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Abstract. We study the natural g-analogues of the Hermite, Laguerre, Jacobi and
Bessel D-classical forms. Their moments and their discrete measure and integral rep-
resentations are given.

1 Introduction and preliminary results

Let P be the vector space of all polynomials with coefficients in C and let P’ be its
dual. We denote by (u, f) the action of a form v € P’ (linear functional) on f € P.
In particular, we denote by (u), := (u,2™) , n > 0 the moments of u. Let {P,},>¢ be
a sequence of monic polynomials with deg P, = n, n > 0 (MPS). A (MPS) {P,}.>0
is called orthogonal (MOPS) if there exists a unique form wu satisfying (u)g = 1 and a
sequence of numbers {r, },>0 (r, # 0, n > 0) such that

(u, Py Py) = 100nm , mn,m > 0.

The form wu is then called regular. The (MOPS) {P,},>¢ satisfies the second order
recurrence relation

Ri(x)=1, Pi(x) =z~ . .
Pn-l—?(x - (I - 5n+1)Pn+1(x> - 7n+1Pn(I) , N Z 07 .
P2

where 5, =\l T s

TTL n
The regular form w is positive definite if and only if Vn > 0, G, € R, ~,,1 > 0.

Also, its corresponding (MOPS) {P,},>0 is symmetric if and only if 5, =0, n > 0 or,
equivalently (u)2,+1 =0, n > 0.

Let us introduce some useful operations in P’. For any form u, any polynomial g
and any (a,b,c) € (C\ {0}) x C?, we let Du, H,u, gu, h,u, Tpu and d., be the forms
defined by duality in the following way

<Duvf> = _<u7f/>7 <Hquvf> = _<U7HQf>’ <guaf> = <U,gf>, fGP,
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(hat, ) = (u, haf)  (ou, f) = (u, 7o f) , (O, f) = f(c), [ €P,

where
) =TI feg (s s z0mpinz),

(haf)(z) = f(az), (T-pf)(x) = f(z +b) [9,11]. Furthermore, the orthogonality is kept

by shifting: let { P, := a " (hao7_4Py) }n>0, @ # 0, b € C be orthogonal with respect to
U = hg-1 0 T_pu, then the recurrence elements f,,, J,+1, n > 0 of the sequence {P,},>0

are B b
Y n ~ Yn+1
ﬁn: > 7n+1:a_;r7n20'

Let { P, }n>0 be a (MPS) an% O be a lowering operator on P. The sequence { P, },>0
is said to be O-classical when { P, },,>¢ is orthogonal and {OP, 1 },> is also orthogonal
(the Hahn property). The concept of O-classical orthogonal polynomials was exten-
sively studied by the second author and his coworkers for O = D the derivative operator
[11,12], O = D,, the divided difference operator [1], and O = H, the g-derivative one
[9] via the following distributional equation satisfied by the regular form wu associated
with such a sequence:

O(®(z)u) + ¥Y(x)u=0 (1.2)

where ® is a monic polynomial, deg® < 2 and ¥ a polynomial deg ¥ = 1.
Now, let us recall the D-classical forms; there are four canonical situations [11,12].

1) The Hermite form H and its (MOPS) having the following properties

(ﬁnzo ) ’Yn+1:nT+17 n207
D(H) + 2a'H = 0,
(H)anir =0, (M) =22 n>0, (1.3)
+o0
) =3 [ exvl-a)f(@yds, feP.
\ —0o0

2) The Laguerre form L(a) (o # —n — 1, n > 0) and its (MOPS) satisfying

(Bn=2n4+a+1 , =m0+ 1Ln+a+l), n>0,
D(zL(a))+ (z —1—a)L(a) =0,

(L())n = F%ﬂ&ﬁ)l)’ n >0, (1.4)

+o00
(L(a), f) = m/o x®exp(—x)f(z)dx, feP, Ra>-1.

\

3) The shifted Jacobi form h_y o 71T (av, §) := J(@,0) (£ —-n—1, 84 —n—
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1, a+ B # —n—2,n>0)and its (MOPS) satisfying

f o /6+1 = 1 O[2_ﬁ2
fo = atf+2 Br1 = 2 T @ntatBid)@ntatpiay > 0,
~ _ __(n+D)(nt+atp+1)(nta+1)(nt+6+1) n>0
Intl = @nratfrD)@ntatBi2)2(2ntatfi3)’ ’

D(z(z = 1)J(, ) + (—(a+ B+ 2)x + B+ 1) T (a, B) = 0,

~ _ D(n+B+D)I(a+5+2)
(T (a,0)n = Tnratrorary: " =0

<J@ﬂ%ﬁ=f%%%%x/ (1 =) f(2)dw, f € P, Ra > —1, RE > —1.
0
(1.5)

4) The regular Bessel form B(a) (a # —g, n > 0) and its (MOPS) having the
following properties

(( Bo=—% 7ﬁn+1:(n+a)1(_#+1)7 n =0,
_ (n+1)(n+2a—1)
Tn+1 = T (2n+2a—1)(n+a)2(2n+2a+1)’ >0,
D(z*B(a)) — 2(az + 1)B(a) = 0,
non o 16
| (Bla)), = (~1yr2e e >, (1.6)
+oo 1 +OO QQ
B =5t [ 5 [ (5) elF - D)s0d s dr
| for f eP, a>6( 2

with

+oo +oo 200
Sa = / ! / exp(% — 2)5(15) dt dx
0

T

and s given by (1.13), see below.

Our objective is to highlight the natural g-analogues of the Hermite, Laguerre,
Jacobi and Bessel D-classical forms defined in [5, 9], to calculate their moments, and
to derive discrete measure and integral representations. In particular, when ¢ — 1 we
recover formulas (1.3)-(1.6). In fact, the problem of defining g-analogue of orthogonal
sequences has been of interest for several authors, see [2, 3, 10, 13, 14, 15].

A form w is called Hy-classical when it is regular and there exist two polynomials
® and ¥, ® monic, deg ® < 2, deg ¥ = 1 such that |9

H,(Pu)+Vu=0 (1.7)

with ¥/(0) — 18”(0)[n], # 0, n > 0 where

[n], = , n>0. (1.8)

By using (1.7) it easy to see that the moments of u satisfy the second order ¢-difference
equation

T'(0)(u); + T(0) =0,
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{%@”(0) [+ 1], — ‘If’(0>}<u>n+2+

+{<1>'(0)[n + 1], — xp(O)}(u)nH + () + g(w)n =0, 1> 0, (1.9)

Concerning integral representations via weight functions for a H,-classical form u sat-
isfying (1.7), we look for a function U such that

(u, f) = " U(z)f(x)dx, fe€P, (1.10)

—0o0

where we suppose that U is as regular as may be required. According to (1.7), we get
9]

/—m{q_l(qu(@U))(x) * ‘I’<x)U(3?)}f(ﬂf)dx =0, feP,

[e.e]

with the additional condition [9]

1 —_— —_—
1ir£0 Ulz) = U=z dx exists or U is continuous at the origin. (1.11)
e— . x
Therefore
¢ (Hy - (90)) (@) + ¥(@)U(x) = Agl), (112

where A € C and g is a locally integrable function with rapid decay representing the
null form. For instance the function

0, x <0,

= 1 1 1.1
s(z) {exp(—x4)sinx4, x>0, (1.13)

which was introduced by Stieltjes, represents the null form [16]. When A = 0, equation
(1.12) becomes

O(q~'2)U (g ') = {@(x) + (¢ — Da¥(x) }U(x),
so that, if ¢ > 1, we have

O(x)+ (g — 1av(zx)

Ulg'z) = U R 1.14
(') S U, TeR, (1.14)
and if 0 < g < 1, replacing x by gz, we have
o
U(qx) = (=) U(x), z € R. (1.15)

®(qzr) + (¢ — 1)qa¥(qx)
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2 The natural g-analogues of the Hermite, Laguerre and Jacobi
D-classical forms

First, let us recall the following standard definitions and facts [4, 9|, and the following
technical lemma needed in the sequel and easy to establish:

(a;q)o == 1; =]]1-ad*"), n>1, (2.1)
k=1
+o0o
k=0
—((a;q)‘;’ ,0<qg<1,
aq";q)oo
(a;9)n = W (2.3)
(ag'q" ¢ oo > 1
(a5 ¢ Voo ’
1 Lo
(@:9)n = (—1)"a"(@ 5 ¢ )ngz" ™Y, n >0, (2.4)
( 7q)(_qf1) 0<q<l,
q2 - —n. —1 n—1. ,—1 (25)
(=070 oo(=¢""5 ¢ oo > 1
(_qul)oo(_q* g )oo ’ ’
the ¢-binomial theorem
o= (az;q) oo
= . 2l < 1, g < 1, (2.6)
— (4 )k (25 @)oo
the g-analogue of the exponential function
+oo q%k(k—l) i
2 =(—2,90)00 , |q| <1, 2.7
Y = e ld .)
+oo —at: o
/ tw—lﬂdt — (2.8)
T (00 (")
R,y \N <q¢",0<qg<l1
sin(mz) (g ;@) (G0 €R AN Ja <¢",0<q <1,
(=)™ (@ Dm . m
1_qm<aq—1;q—1)mln(q 1)7 r=meN ,|CL’ <q >0<Q< L.
Lemma 2.1. Let
Ll@=1+1+71~q), ¢>0, 7v>-1, (2.9)
and w
Gy w) = 1+ ——, weR. (2.10)

1+~
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We have

(9)
&(q) < —1 <= q €]q(y,2), +0, (2.11)

-1< ’S’y(Q) <0<+=gq G]Q(%l)a Q(7,2)[,
0<&(q) <1<=q€]l,qm)l;
& (q) > 1 < ¢ €]0,1].

2.1 The natural ¢g-analogue of the Hermite form

The natural g-analogue of the Hermite form is the H,-classical form H(q) defined by

{ Bn=0 |, Tn+1 = %qn[n + 1]q’ n =0,
H,(H(g)) + 22H(g) = 0.

(See [9].) When ¢ — 1, we recover the Hermite D-classical form H see (1.3).
In [9], we calculated the moments and derived integral representations for H(q):

1 (¢:¢*)n

(H(q))2n = o,

20 (1—q)n

(H(q))2ns1 =0, n >0,

for feP,qg>1

_Q _ 1/2((172;6172)00 e f(z) .
(H(g). /) = —(a—-1) T /_oo (—2(q—1)m2;q—2)wd : (2.12)

+ 2(1—¢q
(H(q). f) = K / (1 - @) f(a)de, fEP0<q <1, (213)
/209

+ -1
q\/2(1—q) (2(]2(1 . Q)[I)Q, q2)ood£l'}> ‘
In [8], the authors give the following discrete measure representations of H(q):
oo k —k?
—1
(_2) C]_2 {5 —igk +9 igk }, qg>1,
(q » 4 )k V2@@-1) V2(a-1)

where K = %(/

1
H =
@ 200754700

and

(@)oo ~x 4"
H(q) = {5_k Y R },0<q<1.
@) 2 ; (@%@ b oo VAo

Remarks. 1. By using the above representations of H(q) and (2.12)-(2.13), one can

write
\/i( _ 1)1/2 (qu; q72)00 /_+Oo f(l‘)

AR == D L - e




88 L. Khériji, P. Maroni

+o0 k. —k?
1 1
U5 e 40 ) fePg>1
V2(a—1) V2(g—-1)

and

2¢°(1 — q)*; ¢*) _ f(x)dx+

+o0
MCTEES Sl (6 g +0 g ) TeP0<g<l
2 k=0 (q 4 )k V2(1—q) V2(1—9q)

2. Denoting by U, the weight function given either by (2.12) or by (2.13), we have
(see (1.3))

+o0

. 1 +oo 2
lim Uy(2)f(z)dx = ﬁ/oo exp(—z?) f(x)dz = (H, f), [ €P.

—1 J_ o

2.2 The natural ¢g-analogue of the Laguerre form

The natural g-analogue of the Laguerre form is the H,-classical form L(«,q) (o #
—[n], — 1, n > 0) defined by

Bn=a{(L+q )l +1+a}, n>0,
Yot = @ + g {[nl, + 1+ a}, 130, (2.14)
H,(zL(a,q)) + (x — 1 — a)L(a, q) = 0.

(See [5,9].) Formula (2.14) implies that the form L(«, ¢) is positive definite if and only
ifg>0, a>-—1.

When g — 1, we recover the Laguerre D-classical form L(a) (o # —n—1, n > 0),
see (1.4).

By the regularity condition a # —[n], — 1, n > 0 of the form L(«, ¢) we get

&ala) #¢", n > 0. (2.15)

Proposition 2.1. The form L(«, q) has the following properties.
(1) The moments of L(a, q) are: forn >0

(n—=1)n
2

I CEH I _
(L(ev, q))n = (7?(04,1) — 1) g q = q(a,1)
(%) (Cala)ha), -+ q€l0,+00[\{L, g}

(2) For all0 < g <1 and o > —1, the form L(«, q) has the following discrete measure
representation

L(a,q) = ((§a() 50) 0 Y (@) - Oihtata-
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(3) For all q €]1,+00[\{q(a1)} and a > —1, the form L(c,q) has the following discrete
measure representation

o 1 X (—1)rg ) (ga(g)
L(e.q) = (74 &(@) ) kz_; (% q Ve Odtgata

(4) For ¢ = qa,1) and o > —1, the form L(c, q,1)) has the following discrete measure
representation

(-5 Q(_al,l))OO(_Q(_al,lﬁ Q(_al,l))ooL(ay Ua,1) =

- Li(k+1) i q(_l?)rl(k_l)
_1 o
= § :qa?l E: N E— S — 0 -2t .
= S Gy Gan) Gy Gt el

Ua,1) "1
(5) Forall fe€P, 0<q<1anda>—1, the form L(«,q) has the following integral

representation

—q _lnga(‘l)_l

Loy, =K [ " 27 "8 (1= 9)(&le) "awsq) _f(x) dv,  (2.16)

—4q néa(q)
where K—! = / S T (1- q)(ﬁa(q))_qu;q)oo dx.
0
(6) For all 1 < q < q,1) and o > —1, the form L(o,q) has the following integral
representation

_ In€n(q) —1
Ingq

(Calq))txq7t)

400 T
(L(ay,q), f) = K/O (—(q ey f(x) dz, feP, (2.17)

_ Inéa(q) —1
Ingq

+oo
where K= = /
o (=la=1D(@) " tig)
(7) For ¢ = gy, « > —1 and for all f € P, the form L(a, qu,1)) has the following

integral representation
-5 In*(q(a,1)—1)
8 _ (o,1)
U(a,1) P ( 2Ing(a,)

B \/27T<Q(a,1) - ]-) In q(a,1)

+o00 7§71H(Q<a71)*1) 11’12 T
x/ r ® MUen  exp (——)f(:c) d.
0 2 111 Q(a,l)

O(z)=2 ; VY(x)=z—-1-—0a. (2.18)

dt is given by (2.8).

(L@ gay), )

Proof. By (2.14) we get

(1.9) becomes

(Lo, q))ns1 = ([nlg + 1+ ) (L(e,q))n , n >0 3 (L, q))o =1
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and, as a consequence,

:ﬁ([l{:—l]q—i-l—i-oz), n>1 ; (L(a,q))o=1.

k—1 _ 1

Replacing [k—1], by q—l’ using the definitions in (2.9) and (2.1), the above relation
q J—

yields the desired result taking into account the properties in (2.11) and (2.15).

To establish (2)-(4), by virtue of (2.3) and (2.5) we may write the moments of
L(a, q) from (1) in the following way

-1. La(@)\™ L 0<qg<1
((fa(q)) ’q)oo ( 1—q ) ( { (q ) 1q” q) q )
1 £alq) Lgnt.
L(aa)n =3 (o era ) i) (@) 5a) 0> 1 a # ga,
1 (—q(;’fl);q@l))oo(—q?;l);q@fl))oo —q
(*1;q@{1>)oo(*q@{1>;q(;l))oo (Ga,ny—1)" ’ (1)
(2.19)
Moreover, by the ¢-binomial theorem (2.6), we get
+00 —
"k, 0<g<l, a>-1 (2.20)

OM

((alq ))

since Vn > 0, }(fa(q))*lq”} < 1 (see the last inequality in (2.11)).
Also, by the g-analogue of the exponential function (2.7), we may write successively
for g > 1, ¢ # qan), o> —1

1 n—1. —1 R (f%k(k*l) 1 1k
((Cale) " g h) = Zﬁ (¢ ') "), (2.21)
— (¢ a7k
for ¢ = g1y, o> —1
( 1o —2k(k—1)
-n ., —1 _ (Oc,].) —nk
(S} Gan)oe = 2 T Ty
k=0 \1(a,1)? 1(a,1)/k (2.22)
+o0 —1k(k—1) :
n— - (a,1) (n—1)k
(_qa%;q()}l)oo: 1 1~ Y1) -
k ey kz;(%,l)?q(a,l))k o

Using the Cauchy product of the two power series in (2.22) we get for ¢ = q(a,1), o > —1

n—

R | 1 1
(_Q(a’1)7Q(a,1)) (— Q(a,1) Q(al))

—l2+l(k 1)

+oo k
—*k(k+1 a,1) n(k—21
—Z Z S Gy (2.23)

1
1—0 \d(a 1) Q(a 1))I(Q(a71)7 Q(%l))k—l

Now, replacing (2.20)—(2.21) and (2.23) in (2.19) we obtain the desired results. Thus,
parts (2)-(4) are proved.
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To establish the integral representations in (5)-(7), according to (1.10), we look for
a function U representing L(«, ¢). From the hypothesis of (5), we have 0 < ¢ < 1, a >
—1. By virtue of (1.10), (2.18), (2.9) and the ¢-distributional equation in (2.14), the
g-difference equation (1.15) becomes

B (g€alq))™ .
Ulee) = T = ggteata) =0 @

with £,(q) > 1 according to (2.11). Consequently, we look for U of the form

(2.24)

(1 - aleala) M) V(). 0<a< 2,
Ulz) = !
0 r<0orux> m
b — — 1 _ q *

Substituting this U in (2.24) leads to the equality V (qz) = (¢€.(q)) 'V (), therefore

_néa@

V(z) = Kx~ e

Thus, (2.16) follows.

In part (6), we have 1 < ¢ < (a,1), o > —1. By virtue of (1.10), (2.18), (2.9) and
the g-distributional equation in (2.14), the g-difference equation (1.14) becomes

Ulg'7) = ¢€alq) (1 + (¢ — 1)(&alq) '2)U(x) (2.25)
with 0 < &,(q) < 1 according to (2.11). Consequently, we look for U of the form
V(z)

Ux) =4 (—(g—1)(&(q) esg™t)
0 , x <0.

x>0,

Substituting this U in (2.25) leads to the equality V(¢ x) = ¢€,(q)V (z), therefore
Vie) = Ko~ !
This implies (2.17).
In part (7), we have 1 < ¢ = q(a,1), @ > —1. By virtue of (1.10), (2.18), (2.9) and
the ¢-distributional equation in (2.14), the ¢-difference equation (1.14) becomes

U(9(any?) = o) (@) = D2U(x) , x>0 (2.26)
since £4(q(a,1)) = 0 according to (2.11). Consequently, we look for U of the form

In?z

U(z) =exp (——2 I de)

)V(:z:) , x>0.

3
Substituting this U in (2.26) this leads to the equality V(qal)x) = G0y (G0 — 1)V (@),

therefore
3_a,n—

V()= Kz > "
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Let us now compute the constant K~

+oo 3 Mlae,n—b In2
- T T e n-r
K1 :/ z ? Pl exp(——) dr.
0 21nq(a?1)

Inz

By the change of variable: t = WerToe we get

o [ I ((9(e) = 1)*q(an))
21nq(a1/ exp( t—t2) dt.
\/21nqa1

1 ln((Q(a,n*l)QQ(ag))

Consequently, using the change of variable u = + 5 Y and taking into
nq(a,1)
+o0o
account that / exp(—u?) du = /7, we get
-1 : I0*(q(a,) — 1)
K™ = \/QW(Q(a,l) — 1) Ingea, 9(a,1) €XP TQ(U )
whence the desired integral representation in (7). O

Remarks. 1. Taking into account the representations in Proposition 2.2., we may
write successively

In€a(q) —1

2L(c,q), fy=K [ a w7 ((1-q)(Eale) tqzia) f(x) dut

400 —k
+((£a(q))1;Q)mZ% <5acf+zq<q>,f>, feP,0<qg<1, a>—1,

—o b4
Yoo _Ingale) )
2(L(« K/ flx) dr + X
It q—l (bal@))tasq7) ) (¢ (&a(@)5a7Y)
I (1)k —ék(kﬂ) N
Z ( ) q A _1(5 (q)) <5qk§a(q),f>, f € P, 1 < q < q(a’l), o > _1,
— (%5 a Dk Tt

and

-

1 In? a1)—1
iy oxp (e
V27 (q(an) — 1) Inga )
+oo 3 m@n-D In?x 1
/ r 2 Wmien exp(——>f($) dzr + 1 —1 -1 X
0 :

2<L(O./, Q(a,l))v f)

21n Q(a 1) <_1; Q(a’l))oo(_Q(aJ)v Q(ml))oo
. q7l2+l(k 1)
Z "3 ’““)Z O g o f) FEP a> -1

k= al) q(a 1)>l(q(a,1);q(a,1))k l o)1

2. Denoting by U, the weight function given either by (2.16) or by (2.17), we have (see
(1.4))
+00 1

tiy [ V) f@ds = o [ o (o) f(ade = (L), . £ € P

— 00
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2.3 The natural g-analogue of the shifted Jacobi form J (o, )

The natural g-analogue of this shifted form is the H,-classical one J(o, 3, ¢q) (a+ 3 #
2w+ 3£ —ng=2,6# -l —La+tf+2-(B+1)¢" +[nlg #0,n = 0)

q—1’
satisfying [5,9]

_ n—10+g)(a+B+2+[n—1]q) (B+1+[n]g)—(8+1)(atB+2+[2n]q)
Pn=1q (ot G2+ 2nm3) (ot B2+ 2rly) “, nz0,
_ on[nt+l]q(a+B+2+[n—1]g)([nlq+B8+1)([n]q+(B+1) (1 —¢")+a+1)
Int+1 =4 (0t A2+ Pn—1],) (-t P21l 2 (et it oty 1 2 0, (2.27)

Hy(z(x — 1) (a, 8,q)) + (—(a+ B+ 2z + 4+ 1)J(, 8, q) = 0.
Formula (2.27) implies that the form J(a, 3, ¢) is positive definite if and only if
0<g<l,a>-1 8>-1 ; 1<q<qoa+pt+11), @>—1, 3> —1.

When ¢ — 1, we recover the D-classical form J (ar, B), see (1.5). In fact, for the
cases of positive definiteness of J(a, 3, q), according to Lemma 2.1, one may deduce
the following

(1< Qassiry) < darsriz) < 4(B.2);
I < qa+p+1,1) <91 < 952)s
&(a) # 4" Cawp(a) #¢" . n=>0, (2.28)
q# d(a+8+1,2)5

L $6(0) = 0 <= &atp11(q) # 0.

Next, we will calculate the moments and derive integral representations and dis-
crete measure representations of the Hy-classical form J(a, 3, ¢) in the cases of positive
definiteness.

Proposition 2.2. The form J(«, 3,q) has the following properties.
(1) The moments of J(«, 3,q) are: forn >0

( Ln-1)n
e —~ . 4= qp),
(—£a+6+1(¢I(ﬁ,1))) ((€a+6+1(tI(5,1))) ﬂ](,@,1)>n

—1

(J(Oz,ﬂ,q))n _ (&B(Q(a+@+1,1)))n((5;((;1<a1;r:+1,1))) ;Q(a+ﬁ+1,1))n . 0= Qlatpil)s

Y(a+8+1,1)

" (@) e
( S ) ((B k. ; ¢ €0, +00[\{1, q(atp11,1), 95,1}
\

Sat5410) | ((eatpai(a)120)

n

(2) Forall0 < q<1, a>—1, > —1, the form J(a, 3,q) has the following discrete
measure representation

((€8(0) " @)oo

I(a, 8, q) = ((Catp+1(2) 5 @)oo
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= 0( ) ’“éﬂ (¢:9),(q; q) ik

£a+ﬂ+1 k—v  taypt1(@)

(3) For all q 6]17Q(Oc-‘rﬁ-‘rl,l)[u]q@z-i—ﬁ-i—l,l)?Q(ﬁ,2)[7 o > _17 5 > _]-a the form J(Oé,ﬁ, q)
has the following discrete measure representation

(&(@sg D
(a g ) (fa+ﬁ+1(Q),q )

+oo K ) o
Z(—§a+g+1(q))kqék<kl>z( 7"¢s(q) ) (—1)vg 3+ -

k=0 v=0 §a+[3+1 (Q) (Q7 Q>V<Qa q)k—

In particular, for ¢ = qa) and for all o > =1, § > —1, the form J(a, 3, qa1)) has
the following discrete measure representation

1 =

(—fa+6+1(q(ﬂ,1) )k
1

J(a, B,q.1)) = a
4 -1 -1 . - -k .

(4) For q = qua+p+11) and for all o > =1, 3> —1, the form J(a, 3, qatp+1,1)) has the
following discrete measure representation

J(@, B, qtars1n) = (E6(darst1,1); Gy pi11)) oo X

f (fﬁ(Q(a+ﬁ+1,1)))k

—1 .1 qa,! .
k=0 (q(a+ﬁ+1,1))q(a+ﬁ+171))k (a+B+1,1)

(5) For ao >0, B> =1, qatpt1,-a) < q <1 and for all f € P, the form J(c, 3,q) has
the following integral representation

__ @ 9atp+1(0) ..
Forpi@ 5 (BediPasa)
(I, B,9), f) K/ z” - B(:;] " f(x) dz, (2.29)
@ G€arpii(a) .
where K~! = /Q5a+5+1(q> x_lnfﬁq)_l <g"—(‘+1)1$7q)°° dx

(6) For -1 <a <0, f>—-1, 0<q<1 and for all f € P, the form J(a, 3,q) has the
following integral representation

Catpri(a) ..
1 Ingg(q) (qé—()x,q)
<J(O‘7B;Q),f> =K 1 Ing -1 6\q 0o
0 (75 @)oo

9€atpt+1(9) -

where K1 = /1 x_lnffq(q)—l ( €5(a) ’q)oo
0 (5 ¢)oo
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(7) Fora >0, > —1, 1 < q < qatp+1,1) and for all f € P, the form J(«a, 3,q) has
the following integral representation

7 meg@ o (g7 ag e
<J(Oé7ﬂ7 Q), f> - K/(; x e £atp+1(9)

§s(a) L qil)oo

f(z) dx, (2.31)

q In€4(q) —1,.. ,,—1
where K1 = / x lngqq -1 z (Jrqﬁﬂi’)q )Of dzx.
0 e ma )

(8) For =1 <a <0, B> -1, 1 <q < qua+pt+1,1) and for all f € P, the form J(o, 5, q)
has the following integral representation

(e, 8,9), f) = K

1 _ _ atp+1(a)
” /5a+5+1(q) x_lnifnﬁq(q)—l (q 1LU; q 1)00 Sin (27‘(1n( EB(Q) ZL‘) ) ’ f(m) da/: (2 32)
0 (—gaggfqﬁ(_q) 707" ng™! ’
Pomsw , (¢lwig ) In(fg5%)
where K1 = / x e z +ﬂ+1(‘17) Of sin (2%16—_1> dz.
g 8@ 59 )u na
Proof. By the ¢-distributional equation in (2.27) we get
P(z)=x(x—1) ; ¥U(z)=—((a+B+2)z—(8+1)). (2.33)

Therefore, (1.9) becomes

[n]y +8+1
nl,+a+0+1+2

(J(e, B, q))ns1 = (J(,3,0)n, n=0 5 (I, B,9) = 1.

Consequently, we get

n

H([k—l]q+5+1)
(I, B,q))n = cn>1 3 (J(e,B,9)) =1.
11 [k:—l]q+a+ﬁ+1+2)

qk—l -1

Replacing [k — 1], by and, taking into account the definitions in (2.9) and

(2.1), the above relation yields the desired result in (1) due to the properties in (2.11)
and (2.28).

To prove the equalities in (2)-(4), according to (2.3)-(2.4) we may write the moments
in (1) as follows

(J(a,3,9))n =
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= 0<qg<,

((&s(a)"sa) ( §s(q) )" ((Carpr1(a)"a%q)
((§a+ﬁ+1(Q))_1;Q)w Eatp+1(9) ((fﬁ( ))q Q)Oo

(&(@);a Y, (arpn (q)CJ‘"; a')..
(fa+ﬁ+1(Q);q_1)oo (&s(9)a~ _1)00 ’
(2.34)

For the first case of (2.34), by (2.6)-(2.7) and since Yn > 0, |(£5(q))*¢"] < 1 (see
(2.11)); weget forall 0 < g <1, a>—1, 6> -1, n>0

q> 1

N (G ha) &(q) \"

(e 5.a) = ((fa+ﬁ+1(Q))*l§Q)oo (fa+ﬂ+1(Q)) .
= Y +0+1 ok n
kz; 55 nk Z (q’;f)z 5+1(9)) q k.

Hence we get the desired discrete measure representation in (2).

For the second case of (2.34), by (2.6)-(2.7) and since Vn > 0, [(£5(q))'¢"| < 1
(see (2.11)); we get for all ¢ €]1, g2, a > -1, 3> -1, n>0

(&s(0)ia™),

(T2, 5,0))n = (5a+5+1(9)§61_1)00
— (&(9) 4 D (G (@)
,;(q e Z gk T

The Cauchy product implies the desired ﬁrst representation in (3). Moreover, the
second representation in (3) is a direct corollary of the first one with ¢ = q(g.1).
On the other hand, taking ¢ = q(a+g+1,1) in the second equality of (2.34), it becomes

(fﬁ(fJ(a+ﬁ+1,1)); q(_o}wﬂ,l))

o0 (2.35)

(J(a7 /67 Q(Oz+,3+1,1))n -
-n .o—1
<§B(Q(a—i-ﬂ—f—l,l))Q(a_,_g_,_Ll)a Q(a+g+1,1)>

e}

because §a+5+1(Q(a+ﬁ+1,1)) = 0.
According to (2.9)-(2.10) and to the fact that gu4pt1,1) > 1, @ > =1, 3> —1 we
have

n a+1
Vn >0, §B(Q(a+ﬁ+1,1))q(a+5+171) < ‘fﬁ(%aﬂiﬂ,l)){ = m < 1.
By (2.6), (2.35) becomes
R +68+1,1 ))kQ(nkg 1,1)
U a+pB+1,
(J(a, B, o110 = (€5(dars41,1))i Gy pir 1)) Z
o (q(a+ﬁ+1 1} Yo a1k

from which we deduce the discrete measure representation in (4).
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To establish the integral representations in (5)-(6), taking into account (1.10), we
look for a function U representing J(«, 3, q).

By virtue of (1.10), (2.33), (2.9) and the g¢-distributional equation in (2.27), the
g-difference equation (1.15) becomes

11—z

Ulqr) = (¢€s(q)) " U(z). (2.36)

1 — %ats+1(a)

£s(q) v

But, taking o > —1, > —1, 0 < ¢ < 1 it is quite straightforward to get the following
equivalences

£s(q) G+2
0< —"F—<lE=g> ——— = qa —a)s
@6arp+1(q) a+B+2 (et me)
0 < Qatpti,—a) <1l <= a >0, (2.37)
and
Qa+f+1,—a) > 1 = a < 0. (2.38)

Consequently, if a >0, 8> —1, qa+p+1,—a) < ¢ < 1, we look for U of the form

fatpi1(@)
S, al
:E7q co Y )
U(z) = Q§a+ﬁ+1(§)( )
0 , v<0orx> ﬂ—q.
@€a+p+1(q)
Substituting this U in (2.36) leads to the equality n = —% — 1, and we get the

result in (2.29).
Also, if -1 <a <0, 8> -1, 0<q <1, we look for U of the form

né4(q) 45a+ﬁ+1(<1)x.
T i IO 1) V(z), 0<z<l,
Ulz) = (@i)o (2.39)

0 , <0orz>1.

Substituting this U in (2.36) leads to the equality V' (¢z) = V(). Taking into account
(2.39), we may choose
, ( lnm) ’
sin| 2mr— | |.
Inq
Thus (2.30) follows.
From the hypotheses of (7)-(8), we have a > —1, > —1, 1 < ¢ < q(a4s+1,1)- By

virtue of (1.10), (2.33), (2.9) and the g-distributional equation in (2.27), the g-difference
equation (1.14) becomes

V(z)=K

1 — Sotsr1(@) .

Ulg™'x) = géola) —— 25—

= U(zx). (2.40)
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According to (2.11), (2.28) and (2.37)-(2.38), we have

(
0 < &agpri(q) <&plq) <1, 1<q<qatstLy,
)

_sle)

§a+5+1(q
Therefore, if @ > 0, B> —1, 1 < q < qa+p+1,1) We get

) > q <= q > qa+B+1,—a)-

In€3(q)

T -1 (q Tq 1)00
Kx~ T (Ea+g+1<q),,1) , O0<z<yq,
Uz) = T M)
0 , v<0orzx>aq,

from which we obtain the result in (2.31).

Finally, if -1 < a <0, 8> -1, 1 <g< min(q(a+5+1,1),q(a+5+17_a)) = ((atB+1,1), WE
look for U of the form

In€4(q) lp-g1
( ) T lr/18q -1 (é(Jrq@Jrl( )q )olo) V(«I) ) O<zx <€ ( )( ) ( )
Uz) = S a+p+1\q 2.41
¢s(9) ’ o)
0 , :)3<00r93>§ﬁ(+1)()

Substituting this U in (2.40) leads to the equality V' (gz) = V(x). Taking into account
(2.41), we may choose

In fats+1(0) X
V(z) = K|sin (2wm) ‘

Ing—!

Thus (2.32) follows. O

Remark. Denoting by U, the weight function given either by (2.29) or by (2.31), we
have for all f € P (see (1.5))
oo  T(a+p+2)

i [ Ua@)f (e )dx_r(a+1)r(6+1

| / (1 - 2)* f(@)dz = (F (e, B), f).

3 The natural ¢g-analogue of the Bessel D-classical form

The natural g-analogue of the Bessel form is the H-classical form B(a, q) (o # 3(q —
17! a# —1[n]y, n > 0) satisfying [5,9]

n20t(1+q~")[n—1]g—q"'[2n]
P = 2" ety 0 P20
_ 3n [n+1]q(2a+[n—1]q)
Vo1 = —4¢" Gorpa et Ea ety 2 0 (3.1)

H,(2*B(a, q)) — 2(az + 1)B(a, q) = 0.

By (3.1), the form B(a, ¢) is not positive definite for any value of its parameter «.
When g — 1, we recover the Bessel D-classical form B(«a) in (1.6).

Due to the regularity conditions a # (¢ —1)™!, a # —1[n];, n > 0 we get
§20-1(¢) #0 3 &aa-1(q) #¢", n>0. (3.2)
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Proposition 3.1. The form B(«, q) has the following properties.
(1) The moments of B(«, q) are: forn >0

2(q — 1))n 1
&0-1(0) ) ((S20-1(0))"54),

(2) Forall0 <q<1, a# 3(g—1)7", a# —1i[nl, n>0, the form B(w,q) has
the following discrete measure representation

(Bla )= (

1 = (—1)FgzPtD (& 1(q) "
B — 5 2(g—1 k-
(1) ((G2a-1(2))15a) ;o (49 Fo i

Proof. For (1), it is seen from the g-distributional equation in (3.1) that
d(x) =2 ; V(x)=—2(ar+1). (3.3)

Therefore, system (1.9) takes the form

(B0t = g (Bl n=0 ¢ (Blowg)o=1
Consequently, we get
Bloa))o = 5D n21 ; (Blog)o= 1
H([k — 1], + 2a>
k=1 _

q

1
Replacing [k — 1], by — taking into account the definitions in (2.9) and (2.1),

the above relation yields the desired result due to the properties in (2.11) and (3.2).
To establish (2),let 0 < ¢ <1, a# 3(¢—1)7", a# —3[n];, n > 0. According to
(2.3) and (3.2) the equality in (1) takes the form

2(g —1)\" ((f2a—1(0))'q"5q) ,
52@‘1((1)) ((G2a—1(0))7h0) =0

By virtue of (2.7), the above expression gives for all n > 0

Bla. ) (

2(¢ — 1\" 1 o= (—1)kq%k(k—1)(£2a_l(q))—k o
52(11((])) ((52&—1((]))71;(])00 kZ:O (¢;9)k T

Thus the discrete measure representation in (2). O

(Blaa) = (

In [12], the second author proposed an integral representation for the non-positive
n
definite Bessel form B(«) (a # —5 > 0) as a consequence of its D-classical charac-

ter; see (1.6). In what follows, our goal is to determine an integral representation for
the H,-classical form B(a, q) when ¢ > 1.



100 L. Khériji, P. Maroni

For the convenience of the reader, we provide in this paragraph a summary of
definitions used in the sequel. Throughout this summary, we will fix ¢ €]0, 1].
The ¢-Jackson integrals from 0 to b and from 0 to +oco of a function f are defined

in [6] by .
/0 Pt dgt = (1= by £(ba")a" (3.4)

and
—+oco

f@)dgt=1-q) > flg")g", (3.5)

0 n=-—00

provided the sums converge absolutely.
The g-Jackson integral of a function f in a generic interval [a, b] is given in [6] by

/abf(t) dqt:/obf(t) dqt—/oaf(t) dyt. (3.6)

We recall that for any function f, we have

H, ( / " dqt) @), (37)

(See [7].) Tt is clear by (3.4)-(3.5) that the g-integral is an infinite Riemann sum with
the nodes forming a geometric progression. We would then expect that

/f e f<>

for continuous functions.

For the rest of the paper, let
a>0 and 1<q<q@a-1,)- (3.8)

We define the following sequence of numbers

_ 20¢—1)
xr(q) = P )q , keN. (3.9)

Taking into account (3.8) and (2.11) we have

20=1 ) — o0 (310

VEeN, 0<x1(q) < z(q) < 20(q) = (@) : e

According to (1.10) and (3.8), we look for a function U representing B(«, ¢) and sat-
isfying the additional condition

+OO U(x)dzx # 0. (3.11)

—00
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By virtue of (1.10), (3.3), (2.9), (3.8)-(3.10) and by the ¢-distributional equation in
(3.1), the ¢-difference equation (1.12) becomes

Ula70) = Pana(0) (1= ) o7 JU(0) = M1 = ) s(ato — o), (312

where A # 0 and s is the Stieltjes function given by (1.13).
For o >0, 1 < ¢ < q2a-11) and > 0, = > x0(q) denoting

gz, +-00[4-1:= {xQ”, n> 1}

1

we obtain the definition of the following ¢~ "-integral

Ingg4—1(q)

/ h b s(q(t — xo(q))) dg—1t

e (@@t ¢ )

Inéon_1(q) Inégn_1(q)
k 2lnq1 . €T 21“(11 : S((](qk xr — ‘r()(q))) k
(=g gz Z !

(zr(@)r™ ¢ oo

0o In&oq—1(9)
= (q _ 1) x1+1n§2§¢];1(q) +Z qk (-t na ) S(qk+1([)j - Ik((]))) (3 13)
— (@e(@)z™' 07 )0

It is straightforward to prove by the d’Alembert test and by using (1.13) and (3.9)-
(3.10), that the sum in (3.13) converges absolutely for a > 0, 1 < ¢ < g(2a-1,1) and

x> x0(q).
Consequently, a possible solution of the g-difference equation (3.12) is

;

Y (acl(q)ﬂc‘1 ;q‘l)

52(171((1) 2+w 0
U( ) < +oo tw (3 14)
Tr)= Ing |
/ (xO(Q)t_l‘ q—l) S(q<t - xO(Q)) dq—lt, T > xO(Q)-
qr y 0o

0, xr < x0(q)-

\

On one hand, we have by (3.13)-(3.14) and (1.13) the following expression of U for

x > x0(q)
M1 —q) (@olg)za7")

U(l') = §2a—1(Q) T — xo(q) 8
+o0 qk(1+ln§2ﬁ21(q)) exp(—¢ T (z— Ik( ))3) sin(g"+ (v — 2,(q))7)
Z (e(q) ™15 ¢ oo .

Taking into account (3.9)-(3.10) and the d’Alembert test one more time, this yields

IA[(q— 1) exp(—3 (z — z0(q))7)
VeI < G 0 Fp— «
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I In €201 (q) 1
S g ST >eXp(_§ ¢F (a—w0(q)7), = >a, Ya>w(q),
k=1

= o(exp(—% (x — z0(q))

On the other hand, the function in (3.14) is a possible representation of the form
B(o, q) when oo > 0 and 1 < ¢ < g(2a—1,1)- Condition (3.11) now becomes

PN

)) T — +00.

o U(z)d —A S 0
/zo(q) (z)do =  &a1(9) o(0) #

In€oq—1(9)

Sa(q) Z/:OO (xl(Q)ml>°° (/q+oo L s(q(t — wo(q)) dqlt) dz.

O(q) .T2+ Ing xT (xO(Q)t_17 q_l)OO
Furthermore,
né2q—1(9)
/+oo 1 €2mq1 q ( (t ( )) ; . 400 t_2a (2) (t) 0
S — T -1 — ex — ) s
qx (IO(Q)t_l;q_l)oo 1 . 1 q—1* z P t
t1n§2a—1<q)
Ing
since ¢ —— s(q(t — xo(q)) is continuous in [gz, +oo| which implies
(xo(q)tfl;qfl)oo ( ( ) [ [
that
Sa Sa
)

and S, # 0 for o > 6(2)* [12] (see also (1.6)). Thus we get

92 4
Va > 6 (_) ) Elqa > 17 Vi< q < min(Qa: Q(2a—1,1))7 Sa(Q) 7é 0.
m

Consequently, for all v > 6(%)4, 1 < ¢ < min(ga, g20-1,1y) and f € P, the form B(a, q)

has the following integral representation

(B(v, q), f) = (Salq)) '

+o00 —1. 1 400 7111521‘:‘;1(‘”
/x (m(@f@a’_ql(q))oo( /q s(q(t — z0(q)) dqlt) f(x)dz. (3.15)

s (@o(t ¢ )

o(q) Q;2+ Ing
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