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Abstract. Let (X , d, µ) be a metric measure space satisfying both the upper dou-
bling and the geometrically doubling conditions. In this article, the authors give a
survey on the Hardy space H1 on non-homogeneous spaces and its applications. These
results include: the regularized BMO spaces RBMO(µ) and R̃BMO(µ), the regu-
larized BLO spaces RBLO(µ) and R̃BLO(µ), the Hardy spaces H1(µ) and H̃1(µ),
the behaviour of the Calderón-Zygmund operator and its maximal operator on Hardy
spaces and Lebesgue spaces, a weighted norm inequality for the multilinear Calderón-
Zygmund operator, the boundedness on Orlicz spaces and the endpoint estimate for
the commutator generated by the Calderón-Zygmund operator or the generalized frac-
tional integral with any RBMO(µ) function or any R̃BMO(µ) function, and equiva-
lent characterizations for the boundedness of the generalized fractional integral or the
Marcinkiewicz integral, respectively.

1 Introduction

The real-variable theory of the Hardy space on the D-dimensional Euclidean space RD

initiated by Stein and Weiss [34] plays an important role in various fields of analysis
and partial differential equations; see, for example, [34, 32, 7, 33]. It is well known
that the Hardy space is a good substitute of Lp(RD) when p ∈ (0, 1] since some of
the singular integrals (for example, the Riesz transform) are bounded on Hp(RD),
but not on Lp(RD) when p ∈ (0, 1]. In 1972, Fefferman and Stein [7] showed that
the Hardy space H1(RD) is the predual of the space BMO(RD). Later, Coifman [2]
obtained the atomic characterization of Hp(R), which was extended to D > 1 by
Latter in [21]. In 1974, Coifman [3] introduced the notion of molecules on R to obtain
the characterizations of Fourier transforms of boundary distributions of functions in
Hp(R), with p ∈ (0, 1], which were further applied to establish some Fourier multiplier
theorems on Hp(R). Moreover, the atomic and the molecular characterizations enable
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the extension of the real variable theory of the Hardy spaces on RD to general metric
measure spaces.

In 1971, Coifman and Weiss [4] introduced the following setting of the space of
homogeneous type which generalizes the Euclidean space RD with the D-dimensional
Lebesgue measure.

Definition 1.1. A metric space (X , d) equipped with a nonnegative measure µ is called
a space of homogeneous type if the measure µ satisfies the doubling condition: there
exists a positive constant C(µ) such that, for any ball B(x, r) := {y ∈ X : d(x, y) < r}
with x ∈ X and r ∈ (0,∞),

µ(B(x, 2r)) ≤ C(µ)µ(B(x, r)). (1.1)

Typical examples of spaces of homogeneous type include Euclidean spaces, Eu-
clidean spaces with weighted measure satisfying (1.1), Heisenberg groups, and con-
nected and simply connected nilpotent Lie groups. Since 1970s, there have been a lot
of fruitful results on the theory of function spaces and singular integral operators on
spaces of homogeneous type; see, for example, [4, 5, 35, 11, 6]. The space of homoge-
neous type is seen as a natural setting for the study of the theory of Hardy spaces and
singular integrals.

In the last two decades, some research indicates that many results in the theory
of the classical Hardy spaces and singular integrals are still valid for non-doubling
measures; see, for example, [28, 29, 37, 38, 30, 31, 39, 40, 41, 42]. In particular, let
µ be a non-negative Radon measure on the Euclidean space RD which satisfies the
polynomial growth condition: there exist positive constants C0 and κ ∈ (0, D] such
that, for all x ∈ RD and r ∈ (0,∞),

µ(B(x, r)) ≤ C0r
κ, (1.2)

where B(x, r) := {y ∈ RD : |y − x| < r}. The measure µ does not necessarily satisfy
(1.1). We mention that the analysis with non-doubling measures, especially, the T (b)
theorem and the L2(µ)-boundedness of the Cauchy integral, plays an important role in
solving the long open Painlevé’s problem by Tolsa in [40]; see also [41, 42].

However, as pointed out by Hytönen [17], (RD, | · |, µ) (or more generally, a metric
measure space (X , d, µ) with µ satisfying the polynomial growth condition (1.2)) is
different from, but not more general than, the space of homogeneous type. Hytönen
further introduced the following new class of metric measure spaces, which unifies the
spaces of homogeneous type in the sense of Coifman and Weiss and (RD, | · |, µ) with
µ satisfying (1.2); see also [1, 20]. In what follows, let R+ := (0,∞).

Definition 1.2. A metric measure space (X , d, µ) is said to be upper doubling if µ is
a Borel measure on X and there exist a dominating function λ : X × R+ → R+ and
a positive constant C(λ), depending on λ, such that, for each x ∈ X , r → λ(x, r) is
non-decreasing and, for all x ∈ X and r ∈ (0,∞),

µ(B(x, r)) ≤ λ(x, r) ≤ C(λ)λ(x, r/2).
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Remark 1.1. (i) Let (X , d, µ) be upper doubling with λ being the dominating function
on X × (0,∞) as in Definition 1.2. It was proved in [20] that there exists another
dominating function λ̃ such that λ̃ ≤ λ, C(λ̃) ≤ C(λ) and, for all x, y ∈ X with
d(x, y) ≤ r,

λ̃(x, r) ≤ C(λ̃)λ̃(y, r).

(ii) It was shown in [36] that the upper doubling condition is equivalent to the weak
growth condition: there exist a dominating function λ : X ×R+ → R+ with r → λ(x, r)
non-decreasing and positive constants C(λ) and ε such that,

(a) for all r ∈ (0,∞), t ∈ [0, r], x, y ∈ X and d(x, y) ∈ [0, r],

|λ(y, r + t)− λ(x, r)| ≤ C(λ)

[
d(x, y) + t

r

]ε
λ(x, r);

(b) for all x ∈ X and r ∈ (0,∞),

µ(B(x, r)) ≤ λ(x, r).

Obviously, a space of homogeneous type is a special case of upper doubling spaces,
where one can take the dominating function λ(x, r) := µ(B(x, r)). Moreover, let µ
be a non-negative Radon measure on RD which only satisfies the polynomial growth
condition (1.2). By taking λ(x, r) := Crκ for positive constants C and κ ∈ (0, D], we
see that (RD, | · |, µ) is also an upper doubling measure space.

In [17], Hytönen also introduced the following notion of geometrically doubling
metric spaces.

Definition 1.3. A metric space (X , d) is said to be geometrically doubling if there
exists some N0 ∈ N := {1, 2, . . . } such that, for any ball B(x, r) ⊂ X , there exists a
finite ball covering {B(xi, r/2)}i of B(x, r) such that the cardinality of this covering is
at most N0.

Remark 1.2. Let (X , d) be a metric space. In [17], Hytönen showed that the following
statements are equivalent:

(i) (X , d) is geometrically doubling;
(ii) For any ε ∈ (0, 1) and ball B(x, r) ⊂ X , there exists a finite ball covering

{B(xi, εr)}i of B(x, r) such that the cardinality of this covering is at most N0ε
−n,

where here and in what follows, N0 is as in Definition 1.3 and n := log2N0;
(iii) For every ε ∈ (0, 1), any ball B(x, r) ⊂ X contains at most N0ε

−n centers of
disjoint balls {B(xi, εr)}i;

(iv) There exists M ∈ N such that any ball B(x, r) ⊂ X contains at most M centers
{xi}i of disjoint balls {B(xi, r/4)}Mi=1.

It is well known that the doubling condition (1.1) implies the geometrically doubling
condition; see [4, pp. 67-68]. Conversely, if (X , d) is a complete geometrically doubling
metric space, then there exists a Borel measure µ on X satisfying the doubling condition
(1.1); see [17] and its related references.
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In what follows, a metric measure space (X , d, µ) satisfying both the upper dou-
bling and geometrically doubling conditions is simply called a non-homogeneous space.
A natural and interesting question is how to generalize the classical theory of function
spaces and singular integrals to the non-homogeneous context. This question has been
answered from many aspects concerning the atomic Hardy space H1(µ), the regular-
ized bounded mean oscillation space RBMO(µ), the Calderón-Zygmund operator, the
fractional integral and the Marcinkiewicz integral. However, there are still many open
problems such as the characterization of H1(µ) in terms of the maximal function and
the Littlewood-Paley function, and the theory of the Hardy space Hp(µ) for p ∈ (0, 1);
see [44] for the details and some other unsolved questions.

One of main motivations for developing harmonic analysis on the non-homogeneous
space is the natural existence of some important singular integral operators on some
non-homogeneous spaces, such as Bergman-type singular operators from several com-
plex variables (see [43, 19]).

The purpose of this article is to give a survey about the Hardy space H1(µ) over a
non-homogeneous space and its applications. The main results that we review include:
the regularized BMO spaces RBMO(µ) and R̃BMO(µ), the regularized BLO spaces
RBLO(µ) and R̃BLO(µ), the Hardy spaces H1(µ) and H̃1(µ), the behaviour of the
Calderón-Zygmund operator and its maximal operator on Hardy spaces and Lebesgue
spaces, a weighted norm inequality for the multilinear Calderón-Zygmund operator,
the boundedness on Orlicz spaces and the endpoint estimate for the commutator gen-
erated by a Calderón-Zygmund operator or the generalized fractional integral with
any RBMO(µ) function or any R̃BMO(µ) function, and equivalent characterizations
of the boundedness of the generalized fractional integral, the Marcinkiewicz integral
respectively.

This survey is organized as follows.
In Section 2, we begin with some basic facts on non-homogeneous spaces (X , d, µ).

Then we review the results on the regularized BMO space RBMO(µ) and its vari-
ant, R̃BMO(µ), including the John-Nirenberg inequality and the John-Strömberg
sharp maximal characterization of RBMO(µ) or R̃BMO(µ), and the relation between
RBMO(µ) and R̃BMO(µ). Some related topics on the space of type BLO are also
included in this section and, in particular, we show that, if (X , d, µ) is a space of ho-
mogeneous type and µ(X ) = ∞, then RBLO(µ) = BLO(µ). At the end of Section 2,
we review the results on the atomic Hardy spaces H1(µ) and H̃1(µ). In particular,
we discuss the molecular characterizations of H1(µ) and H̃1(µ), the duality between
H1(µ) and RBMO(µ), or between H̃1(µ) and R̃BMO(µ), and the relation between
H1(µ) and H̃1(µ).

Section 3 is mainly devoted to the boundedness of the Calderón-Zygmund oper-
ator and its maximal operator on Hardy spaces and Lebesgue spaces. We first dis-
cuss the Calderón-Zygmund decomposition and two interpolation theorems in the non-
homogeneous space. Then we review the results of the equivalent boundedness of T on
Lp(µ) for all p ∈ (1,∞) and the boundedness of T on H̃1(µ). We also review the bound-
edness of the maximal Calderón-Zygmund operator T# on Lp(µ) for all p ∈ (1,∞) and
its endpoint estimate. We further survey the weighted norm inequality for the multi-
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linear Calderón-Zygmund operator and the boundedness on Orlicz spaces, especially,
on Lp(µ) with p ∈ (1,∞), and the weak type endpoint estimate of the commutator
generated by the Calderón-Zygmund operator with any RBMO(µ) function or any
R̃BMO(µ) function.

In Section 4, we first present some equivalent characterizations of the boundedness
of the generalized fractional integral, then review the boundedness of the commutator
generated by the generalized fractional integral with any RBMO(µ) function or any
R̃BMO(µ) function on Orlicz spaces, especially, on Lp(µ) with p ∈ (1,∞), and its
weak type endpoint estimate. At the end of Section 4, we review the results on the
equivalent boundedness of the Marcinkiewicz integral and its endpoint estimates.

Finally, we make some conventions on notation. Throughout the whole paper, C
stands for a positive constant which is independent of the main parameters, but it
may vary from line to line. Further, we use C(ρ, α, . . .) to denote a positive constant
depending on the parameters ρ, α, . . . For any ball B, its center and radius are denoted,
respectively, by cB and rB. Moreover, for any ball B := B(cB, rB) and ρ ∈ (0,∞),

ρB := B(cB, ρrB).

Furthermore, for any subset E of X , we use χE to denote its characteristic function.

2 The Hardy space H1 on non-homogeneous spaces

In this section, we review the results on RBMO(µ) and R̃BMO(µ), the Hardy spaces
H1(µ) and H̃1(µ), and RBLO(µ). To this end, we first recall some geometrical prop-
erties of the non-homogeneous space. Then we state some results of RBMO(µ),
R̃BMO(µ) and the regularized BLO spaces RBLO(µ) and R̃BLO(µ). We further
discuss the results on H1(µ) and H̃1(µ), including the duality between H1(µ) and
RBMO(µ), or between H̃1(µ) and R̃BMO(µ), the molecular characterizations ofH1(µ)

and H̃1(µ), and the relation between H1(µ) and H̃1(µ).

2.1 Doubling balls and coefficients KB,S and K̃
(α)
B,S

In this subsection, we recall some necessary notions and notation, and we also state
some known basic facts and fundamental results on non-homogeneous spaces.

Though the doubling condition on the measure µ is not assumed uniformly for all
balls in the non-homogeneous space (X , d, µ), there still exist many balls which have
the following (η, β)-doubling property.

Definition 2.1. Let η, β ∈ (1,∞). A ball B ⊂ X is said to be (η, β)-doubling if

µ(ηB) ≤ βµ(B).

The upper doubling condition ensures the abundance of large doubling balls. On
the other hand, for β big enough, there exist many small (η, β)-doubling balls under
the assumption of the geometrically doubling condition. To be precise, Hytönen [17]
obtained the following properties; see [17, Lemmas 3.2 and 3.3].
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Lemma 2.1. Let (X , d, µ) be upper doubling, η, β ∈ (1,∞) and β > [C(λ)]log2 η =: ην.
Then, for every ball B ⊂ X , there exists j ∈ Z+ := N ∪ {0} such that ηjB is (η, β)-
doubling.

Lemma 2.2. Let η ∈ (1,∞), (X , d) be geometrically doubling and β > ηn, where n is
as in Remark 1.2(ii). If µ is a Borel measure on X which is finite on bounded sets,
then, for almost every x ∈ X , there exist arbitrarily small (η, β)-doubling balls centered
at x. Indeed, their radii may be chosen to be the form η−jr for j ∈ N and for any
preassigned number r ∈ (0,∞).

In what follows, for any η ∈ (1,∞) and ball B, the smallest (η, βη)-doubling ball of
the form ηjB with j ∈ N is denoted by B̃η, where

βη := (max{η3n, η3ν}) + 30n + 30ν = η3(max{n,ν}) + 30n + 30ν . (2.1)

The following coefficient KB,S for all balls B ⊂ S was introduced in [17] as an
analogue of the coefficient KQ,R from Tolsa [37]; see also [38, 39].

Definition 2.2. For any two balls B ⊂ S, let

KB,S := 1 +

∫
2S\B

1

λ(cB, d(x, cB))
dµ(x),

where cB is the center of the ball B.

The coefficient KB,S measures how close the ball B is to the ball S geometrically.
Here, we state some useful properties of KB,S established in [17, 20].

Proposition 2.1. (i) For all balls B ⊂ R ⊂ S,

KB,R ≤ KB,S.

(ii) For any ρ ∈ [1,∞), there exists a positive constant C(ρ), depending on ρ, such
that, for all balls B ⊂ S with rS ≤ ρrB,

KB,S ≤ C(ρ).

(iii) For any α ∈ (1,∞), there exists a positive constant C(α), depending on α, such
that, for all balls B,

KB, B̃α ≤ C(α).

(iv) There exists a positive constant c such that, for all balls B ⊂ R ⊂ S,

KB,S ≤ KB,R + cKR,S.

In particular, if B and R are concentric, then c = 1.

(v) There exists a positive constant c̃ such that, for all balls B ⊂ R ⊂ S,

KR,S ≤ c̃KB,S;

moreover, if B and R are concentric, then

KR,S ≤ KB,S.
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The following coefficient K̃(α)
B,S, introduced by Fu, Yang and Yuan [9], is the discrete

version of KB,S, which was introduced by Tolsa [37] when (X , d, µ) := (RD, | · |, µ) with
µ as in (1.2), and by Bui and Duong [1] in a general non-homogeneous space with
α := 6.

Definition 2.3. For any two balls B ⊂ S and α ∈ (1,∞), let

K̃
(α)
B,S := 1 +

N
(α)
B, S∑
k=1

µ(αkB)

λ(cB, αkrB)
,

where cB denotes the center of the ball B, rB and rS respectively denote the radii of
B and S, and N (α)

B,S is the smallest integer satisfying αN
(α)
B, SrB ≥ rS.

When (X , d, µ) := (RD, | · |, µ) with µ as in (1.2), it is easy to see that, for any
α ∈ (1,∞),

KB,S ∼ K̃
(α)
B,S; (2.2)

see [37]. For a general non-homogeneous space (X , d, µ), obviously, KB,S . K̃
(α)
B,S for

any α ∈ (1,∞) and all balls B ⊂ S of X . On the other hand, for a given α ∈ (1,∞),
in general, (2.2) is not true. Nevertheless, the coefficient K̃(α)

B,S also has the following
useful properties similar to those of KB,S (see [8, 9]). Observe that the coefficient
K̃

(α)
B,S preserves most of the properties of the coefficient KB,S from (i) through (v) in

Proposition 2.1 except those when the balls B and R are concentric in (iv) and (v) of
Proposition 2.1.

Proposition 2.2. Let α ∈ [0, 1).

(i) For all balls B ⊂ R ⊂ S,
K̃

(α)
B,R ≤ 2K̃

(α)
B,S.

(ii) For any ρ ∈ [1,∞), there exists a positive constant C(ρ), depending only on ρ,
such that, for all balls B ⊂ S with rS ≤ ρrB,

K̃
(α)
B,S ≤ C(ρ).

(iii) There exists a positive constant C(α), depending on α, such that, for all balls B,

K̃
(α)

B, B̃α
≤ C(α).

(iv) There exists a positive constant c, depending on C(λ) and α, such that, for all
balls B ⊂ R ⊂ S,

K̃
(α)
B,S ≤ K̃

(α)
B,R + cK̃

(α)
R,S.

(v) There exists a positive constant c̃, depending on C(λ) and α, such that, for all
balls B ⊂ R ⊂ S,

K̃
(α)
R,S ≤ c̃K̃

(α)
B,S.
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Remark 2.1. We remark that, among the results related to KB,S or K̃(α)
B,S we review

below, all conclusions, from Theorems 2.2, 2.3, 2.5, 2.6, 2.7, 3.1, 3.2, 3.3, 3.4, 3.12,
3.14, 3.15, 3.16, 4.2 and 4.3 below, hold true for both KB,S and K̃

(α)
B,S. On the other

hand, Theorems 3.6, 3.7, 4.1, 4.4 and 4.5 only hold true for KB,S, while Theorem 3.8
is only established for K̃(α)

B,S. To be precise, let B ⊂ S be two balls with µ(2S\B) = 0.
Then we see that

KB,S = 1, (2.3)

which plays an important role in the proofs of Theorems 3.6, 3.7, 4.1, 4.4 and 4.5.
However, (2.3) is not true for K̃(α)

B,S and it is unclear whether, for two balls B ⊂ S with
µ(2S\B) = 0, there exists a positive constant C, independent of B and S, such that
K̃

(α)
B,S ≤ C or not. Thus, it is unknown whether the conclusions of Theorems 3.6, 3.7,

4.1, 4.4 and 4.5 are true or not for K̃(α)
B,S; see Remarks 3.2, 3.3, 4.2, 4.4 and 4.5(iv)

below. Also, the discrete form K̃
(α)
B,S plays an important role in the proof of Theorem

3.8. It is still unknown in general whether the conclusion of Theorem 3.8 holds true
for KB,S or not; see the statement below Corollary 3.1.

At the end of this subsection, we discuss the sufficient condition for (2.2). To this
end, we first recall the following notion of the weak reverse doubling condition for the
dominating function λ from [10].

Definition 2.4. The dominating function λ as in Definition 1.2 is said to satisfy the
weak reverse doubling condition if, for all r ∈ (0, 2 diam (X )) and a ∈ [1, 2 diam (X )/r),
there exists a number C(a) ∈ [1,∞), depending only on a and X , such that, for all
x ∈ X ,

λ(x, ar) ≥ C(a)λ(x, r) and
ϑa∑
k=1

1

C(ak)
<∞,

where ϑa is the smallest integer such that ϑa > loga(2 diam (X )/r) if diam (X ) < ∞
and ϑa := ∞ if diam (X ) = ∞.

Remark 2.2. It was shown in [10, Example 3.2] that there exists a large class of
spaces with dominating functions satisfying the weak reverse doubling condition. To
be precise, let (X , d, µ) be a connected metric measure space with a doubling measure
µ. The minimal dominating function Fβ(x, r), defined in [36] by setting, for all x ∈ X
and r ∈ (0,∞),

Fβ(x, r) := β

∫ ∞

1

µ(B(x, sr))

sβ+1
ds

satisfies Definition 1.2 and the weak reverse doubling condition with C(a) ∼ am for
some m ∈ (0, n].

The following sufficient condition of KB,S ∼ K
(α)
B,S in terms of the weak reverse

doubling condition was obtained in [10].

Theorem 2.1. Let α ∈ (1,∞). If the dominating function λ satisfies the weak reverse
doubling condition, then, for any two balls B ⊂ S,

KB,S ∼ K̃
(α)
B,S.
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On the other hand, it was shown in [10, Example 3.6] that the weak reverse doubling
condition is necessary to guarantee KB,S ∼ K̃

(α)
B,S for all balls B ⊂ S in the sense that,

there exists a large class of spaces which do not satisfy the weak reverse doubling
condition and KB,S � K̃

(α)
B,S for some balls B ⊂ S and α ∈ (1,∞).

2.2 The regularized BMO spaces RBMO(µ) and R̃BMO(µ)

This subsection is devoted to some results of RBMO(µ) and R̃BMO(µ). To be pre-
cise, we first state the John-Nirenberg inequality and an equivalent characterization of
RBMO(µ). Then we discuss the relation between RBMO(µ) and R̃BMO(µ).

Now we recall the following notion of the space RBMOγ(µ) from [17, 20].

Definition 2.5. Let ρ ∈ (1,∞) and γ ∈ [1,∞). A function f ∈ L1
loc (µ) is said to be

in the space RBMOγ(µ) if there exist a positive constant C and, for any ball B ⊂ X ,
a number fB such that

1

µ(ρB)

∫
B

|f(x)− fB| dµ(x) ≤ C (2.4)

and, for any two balls B and B1 such that B ⊂ B1,

|fB − fB1| ≤ C(KB,B1)
γ. (2.5)

The infimum of the positive constants C satisfying both (2.4) and (2.5) is defined to
be the RBMOγ(µ) norm of f and denoted by ‖f‖RBMOγ(µ).

The space RBMOγ(µ) was proved to be independent of the choices of ρ ∈ (1,∞) in
[17, Lemma 4.6] and γ ∈ [1,∞) in [20, Proposition 2.5]. Moreover, similar to the case
that (X , d, µ) := (RD, | · |, µ), several equivalent characterizations of RBMO(µ) were
established in [20]. In what follows, we denote RBMOγ(µ) simply by RBMO(µ).

Let (X , d, µ) be a space of homogeneous type in the sense of Coifman and Weiss
[4, 5] with µ as in (1.1) and BMO(µ) as in [5]. Then it is easy to see that RBMO(µ) ⊂
BMO(µ). Moreover, if µ(X ) = ∞, by [17, Proposition 4.7] (which is false when
µ(X ) < ∞), we know that BMO(µ) = RBMO(µ). However, for a general doubling
measure µ with µ(X ) <∞, it may happen that

RBMO(µ) $ BMO(µ);

see [37, p. 106, Example 2.13]. Nevertheless, RBMO(µ) is still seen as a suitable
substitute for BMO(RD) since many properties fulfilled by BMO(RD) are still satisfied
by RBMO(µ).

The following theorem is a version of the John-Nirenberg inequality for RBMO(µ)
obtained by Hytönen [17, Proposition 6.1]; see [37] for the case when

(X , d, µ) := (RD, | · |, µ)

with µ as in (1.2).
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Theorem 2.2. Let (X , d, µ) be a non-homogeneous space. Then, for every ρ ∈ (1,∞),
there exists a positive constant c such that, for all f ∈ RBMO(µ), balls B0 and t ∈
(0,∞),

µ ({x ∈ B0 : |f(x)− fB0| > t}) ≤ 2µ(ρB0)e
−ct/‖f‖RBMO(µ) ,

where fB0 is as in Definition 2.5 with B replaced by B0.

The following result stated in [17, Corollary 6.3] is a straightforward consequence
of Theorem 2.2.

Corollary 2.1. Let (X , d, µ) be a non-homogeneous space. Then, for every ρ ∈ (1,∞)
and p ∈ [1,∞), there exists a positive constant C such that, for all f ∈ RBMO(µ) and
balls B, [

1

µ(ρB)

∫
B

|f(x)− fB|p dµ(x)

]1/p

≤ C‖f‖RBMO(µ),

where fB is as in Definition 2.5.

Remark 2.3. As a consequence of Corollary 2.1, together with the Hölder inequality,
we obtain an equivalent definition of RBMO(µ) by replacing (2.4) with[

1

µ(ρB)

∫
B

|f(x)− fB|p dµ(x)

]1/p

≤ C,

where fB and C are as in Definition 2.5.

In [15], Hu, Meng and Yang established an equivalent characterization of RBMO(µ)
in terms of the John-Strömberg sharp maximal function. To be precise, let f be a µ-
measurable function. If f is real-valued, then, for all balls B with µ(B) 6= 0, the median
value of f on the ball B, denoted by mf (B), is defined to be one of the numbers such
that

µ({x ∈ B : f(x) > mf (B)}) ≤ µ(B)/2

and
µ({x ∈ B : f(x) < mf (B)}) ≤ µ(B)/2.

For all balls B with µ(B) = 0, let mf (B) := 0. If f is complex-valued, we take

mf (B) := mRef (B) + imImf (B),

where Ref and Imf denote the real part and the imaginary part of f , respectively.
Let s ∈ (0, 1) and ρ ∈ (1,∞). For any fixed ball B and µ-measurable function f ,

define mρ
0, s;B(f) by setting

mρ
0, s;B(f) := inf{t ∈ (0,∞) : µ({y ∈ B : |f(y)| > t}) < sµ(ρB)}

when µ(B) > 0, and
mρ

0, s;B(f) := 0
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when µ(B) = 0. For any µ-measurable function f , the John-Strömberg sharp maximal
function Mρ,#

0, s (f) is defined by setting, for all x ∈ X ,

Mρ,#
0, s (f)(x) := sup

B3x
mρ

0, s;B

(
f −mf

(
B̃6ρ2

))
+ sup

x∈B⊂S,
B, S (6ρ2, β6ρ2 )−doubling

|mf (B)−mf (S)|
KB,S

.

Using Mρ,#
0, s , we define a version of RBMO(µ) as follows.

Definition 2.6. Let s ∈ (0, 1) and ρ ∈ (1,∞). A µ-measurable function f is said to
belong to the space RBMO0, s(µ) if Mρ,#

0, s (f) ∈ L∞(µ). Moreover, ‖Mρ,#
0, s (f)‖L∞(µ) is

defined to be the RBMO0, s(µ) norm of f and denoted by ‖f‖RBMO0, s(µ).

Now we state the following equivalent characterization of RBMO(µ) in terms of
Mρ,#

0, s from [15].

Theorem 2.3. Let ρ ∈ (1,∞) and s ∈ (0, β−2
6ρ2/4). Then the space RBMO(µ) and

RBMO0, s(µ) coincide with equivalent norms.

Let ϕ be a strictly increasing and nonnegative continuous function on [0,∞) such
that

lim
t→∞

ϕ(t) = ∞. (2.6)

Then, by Theorem 2.3, the following conclusion holds true.

Corollary 2.2. Let ρ ∈ (1,∞) and ϕ be a strictly increasing and nonnegative con-
tinuous function on [0,∞) satisfying (2.6). If f ∈ L1

loc(µ) and there exists a positive
constant C such that, for all balls B ⊂ X ,

1

µ(ρB)

∫
B

ϕ
(∣∣∣f(x)−mf (B̃)

∣∣∣) dµ(x) ≤ C

and that, for all (6ρ2, β6ρ2)-doubling balls B ⊂ S,

|mf (B)−mf (S)| ≤ CKB,S,

then f ∈ RBMO(µ).

Notice that a typical example of ϕ satisfying Corollary 2.2 is ϕ(r) := rp for all
r ∈ [0,∞) and p ∈ (0,∞). Thus, Remark 2.3 also holds true for p ∈ (0, 1); see [15].

If we replace the coefficient KB,S with its discrete version K̃(ρ)
B,S for ρ ∈ (1,∞), we

have the following version of the BMO-type space RBMO(µ).

Definition 2.7. Let ρ ∈ (1,∞) and γ ∈ [1,∞). A function f ∈ L1
loc(µ) is said to be

in the space R̃BMOρ, γ(µ), if it satisfies (2.4) and (2.5) with KB,B1 replaced by K̃(ρ)
B,B1

.
The infimum of the corresponding positive constants C satisfying both (2.4) and

(2.5) with KB,B1 replaced by K̃(ρ)
B,B1

is defined to be the R̃BMOρ, γ(µ) norm of f and
denoted by ‖f‖

R̃BMOρ, γ(µ)
.
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As is shown in [10], the space R̃BMOρ, γ(µ) is independent of the choices of ρ ∈
(1,∞) and γ ∈ [1,∞). In what follows, we denote R̃BMOρ, γ(µ) simply by R̃BMO(µ).

By [10, Remark 2.5], when (X , d, µ) := (RD, | · |, µ) with µ as in (1.2), by (2.2), we
see that R̃BMO(µ) becomes the regularized BMO space RBMO(µ) introduced in [37]
for γ = 1 and in [14] for γ > 1. Moreover, for ρ ∈ (1,∞) and γ ∈ [1,∞),

RBMO(µ) ⊂ R̃BMO(µ).

However, it is still unclear whether we always have RBMO(µ) = R̃BMO(µ) or not.
Nevertheless, as an application of Theorem 2.1, we obtain the following result from
[10].

Corollary 2.3. Let (X , d, µ) be a non-homogeneous space with the dominating function
satisfying the weak reverse doubling condition. Then R̃BMO(µ) = RBMO(µ) with
equivalent norms.

Remark 2.4. (i) If (X , d, µ) := (RD, | · |, µ) with µ as in (1.2) and λ(x, r) := C0r
κ for

all x ∈ RD and r ∈ [0,∞), where κ ∈ (0, D], it was proved in [10, Remark 3.5] that the
weak reverse condition holds true automatically in this case and hence the conclusion
of Corollary 2.3 is true in this case.

(ii) If (X , d, µ) is a space of homogeneous type in the sense of Coifman and Weiss
with µ as in (1.1), and X connected, it was proved in [10, Remark 3.5] that λ(x, r) :=
µ(B(x, r)) for all x ∈ X and r ∈ [0, 2 diam (X )) satisfies the weak reverse condition
and hence the conclusion of Corollary 2.3 is also true in this case.

(iii) However, if (X , d, µ) is a non-homogeneous space without the dominating func-
tion satisfying the weak reverse doubling condition, then it is still unclear whether
R̃BMO(µ) = RBMO(µ) or not.

2.3 The regularized BLO spaces RBLO(µ) and R̃BLO(µ)

In this subsection, we first review the regularized BLO space RBLO(µ) introduced in
[22]. We begin with the notion of RBLO(µ) as follows.

Definition 2.8. Let ε, ρ ∈ (1,∞), and βρ be as in (2.1). A real-valued function
f ∈ L1

loc (µ) is said to be in the space RBLO(µ) if there exists a non-negative constant
C such that, for all balls B,

1

µ(εB)

∫
B

[
f(y)− ess inf

B̃ρ

f

]
dµ(y) ≤ C (2.7)

and that, for all (ρ, βρ)-doubling balls B ⊂ S,

ess inf
B

f − ess inf
S

f ≤ CKB,S. (2.8)

Moreover, the RBLO(µ)-norm of f is defined to be the minimal constant C as in (2.7)
and (2.8) and denoted by ‖f‖RBLO(µ).
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Remark 2.5. By [22, Propositions 2.1 and 2.2], we see that RBLO(µ) is independent of
the choices of the constants ε, ρ ∈ (1,∞). Moreover, Lin and Yang established several
equivalent characterizations of RBLO(µ) and showed that RBLO(µ) ⊂ RBMO(µ) in
[22].

Recall that, on a space of homogeneous type, (X , d, µ), a real-valued function f ∈
L1

loc (µ) is said to be in the space BLO(µ), if there exists a non-negative constant C
such that, for all balls B,

1

µ(B)

∫
B

[
f(y)− ess inf

B
f
]
dµ(y) ≤ C. (2.9)

Moreover, the BLO(µ)-norm of f is defined to be the minimal constant C as in (2.9)
and denoted by ‖f‖BLO(µ).

Now we discuss the relation between RBLO(µ) and BLO(µ) when µ is as in (1.1).
We first show a positive result.

Proposition 2.3. Let (X , d, µ) be a space of homogeneous type, with µ(X ) = ∞, and
λ(x, r) := µ(B(x, r)) for all x ∈ X and r ∈ (0,∞). Then RBLO(µ) = BLO(µ) with
equivalent norms.

Proof. It is obvious that RBLO(µ) ⊂ BLO(µ) and, for all f ∈ RBLO(µ),

‖f‖BLO(µ) ≤ ‖f‖RBLO(µ).

Conversely, let f ∈ BLO(µ). By the facts that BLO(µ) ⊂ BMO(µ) and, for all
f ∈ BLO(µ),

‖f‖BMO(µ) . ‖f‖BLO(µ),

where BMO(µ) is defined as in [5], and the fact that RBMO(µ) = BMO(µ) when
µ(X ) = ∞, we see that, for all balls B ⊂ S,

ess inf
B

f − ess inf
S

f ≤ ess inf
B

f −mB(f) + |mB(f)− fB|+ |fB − fS|

+|fS −mS(f)|+mS(f)− ess inf
S

f

≤ 1

µ(B)

∫
B

|f(y)− fB| dµ(y) + |fB − fS|

+
1

µ(S)

∫
S

|f(y)− fS| dµ(y) +
1

µ(S)

∫
S

[
f(y)− ess inf

S
f
]
dµ(y)

. ‖f‖BLO(µ) +KB,S‖f‖BMO(µ) . KB,S‖f‖BLO(µ),

where, for all balls B, fB is as in Definition 2.5 and

mB(f) :=
1

µ(B)

∫
B

f(x) dµ(x).

This shows that (2.8) holds true. We then obtain BLO(µ) ⊂ RBLO(µ) and, for all
f ∈ BLO(µ),

‖f‖RBLO(µ) . ‖f‖BLO(µ).

This finishes the proof of Proposition 2.3.



The Hardy Space H1 117

We further borrow an example from [37, Example 2.13] to show that, when µ is as
in (1.1) with µ(X ) <∞, it may happen that RBLO(µ) $ BLO(µ).

Example 1. Let (X , d, µ) := (R2, | · |, µ), with µ the 2-dimensional Lebesgue measure
restricted to the unit ball B(0, 1), and λ(x, r) := r for all x ∈ R2 and r ∈ (0,∞).
This measure is doubling and µ(R2) <∞. Now we claim that RBLO(µ) = L∞(µ)/C,
L∞(µ) modulo constant functions, with equivalent norms. Indeed, by an argument
similar to that used in [37, Example 2.13], we see that RBMO(µ) = L∞(µ)/C with
equivalent norms. Then, from the fact that

L∞(µ)/C ⊂ RBLO(µ) ⊂ RBMO(µ),

the claim follows. On the other hand, it is not difficult to see that

−(log |x|)χ{x∈R2: 0<|x|<1}(x) ∈ BLO(µ)\(L∞(µ)/C);

see Zhou [45]. We further conclude that, in this case,

RBLO(µ) = L∞(µ)/C $ BLO(µ),

which completes the proof of Example 1.

Now we state a result from [22] about the boundedness, from RBMO(µ) into
RBLO(µ), of the natural maximal operator N defined by setting, for all f ∈ L1

loc (µ)
and x ∈ X ,

N (f)(x) := sup
B3x,B (6, β6)−doubling

1

µ(B)

∫
B

f(y) dµ(y).

Theorem 2.4. Let f ∈ RBMO(µ). Then N (f) is either infinite everywhere or finite
almost everywhere and, in the latter case, there exists a positive constant C, indepen-
dent of f , such that

‖N (f)‖RBLO(µ) ≤ C‖f‖RBMO(µ).

Then we review the equivalent characterization of RBLO(µ) from [22] in terms of
N .

Theorem 2.5. A locally integrable function f belongs to RBLO(µ) if and only if there
exist h ∈ L∞(µ) and g ∈ RBMO(µ) with N (g) finite µ-almost everywhere such that

f = N (g) + h. (2.10)

Furthermore,
‖f‖RBLO(µ) ∼ inf{‖g‖RBMO(µ) + ‖h‖L∞(µ)},

where the infimum is taken over all representations of f as in (2.10) and the equivalent
positive constants are independent of f .

If we replace the coefficient KB,S with its discrete version K̃(ρ)
B,S for ρ ∈ (1,∞), we

have the following version of the BLO-type space.
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Definition 2.9. Let ε, ρ ∈ (1,∞). A real-valued function f ∈ L1
loc(µ) is said to be in

the space R̃BLO(µ) if it satisfies (2.7) and (2.8) withKB,S replaced by K̃(ρ)
B,S. Moreover,

the R̃BLO(µ)-norm of f is defined to be the minimal constant C as in (2.7) and (2.8)
with KB,S replaced by K̃(ρ)

B,S and denoted by ‖f‖
R̃BLO(µ)

.

Remark 2.6. (i) Arguing as the proofs of [22, Propositions 2.1 and 2.2], we conclude
that R̃BLO(µ) is independent of the choices of the constants ε, ρ ∈ (1,∞). Moreover,
it is easy to see that the equivalent characterizations of RBLO(µ) in [22] also hold true
for R̃BLO(µ), and

R̃BLO(µ) ⊂ R̃BMO(µ).

(ii) We point out that the conclusions of Proposition 2.3 and Example 1 are also
true for R̃BLO(µ).

(iii) It is easy to see that the conclusions of Theorems 2.4 and 2.5 also hold true
with RBLO(µ) replaced by R̃BLO(µ) and RBMO(µ) by R̃BMO(µ).

(iv) For any ρ, ε ∈ (1,∞), it is obvious that RBLO(µ) ⊂ R̃BLO(µ).

As an application of Theorem 2.1, we obtain the following result.

Corollary 2.4. Let (X , d, µ) be a non-homogeneous space with the dominating function
satisfying the weak reverse doubling condition. Then R̃BLO(µ) = RBLO(µ) with
equivalent norms.

Remark 2.7. (i) If (X , d, µ) is as in Remark 2.4(i), by the same reason as therein, we
see that the conclusion of Corollary 2.4 is true in this case.

(ii) If (X , d, µ) is as in Remark 2.4(ii), by the same reason as therein, we know that
the conclusion of Corollary 2.4 is also true in this case.

(iii) However, if (X , d, µ) is a non-homogeneous space without the dominating func-
tion satisfying the weak reverse doubling condition, then it is still unclear whether
R̃BLO(µ) = RBLO(µ) or not.

2.4 The Hardy spaces H1, p
atb(µ) and H̃1, p

atb(µ)

In this subsection, we discuss the duality between H1, p
atb (µ) and RBMO(µ), or between

H̃1, p
atb (µ) and R̃BMO(µ). The molecular characterizations of H̃1, p

atb (µ) and H1, p
atb (µ) are

also included in this subsection. To begin with, we recall the notion of the atomic
Hardy space (see, for example, [20]).

Definition 2.10. Let ρ ∈ (1,∞), γ ∈ [1,∞) and p ∈ (1,∞]. A function b ∈ L1(µ) is
called a (p, γ)λ-atomic block if

(i) there exists a ball B such that supp (b) ⊂ B;
(ii) ∫

X
b(x) dµ(x) = 0;
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(iii) for any j ∈ {1, 2}, there exist a function aj supported on ball Bj ⊂ B and a
number λj ∈ C such that

b = λ1a1 + λ2a2 (2.11)

and
‖aj‖Lp(µ) ≤ [µ(ρBj)]

1/p−1(KBj ,B)−γ.

Moreover, let
|b|H1, p, γ

atb, ρ (µ) := |λ1|+ |λ2|. (2.12)

A function f ∈ L1(µ) is said to belong to the atomic Hardy space H1, p, γ
atb, ρ (µ) if there

exist (p, γ)λ-atomic blocks {bi}∞i=1 such that f =
∑∞

i=1 bi in L1(µ) and

∞∑
i=1

|bi|H1, p, γ
atb, ρ (µ) <∞.

The H1, p, γ
atb, ρ (µ) norm of f is defined by

‖f‖H1, p, γ
atb, ρ (µ) := inf

{
∞∑
i=1

|bi|H1, p, γ
atb, ρ (µ)

}
,

where the infimum is taken over all the possible decompositions of f as above.

Remark 2.8. (i) It was proved in [20] that, for each p ∈ (1,∞], the atomic Hardy
space H1, p, γ

atb, ρ (µ) is independent of the choice of ρ ∈ (1,∞). Thus, we denote H1, p, γ
atb, ρ (µ)

simply by H1, p, γ
atb (µ).

(ii) When γ = 1, we denote H1, p, γ
atb (µ) simply by H1, p

atb (µ). Let us denote by Ĥ1, p
atb (µ)

temporarily the atomic Hardy space, defined by (p, 1)λ-atomic blocks, introduced by
Bui and Duong [1]. Recall that, in the definition of (p, 1)λ-atomic blocks in [1], instead
of (2.11) and (2.12), it requires that

b =
∞∑
j=1

λjaj and |b|Ĥ1, p
atb (µ) :=

∞∑
j=1

|λj|.

It was proved, in [27, Remark 1.3(ii)], that the atomic Hardy space Ĥ1, p
atb (µ) andH1, p

atb (µ)
coincide with equivalent norms.

The duality between RBMOγ(µ) and H1, p, γ
atb, ρ (µ) is the following result obtained in

[20]; see also [1] for γ = 1.

Theorem 2.6. (i) Let γ ∈ [1,∞) and p ∈ (1,∞). Then the spaces H1, p, γ
atb (µ) and

H1,∞, γ
atb (µ) coincide with equivalent norms and[

H1,∞, γ
atb (µ)

]∗
= RBMOγ(µ) .

(ii) Let γ ∈ (1,∞) and p ∈ (1,∞]. Then the spaces H1, p, γ
atb (µ) and H1, p

atb (µ) coincide
with equivalent norms.
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Remark 2.9. (i) By Theorem 2.6(ii), we see that, for each p ∈ (1,∞], the atomic
Hardy space H1, p, γ

atb (µ) is independent of the choice of γ ∈ [1,∞). Thus, in what
follows, we denote H1, p, γ

atb (µ) simply by H1, p
atb (µ).

(ii) By Theorem 2.6 and Remark 2.8(i), we denote the atomic Hardy space H1, p
atb (µ)

simply by H1(µ).

Replacing the coefficient KB,S by its discrete version K̃(ρ)
B,S as in Definition 2.3, we

present the following notion of the atomic Hardy space H̃1, p
atb (µ) from [10].

Definition 2.11. Let ρ ∈ (1,∞), p ∈ (1,∞] and γ ∈ [1,∞). A function b ∈ L1(µ)
is called a (p, γ, ρ)λ-atomic block if b satisfies (i)-(iii) in Definition 2.10 with KBj , B

replaced by K̃(ρ)
Bj , B

. A function f ∈ L1(µ) is said to belong to the atomic Hardy space
H̃1, p, γ

atb, ρ (µ) if there exist (p, γ, ρ)λ-atomic blocks {bi}∞i=1 such that f =
∑∞

i=1 bi in L1(µ)
and

∞∑
i=1

|bi|H̃1, p, γ
atb, ρ (µ) <∞.

The H̃1, p, γ
atb, ρ (µ) norm of f is defined by

‖f‖H̃1, p, γ
atb, ρ (µ) := inf

{
∞∑
i=1

|bi|H̃1, p, γ
atb, ρ (µ)

}
,

where the infimum is taken over all the possible decompositions of f as above.

Remark 2.10. (i) When (X , d, µ) := (RD, | · |, µ) with µ as in (1.2), by (2.2), we see
that H̃1, p, γ

atb, ρ (µ) becomes the atomic Hardy space H1, p, γ
atb, ρ (µ) in [37] for γ = 1 and in [14]

for γ > 1. Obviously, for ρ ∈ (1,∞), p ∈ (1,∞] and γ ∈ [1,∞), we always have

H̃1, p, γ
atb, ρ (µ) ⊂ H1, p, γ

atb, ρ (µ).

(ii) It was shown in [10] that, for each p ∈ (1,∞], the atomic Hardy space H̃1, p, γ
atb, ρ (µ)

is independent of the choices of ρ and γ and that, for all p ∈ (1,∞), the spaces
H̃1, p, γ

atb, ρ (µ) and H̃1,∞, γ
atb, ρ (µ) coincide with equivalent norms. Thus, in what follows, we

denote H̃1, p, γ
atb, ρ (µ) simply by H̃1, p

atb (µ) or H̃1(µ). Moreover, it was shown in [10] that

[H̃1, p
atb (µ)]∗ = R̃BMO(µ) for all p ∈ (1,∞].
(iii) Let (X , d, µ) be a space of homogeneous type with µ as in (1.1) and H1, p(µ),

the atomic Hardy space as in [5] with p ∈ (1,∞]. Then, it is easy to see that

H1, p(µ) ⊂ H̃1, p
atb (µ) ⊂ H1, p

atb (µ).

Moreover, if µ(X ) = ∞, by [17, Proposition 4.7] and [20, Proposition 3.5], together
with [25, Lemma 2.12], we know that

H1, p(µ) = H̃1, p
atb (µ) = H1, p

atb (µ).

However, for general doubling measure µ with µ(X ) <∞, it may happen that

H1, p(µ) $ H̃1, p
atb (µ) ⊂ H1, p

atb (µ);

see [39, p. 317, lines 15 to 16] and [37, p. 125, Example 5.6].
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The boundedness of Calderón-Zygmund operators on H1, p
atb (µ) is still unknown.

However, it turns out that Calderón-Zygmund operators are bounded on H̃1, p
atb (µ), which

was proved via the molecular characterization of H̃1, p
atb (µ) in [10]. We first state the

notion of the molecular Hardy space.

Definition 2.12. Let ρ ∈ (1,∞), p ∈ (1,∞], γ ∈ [1,∞) and ε ∈ (0,∞). A function
b ∈ L1(µ) is called a (p, γ, ε, ρ)λ-molecular block if

(i) ∫
X
b(x) dµ(x) = 0;

(ii) there exist some ball B and some constants M̃, M ∈ N such that, for all
k ∈ Z+ and j ∈ {0, . . . ,Mk} with Mk := M̃ if k = 0 and Mk := M if k ∈ N, there
exist functions mk, j supported on some balls Bk, j ⊂ Uk(B) for all k ∈ Z+, where
U0(B) := ρ2B and Uk(B) := ρk+2B\ρk−2B with k ∈ N, and λk, j ∈ C such that

b =
∞∑
k=0

Mk∑
j=1

λk, jmk, j,

‖mk, j‖Lp(µ) ≤ ρ−kε [µ(ρBk, j)]
1/p−1

[
K̃

(ρ)

Bk, j , ρk+2B

]−γ
and

|b|H̃1, p, γ, ε
mb, ρ (µ) :=

∞∑
k=0

Mk∑
j=1

|λk, j| <∞.

A function f ∈ L1(µ) is said to belong to the molecular Hardy space H̃1, p, γ, ε
mb, ρ (µ) if

there exist (p, γ, ε, ρ)λ-molecular blocks {bi}∞i=1 such that f =
∑∞

i=1 bi in L1(µ) and
∞∑
i=1

|bi|H̃1, p, γ, ε
mb, ρ (µ) <∞.

The H̃1, p, γ, ε
mb, ρ (µ) norm of f is defined by

‖f‖H̃1, p, γ, ε
mb, ρ (µ) := inf

{
∞∑
i=1

|bi|H̃1, p, γ, ε
mb, ρ (µ)

}
,

where the infimum is taken over all the possible decompositions of f as above.

Now we present the molecular characterization of the atomic Hardy space H̃1, p, γ
atb, ρ (µ)

obtained in [10].

Theorem 2.7. Let ρ ∈ (1,∞), p ∈ (1,∞], γ ∈ [1,∞) and ε ∈ (0,∞). Then
H̃1, p, γ

atb, ρ (µ) = H̃1, p, γ, ε
mb, ρ (µ) with equivalent norms.

Remark 2.11. (i) It was shown in [10] that the conclusion of Theorem 2.7 is still valid
with K̃(ρ)

B,S in Definitions 2.10 and 2.11 replaced by KB,S in Definition 2.2.
(ii) We point out that there exists no equivalent characterization for H1, p

atb (µ) or
H̃1, p

atb (µ) by the maximal function or the Littlewood-Paley function in the present set-
ting.
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Now we discuss the relation between H1, p
atb (µ) and H̃1, p

atb (µ). As an application of
Theorem 2.1, we obtain the following result from [10].

Corollary 2.5. Let (X , d, µ) be a non-homogeneous space with the dominating function
satisfying the weak reverse doubling condition. Then

H̃1, p
atb (µ) = H̃1, p

mb (µ) = H1, p
atb (µ)

with equivalent norms.

Remark 2.12. (i) If (X , d, µ) is as in Remark 2.4(i), by the same reason as therein,
we know that the conclusion of Corollary 2.5 is true in this case.

(ii) If (X , d, µ) is as in Remark 2.4(ii), by the same reason as therein, we find that
the conclusion of Corollary 2.5 is also true in this case.

(iii) However, if (X , d, µ) is a non-homogeneous space without the dominating func-
tion satisfying the weak reverse doubling condition, then it is still unclear whether
H̃1, p

atb (µ) = H1, p
atb (µ) or not.

3 Calderón-Zygmund operators

In this section, we mainly discuss the boundedness of the Calderón-Zygmund operator
on the Hardy space as well as the Lebesgue space. We also consider the boundedness
of the maximal Calderón-Zygmund operator, the multilinear Calderón-Zygmund oper-
ator and the multilinear commutator generated by the Calderón-Zygmund operator on
various function spaces.

To this end, we first introduce the notion of the Calderón-Zygmund operator in [19]
(see also [18]).

Definition 3.1. A function K ∈ L1
loc ((X ×X )\{(x, x) : x ∈ X}) is called a Calderón-

Zygmund kernel if there exists a positive constant C(K), depending on K, such that,
(i) for all x, y ∈ X with x 6= y,

|K(x, y)| ≤ C(K)
1

λ(x, d(x, y))
; (3.1)

(ii) there exist positive constants δ ∈ (0, 1] and c(K), depending on K, such that,
for all x, x̃, y ∈ X with d(x, y) ≥ c(K)d(x, x̃),

|K(x, y)−K(x̃, y)|+ |K(y, x)−K(y, x̃)| ≤ C(K)
[d(x, x̃)]δ

[d(x, y)]δλ(x, d(x, y))
. (3.2)

A linear operator T is called a Calderón-Zygmund operator with kernel K satisfying
(3.1) and (3.2) if, for all f ∈ L∞b (µ), the space of all L∞(µ) functions with bounded
support, and x 6∈ supp (f),

Tf(x) :=

∫
X
K(x, y)f(y) dµ(y). (3.3)
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Moreover, let M (X ) be the space of all complex-valued Borel measures on X . The
maximal operator T# associated with T is defined as follows. For every f ∈ L∞b (µ),
ν ∈ M (X ) and x ∈ X , let

T#f(x) := sup
r∈(0,∞)

|Trf(x)| and T#ν(x) := sup
r∈(0,∞)

|Trν(x)|, (3.4)

where, for every r ∈ (0,∞),

Trf(x) :=

∫
{y∈X : d(x,y)>r}

K(x, y)f(y) dµ(y)

and
Trν(x) :=

∫
{y∈X : d(x,y)>r}

K(x, y) dν(y).

Remark 3.1. (i) We remark that a new example of operators with kernel satisfying
(3.1) and (3.2) is the so-called Bergman-type operator appearing in [43]; see also [19]
for an explanation.

(ii) We note that the Tb theorem for the Calderón-Zygmund operators was estab-
lished by Hytönen and Martikainen [19] via the construction of the random system of
dyadic cubes, and later Tan and Li [36] obtained the T1 theorem by establishing the
Littlewood-Paley theory.

3.1 Boundedness of Calderón-Zygmund operators

This subsection is devoted to the boundedness of the Calderón-Zygmund operator on
H1, p

atb (µ) as well as other function spaces. To this end, we first state the following
Calderón-Zygmund decomposition theorem obtained by Bui and Duong [1, Theorem
6.3] (see [37, Lemma 7.3] for the case (X , d, µ) := (RD, | · |, µ) with µ as in (1.2)). Let γ0

be a fixed positive constant satisfying that γ0 > (216)max{ν, n}, where ν is as in Lemma
2.1 and n := log2N0 as in Remark 1.2(ii).

Theorem 3.1. Let p ∈ [1, ∞), f ∈ Lp(µ) and t ∈ (0, ∞) (t > γ
1/p
0 ‖f‖Lp(µ)/[µ(X )]1/p

when µ(X ) <∞). Then
(i) there exists a family of finite overlapping balls, {6Bj}j, such that {Bj}j is pairwise

disjoint,
1

µ (36Bj)

∫
Bj

|f(x)|p dµ(x) >
tp

γ0

for all j,

1

µ(36ηBj)

∫
ηBj

|f(x)|p dµ(x) ≤ tp

γ0

for all j and η ∈ (2, ∞)

and
|f(x)| ≤ t for µ-almost every x ∈ X \ (∪j6Bj);

(ii) for each j, let Rj be a (108, (216)ν)-doubling ball of the family {(108)kBj}k∈N,
and

ωj := χ6Bj
/

(∑
k

χ6Bk

)
.
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Then there exists a family {ϕj}j of functions such that, for each j, supp (ϕj) ⊂
Rj, ϕj has a constant sign on Rj,∫

X
ϕj(x) dµ(x) =

∫
6Bj

f(x)ωj(x) dµ(x)

and ∑
j

|ϕj(x)| ≤ γt for µ-almost every x ∈ X ,

where γ is a positive constant depending only on (X , µ) and there exists a positive
constant C, independent of f , t and j, such that, if p = 1, then

‖ϕj‖L∞(µ)µ(Rj) ≤ C

∫
X
|f(x)ωj(x)| dµ(x)

and, if p ∈ (1, ∞), then[∫
Rj

|ϕj(x)|p dµ(x)

]1/p

[µ(Rj)]
1/p′ ≤ C

tp−1

∫
X
|f(x)ωj(x)|p dµ(x);

(iii) when p ∈ (1,∞), if, for any j, choosing Rj to be the smallest (108, (216)ν)-
doubling ball of the family {(108)kBj}k∈N, then

h :=
∑
j

(fωj − ϕj) ∈ H1(µ)

and there exists a positive constant C, independent of f and t, such that

‖h‖H1(µ) ≤
C

tp−1
‖f‖pLp(µ).

Using Theorem 3.1, Bui and Duong [1] established the following interpolation result
for linear operators.

Theorem 3.2. Let T be a linear operator which is bounded from H1(µ) into L1(µ) and
from L∞(µ) into RBMO(µ). Then T can be extended to a bounded linear operator on
Lp(µ) for all p ∈ (1,∞).

In [23], Lin and Yang obtained the following interpolation theorem which is useful
in the study for the boundedness of sublinear operators.

Theorem 3.3. Let T be a sublinear operator that is bounded from L∞(µ) into
RBMO(µ) and from H1(µ) into L1,∞(µ). Then T can be extended to a bounded sub-
linear operator on Lp(µ) for all p ∈ (1,∞).

Now we state the following results for the boundedness of the Calderón-Zygmund
operator associated with kernel K satisfying (3.1) and (3.2) obtained by Hytönen, Da.
Yang and Do. Yang [20] and, independently, Bui and Duong [1].
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Theorem 3.4. Let T be a Calderón-Zygmund operator associated with kernel K satis-
fying (3.1) and (3.2), which is bounded on L2(µ). Then the following conclusions hold
true:

(i) T is of weak type (1, 1);
(ii) T is bounded from L∞(µ) into RBMO(µ);
(iii) T is bounded from H1(µ) into L1(µ);
(iv) T is bounded on Lp(µ) for all p ∈ (1,∞).

Moreover, it was shown by Hytönen, Liu, Da. Yang and Do. Yang in [18] that the
L2(µ)-boundedness of a Calderón-Zygmund operator T is equivalent to that of T on
Lp(µ) for all p ∈ (1,∞) and its endpoint estimate as follows.

Theorem 3.5. Let T be a Calderón-Zygmund operator associated with kernel K sat-
isfying (3.1) and (3.2). Then the following statements are equivalent:

(i) T is bounded on L2(µ);
(ii) T is bounded on Lp(µ) for all p ∈ (1,∞);
(iii) T is of weak type (1, 1).

Now we investigate the equivalent characterization of the boundedness of T on
L2(µ) and from H1(µ) to L1(µ). Let µ(X ) = ∞ and the kernel K of T satisfy (3.1)
and the Hörmander condition that there exists a positive constant C such that, for all
x 6= x̃,∫

{y∈X : d(x,y)≥2d(x,x̃)}
[|K(x, y)−K(x̃, y)|+ |K(y, x)−K(y, x̃)|] dµ(y) ≤ C. (3.5)

Liu, Da. Yang and Do. Yang [27] obtained the following conclusion.

Theorem 3.6. Let p ∈ (1,∞] and T be a Calderón-Zygmund operator associated with
kernel K satisfying (3.1) and (3.5). If µ(X ) = ∞, then the following statements are
equivalent:

(i) T is bounded on L2(µ);
(ii) T is bounded from H1(µ) into L1(µ);
(iii) T is bounded from H1(µ) into L1,∞(µ).

Remark 3.2. It is still unclear whether the conclusions of Theorem 3.6 hold true or
not, if we replace the coefficient KB,S by its discrete counterpart K̃(α)

B,S. Precisely, since,
for any balls B ⊂ S with µ(2S\B) = 0, it is unclear whether there exists a positive
constant C, independent of B and S, such that K̃(α)

B,S ≤ C or not, the method used in
the proof of [27, Lemma 3.1] does not apply to K̃(α)

B,S.

Using Theorems 3.6 and 2.3, Hu, Meng and Yang [15] further obtained the following
characterizations for the boundedness of Calderón-Zygmund operators.

Theorem 3.7. Let ρ ∈ (1,∞) and T be a Calderón-Zygmund operator associated with
kernel K satisfying (3.1) and (3.2). Then the following seven statements are equivalent:

(i) T is bounded from H1(µ) into L1(µ);
(ii) T is bounded from H1(µ) into L1,∞(µ);
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(iii) for some ν ∈ (0,∞), there exists a positive constant C such that, for all
ε, t ∈ (0,∞), balls B and bounded functions f with supp (f) ⊂ B,

µ({x ∈ B : |Tε(f)(x)| > t}) ≤ Ct−νµ(ρB)‖f‖νL∞(µ);

(iv) for some σ ∈ (0, 1), there exists a positive constant C such that, for all ε ∈
(0,∞), balls B and bounded functions f with supp (f) ⊂ B,

1

µ(ρB)

∫
B

|Tε(f)(x)|σ dµ(x) ≤ C‖f‖σL∞(µ);

(v) T is bounded from L∞(µ) into RBMO(µ);
(vi) T is bounded on Lp(µ) for some p ∈ (1,∞);
(vii) T is bounded on Lp(µ) for all p ∈ (1,∞).

Remark 3.3. For the same reason as in Remark 3.2, the results in Theorem 3.7 are
also unknown when KB,S is replaced by K̃(α)

B,S.

Now we turn our attention to the boundedness of T on H1(µ) and H̃1(µ) established
in [10]. To be precise, let T be bounded on L2(µ) and T ∗1 = 0, where, by T ∗1 = 0, we
mean that, for any g ∈ L∞b (µ) and

∫
X g(y) dµ(y) = 0, it holds true that∫

X
Tg(x) dµ(x) = 0.

Theorem 3.8. Let p ∈ (1,∞). Suppose that T is a Calderón-Zygmund operator associ-
ated with kernel K satisfying (3.1) and (3.2), which is bounded on L2(µ), and T ∗1 = 0.
Then there exists a positive constant C such that, for all f ∈ H̃1(µ), Tf ∈ H̃1(µ) and

‖Tf‖H̃1(µ) ≤ C‖f‖H̃1(µ).

As a corollary of Theorem 3.8, we obtain the boundedness of Calderón-Zygmund
operators on R̃BMO(µ) in [10] immediately.

Corollary 3.1. Let T be as in Theorem 3.8 and T ∗ the adjoint operator of T . Then
there exists a positive constant C such that, for all f ∈ R̃BMO(µ), T ∗f ∈ R̃BMO(µ)
and

‖T ∗f‖
R̃BMO(µ)

≤ C‖f‖
R̃BMO(µ)

.

We remark that the method used in the proof of Theorem 3.8 does not work for
the boundedness of T on H1(µ). Moreover, it is still unknown in general whether T
is bounded on H1(µ) or not. However, if the dominating function λ satisfies the weak
reverse doubling condition (see Definition 2.4), then we have the following conclusion;
see [10].

Corollary 3.2. Let (X , d, µ) be a non-homogeneous space with the dominating function
satisfying the weak reverse doubling condition.

(i) If T is as in Theorem 3.8, then T is bounded on H1(µ).
(ii) If T is as in Theorem 3.8 and T ∗ the adjoint operator of T , then T ∗ is bounded

on RBMO(µ).
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Remark 3.4. (i) When (X , d, µ) is as in Remark 2.4(i), by the same reason as therein,
we see that all the conclusions of Corollary 3.2 are true in this case.

(ii) When (X , d, µ) is as in Remark 2.4(ii), by the same reason as therein, we know
that all the conclusions of Corollary 3.2 are also true in this case.

3.2 Boundedness of maximal Calderón-Zygmund operators

This subsection is devoted to the Lp(µ)-boundedness, with p ∈ (1,∞), of the maxi-
mal Calderón-Zygmund operator T# and its endpoint estimates. We start with the
following result established in [18].

Theorem 3.9. Let T be a Calderón-Zygmund operator associated with kernel K sat-
isfying (3.1) and (3.2), which is bounded on L2(µ), and T# the maximal Calderón-
Zygmund operator associated with T . Then the following statements hold true:

(i) T# is bounded on Lp(µ) for all p ∈ (1,∞);
(ii) for a measure ν ∈ M (X ), let

‖ν‖ :=

∫
X
|dν(x)|.

Then, there exists a positive constant c̃ such that, for all ν ∈ M (X ),

‖T#ν‖L1,∞(µ) ≤ c̃‖ν‖.

Moreover, T# is of weak type (1, 1).

For the maximal Calderón-Zygmund operator associated with kernel K satisfying
(3.1) and (3.5), Liu, Meng and Yang [26] obtained the following conclusions.

Theorem 3.10. Let T# be the maximal Calderón-Zygmund operator as in (3.4) as-
sociated with kernel K satisfying (3.1) and (3.5). Then the following statements are
equivalent:

(i) T# is bounded on Lp0(µ) for some p0 ∈ (1,∞);
(ii) T# is of weak type (1, 1);
(iii) T# is bounded on Lp(µ) for all p ∈ (1,∞).

Using Theorem 3.10, Liu, Meng and Yang [26] further showed the following result,
which is an improvement of Theorem 3.9.

Theorem 3.11. Let T be an L2(µ)-bounded Calderón-Zygmund operator associated
with kernel K satisfying (3.1) and (3.5), and T# the maximal operator associated with
T . Then the following statements hold true:

(i) T# is bounded on Lp(µ) for all p ∈ (1,∞);
(ii) T# is of weak type (1, 1).

On the other hand, in the case when p = ∞, Lin and Yang [22] showed that T# is
bounded from L∞(µ) into RBLO(µ), which is stated as follows.

Theorem 3.12. Let T be a Calderón-Zygmund operator as in (3.3) associated with
kernel K satisfying (3.1) and (3.2), which is bounded on L2(µ). Then the maximal
operator T# is bounded from L∞(µ) to RBLO(µ).
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3.3 Weighted estimates for multilinear Calderón-Zygmund op-
erators

In this subsection, we review a weighted norm inequality for the multilinear Calderón-
Zygmund operator obtained by Hu, Meng and Yang [16]. We first recall some notation
and notions.

Let m be a positive integer, ∆ := {(x, . . . , x) : x ∈ X} and K(x, y1, . . . , ym) a µ-
locally integrable function mapping from (X ×· · ·×X )\∆ to C, which satisfies the size
condition that there exists a positive constant C such that, for all x, y1, . . . , ym ∈ X
with x 6= yj for some j,

|K(x, y1, . . . , ym)| ≤ C
1

[
∑m

i=1 λ(x, d(x, yi))]m
, (3.6)

and the regularity condition that there exist some positive constants τ and C such that,
for all x, x̃, y1, . . . , ym ∈ X with max{d(x, y1), . . . , d(x, ym)} ≥ 2d(x, x̃),

|K(x, y1, . . . , ym)−K(x̃, y1, . . . , ym)|

≤ C
[d(x, x̃)]τ

[
∑m

i=1 d(x, yi)]
τ [
∑m

i=1 λ(x, d(x, yi))]m
. (3.7)

A multilinear operator T associated with kernel K is called a multilinear Calderón-
Zygmund operator, if it is bounded from L1(µ)×· · ·×L1(µ) into L1/m,∞(µ) and satisfies
that, for all f1, . . . , fm ∈ L∞b (µ) and µ-almost every x ∈ X\(∩mj=1 supp (fj)),

T (f1, . . . , fm)(x)

:=

∫
X
· · ·
∫
X
K(x, y1, . . . , ym)f1(y1) · · · fm(ym) dµ(y1) · · · dµ(ym). (3.8)

When m = 1, the operator T defined by (3.8) is a version of the Calderón-Zygmund
operator. When m ≥ 2 and (X , d, µ) := (RD, | · |, dx), the operator defined by (3.8)
is just the classical multilinear Calderón-Zygmund operator. The study of multilinear
Calderón-Zygmund operators is not motivated only by a mere quest to generalize the
classical Calderón-Zygmund theory, but rather by their natural appearance in analysis.
In what follows, we always assume m = 2 for brevity.

Let ρ ∈ [1,∞), ~P := (p1, p2) with p1, p2 ∈ [1,∞) and 1/p := 1/p1 + 1/p2. A map
~ω := (ω1, ω2) is said to belong to Aρ~P (µ) if ω1 and ω2 are nonnegative µ-measurable
functions and there exists a positive constant C such that, for all balls B ⊂ X ,

1

µ(ρB)

∫
B

v~ω(x) dµ(x)
2∏
j=1

{
1

µ(ρB)

∫
B

[wj(x)]
1−p′j dµ(x)

}p/p′j
≤ C,

where, for all x ∈ X ,

v~ω(x) :=
2∏
j=1

[ωj(x)]
p/pj

and, when pj = 1, {
1

µ(ρB)

∫
B

[wj(x)]
1−p′j dµ(x)

}1/p′j
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is understood as (infB ωj)
−1 for j ∈ {1, 2}.

The following result was obtained by Hu, Meng and Yang [16].

Theorem 3.13. Let K be a µ-locally integrable function mapping from (X ×X ×X )\∆
to C, which satisfies (3.6) and (3.7) with m = 2, and T as in (3.8). Then, for all
~P := (p1, p2) with p1, p2 ∈ [1,∞), 1/p := 1/p1 + 1/p2 and ~ω := (ω1, ω2) ∈ Aρ~P (µ) with
ρ ∈ [1,∞), T can be extended to be a bounded bilinear operator from Lp1(ω1)×Lp2(ω2)
into Lp(v~ω) and, moreover, there exists a positive constant C such that, for all f1 ∈
Lp1(ω1) and f2 ∈ Lp2(ω2),

‖T (f1, f2)‖Lp,∞(v~ω) ≤ C‖f1‖Lp1 (ω1)‖f2‖Lp1 (ω2).

Remark 3.5. (i) In the case of non-homogeneous spaces, it is still unknown whether
T is bounded from L1(µ) × L1(µ) into L1/2,∞(µ) or not, if we only assume that T is
bounded from Lq1(µ) × Lq2(µ) into Lq,∞(µ) for some q1, q2 ∈ (1,∞) and q ∈ (0,∞)
with 1/q := 1/q1 + 1/q2 and that there exist positive constants C and τ such that, for
all x, y, z, ỹ ∈ X with max{d(x, y), d(x, z)} ≥ 2d(y, ỹ),

|K(x, y, z)−K(x, ỹ, z)|+ |K(x, z, y)−K(x, z, ỹ)|

≤ C
[d(y, ỹ)]τ

[d(x, y) + d(x, z)]τ [λ(x, d(x, y)) + λ(x, d(x, z))]2
.

Even in the case when (X , d, µ) := (RD, | · |, µ) with µ as in (1.2), this is also unknown.
(ii) In [16], the authors concluded that, if we only assume that T is bounded from

Lq1(µ) × Lq2(µ) into Lq,∞(µ) for some q1, q2 ∈ (1,∞) and q with 1/q := 1/q1 + 1/q2,
then the ranges of indices p1 and p2 in Theorem 3.13 are p1 ∈ [q1,∞) and p2 ∈ [q2,∞),
which are narrower than Theorem 3.13, and ~ω belongs to some smaller weight class
than Theorem 3.13.

3.4 Boundedness of multilinear commutators

In this subsection, we mainly discuss the boundedness of the multilinear commutator,
generated by the Calderón-Zygmund operator with any RBMO(µ) function, and its
weak-type endpoint estimate.

Let b ∈ RBMO(µ) and T be a Calderón-Zygmund operator as in (3.3) associated
with kernel K satisfying (3.1) and (3.2). For any f ∈ L∞b (µ) and x ∈ X\ supp (f), the
commutator [b, T ] is defined by setting

[b, T ](f)(x) := b(x)T (f)(x)− T (bf)(x). (3.9)

Under the additional assumption: there exists m ∈ (0,∞) such that

λ(x, ar) = amλ(x, r) for all x ∈ X and a, r ∈ (0,∞), (3.10)

where λ is the dominating function of the measure µ, Bui and Duong [1] obtained the
following Lp(µ)-boundedness, with p ∈ (1,∞), of [b, T ].
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Theorem 3.14. Assume that λ satisfies (3.10). Let b ∈RBMO (µ) and T be as in
(3.3) associated with kernel K satisfying (3.1) and (3.2), which is bounded on L2(µ).
Then the commutator [b, T ] in (3.9) is bounded on Lp(µ) for all p ∈ (1,∞).

Theorem 3.14 was extended by Fu, Yang and Yuan [8] to the boundedness of the
multilinear commutator on the Orlicz space. We first recall some notions and notation
from [8].

Let Φ be a convex Orlicz function on [0,∞), namely, a convex increasing function
satisfying Φ(0) = 0, Φ(t) > 0 for all t ∈ (0,∞) and Φ(t) →∞ as t→∞. Let

aΦ := inf
t∈(0,∞)

tΦ′(t)

Φ(t)
and bΦ := sup

t∈(0,∞)

tΦ′(t)

Φ(t)
.

The Orlicz space LΦ(µ) is defined to be the space of all measurable functions f
on (X , d, µ) such that

∫
X Φ(|f(x)|) dµ(x) < ∞; moreover, for any f ∈ LΦ(µ), its

Luxemburg norm in LΦ(µ) is defined by

‖f‖LΦ(µ) := inf

{
t ∈ (0,∞) :

∫
X

Φ(|f(x)|/t) dµ(x) ≤ 1

}
.

For any sequence ~b := (b1, . . . , bk) of functions, the multilinear commutator T~b of
the Calderón-Zygmund operator T and ~b is defined by setting, for all suitable functions
f and x ∈ X ,

T~bf(x) := [bk, [bk−1, · · · , [b1, T ] · · · ]]f(x). (3.11)

Now we state the following result about the boundedness of multilinear commuta-
tors on Orlicz spaces from [8].

Theorem 3.15. Let k ∈ N, bi ∈ RBMO(µ) for all i ∈ {1, . . . , k}, Φ a convex Orlicz
function satisfying that 1 < aΦ ≤ bΦ <∞. Assume that T is as in (3.3) associated with
kernel K satisfying (3.1) and (3.2), which is bounded on L2(µ). Then the multilinear
commutator T~b in (3.11) is bounded on Orlicz spaces LΦ(µ), namely, there exists a
positive constant C such that, for all f ∈ LΦ(µ),

‖T~bf‖LΦ(µ) ≤ C‖b1‖RBMO(µ) · · · ‖bk‖RBMO(µ)‖f‖LΦ(µ).

Let Φ1(t) := tp for all t ∈ (0,∞) with p ∈ (1,∞). Then Φ1 is a convex Orlicz
function, with aΦ1 = bΦ1 = p ∈ (1,∞), and LΦ1(µ) = Lp(µ). In this case, for k = 1,
Theorem 3.15 also essentially improves Theorem 3.14 by removing the assumption
(3.10).

The endpoint counterpart of Theorem 3.15 was also considered in [8]. To begin
with, we recall the following Orlicz type function space OscexpLr(µ).

Definition 3.2. For r ∈ [1,∞), a function f ∈ L1
loc (µ) is said to belong to the space

OscexpLr(µ) if there exists a positive constant C such that,
(i) for all balls B,

‖f −mB̃(f)‖expLr, B, µ/µ(2B)
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:= inf

{
λ ∈ (0,∞) :

1

µ(2B)

∫
B

exp

(
|f(x)−mB̃(f)|

λ

)r
dµ(x) ≤ 2

}
≤ C;

(ii) for all doubling balls B ⊂ S,

|mB(f)−mS(f)| ≤ CKB,S.

The OscexpLr(µ) norm of f , ‖f‖Oscexp Lr (µ), is then defined to be the infimum of all
positive constants C satisfying (i) and (ii).

Now we state the endpoint estimate for the multilinear commutator from [8] as
follows.

Theorem 3.16. Let k ∈ N, ri ∈ [1,∞) and bi ∈ OscexpLri (µ) for i ∈ {1, . . . , k}. Let T
be as in (3.3) associated with kernel K satisfying (3.1) and (3.2), and T~b as in (3.11),
respectively. If T is bounded on L2(µ), then there exists a positive constant C such
that, for all t ∈ (0,∞) and f ∈ L∞b (µ),

µ({x ∈ X : |T~bf(x)| > t}) ≤ CΦ1/r(‖b1‖Osc exp Lr1 (µ) · · · ‖bk‖Osc exp Lrk (µ))

×
∫
X

Φ1/r

(
|f(y)|
t

)
dµ(y),

where 1/r := 1/r1 + · · ·+ 1/rk and, for all s ∈ (0,∞) and t ∈ (0,∞),

Φs(t) := t logs(2 + t).

4 Generalized fractional integrals and Marcinkiewicz integrals

In this section, we review the results on the equivalent boundedness of the generalized
fractional integral, the boundedness of the multilinear commutator associated with the
generalized fractional integral. The equivalent characterization of the boundedness of
the Marcinkiewicz integral and some endpoint estimates for the Marcinkiewicz integral
are also considered in this section.

4.1 Generalized fractional integrals

This subsection is devoted to the equivalent characterization of the (Lp(µ), Lq(µ))-
boundedness of the generalized fractional integral Tα, and the boundedness of the
multilinear commutator associated with Tα on Orlicz spaces and its endpoint estimate
established by Fu, Yang and Yuan in [9]. We begin with the notion of the generalized
fractional integral.

Definition 4.1. Let α ∈ (0, 1). A function Kα ∈ L1
loc(X × X \ {(x, x) : x ∈ X}) is

called a generalized fractional integral kernel if there exists a positive constant C(Kα),
depending on Kα, such that,

(i) for all x, y ∈ X with x 6= y,

|Kα(x, y)| ≤ C(Kα)
1

[λ(x, d(x, y))]1−α
; (4.1)
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(ii) there exists a positive constant δ ∈ (0, 1] such that, for all x, x̃, y ∈ X with
d(x, y) ≥ C(Kα)d(x, x̃),

|Kα(x, y)−Kα(x̃, y)|+|Kα(y, x)−Kα(y, x̃)| ≤ C(Kα)
[d(x, x̃)]δ

[d(x, y)]δ[λ(x, d(x, y))]1−α
. (4.2)

A linear operator Tα is called a generalized fractional integral with kernel Kα sat-
isfying (4.1) and (4.2) if, for all f ∈ L∞b (µ) and x 6∈ supp (f),

Tαf(x) :=

∫
X
Kα(x, y)f(y) dµ(y). (4.3)

Remark 4.1. It was shown in [9] that there exists a specific example of the generalized
fractional integral, which is a natural variant of the so-called Bergman-type operator;
see [9] for the details.

Then we state the following result on the equivalent characterizations for the bound-
edness of the generalized fractional integral over (X , d, µ) from [9].

Theorem 4.1. Let α ∈ (0, 1) and Tα be a generalized fractional integral as in (4.3)
with kernel K satisfying (4.1) and (4.2). Then the following statements are equivalent:

(i) Tα is bounded from Lp(µ) into Lq(µ) for all p ∈ (1, 1/α) and 1/q := 1/p− α;
(ii) Tα is bounded from L1(µ) into L1/(1−α),∞(µ);
(iii) there exists a positive constant C such that, for all f ∈ L1/α(µ) with Tαf being

finite almost everywhere,

‖Tαf‖RBMO(µ) ≤ C‖f‖L1/α(µ);

(iv) Tα is bounded from H1(µ) into L1/(1−α)(µ);
(v) Tα is bounded from H1(µ) into L1/(1−α),∞(µ).

Remark 4.2. By the same reason as in Remark 3.2, we see that the results in Theorem
4.1 are also unknown for K̃(α)

B,S instead of KB,S.

Now we turn our attention to the boundedness of the multilinear commutator of
the generalized fractional integral. For any sequence ~b := (b1, . . . , bk) of functions, the
multilinear commutator Tα,~b of the generalized fractional integral Tα with ~b is defined
by setting, for all suitable functions f ,

Tα,~bf := [bk, · · · , [b1, Tα] · · · ]f, (4.4)

where
[b1, Tα]f := b1Tαf − Tα(b1f).

The following theorem was established in [9].

Theorem 4.2. Let α ∈ (0, 1), k ∈ N and bj ∈ RBMO(µ) for all j ∈ {1, . . . , k}. Let Φ
be a convex Orlicz function and Ψ defined, via its inverse, by setting, for all t ∈ (0,∞),

Ψ−1(t) := Φ−1(t)t−α,
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where
Φ−1(t) := inf{s ∈ (0,∞) : Φ(s) > t}.

Suppose that Tα is as in (4.3), with kernel Kα satisfying (4.1) and (4.2), which is
bounded from Lp(µ) into Lq(µ) for all p ∈ (1, 1/α) and 1/q := 1/p − α. If 1 < aΦ ≤
bΦ < ∞ and 1 < aΨ ≤ bΨ < ∞, then the multilinear commutator Tα,~b as in (4.4) is
bounded from LΦ(µ) to LΨ(µ), namely, there exists a positive constant C such that, for
all f ∈ LΦ(µ),

‖Tα,~bf‖LΨ(µ) ≤ C
k∏
j=1

‖bj‖RBMO(µ)‖f‖LΦ(µ).

Now we consider the endpoint counterpart of Theorem 4.2. For i ∈ {1, . . . , k}, the
family of all finite subsets σ := {σ(1), . . . , σ(i)} of {1, . . . , k} with i different elements
is denoted by Ck

i . For any σ ∈ Ck
i , the complementary sequence σ′ is defined by

σ′ := {1, . . . , k} \ σ. For any σ := {σ(1), . . . , σ(i)} ∈ Ck
i and k-tuple r := (r1, . . . , rk),

we write that

1/rσ := 1/rσ(1) + · · ·+ 1/rσ(i) and 1/rσ′ := 1/r − 1/rσ,

where 1/r := 1/r1 + · · ·+ 1/rk.
For r ∈ [1,∞), let OscexpLr(µ) be as in Definition 3.2. Then we are ready to state

the result in [9].

Theorem 4.3. Let α ∈ (0, 1), k ∈ N, rj ∈ [1,∞) and bj ∈ OscexpLrj (µ) for j ∈
{1, . . . , k}. Let Tα and Tα,~b be, respectively, as in (4.3) and (4.4) with kernel Kα

satisfying (4.1) and (4.2). Suppose that Tα is bounded from Lp(µ) into Lq(µ) for all
p ∈ (1, 1/α) and 1/q := 1/p − α. Then, there exists a positive constant C such that,
for all t ∈ (0,∞) and f ∈ L∞b (µ),

µ({x ∈ X : |Tα,~bf(x)| > t})

≤ C

[
Φ1/r

(
k∏
j=1

‖bj‖Osc
exp L

rj (µ)

)] k∑
j=0

∑
σ∈Ck

j

Φ1/rσ

(
‖Φ1/r

σ
′ (t

−1|f |)‖L1(µ)

) ,
where, for all s ∈ (0,∞), Φs is as in Theorem 3.16.

Remark 4.3. For all α ∈ (0, 1), f ∈ L∞b (µ) and x ∈ X , the fractional integral Iαf(x)
is defined by

Iαf(x) :=

∫
X

f(y)

[λ(y, d(x, y))]1−α
dµ(y).

It is easy to see that, under the assumption (3.10), the fractional integral Iα is a special
case of the generalized fractional integral. Moreover, in [9], the authors showed that
all the conclusions of Theorems 4.1, 4.2 and 4.3 hold true, if Tα is replaced by Iα.
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4.2 Marcinkiewicz integrals

In this subsection, we discuss equivalent characterizations for the Lp(µ)-boundedness,
with p ∈ (1,∞), of the Marcinkiewicz integral and its several endpoint estimates
obtained by Lin and Yang in [24]. To this end, we first recall the notion of the
Marcinkiewicz integral; see [12] for the case (X , d, µ) := (RD, | · |, µ) with µ as in
(1.2).

Definition 4.2. A function K ∈ L1
loc(X × X \ {(x, x) : x ∈ X}) is called a

Marcinkiewicz integral kernel if there exists a positive constant C(K), depending on
K, such that,

(i) for all x, y ∈ X with x 6= y,

|K(x, y)| ≤ C(K)
d(x, y)

λ(x, d(x, y))
; (4.5)

(ii) for all y, ỹ ∈ X ,∫
{x∈X : d(x,y)≥2d(y,ỹ)}

[|K(x, y)−K(x, ỹ)|+ |K(y, x)−K(ỹ, x)|] dµ(x)

d(x, y)
≤ C(K). (4.6)

The Marcinkiewicz integral M(f) associated to the above kernel K is defined by
setting, for all suitable functions f and x 6∈ X ,

M(f)(x) :=

[∫ ∞

0

∣∣∣∣∫
{y∈X : d(x,y)<t}

K(x, y)f(y) dµ(y)

∣∣∣∣2 dtt3
]1/2

. (4.7)

When (X , d, µ) := (RD, | · |, dx), M is just the classical Marcinkiewicz integral.
Thus, M is a natural generalization of the classical Marcinkiewicz integral in the
present setting.

The following conclusion was obtained in [24].

Theorem 4.4. Let M be a Marcinkiewicz integral as in (4.7) associated with kernel
K satisfying (4.5) and (4.6). Then the following statements are equivalent:

(i) M is bounded on Lp0(µ) for some p0 ∈ (1,∞);
(ii) M is of weak type (1, 1);
(iii) M is bounded on Lp(µ) for all p ∈ (1,∞);
(iv) M is bounded from H1(µ) into L1(µ).

Remark 4.4. By the same reason as in Remark 3.2, we see that the results in Theorem
4.4 are still unknown when KB,S is replaced by K̃(α)

B,S.

Comparing with the corresponding result in [12], Theorem 4.4 makes an essential
improvement.

To discuss the corresponding endpoint estimate, we recall the notion of the space
of all finite linear combinations of (p, 1)λ-atomic blocks.
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Definition 4.3. Let p ∈ (1,∞]. The space H1, p
fin (µ) is defined to be the vector space

of all finite linear combinations of (p, 1)λ-atomic blocks. Moreover, the norm of f in
H1, p

fin (µ) is defined by

‖f‖H1, p
fin (µ)

:= inf

{
N∑
j=1

|bj|H1, p
atb (µ) : f =

N∑
j=1

bj, bj is a (p, 1)λ − atomic block, N ∈ N

}
.

Now we are ready to state the results on the endpoint estimate of M in [24].

Theorem 4.5. Let M be a Marcinkiewicz integral as in (4.7) associated with kernel
K satisfying (4.5) and (4.6).

(i) If M is bounded from H1(µ) into L1(µ), then, for f ∈ L∞(µ), M(f) is either
infinite everywhere or finite µ-almost everywhere; more precisely, if M(f) is finite at
some point x0 ∈ X , then M(f) is finite µ-almost everywhere and

‖M(f)‖RBLO(µ) ≤ C‖f‖L∞(µ),

where C is a positive constant independent of f .
(ii) If there exists a positive constant C such that, for all f ∈ L∞b (µ),

‖M(f)‖RBMO(µ) ≤ C‖f‖L∞(µ),

then M is bounded from H1,∞
fin (µ) into L1(µ).

Remark 4.5. (i) It was shown in [24] that, if M is bounded from H1(µ) into L1(µ),
then, for any f ∈ L∞(µ), M(f) is either infinite everywhere or

‖M(f)‖RBMO(µ) ≤ C‖f‖L∞(µ),

with the positive constant C independent of f , which improves the known correspond-
ing result even on the classical Euclidean space RD.

(ii) By Theorem 4.4, ifM is bounded fromH1(µ) into L1(µ), then it is also bounded
on Lp(µ) for all p ∈ (1,∞) and, for any f ∈ L∞b (µ),M(f) is finite at some point x0 ∈ X .
This, together with Theorem 4.5(i), further shows that M is bounded from L∞b (µ) into
RBLO(µ) and hence, it is bounded from L∞b (µ) into RBMO(µ).

(iii) In the present setting, it is still unclear whether the uniform boundedness
in some Banach space B of a sublinear operator T on all (∞, 1)λ-atomic blocks can
guarantee the boundedness of T from H1(µ) into B or not. Thus, under the assumption
of Theorem 4.5, it is still unknown whether the Marcinkiewicz integral M can be
extended boundedly from H1(µ) into L1(µ) or not.

(iv) The results in Theorem 4.5 are also unknown, when KB,S is replaced by K̃(α)
B,S,

by the same reason as in Remark 3.2.
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[40] X. Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity, Acta Math. 190 (2003),
105-149.

[41] X. Tolsa, The semiadditivity of continuous analytic capacity and the inner boundary conjecture,
Amer. J. Math. 126 (2004), 523-567.

[42] X. Tolsa, Bilipschitz maps, analytic capacity, and the Cauchy integral, Ann. of Math. (2) 162
(2005), 1243-1304.

[43] A. Volberg, B.D. Wick, Bergman-type singular operators and the characterization of Carleson
measures for Besov-Sobolev spaces on the complex ball, Amer. J. Math. 134 (2012), 949-992.

[44] Da. Yang, Do. Yang, G. Hu, The Hardy space H1 with non-doubling measures and their appli-
cations, Lecture Notes in Math. 2084, Springer-Verlag, Berlin, 2013.

[45] Y. Zhou, Some endpoint estimates for local Littlewood-Paley operators, Beijing Shifan Daxue
Xuebao 44 (2008), 577-580 (in Chinese).

Dachun Yang, Xing Fu
School of Mathematical Sciences
Beijing Normal University
Laboratory of Mathematics and Complex Systems
Ministry of Education
Beijing 100875
People’s Republic of China
E-mails: dcyang@bnu.edu.cn, xingfu@mail.bnu.edu.cn

Dongyong Yang
School of Mathematical Sciences
Xiamen University
Xiamen 361005
People’s Republic of China
E-mail: dyyang@xmu.edu.cn

Received: 17.02.2013



EURASIAN MATHEMATICAL JOURNAL
2013 – Том 4, № 2 – Астана: ЕНУ. – 144 с.

Подписано в печать 5.07.2013 г. Тираж – 150 экз.

Адрес редакции: 010008, Астана, ул. Мирзояна, 2,
Евразийский национальный университет имени Л.Н. Гумилева,

главный корпус, каб. 355
Тел.: +7-7172-709500 добавочный 31313

Дизайн: К. Булан

Отпечатано в типографии ЕНУ имени Л.Н.Гумилева

c© Евразийский национальный университет имени Л.Н. Гумилева

Свидетельство о постановке на учет печатного издания
Министерства культуры и информации Республики Казахстан

№ 10330 – Ж от 25.09.2009 г.


