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Abstract. In this paper, an approximate solution of the problem of the structure
of shock waves in gases is presented. Changes of the average magnitude of density,
speed and internal energy of gas along with the width of the shock wave are given.
Dependence of the width of the jump on the Mach number is obtained and is compared
with results of other authors.

In [1]-[3] there was considered an application in the rarefied gas dynamics of the heuris-
tic flow model previously developed for describing the flow of gas with solid particles
[4]. In this model, the molecules are subdivided into two sets, each of which is con-
sidered to be described by the continuum. The collision of molecules of the same set
generates the pressure and heat flows in this set, whereas the collision of molecules
of different sets leads to the transition of particles from one set to another. In these
studies, the particles of one of the sets (let us call them s-particles) were moving or-
derly without the random component of the velocity and naturally all collisions of such
particles with particles of another set (t-particles) led to the transition of s-particles
to the set of randomly moving t-particles, while t-particles remained to be t-particles.

The advantage of this model is its simplicity, since it is easy to calculate the mass,
momentum and energy conducted by the particles in such a transition, and it is not
required to use any interaction characteristics of the particles, other than the frequency
of collisions. The applications of this model to calculation of the shock-wave structure
[1] and the flow around of a sphere by rarefied gas [2, 3] have shown sufficient accuracy.

The assumption that s-particles move orderly (with a negligible component of the
random speed) restricts the application of the model to the case of the hypersonic flow
of gas.

In this paper, a generalization of the described model is given to the case in which
particles of both sets have a random component of the velocity; this gives the oppor-
tunity to use the model for all Mach numbers.

As in the above model, we assume that molecules are solid and elastic spheres and
that in any collision of particles of different sets the transition of particles from one set
to another takes place. We shall also assume that the distribution of particle velocities
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is close to Maxwell’s one in each of the sets and compute the pressure and heat flows
on this basis. However, if previously it was natural to assume that all orderly moving
s-particles after the collision are transited to the set of randomly moving t-particles,
now, in the case in which there is random motion in both sets, we shall assume that
the transition of t-particles to the set of s-particles is also possible. Let us denote the
probability of transition of s-particles to the set of t-particles as a result of collision
by β and the probability of transition of t-particles to the set of s-particles by 1 − β
respectively.

Obviously, the transition probability of particles from one set to another may be
associated with the intensity of random motion of particles in the corresponding set.
Moreover the greater chance of transition is in the set which has the greater intensity
of random motion. This intensity can be described by the average modulus of the
velocity of random motion ci =

√
16pi/(3π(κ− 1)%i), where pi is the pressure, %i is the

density of the i-th gas (i = s, t), κ – the specific heat ratio (κ = 5/3, if the rotation of
the particles is not taken into account, and κ = 4/3, if the energy of random motion is
uniformly distributed over the rotational and translational degrees of freedom).

The most natural assumption is that β proportional to c3t for small c3t , as c3t is
the volume in the velocity space, which describes the intensity of random motion of
particles, and β is the probability of a collided s-particle to be transmitted to the t-set
after the collision. Respectively 1−β is proportional to c3s for small c3s, hence we assume
that β = c3t/(c

3
t + c3s).

Now we consider shock-wave structure in gas on the basis of the described model,
following [1], where this was done for the case of hypersonic flow prior to the shock-wave.
The balance equations of mass, momentum and energy for the s- and t-components of
the flow are as follows:
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Here %i, ui (i = s, t) are the density and velocity of components (the index indicates
the corresponding component), Ui is the kinetic energy of random motion of molecules,
cV is the specific thermal capacity of gas at constant volume, I is the total mass of
molecules of one set, collided with molecules of the other set in a unit volume per unit
time. We shall use the following approximate formula for I:

I =
πd2

m
%s%t

√
(us − ut)2 + c2s + c2t .
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Here m is the mass of molecules, d is their diameter; µi, λi is the viscosity and thermal
conductivity of the components, which can be determined as for gas consisting of solid
spheres. For each component the equation below is assumed to be valid

pi = (κ− 1)%iUi.

To calculate the shock-wave structure the above equations we shall use the following
boundary conditions:

us → us−, %s → %s−, Us → Us−, %t → 0 as x→ −∞

and
ut → ut+, %t → %t+, Ut → Ut+, %s → 0 as x→ +∞.

Due to the conservation of mass, momentum and energy of the flow the following
conditions of dynamic compatibility should be fulfilled:

ut+
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%s−

%t+

=
2
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+
κ− 1

κ+ 1
,
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2κM2
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,

where M = us−/
√
κps−/%s− is the Mach number of the flow prior to the shock-wave.

Next we switch to the dimensionless variables, taking as the scales of velocity,
density and length us−, %s−,

m
πd2%s−

respectively, and keeping the same notation.
First, we assume that both components are non-viscous and thermally non-

conductive µs = µt = 0 and λs = λt = 0. Then equations (1) - (5) can be written
as
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Adding pairs of equations (6), (7) and (8), after integration and determination of
constants by using the boundary conditions, it is easy to obtain that

As + At = 1, AsBs + AtBt = 1 +
1

κM2

AsCs + AtCt =
1

2
+

1

(κ− 1)M2
.

Solutions to equations (6) - (8) show that Bs, Bt, Cs, Ct do not depend on x;
us, ut, Us, Ut and cs, ct, β depending on them are also constants. On x depend only
the densities of the components %s, %t and the quantities ps, pt, I determined by them.
By the first equation in (6) we have d%s

dx
= −D%s(1 − %s), whence, by selecting the
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reference point x, where %s = 0.5, we have %s = 1
1+eDx , and by the second equation in

(6) we obtain %t = eDx%t+

1+eDx . Here

D = (2β − 1)

√
(M2 − 1)2 + 4

πκ
((κM2 + 1)2 − κ(M2 − 1)2)(
κ−1

2
M2 + 1

)
The fact that the velocity and internal energy of the component in accordance with

the obtained result do not depend on x, means that their viscosity and thermal con-
ductivity are non-essential, hence the obtained result is valid also for viscous thermally
conductive gas. Then the average values of density, speed and energy for the mixture
will be
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where
H = [M2(κ+ 1)]/[2 +M2(κ− 1)].

Thus, the above two-component model of solid particles flow, as well as the initial
quaternary model of gas suspension [4] can be considered to be applicable even in the
cases in which the mean free path of particles is comparable with the gas-dynamic
scale. Moreover, it may happen that the concepts, on which the construction of these
models are based, will be useful in the aerodynamics of rarefied gases when considering
the transient mode from continuum to free molecular flow.
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