dimH1. We have also

∞⋃
p=1

Bm
j (p) = Aj.

Moreover, Bm
j (p) ⊂ Bm

j (p + 1). Hence, we can choose a sequence of numbers
p1, p2, . . . such that Hν(E ′′ \Bm

j (pm)) < ε
2m holds. Therefore,

Hν(E ′′ \ F ) < ε·dimH1, where F =

dimH1⋂
j=1

∞⋂
m=1

Bm
j (pm).

Next, for all x ∈ F , r > 0 define a set

Zj(x, r) = {y = exp tXj(x) : |t| < r and y 6∈ F}, j = 1, . . . , dimH1.

For all positive integers m and q define the sets

Cm
j (q) = F ∩

{
x ∈ E : H1[Zj(x, r)] ≤

r

2m
for all 0 < r < q−1

}
.

By Property 3.1 all Cm
j (q) are measurable. Also Hν

(
F \

∞⋃
q=1

Cm
j (q)

)
= 0.

Moreover, Cm
j (q) ⊂ Cm

j (q + 1). Hence, we can choose a sequence of numbers
q1, q2, . . . such that Hν(F \ Cm

j (qm)) < ε
2m holds. Therefore,

Hν(F \ F1) < mε, where F1 =

dimH1⋂
j=1

∞⋂
n=1

Cn
j (qn).

Next, we prove that the function f is approximately differentiable along the curve
Γk(g; t) uniformly in F1 and the mapping g 7→ ap d

dt sub
f(Γk(g; t))

∣∣
t=0

is uniformly con-
tinuous in F1.

Fix m ∈ N, 0 < r < min{p−1
m , q−1

m } and a density point g ∈ F1. Denote

u1(t) = exp(ts1Xj1)(g),

ui(t) = exp(tsiXji)(ui−1(t)), i = 2, . . . , Lk.

Then uLk
(t) = Γk(g; t). Define the set Sm ⊂ (−r, r) as follows:

t ∈ Sm, if s1t ∈ Tmj1 (g, r),

or sit ∈ Tmji (ui−1(t), r),

or u1(t) ∈ Zj1(g, r),
or ui(t) ∈ Zji(ui−1(t), r), i = 2, . . . , Lk.
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Since H1[Tmj1 (g, r)] ≤ r
m

, H1[Zj1(g, r)] ≤ r
m

and since H1[Tmji (ui−1(t), r)] ≤ r
m

,
H1[Zji(ui−1(t), r)] ≤ r

m
if ui−1(t) ∈ F1, i = 2, . . . , Lk, we have

H1(Sm) ≤ 2Lk
r

m
.

Now we estimate HdegXk-measure of the set Sm. Fix arbitrary numbers

δ > 0 and Λ > 2Lk
r

m
. (4.4)

Cover the set Sm with a countable family of intervals (aξ, bξ) so that

bξ − aξ < δ,
∑
ξ

(bξ − aξ) < Λ.

Then
|bξ − aξ|degXk < δ(2r)degXk−1,

∑
ξ

|bξ − aξ|degXk < Λ(2r)degXk−1.

Since δ and Λ are arbitrary numbers of (4.4), we have

HdegXk(Sm) ≤ 2degXkLk
rdegXk

m
.

Now we show that the expression (4.2) is really the derivative of the composition
f ◦ Γk. For the points u, v ∈ F1 we have

d̃f(g)
cc

(
f(exp(tsiXi)(v)), ap(tsiXi)f(v)

)
≤ ϕi(t),

d̃f(g)
cc

(
ap(tsiXi)f(u), ap(tsiXi)f(v)

)
≤ tωi(dcc(u, v)),

where ϕi(t)
t
→ 0 as t → 0 uniformly for v ∈ F1 and ωi(t) are moduli of continuity of

the mappings ap(siXi)f(·) in F1, i = 1, . . . , dimH1.
If |t| < r and t 6∈ Sm we obtain

d̃f(g)
cc

(
f ◦ u1(t), δ̃

f(g)
t ap(s1X1)f(g)

)
= d̃f(g)

cc

(
f ◦ exp(ts1X1)(g), ap(ts1X1)f(g)

)
≤ ϕ1(t) = C1(t).

Further, by induction:

d̃f(g)
cc

(
f ◦ uj(t), δ̃f(g)

t

j∏
i=1

ap(siXi)f(g)
)

= d̃f(g)
cc

(
f ◦ exp(tsjXj)(uj−1(t)), ap(tsjXj)f ◦

j−1∏
i=1

ap(tsiXi)f(g)
)

≤ d̃f(g)
cc

(
f ◦ exp(tsjXj)(uj−1(t)), ap(tsjXj)f(uj−1(t))

)
+ d̃f(g)

cc

(
ap(tsjXj)f(uj−1(t)), ap(tsjXj)f ◦

j−1∏
i=1

ap(tsiXi)f(g)
)

≤ ϕj(t) + tωj
(
Cj−1(t)

)
= Cj(t),
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where Cj(t)

t
→ 0 as t→ 0 uniformly for g ∈ F1.

Therefore, for t ∈ (−r, r) \ Sm we have an evaluation

d̃f(g)
cc

(
f(Γk(g; t)), δ̃

f(g)
t

Lk∏
i=1

ap(siXi)f(g)
)

= o(t),

i. e. the equality

ap
d

dt sub
f(Γk(g; t)) =

Lk∏
i=1

ap(siXi)f(g)

holds for g ∈ F1. Since r, m, ε are arbitrary the latter takes place almost everywhere in
E. The inequality (4.3) follows from (4.2) and the generalized triangle inequality.

Remark 4.2. Consider in the previous lemma the curve Γ′k(g; t) = Γk(g;λt), λ ∈
R \ {0}, instead of Γk(g; t). The following representation takes place

Γ′k(g; t) = exp(λtsLk
XjLk

) ◦ · · · ◦ exp(λts1Xj1)(g),

where si = ±1, 1 ≤ ji ≤ dimH1. Then if there is ap dsub(f ◦Γk)(g) defined at the point
g ∈M the derivative ap dsub(f ◦ Γ′k)(g) is also defined and we have

ap dsub(f ◦ Γ′k)(g) =

Lk∏
i=1

ap(λsiXi)f(g)

= δ̃
f(g)
λ

Lk∏
i=1

ap(siXi)f(g) = δ̃
f(g)
λ ap dsub(f ◦ Γk)(g). (4.5)

4.2 Construction and properties of a mapping of local groups

Consider the system of the coordinates of the second kind (2.9) in a neighborhood
V (g) ⊂ Gg of g. Define a mapping Lg : V (g) → Gf(g) as follows:

Lg : v̂ = Φ̂g(t1, . . . , tN) 7→
N∏
k=1

δ̃
f(g)
tk

ap dsub(f ◦ Γk)(g). (4.6)

Declare some properties of this mapping.

Property 4.1. The mapping Lg is continuous.

It follows directly from (4.6).

Property 4.2. δ̃f(g)
λ ◦ Lg = Lg ◦ δgλ.

Really, for v̂ = Φ̂g(t1, . . . , tN) we have

δgλv̂ = δgλΦ̂g(t1, . . . , tN)

= δgλΦ̂N(tN) ◦ · · · ◦ Φ̂dimH1+1(tdimH1+1)

◦ exp(tdimH1X̂
g
dimH1

) ◦ · · · ◦ exp(t1X̂
g
1 )(g)

= Φ̂N(λtN) ◦ · · · ◦ Φ̂dimH1+1(λtdimH1+1)

◦ exp(λtdimH1X̂
g
dimH1

) ◦ · · · ◦ exp(λt1X̂
g
1 )(g)

= Φ̂g(λt1, . . . , λtN).
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Then, taking into account (4.5), we get

Lg(δ
g
λv̂) =

N∏
k=1

δ̃
f(g)
λtk

ap dsub(f ◦ Γk)(g)

= δ̃
f(g)
λ

N∏
k=1

δ̃
f(g)
tk

ap dsub(f ◦ Γk)(g) = δ̃
f(g)
λ Lg(v̂).

Property 4.3. The mapping Lg is bounded.

By Property 4.2 the mapping Lg is homogeneous, so

‖Lg‖ = sup
v 6=g

d̃
f(g)
cc (Lg(g), Lg(v))

dgcc(g, v)
= sup

dg
cc(g,v)=1

d̃f(g)
cc (Lg(g), Lg(v)).

The latter is finite because of continuity of Lg.

Property 4.4. Let u, v ∈ Gg be such that dgcc(u, v) = o(dgcc(g, u)) as u→ g. Then

d̃f(g)
cc (Lg(u), Lg(v)) = o(dgcc(g, u)).

Let ω(t) be a modulus of continuity of the mapping Lg : Bcc(g, 2) → Gf(g). Then if
we define r = max{dgcc(g, u), dgcc(g, v)} by Property 4.2 we have

d̃f(g)
cc (Lg(u), Lg(v)) = O(r) d̃f(g)

cc (Lg(δ
g
r−1u), Lg(δ

g
r−1v))

≤ O(r)ω
(dgcc(u, v)

r

)
= r o(1) as r → 0.

Lemma 4.3. Let E ⊂ M be a bounded measurable set and let f : E → M̃ be a
measurable mapping. Let the coordinate system of the 2nd kind (2.13) be defined in
a neighborhood of g ∈ M. Then the mapping f is approximately differentiable along

the curves Γk(g; t), k = 1, . . . , N , almost everywhere in A =
dimH1⋂
j=1

dom apXjf and the

equality

ap lim
v→g

d̃
f(g)
cc (f(v), Lg(v))

dgcc(g, v)
= 0 (4.7)

holds for almost all g ∈ A, where Lg is the mapping defined by the formula (4.6).

Proof. By Lemma 4.1 all sets Aj = dom apXjf are measurable and by Lemma 4.2 f
is approximately differentiable along the curves Γk, k = 1, . . . , N , almost everywhere
in A.

Fix ε > 0. By Luzin’s theorem there is a measurable set E ′ ⊂ A such that Hν(A \
E ′) < ε/2 and the mapping E ′ 3 x 7→ ap dsub(f ◦Γk)(x) is uniformly continuous for all
k = 1, . . . , N .

Consider a sequence of functions {ϕkn : E ′ → R}n∈N defined as

ϕkn(g) = sup
|t|< 1

n

d̃
f(g)
cc

(
f(Γk(v; t)), δ̃

f(v)
t ap dsub(f ◦ Γk)(v)

)
|t|

, k = 1, . . . , N.
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We have ϕkn(g)→
ap

0 as n→∞ in E ′. By Egorov’s theorem there is E ′′ ⊂ E ′ such that

Hν(E ′ \ E ′′) < ε/2 and ϕkn(g) → 0 as n→∞ uniformly on E ′′.
For every positive integer m and for all x ∈ E, r > 0, we define the set

Tmk (x, r) =
{
t ∈ (−r, r) : d̃f(x)

cc

(
f(Γk(x; t)), δ̃

f(x)
t ap dsub(f ◦ Γk)(x)

)
>
|t|
m

}
.

For all positive integers p, we define the set

Bm
k (p) = A ∩

{
x ∈ E : HdegXk [Tmk (x, r)] ≤ rdegXk

m
for all r ∈ (0, p−1)

}
.

In the case k > 1 we also define Zm
k (x, r; p), as the set of the points z =

(z1, . . . , zk−1, 0, . . . , 0) ∈ RN such that z ∈ B(0, r) and Φx(z) /∈ Bm
k (p). Finally, for

every positive integer q, we define the set

Cm
k (p, q) = Bm

k ∩
{
x ∈ E : Hhk−1 [Zm

k (x, r; p)] ≤ rhk−1

m
for all r ∈ (0, q−1)

}
where hk =

k∑
i=1

degXi.

By Property 3.1, the sets Bm
k (p), Cm

k (p, q) are measurable and

A =
∞⋃
p=1

Bm
k (p),

Hν
(
Bm
k (p) \

∞⋃
q=1

Cm
k (p, q)

)
= 0 for all k = 1, . . . , N and m ∈ N.

Moreover, Bm
k (p) ⊂ Bm

k (p+1), Cm
k (p, q) ⊂ Cm

k (p, q+1). Hence, we can choose sequences
of numbers p1, p2, . . . and q1, q2, . . . such that

Hν(E ′′ \Bm
k (pm)) <

ε

2m
,

Hν(E ′′ ∩Bm
k (pm) \ Cm

k (pm, qm)) <
ε

2m

for all k = 1, . . . , N and for every m. Then

Hν(E ′′ \ F ) < 2Nε where F =
N⋂
k=1

∞⋂
m=1

Cm
k (pm, qm).

Next we show that the limit (4.7) converges uniformly in F . Really, we have uniform
estimates:

d̃f(g)
cc

(
f(Γk(v; t)), δ̃

f(v)
t ap dsub(f ◦ Γk)(v)

)
≤ ϕk(t),

d̃f(g)
cc

(
δ̃
f(u)
t ap dsub(f ◦ Γk)(u), δ̃

f(v)
t ap dsub(f ◦ Γk)(v)

)
≤ tωk(dcc(u, v))

for all k = 1, . . . , N , u, v ∈ F , where ϕ(t)
t
→ 0 as t→ 0 uniformly for v ∈ F , ωk(·) is a

modulus of the continuity of the mapping ap dsub(f ◦ Γk), k = 1, . . . , N .
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Fix a density point g ∈ F , m ∈ N and 0 < r < min{p−1
m , q−1

m }. For every k =
1, . . . , N define Sk ⊂ RN as the set of the points (t1, . . . , tN) ∈ B(0, r) such that

either k > 1 and (t1, . . . , tk−1) ∈ Zm
k (g, r; pm),

or tk ∈ Tmk (Φg(t1, . . . , tk−1, 0, . . . , 0), r).

Since Hhk−1 [Zm
k (g, r; pm)] ≤ rhk−1

m
and since HdegXk [Tmk (x, r)] ≤ rdeg Xk

m
if x =

Φg(t1, . . . , tk−1, 0, . . . , 0) ∈ Bm
k (pm), we have

Hν(Sk) ≤ C1
rhk−1

m
rν−hk−1 + C2

rdegXk

m
rν−degXk ≤ C3

rν

m
.

If we use the notation W =
N⋃
k=1

Sk then Hν(W ) ≤ C4
rν

m
. Denote

u1 = Γ1(g; t1),

uk = Γk(uk−1; tk) for all k = 2, . . . , N.

Now, if v ∈ F \W and uN(t) ∈ F \W , we have

d̃f(g)
cc

(
f(Γ1(g; t1)), δ̃

f(g)
t1 ap dsub(f ◦ Γ1)(g)

)
≤ ϕ1(t1) = C1(|t1|),

and then, by induction,

d̃f(g)
cc

(
f(uk),

k∏
l=1

δ̃
f(g)
tl

ap dsub(f ◦ Γl)(g)
)

≤ d̃f(g)
cc

(
f(Γk(uk−1; tk)), δ̃

f(uk−1)
tk

ap dsub(f ◦ Γk)(uk−1)
)

+ d̃f(g)
cc

(
δ̃
f(uk−1)
tk

ap dsub(f ◦ Γk)(uk−1),
k∏
l=1

δ̃
f(g)
tl

ap dsub(f ◦ Γl)(g)
)

≤ ϕk(tk) + |tk|ωk(Ck−1(|t1|+ · · ·+ |tk−1|)) = Ck(|t1|+ · · ·+ |tk|),

where max{|t1|, . . . , |tk|}−1Ck(|t1|+ · · ·+ |tk|) → 0 as t→ 0 uniformly for g ∈ F .
Denoting v̂ = Φ̂g(t1, . . . , tN) we finally obtain

ap lim
v→g

d̃
f(g)
cc (f(v), Lg(v̂))

dgcc(g, v)
= 0.

If v = Φg(t1, . . . , tN) ∈ F ∩Gg then dgcc(v, v̂) = o(dgcc(g, v)) as v → g by Theorem 2.3.
Hence, using Property 4.4 of the mapping Lg we have

d̃f(g)
cc (f(v), Lg(v)) ≤ d̃f(g)

cc (f(v), Lg(v̂)) + d̃f(g)
cc (Lg(v), Lg(v̂)) = o(dgcc(g, v))

as v → g. Since r, m, ε are arbitrary we have

ap lim
v→g

d̃
f(g)
cc (f(v), Lg(v))

dgcc(g, v)
= 0

for almost all g ∈ A.
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4.3 Proof of theorem on approximate differentiability

Lemma 4.4. Let E ⊂M be a measurable set, f : E →M be a measurable mapping,
g be a density point of E and let

ap lim
v→g

d̃
f(g)
cc (f(v), Lg(v))

dgcc(g, v)
= 0, (4.8)

where Lg : Gg ∩M→ Gf(g) enjoys Properties 4.1 – 4.4. If there are η > 0, 0 < K <∞
such that

d̃cc(f(u), f(v)) < Kdcc(u, v)

for all u, v ∈ B(g, η), then there exists the uniform limit

lim
v→g

d̃
f(g)
cc (f(v), Lg(v))

dgcc(g, v)
= 0. (4.9)

Proof. Let ω(t) be a modulus of continuity of Lg : B(g, 2) ∩ Gg → Gf(g). Then if
dgcc(u, v) < dgcc(g, v) < η, by Property 4.2, we have

d̃f(g)
cc

(
L(u), L(v)

)
= dgcc(g, v) d̃

f(g)
cc

(
L(δg

dg
cc(g,v)−1u), L(δg

dg
cc(g,v)−1v)

)
≤ dgcc(g, v)ω

(
dgcc(δ

g
dg

cc(g,v)−1u, δ
g
dg

cc(g,v)−1v)
)

= dgcc(g, v)ω
(dgcc(u, v)
dgcc(g, v)

)
.

Suppose 0 < ε < 1. Fulfillment of the condition (4.8) means there exists δ > 0 such
that, for the set

W = {z ∈ E : d̃f(g)
cc (f(z), Lg(z)) < εdgcc(g, z)}

we have Hν(B(g, r)\W ) < rνεν for any 0 < r < δ. If we take x ∈ B(g, δ(1−ε))∩E and
r = dgcc(g, x)/(1−ε) then B(x, rε) ⊂ B(g, r). It follows B(x, rε)∩W 6= ∅, hence, we can
choose z ∈ B(x, rε)∩E. By Theorem 2.4 we have dcc(x, z) = o(dcc(g, x)) = o(dgcc(g, x))
and

d̃f(g)
cc (f(x), f(z)) = d̃cc(f(x), f(z)) + o

(
d̃cc(f(g), f(x))

)
= d̃cc(f(x), f(z)) + o(dgcc(g, x)),

where all o(·) are uniform. Thus, we infer

d̃f(g)
cc (Lg(x), f(x))

≤ d̃f(g)
cc (Lg(x), Lg(z)) + d̃f(g)

cc (Lg(z), f(z)) + d̃f(g)
cc (f(z), f(x))

≤ dgcc(g, x)ω
(dgcc(x, z)
dgcc(g, x)

)
+ ε dgcc(g, z) + d̃cc(f(x), f(z)) + o(dgcc(g, x))

≤ dgcc(g, x)ω(1) + ε dgcc(g, x) + ε dgcc(x, z) +Kdcc(x, z) + o(dgcc(g, x))

≤ dgcc(g, x)
(
ω(1) + ε+ (ε+K + 1)o(1)

)
where all o(·) are uniform.
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Remark 4.3. If we prove that the mapping Lg is the approximate differential of f
then from Lemma 4.4 it follows that the Lipschitz mapping is differentiable almost
everywhere since the claims of Lemmas 4.1, 4.2, 4.3 and 4.4 hold almost everywhere in
dom f . This gives us an alternative proof of Theorem 3.4.

Now we have all necessary tools to complete the proof of Theorem 4.2.

Proof of Theorem 4.2. 1st step. In the conditions of Theorem 4.2 the claims of
Lemmas 4.1, 4.2 and 4.3 hold. In particular Aj = dom apXjf is a measurable set,
j = 1, . . . , dimH1, f is approximately differentiable along the curves Γk(g; t) at t = 0,

k = 1, . . . , N almost everywhere in the set A =
dimH1⋂
i=1

Aj and relations (4.2) and (4.7)

hold.
If (4.7) holds at the point g ∈ A then, in view of structure of Lg (4.6), estimate

(4.3) implies

ap lim
v→g

d̃cc(f(g), f(v))

dcc(g, v)

≤ ap lim
v→g

d̃
f(g)
cc (f(g), Lg(v)) + d̃

f(g)
cc (Lg(v), f(v))

)
+ o
(
d̃
f(g)
cc (Lg(v), f(v))

)
dgcc(g, v)

≤ C sup
dg

cc(g,v)≤1

( N∏
k=1

δ̃
f(g)
tk

ap dsub(f ◦ Γk)(g)
)
<∞. (4.10)

Hence, the left hand side of (4.10) is finite almost everywhere in A. Applying Theo-
rem 3.6, we obtain a countable family of measurable sets covering A up to the set of
measure 0 such that the restriction of f to each of them is a Lipschitz mapping.

Let E be one set of this countable family and let Lg : Gg ∩M → Gf(g) be defined
at almost all points of E ⊂ A. For proving the theorem it remains to verify that Lg
is a homomorphism of the Lie groups. In particular, we need to prove that given two
points û, v̂ ∈ Gg we have

Lg(û · v̂) = Lg(û) · Lg(v̂). (4.11)

2nd step. Let g ∈ E be a density point where (4.7) holds and suppose Bcc(g, rg) ⊂
Gg. Then given v̂ ∈ Bcc(g, rg), t ∈ [−rg, rg] there exists v′t = v′t(g) ∈ E, such that
dgcc(δ

g
t v̂, v

′
t) = o(t). By Lemma 4.4, we have

ap lim
t→0

d̃
f(g)
cc (f(v′t), Lg(v

′
t))

t
= lim

t→0

d̃
f(g)
cc (f(v′t), Lg(v

′
t))

t
= 0.

Then, using Property 4.4 of the mapping Lg, we derive

d̃f(g)
cc (f(v′t), Lg(δ

g
t v̂)) ≤ d̃f(g)

cc (f(v′t), Lg(v
′
t)) + d̃f(g)

cc (Lg(v
′
t), Lg(δ

g
t v̂))

= o(dgcc(g, v
′
t)) + o(dgcc(g, δ

g
t v̂)) = o(t) as t→ 0.
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Next, consider two points û, v̂ ∈ Bcc(g, rg/2) and their product û · v̂. If û =

Φ̂g(s1, . . . , sN) and v̂ = Φ̂g(r1, . . . , rN) then define by induction

u1(t)(·) = Φ1(ts1)(·);
uk(t)(·) = Φk(tsk) ◦ uk−1(t)(·), k = 2, . . . , N ;

v1(t)(·) = Φ1(tr1)(·);
vk(t)(·) = Φk(trk) ◦ vk−1(t)(·), k = 2, . . . , N.

From the structure of functions Φk(·) and from Theorem 2.3 it follows

dgcc(uN(t)(g), δgt û) = o(t),

dgcc(vN(t)(g), δgt v̂) = o(t),

dgcc(vN(t) ◦ uN(t)(g), δgt (û · v̂)) = o(t) as t→ 0.

As long as g is a density point of E we can find w′k(t), k = 1, . . . , 2N , such that
dgcc
(
uk(t)(g), w

′
k(t)
)

= o(t) and dgcc
(
vk(t)(uN(t)(g)), w′N+k(t)

)
= o(t) as t → 0, k =

1, . . . , N . By the same arguments as above we conclude that

d̃f(g)
cc (f(w′2N(t)), Lg(δ

g
t [û · v̂])) = o(t) as t→ 0.

All we need is to verify that

d̃f(g)
cc (f(w′2N(t)), Lg(δ

g
t û) · Lg(δ

g
t v̂)) = o(t) as t→ 0. (4.12)

3rd step. For proving (4.12) we assume Hν(E) < ∞ and restrict the set E
applying Egorov’s and Luzin’s theorems.

Recall that the mapping x 7→ ap dsubf ◦ Γk(x), defined in E, is measurable. By
Lemma 4.4 we get

lim
t→0

d̃f(x)
cc (f ◦ Φk(t)(x), δ

f(x)
t ap dsub(f ◦ Γk)(x)) = 0 (4.13)

for every density point x ∈ E as t→ 0, Φk(t)(x) ∈ E.
First, by Luzin’s theorem there is a closed set E1 ⊂ E such that Hν(E \E1) < ε/3

and

(a) all the mappings x 7→ ap dsubf ◦ Γk(x) are uniformly continuous in E1, k =
1, . . . , N .

Next, by Egorov’s theorem there is a measurable set E2 ⊂ E1 such that Hν(E1 \
E2) < ε/3 and

(b) the limit (4.13) converges uniformly on E2, k = 1, . . . , N .

Now we consider a family of measurable functions

E2 3 x→ ψt(x) =
Hν(Bcc(x, t) \ E)

Hν(Bcc(x, t))
.

We have that lim
t→0

ψt(x) = 0 at almost all points of x ∈ E2. By Egorov’s theorem there
exists a measurable set E3 ⊂ E2 such that Hν(E2 \ E3) < ε/3 and the limit
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(c) lim
t→0

ψt(x) = 0 is uniform in E3.

Property (c) allows us to repeat the arguments of the 2nd step with all o(·) uniform
in E3. Therefore, if x ∈ E3 we have

d̃f(x)
cc

(
f(w′1(t)(x)), δ

f(x)
tσ1

ap dsub(f ◦ Γ1)(x)
)

= o(t),

d̃f(x)
cc

(
f(w′k(t)(w

′
k−1(t))(x)), δ

f(w′k−1(t))

tσk
ap dsub(f ◦ Γk)(w

′
k−1(t)))

)
= o(t),

d̃f(x)
cc

(
f(w′N+1(t)(w

′
N(t))(x)), δ

f(w′N (t))
tτ1 ap dsub(f ◦ Γ1)(w

′
N(t)))

)
= o(t),

d̃f(x)
cc

(
f(w′N+k(t)(w

′
N+k−1(t))(x)), δ

f(w′N+k−1(t))

tτk
ap dsub(f ◦Γk)(w′N+k−1(t)))

)
=o(t)

as t → 0, k = 2, . . . , N, and all o(·) are uniform with respect to x ∈ E3. Here the
coefficients σk and τk are defined from (4.6) for the points û and v̂ respectively. Then,
by properties (a) and (b), the relation

d̃f(x)
cc

(
f(w′2N(t)(x)),

N∏
k=1

δ
f(x)
tσk

ap dsub(f ◦ Γk)(x) ·
N∏
k=1

δ
f(x)
tτk

ap dsub(f ◦ Γk)(x)
)

= d̃f(x)
cc

(
f(w′2N(t)(x)), δ

f(x)
t Lx(û) · δf(x)

t Lx(v̂)
)

= o(t)

is uniform with respect to x ∈ E3. Finally,

t d̃f(x)
cc

(
Lx(û · v̂), Lx(û) · Lx(v̂)

)
= d̃f(x)

cc

(
δ
f(x)
t Lx(û · v̂), δf(x)

t Lx(û) · δf(x)
t Lx(v̂)

)
≤ d̃f(x)

cc

(
δ
f(x)
t Lx(û · v̂), f(w′2N(t)(x))

)
+ d̃f(x)

cc

(
f(w′2N(t)(x)), δ

f(x)
t Lx(û) · δf(x)

t Lx(v̂)
)

= o(t)

and (4.10) is proved for x ∈ E3. Since ε is an arbitrary positive number, the Theorem
is proved.

5 Application: an area formula

Suppose that x = exp
( N∑
i=1

xiXi

)
(g). Define a quantity

dρ(g, x) = max
{(dimH1∑

j=1

|xj|2
) 1

2
,
( dimH2∑
j=dimH1+1

|xj|2
) 1

4
, . . . ,

( N∑
j=dimHM−1+1

|xj|2
) 1

2M
}
. (5.1)

It is easy to see that dρ is locally equivalent to d∞. Since we have already proved
that d∞ and dcc are locally equivalent, the following statement also holds.
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Proposition 5.1. Let g ∈M. There is a compact neighborhood U(g) ⊂M such that

c1dcc(u, v) ≤ dρ(u, v) ≤ c2dcc(u, v)

for all u, v in U(g), where constants 0 < c1 ≤ c2 <∞ independent of u, v ∈ U(g).

Corollary 5.1. Quantity dρ is a quasimetric.

Denote an open ball in the quasimetric dρ of radius r with center in x as Boxρ(x, r).
Define the (spherical) Hausdorff measure of a set E with respect to metric dρ as

Hk
ρ(E) = lim

ε→0+
inf
{∑

i

rki : E ⊂
⋃
i

Boxρ(xi, ri), ri < ε
}
.

For Lipschitz mappings of Carnot–Carathéodory mappings the following area for-
mula holds.

Theorem 5.1 ([11]). Suppose E ⊂M is a measurable set, and the mapping ϕ : E →
M̃ is Lipschitz with respect to sub-Riemannian quasimetrics dρ and d̃ρ. Then the area
formula ∫

E

f(x)J SR(ϕ, x)dHν
ρ(x) =

∫
ϕ(E)

∑
x: x∈ϕ−1(y)

f(x)dHν
ρ(y) (5.2)

holds, where f : F → M (here M is an arbitrary Banach space) is such that function
f(x)J SR(ϕ, x) is integrable, and

J SR(ϕ, x) =
√

det(Dϕ(x)∗Dϕ(x)) (5.3)

is the sub-Riemannian Jacobian of ϕ at x.

As an immediate corollary of 5.1 and 4.2 we obtain the following result.

Theorem 5.2. Suppose E ⊂M is a measurable set, and the mapping ϕ : E → M̃ is
approximately differentiable almost everywhere. Then the area formula∫

E

f(x) apJ SR(ϕ, x)dHν
ρ(x) =

∫
M̃

∑
x: x∈ϕ−1(y)\Σ

f(x)dHν
ρ(y)

holds, where f : F → M (here M is an arbitrary Banach space) is such that function
f(x) apJ SR(ϕ, x) is integrable, Hν

ρ(Σ) = 0 and

apJ SR(ϕ, x) =
√

det(apDϕ(x)∗ apDϕ(x))

is the approximate sub-Riemannian Jacobian of ϕ at x.
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Proof. By Theorem 4.2, there is a sequence of disjoint sets Σ, E1, E2, . . . such that

E = Σ ∪
∞⋃
i=1

Ei, Hν
ρ(Σ) = 0 and every restriction ϕ|Ei

is a Lipschitz mapping. Then,

by Theorem 5.1, we have∫
E

f(x) apJ SR(ϕ, x)dHν
ρ(x) =

∞∑
i=1

∫
Ei

f(x)J SR(ϕ, x)dHν
ρ(x)

=
∞∑
i=1

∫
M̃

∑
x: x∈ϕ−1(y)∩Ei

f(x)dHν
ρ(y) =

∫
M̃

∑
x: x∈ϕ−1(y)\Σ

f(x)dHν
ρ(y).

Remark 5.1. Since Ball-Box theorem holds, the Hausdorff measure, constructed by
the metric dcc, is absolutely continuous with respect to the Hausdorff measure, con-
structed by the distance dρ, and vice versa. Therefore we have

dHν
ρ(x) = Dρ,cc(x) dHν

cc(x), x ∈M,

where 0 < α ≤ Dρ,cc(x) ≤ β < ∞ is measurable function. So, the area formula
of Theorem 5.2 can be written also for the Hausdorff measure, constructed by the
distance dρ.
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Math., vol. 144, Birkhäuser, Basel, 1996, 72–323.
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