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Abstract. For general Carnot groups, we obtain coercive estimates for homogeneous
di�erential operators with constant coe�cients, kernels of which have �nite dimen-
sion. We develop new Sobolev-type integral representations of di�erentiable functions
which are a crucial tool for deriving coercive estimates. Moreover we prove some aux-
iliary results having independent interest, in particular, Sobolev type embedding and
compactness theorems for John domains.

1 Introduction
In the series of well-known papers [33, 34, 35, 36, 37] S. L. Sobolev applied two types
of integral representations of functions for proving embedding theorems. In the �rst of
them a function possessing weak derivatives equals the sum of a smooth function and
an integral of potential type of weak derivatives of the given function. The second one
decomposes a function into two summands: the �rst one is a polynomial and the second
one is an integral of potential type like in the previous case. These representations
turned out to be useful both in the theory of function spaces, see for instance [3], and
in the theory of PDE, see O.A. Ladyzhenskaya and T.N. Shilkin [17]. They also are
applied in the quasiconformal analysis, see Yu.G. Reshetnyak [28], and in the theory
of elasticity [21].

Coercive estimates arose in the theory of di�erential operators as a tool for �nding
a solution to a di�erential equation, see [1]. Later a way was found for obtaining
coercive estimates by means of special integral representation of functions [2].

It is natural to expect that integral representations of functions may be useful for
more complicated metric structures di�erent from the Euclidean one. The main goal of
our paper is obtaining coercive estimates for a class of di�erential operators on Carnot
groups. Derivation of these estimates is based on special integral representations of
di�erentiable functions on Carnot groups (see Theorems 2 and 3 below), embedding
theorems for the Riesz potentials [41, 6] and a Zygmund�Calder�on type theorem (see
Lemma 4 below).

We consider a Carnot group G of topological dimension N with Lie algebra V =
V1 ⊕ . . . ⊕ Vm, where [V1, Vi] = Vi+1 for i = 1, . . . ,m − 1, [V1, Vm] = {0}, dimV1 = n.
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Let left-invariant vector �elds X1, . . . , XN constitute a basis of Lie algebra V such that
the family of vector �elds XdimV1+···+dimVi−1+1, . . . , XdimV1+···+dimVi

is a basis of Vi. Let
σi be the degree of the vector �eld Xi: σi = {k | Xi ∈ Vk}. We will consider the
coordinates of the �rst type, that is x = (x1, . . . , xN) = exp

( N∑
i=1

xiXi

)
(e) where e is

the unit of the group. The Lebesgue measure on RN is the bi-invariant Haar measure
on G.

The Carnot�Carath�eodory metric dcc is the in�mum of lengths of horizontal curves
joining two points. (A piece-wise smooth curve γ is horizontal if

·
γ (t) ∈ V1(γ(t))

for almost all t.) The Hausdor� dimension with respect to the Carnot�Carath�eodory
metric is ν =

∑N
i=1 σi.

To a multi-index I = (i1, . . . , ik) ∈ {1, . . . , N}k, it corresponds the di�erential
operator XI = Xi1 . . . Xik and the weight d(I) =

∑k
j=1 σij . By multi-index with

subindex h we shall always denote the horizontal multi-index Ih = (i1, . . . , ik), ij =
1, . . . , n. Obviously, the length of the horizontal multi-index coincides with its weight:
d(Ih) = k.

For a multi-index I = (i1, . . . , ik), i1, . . . , ik = 1, . . . , N , set xI = xi1 · . . . · xik .
Clearly, xI is homogeneous of degree d(I), that is (δtx)

I = td(I)xI where δtx =
(tσ1x1, . . . , t

σNxN), t > 0, is a dilation on Carnot group G. A function f is said to be a
polynomial onG if f(x) =

∑
I aIx

I where all but �nitely many of the coe�cients aI van-
ish. For the polynomial f , the (homogeneous) degree is said to be max{d(I) : aI 6= 0}.
Denote by Pk the linear space of polynomials on G of homogeneous degree < k.

Let Ω be a domain in G, s, l ∈ N, 1 ≤ q ≤ ∞. The Sobolev space W l
q(Ω,Rs)

consists of the functions f = (f1, . . . , fs) : Ω → Rs having the weak derivatives XIhfj
for d(Ih) = k, k = 1, . . . , l, j = 1, . . . , s, and a �nite norm

‖f‖W l
q(Ω,Rs) = ‖f‖q,Ω +

∑

0<d(Ih)6l
‖XIhf‖q,Ω

where ‖ · ‖q,Ω is Lq-norm of a measurable vector-valued function on Ω.
We apply the abovementioned integral representations of functions to obtaining

coercive estimates of di�erential operators with constant coe�cients, kernels of which
have �nite dimension, on John domains. John introduced such domains in the Eu-
clidean case for studying the stability of isometries [14]. We can regard the John
domains as a natural extension of the class of Lipschitz domains and the domains
satisfying the cone condition. It turned out that the geometry of such domains in Rn
enables us to construct integral representations and to prove a Sobolev-type embedding
theorem [27]. The de�nition of a John domain can be extended easily to the case of
metric spaces. In the case of Carnot groups the class of John domains coincides with
the class of the so-called Boman chain domains (see [4]). Balls in Carnot�Carath�eodory
metric are obvious examples of John domains.

A domain Ω ⊂ G is a John domain J(α, β), 0 < α ≤ β, if there exists a point
x0 ∈ Ω such that every x ∈ Ω can be joined in Ω with x0 by a recti�able curve γ
parameterized by the arc length, such that

γ(0) = x, γ(l) = x0, l ≤ β, and dist(γ(s), ∂Ω) ≥ αs

l
for all s ∈ [0, l].
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It is obvious that B(x0, α) ⊂ Ω ⊂ B(x0, β).
Let Ω be a domain on G and Q be a homogeneous di�erential operator of or-

der k with constant coe�cients acting from Rs-valued vector functions u of the class
W k
p (G,Rs) to Rm-valued vector functions:

(Qu(x))j =
s∑
i=1

∑

d(I)=k

cij,IX
Iui(x), j = 1, . . . ,m. (1)

The main result of the paper is the following.

Theorem 1. Let 1 < p < ∞, p 6 q 6 ∞, and Ω be a John domain J(α, β) in G,
Q be a homogeneous di�erential operator (1) of order k with constant coe�cients and
�nite-dimensional kernel. Then there exists a projector Π on the kernel of Q and an
integer l > k such that kerQ ⊂ Pl+1 and

‖XJ(u− Πu)‖q,Ω 6 C
(β
α

)θ
diam(Ω)k−d(J)−ν/p+ν/q‖Qu‖p,Ω

for every function u ∈ W k
p (Ω,Rs) and every multi-index J , satisfying d(J) 6 k, with

θ =

{
l − d(J) + ν if q 6= ∞,

l − d(J) + ν + ν/p if q = ∞,

and p, q meeting one of the following conditions:
1) p 6 q 6 νp

ν−(k−d(J))p
for (k − d(J))p < ν, d(J) < k;

2) p 6 q <∞ for (k − d(J))p = ν;
3) p 6 q 6 ∞ for (k − d(J))p > ν;
4) q = p for d(J) = k.
Here C > 0 is independent of u, Ω, α and β.

The proof of coercive estimates is based on appropriate integral representation
formulas (Theorems 2 and 3). In Theorems 2 and 3 we use the following quasimetric:
d∞(x, y) = supi=1,...,N{|(x−1y)i|1/σi}, see [22]. Let c > 1 be a constant in the generalized
triangle inequality: d∞(x, y) 6 c(d∞(x, z) + d∞(z, y)) for all x, y, z ∈ G. Denote a ball
in quasimetric d∞ by Box(a, r) = {x : d∞(a, x) < r}. Notice that the quasimetric d∞ is
equivalent to the Carnot�Carath�eodory metric dcc: c1d∞(x, y) 6 dcc(x, y) 6 c2d∞(x, y)
for all x, y ∈ G, 0 < c1 < c2 <∞ are constants.

Theorem 2. Let an integer l > 0 and a function u ∈ C∞(G). Then

u(x) =

∫

G

u(y)ϕ(y−1x) dy +
∑

d(Ih)=l

∫

G

XIhu(y)KIh(y
−1x) dy (2)

for all x ∈ G where

ϕ ∈ C∞(G), suppϕ ⊆ Box(e, 1) \ Box(e, 1/2),
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∫

Box(e,1)

ϕ(x) dx = 1,

∫

Box(e,1)

xα1
1 . . . xαN

N ϕ(x) dx = 0, 0 <
N∑
i=1

αi < l,

KIh ∈ C∞(G \ {e}), suppKIh ⊆ Box(e, 1),

and
|XJKIh(x)| 6 Md(J)d∞(x, e)−l+d(J)−ν for any multi-index J.

Here Md(J) > 0 is a constant independent of u and x ∈ G.
Remark 1. Rewrite formula (2) in Rn:

u(x) =

∫

Rn

u(y)ϕ(x− y) dy +
∑

|α|=l

∫

Rn

Dαu(y)Kα(x− y) dy.

Emphasize that such integral representation of a function is new for the Euclidean
spaces also since the kernel of the integral operator in Theorem 2 depends only on x−y
but not on (x, y − x), as in [37].

In the second integral representation theorem we want to see a function as the sum
of a polynomial and a singular integral of derivatives.

Theorem 3. Let an integer l > 0, κ = c+ c2 + 2c3 where c is the constant of the gen-
eralized triangle inequality of the quasimetric d∞, and a function u ∈ C∞(Box(e,κ)).
Then for every x ∈ Box(e, 1) the integral representation formula

u(x) = Plu(x) +
∑

d(Ih)=l

∫

Box(e,κ)

XIhu(y)K ′
Ih

(y, x) dy

holds where
Pl is a projection of L1(Box(e, 1)) to Pl,
K ′
Ih

(y, x) = KIh(y
−1x) + LIh(y, x) with KIh from Theorem 2,

and
LIh ∈ C∞(G×G), suppLIh(·, x) ⊆ Box(e,κ) for x ∈ Box(e,κ).

Notice that, on two-step Carnot groups, Sobolev type integral representation of
functions were obtained in [29] and [25]. The method of its proof is based on works by
S. Sobolev and Yu. Reshetnyak. However, its generalizations to arbitrary groups meet
serious technical obstacles.

In our paper we apply a di�erent method for deriving integral representations. This
method was introduced by V. S. Rychkov in [31, 32]. It is based on a representation of
functions by means of the convolution with a kernel which is a sum of dyadic dilations.
This method can be considered as a counterpart of Calder�on-type reproducing formula.

We give below several corollaries of Theorem 1 on coercive estimates.
Consider the di�erential operator Qu = ∇k

Lu = {XIhu}d(Ih)=k. Then its kernel is
just the space Pk of polynomials of degree < k. As a particular case we have Poincar�e
inequality for higher derivatives. Notice that, by a di�erent method, it was obtained
also by G. Lu in [18, 19].
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Theorem 4 (Poincar�e inequality). Let l > 0, 1 6 p 6 q 6 ∞, U be a John domain
J(α, β) in G. Then there is a projection P : W l

p(U) → Pl such that

‖XJ(u− Pu)‖q,U 6 C
(β
α

)θ
diam(U)l−d(J)−ν/p+ν/q‖∇l

Lu‖p,U

for any function u of the Sobolev class W l
p(U) and every multi-index J , d(J) < l, with

1) p 6 q 6 νp
ν−(l−d(J))p

for (l − d(J))p < ν;
2) p 6 q <∞ for (l − d(J))p = ν;
3) p 6 q 6 ∞ for (l − d(J))p > ν;
4) q = ∞ for l − d(J) > ν,

and θ =

{
l − 1− d(J) + ν if q 6= ∞,

l − 1− d(J) + ν + ν/p if q = ∞.

Here C > 0 is independent of u, U , α and β.

The next corollary is an embedding theorem. In Euclidean spaces the embedding
theorem on John domains was established by Yu. G. Reshetnyak [26]. The embedding
into Orlicz spaces is proved by S. I. Pohozhaev [24] for bounded domains with locally
Lipschitz boundary and by B. V. Trushin [39] for domains satisfying �exible σ-cone
condition. This class includes the class of John domains.

On Carnot groups the global embedding theorem can be found in [8]. The em-
bedding theorems for l = 1 on John domains are obtained in [11]. In the following
theorem we state embedding theorem and estimate the norms of embedding operators.
For formulating the theorem, de�ne several functional spaces.

Let U be a domain in G. Denote by Ck(U), k = 0, 1, . . . , the space of continuous
functions f : U → R with continuous derivatives XIhf for all multi-indices d(Ih) 6 k,
and with a �nite norm ‖f‖Ck(U) = sup{|XIhf(x)| : x ∈ U, d(Ih) 6 k}.

For de�ning the class of H�older functions we introduce the inner metric dUτ , 0 <
τ 6 1, de�ned on a domain U ⊂ G:

dUτ (x, y) = inf
{ m∑
i=1

(dcc(xi, xi−1))
τ | x = x0, x1, . . . , xm = y ∈ U,

dcc(xi, xi−1) 6 max{dist(xi, ∂U), dist(xi−1, ∂U)}, i = 1, . . . ,m
}
.

Notice that dU1 (·, ·) coincides with the in�mum of the lengths of all horizontal curves
joining two points in U . If U is a John domain J(α, β) then its diameter is bounded
in the metric dUτ for all τ ∈ (0, 1].

A space Ck,τ (U), k = 0, 1, . . . , 0 < τ < 1, consists of all functions f : U → R
having continuous derivatives XIhf for all d(Ih) 6 k and the �nite norm

‖f‖Ck,τ (U) = sup
x∈U, d(Ih)≤k

|XIhf(x)|+ sup
x,y∈U, x6=y, d(Ih)=k

|XIhf(x)−XIhf(y)|
dUτ (x, y)

.
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A space Ck,1
loc (U) is a subspace of Ck-smooth functions with the �nite norm

‖f‖Ck,1
loc (U) = sup

x∈U, d(Ih)≤k
|XIhf(x)|

+ sup
B(x,r)⊂U, dcc(e,h)=r,

d(Ih)=k

|XIhf(xh) +XIhf(xh−1)− 2XIhf(x)|
r

.

Set Φ(t) = exp(tη) − 1, η > 1. Let Ck,Φ(U) be the space of functions f : U → R
having bounded continuous derivatives XIhf for d(Ih) < k and the weak derivatives
XIhf satisfying ∫

U

Φ(|XIhf(x)|) dx <∞ for d(Ih) = k

equipped with the following norm:

‖f‖Ck,Φ(U) = sup
x∈U, d(Ih)<k

|XIhf(x)|

+ inf

{
ρ > 0 |

∫

U

Φ
( |XIhf(x)|

ρ

)
dx 6 1, d(Ih) = k

}
.

Obviously C0,Φ is the Orlicz space LΦ.

Theorem 5 (Embedding theorem). Let l ∈ N, k ∈ Z+, k < l, 1 6 p <∞, and U be a
John domain J(α, β) in G.
(1) If (l−k)p < ν then W l

p(U) is continuously embedded in W k
q (U) for 1 6 q 6 νp

ν−(l−k)p
(here we assume W 0

q = Lq):
W l
p(U)

i
↪→ W k

q (U),

‖i‖W l
p(U)↪→Wk

q (U) 6 C
(β
α

)l−1−k+ν
(diamU)−ν/p+ν/q max{(diamU)l−k, 1}.

If q < νp
ν−(l−k)p then the embedding is compact.

(2) If (l − k)p = ν and p > 1 then W l
p(U) is continuously embedded in Ck,Φ(U) for

Φ(t) = exp(tη)− 1, η 6 p
p−1

:
W l
p(U)

i
↪→ Ck,Φ(U),

‖i‖W l
p(U)↪→Ck,Φ(U) 6 C

(β
α

)l−k−1+ν+ν/p

(diamU)−ν/p max{(diamU)l−k, 1}.
If η < p

p−1
then the embedding is compact.

(3) If p = 1 and l − k = ν then W l
p(U) is continuously embedded in Ck(U):

W l
p(U)

i
↪→ Ck(U),

‖i‖W l
p(U)↪→Ck(U) 6 C

(β
α

)l−1−k+ν+ν/p
(diamU)−ν/p max{(diamU)l−k, 1}.

Moreover, W l
p(U) is continuously compactly embedded in Ck,Φ(U) with an arbitrary

η ∈ (1,∞).
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(4) If (l − k)p > ν and (l − k − 1)p < ν then W l
p(U) is continuously embedded in

Ck,τ (U), 0 < τ 6 l − k − ν
p
< 1:

W l
p(U)

i
↪→ Ck,τ (U),

‖i‖W l
p(U)↪→Ck,τ (U) 6 C

(β
α

)l−1−k+ν+ν/p
(diamU)−ν/p max{(diamU)l−k, 1}.

If τ < l − k − ν
p
then the embedding is compact. In addition, W l

p(U) is continuously
compactly embedded in Ck(U).
(5) If (l − k)p > ν and (l − k − 1)p = ν then W l

p(U) is continuously embedded in
Ck,1

loc (U),
W l
p(U)

i
↪→ Ck,1

loc (U),

‖i‖W l
p(U)↪→Ck,1

loc (U) 6 C
(β
α

)l−1−k+ν+ν/p
(diamU)−ν/p max{(diamU)l−k, 1}.

Furthermore, W l
p(U) is continuously compactly embedded in Ck(U) and Ck,τ (U) with

τ ∈ (0, 1).

Remark 2. Applying method of paper [40] we can prove that a function f ∈ Ck,τ (U)
can be extended by the continuity to the completion of the domain U with respect to the
metric dUτ .

The Sobolev space W̃ l
q(Ω) consists of the functions f : Ω → R having the weak

derivative XIhf for d(Ih) = l, and a �nite norm

‖f‖fW l
q(Ω) = ‖f‖q,Ω +

∑

d(Ih)=l

‖XIhf‖q,Ω.

Like the Euclidean case, the spaces W l
p and W̃ l

p coincide on John domains.

Theorem 6. Let Ω be a John domain on Carnot group G, 1 6 p 6 ∞, l ∈ N. Then

W l
p(Ω) = W̃ l

p(Ω)

and the norms are equivalent.

The proof of Theorem 6 is based essentially on Theorem 4.
One more application of Theorem 1 is an extension theorem of Sobolev-type func-

tions de�ned on (ε, δ)-domains. Jones [15] proved the extension theorems for the
Sobolev space W k

p beyond such domains in Rn. Lu [19] established extension the-
orems for the weighted Sobolev spaces on (ε, δ)-domains of Carnot groups. In this
paper we introduce and extend functions belonging to some Sobolev-type class. Notice
that bounded sets with smooth boundaries are (ε, δ)-domains (e. g., see [7, 29]) on
two-step Carnot groups. Besides of this balls in the Heisenberg groups with respect to
Carnot�Carath�eodory metric are (ε, δ)-domains [42].
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An open set Ω is an (ε, δ)-domain if for all x, y ∈ Ω, d∞(x, y) < δ, there exists a
recti�able curve γ with endpoints x and y such that γ lies in Ω and

length(γ) <
d∞(x, y)

ε
, d(z, ∂Ω) > εd∞(x, z)d∞(y, z)

d∞(x, y)
for all z ∈ γ.

Radius of an open set Ω is a number

rad Ω = sup{r > 0 : ∂ Box(p, s) ∩ Ω 6= ∅ for all p ∈ Ω, 0 6 s < r}.
Let Q be a homogeneous di�erential operator (1) of order k with constant coe�cients
and with �nite-dimensional kernel. Let Π be a projection of L1(Box(e, 1),Rs) to the
kernel of Q from Theorem 8.

Consider a domain Ω, Box(e, 1) ⊂ Ω. A locally integrable function u : Ω → Rs
belongs to the functional space WQ

p (Ω,Rs) if Qu is well-de�ned in the sense of weak
derivatives and the following norm is �nite:

‖u‖WQ
p (Ω) = ‖Πu‖+ ‖Qu‖p,Ω.

Notice that, by Theorem 1, the space WQ
p (Ω) coincides with the usual Sobolev

class W k
p (Ω) for each John domain Ω.

Theorem 7 (Extension theorem). Let Ω be a bounded (ε, δ)-domain on a Carnot group
G, Box(e, 1) ⊂ Ω, 1 < p 6 ∞. There is an extension operator

ext : WQ
p (Ω) → WQ

p (G),

and the norm of the operator ext depends only on ε, δ, k, p and radius of the domain Ω.

We prove �rst Theorem 2 and then Theorem 3. After doing this we are ready to
prove a local version of coercive estimates for the di�erential operator (1) (Theorem
8). It left to justify only a way from local to global estimates. It is done in Theorem 9.

The structure of the paper is the following. In Section 2 we give necessary de�ni-
tions and some auxiliary results. Section 3 is devoted to the proof of Theorems 2 and
3. In Section 4 we give embedding theorems for Riesz potentials (Lemma 3), estab-
lish Zygmund�Calder�on type theorem (Lemma 4), and prove local coercive estimates
(Theorem 8). Section 5 is devoted to passing from local estimates to global ones. In
Section 6 we prove Theorems 4�7.

Authors thank Anton Parfenov for introducing the method of papers [31, 32].

2 De�nitions and auxiliary results

2.1 Left- and right-invariant vector �elds
On G one can choose coordinates x1, . . . , xN such that

Xi =
∂

∂xi
+

∑
σj>σi

Pij(x)
∂

∂xj
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where Pij is a polynomial of homogeneous degree (σj − σi). (Here we follow Jerison
[13].)

We have x−1 = −x, X∗
i = −Xi and Xi = ∂

∂xi
for Xi ∈ Vm.

Set Rf(x) = f(x−1) and XRf = RXRf . If X is a left-invariant vector �eld then
XR is right-invariant. Moreover,

XR
i = − ∂

∂xi
−

∑
σj>σi

Pij(−x) ∂

∂xj
, i = 1, . . . , N.

It is easy to verify using induction on i beginning with the trivial case σi = m and
decreasing to σi = 1 that for some polynomials Qij with homogeneous degree σj − σi

∂

∂xi
= −XR

i +
∑
σj>σi

XR
j Qij.

Therefore, Xi =
∑n

j=1X
R
j Aij where Aij are di�erential operators satisfying Aii = −id

and
∫
Aijϕdx = 0 for any ϕ ∈ C∞0 and i 6= j.

2.2 Convolution
For any integrable functions f and g, the convolution f ∗ g is a function de�ned as
follows:

f ∗ g(x) =

∫

G
f(x−1y)g(y) dy =

∫

G
f(y)g(y−1x) dy.

It is easy to verify that the following properties holds for any smooth integrable
functions f , g, and a left-invariant vector-�eld X:

1) f ∗ g 6= g ∗ f ;
2) X(f ∗ g) = f ∗Xg;
3) (Xf) ∗ g = −f ∗ (XRg).

2.3 Smooth approximations of Sobolev functions
In this subsection we show the density of smooth functions in Sobolev spaces. (Density
of smooth functions in the Sobolev spaces on Carnot groups can be found in [11] for
l = 1.)

Let ϕ ∈ C∞0 (B(e, 1)) and a =
∫
ϕ(x) dx. Set ϕε = 1

ενϕ◦δ1/ε. Then for any function
u ∈ Lp(G) we have ‖uε − au‖p,G → 0 as ε→ 0 where uε = u ∗ ϕε [9].
Lemma 1. Let Ω be open set on G with nonempty boundary. Then C∞(Ω) ∩ W̃ l

p(Ω)

is dense in W̃ l
p(Ω) and C∞(Ω) ∩W l

p(Ω) is dense in W l
p(Ω).

Proof. Take ϕ ∈ C∞0 (B(e, 1)) with
∫
ϕ(x) dx = 1 and f ∈ W̃ l

p(Ω). Then fε ∈
C∞(Ω′) ∩ W̃ l

p(Ω
′) for Ω′ compactly supported in Ω.

Consider �rst l = 1. Then

Xifε = f ∗Xiϕε = f ∗
n∑
j=1

XR
j Aijϕε = −

n∑
j=1

Xjf ∗ Aijϕε



Coercive estimates and integral representation formulas on Carnot groups 67

and
∫
Aijϕε = −δij. It follows

‖Xifε −Xif‖p,Ω′ → 0 as ε→ 0.

Let now l be arbitrary. The same is true for any multi-index Ih, d(Ih) = l. Indeed,

XIhfε = f ∗XIhϕε = f ∗
∑

d(Jh)=l

XJh,RAIhJh
ϕε = (−1)l

∑

d(Jh)=l

XJhf ∗ AIhJt
h
ϕε

where AIhJt
h
are di�erential operators with AIhIt

h
= (−1)lid and

∫
AIhJt

h
ϕε = 0. (Here

J th = (jl, . . . , j1) for Jh = (j1, . . . , jl).) Therefore, ‖XIhfε −XIhf‖p,Ω′ → 0 as ε→ 0.
Passing from Ω′ to Ω repeats word-by-word the proof in Euclidean setting (see, for

example, [20]). ¤

2.4 Construction of the function ϕ from Theorem 2
For a function ϕ, de�ne

Tϕ(x) = 2νϕ(δ2x).

Obviously,
1) T kϕ(x) = 2kνϕ(δ2kx) = T iT jϕ(x) if i+ j = k, i, j, k ∈ N;
2) XiT

k = 2σikT kXi and XR
i T

k = 2σikT kXR
i , i = 1, . . . , N .

Lemma 2. Let l > 0 be an integer. There exists a smooth function ϕ supported in the
annuli Box(e, 1) \ Box(e, 1/2) such that

∫

Box(e,1)

ϕ(x) dx = 1,

∫

Box(e,1)

xα1
1 . . . xαN

N ϕ(x) dx = 0, 0 <
∑

αi < l, αi ∈ Z+,

and
Tϕ− ϕ =

∑

d(Ih)=l

XIh,RζIh

where the smooth functions ζIh are supported in the annuli Box(e, 1) \ Box(e, 1/4).

In the Euclidean case the analog of the lemma can be found in [23, Lemma 3.7].
For proving Lemma 2, we construct a smooth function ψ : R→ R such that

suppψ ⊆ [a, b],

∫ ∞

−∞
ψ(s) ds = 1,

∫ ∞

−∞
skψ(s) ds = 0 for all k = 1, . . . , l − 1.

It is su�cient to consider l test functions ψ1, . . . , ψl supported on the interval [a, b]
satisfying detA 6= 0 where

A = {aij}lij=1, aij =

∫ ∞

−∞
si−1ψj(s) ds, i, j = 1, . . . , l.



68 D.V. Isangulova, S.K. Vodopyanov

Put a vector 


c1
c2
...
cl


 = A−1




1
0
...
0


 .

Then ψ =
∑l

i=1 ciψi satis�es all the properties we need.
Let a function f ∈ C∞0 (R) satisfy

∫ ∞

−∞
f(s) ds = 0,

∫ ∞

−∞
skf(s) ds = 0 for all k = 1, . . . , l − 1.

Then f(s) = dl

dsl ξ(s) where

ξ(s) =
1

(l − 1)!

∫ s

−∞
(s− t)l−1f(t) dt.

Moreover, supp ξ ⊆ supp f .

Proof of Lemma 2. Consider N functions ψi ∈ C∞0 (R), i = 1, . . . , N , satisfying
∫ ∞

−∞
ψi(s) ds = 1,

∫ ∞

−∞
skψi(s) ds = 1 for all k = 1, . . . , l − 1,

and suppψi ⊆ [2−σi , 1].
Set ϕ(x) = ψ1(x1)ψ2(x2) . . . ψN(xN). Then ϕ ∈ C∞0 (G) and suppϕ ⊆ Box(e, 1) \

Box(e, 1/2). Furthermore, Tϕ(x) =
∏N

i=1 tσiψi(xi) where the operator t is de�ned as
follows: tψ(s) = 2ψ(2s). Therefore

Tϕ(x)− ϕ(x) = (tψ1(x1)− ψ1(x1))ψ2(x2) · · ·ψN(xN)

+ tψ1(x1)(tψ2(x2)− ψ2(x2))ψ3(x3) · · ·ψN(xN)

+ · · ·+ tψ1(x1) · · · tσi−1ψi−1(xi−1)(t
σiψi(xi)− ψi(xi))ψi+1(xi+1) · · ·ψN(xN)

+ · · ·+ tψ1(x1) · · · tσN−1ψN−1(xN−1)(t
σNψN(xN)− ψN(xN)).

We have Tϕ− ϕ =
∑N

i=1
∂l

∂xl
i
ζi with

ζi(x) = tψ1(x1) . . . t
σi−1ψi−1(xi−1)ξi(xi)ψi+1(xi+1) . . . ψN(xN),

supp ζi ⊆ Box(e, 1) \ Box(e, 1/4),

ξi(xi) =
1

(l − 1)!

∫ xi

−∞
(xi − t)l−1(tσiψi(t)− ψi(t)) dt.

Show that
∂l

∂xli
ζi =

∑

d(Ih)=l

XIh,Rζi,Ih .
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It su�ces to verify it for l = 1. Recall that XR
i = − ∂

∂xi
− ∑

σj>σi

Pij(−x) ∂
∂xj

, and

the polynomial Pij(−x) has homogeneous degree σj − σi. It follows that Pij(−x) is
independent of xj since the polynomial xj has homogeneous degree σj. Thus,

∂

∂xi
ζi(x) = −XR

i ζi(x) +
∑
σj>σi

∂

∂xj
(Pij(−x)ζi(x))

= −XR
i ζi(x)−

∑
σj>σi

XR
j (Pij(−x)ζi(x))

+
∑

σk>σj>σi

∂

∂xk
(Pjk(−x)Pij(−x)ζi(x)) . . . .

Taking into account ∂
∂xk

= −XR
k for Xk ∈ Vm and proceeding as follows, we �nally

come to the following equality:

∂

∂xi
ζi(x) =

N∑
j=i

XR
j ζij(x), ζij ∈ C∞0 (Box(e, 1)).

Here ζij equals ζi multiplied by the polynomial of degree (σj − σi).
Horizontal vector �elds XR

1 , . . . , X
R
n generate the whole Lie algebra V . Hence

XR
j =

∑
σs+σk=σj

cjsk[X
R
s , X

R
k ] =

∑

d(Ih)=σj

cjIhX
Ih,R.

The desired property follows immediately. ¤

2.5 Strati�ed Taylor formula with integral remainder
The Taylor formula in R1 with integral remainder is known: f ∈ C l(R), l > 0,

f(t) =
l−1∑

k=0

1

k!

dkf(0)

dtk
tk +

1

l!

∫ t

0

dlf(s)

dtl
(t− s)l−1 ds. (3)

Fix points x0, z ∈ G. Consider a curve γ(t) = x0δtz, t > 0. We have

·
γ (t) =

N∑
i=1

σit
σi−1ziXi(γ(t)).

Let u ∈ C l(G,R). Put f(s) = u(x0δsz). Then

dkf(s)

dsk
=

k∑
j=1

∑

I∈{1,...,N}j ,
d(I)>k

sd(I)−kQk,I(z)X
Iu(x0δsz)

where Qk,I(z) is a homogeneous polynomial of degree d(I).
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Obviously,

dkf(0)

dsk
=

k∑
j=1

∑

I∈{1,...,N}j ,
d(I)=k

Qk,I(z)X
Iu(x0) =

∑

d(Ih)=k

QIh(z)X
Ihu(x0).

Here we replaced Xj of degree σj > 1 by a linear combination of σj horizontal vector
�elds. Notice that QIh(z) is the homogeneous polynomial of degree d(Ih) = k.

Applying Taylor formula (3) with t = 1 we obtain

u(x0z) =
l−1∑

k=0

1

k!

∑

d(Ih)=k

QIh(z)X
Ihu(x0)

+
l∑

j=1

∑

I∈{1,...,N}j ,
d(I)>l

Ql,I(z)

l!

1∫

0

sd(I)−lXIu(x0δsz)(1− s)l−1 ds. (4)

Example 10. Heisenberg group H1 has topological dimension N = 3 and 2-dimensional
horizontal subspace V1 spanned by X1 = ∂

∂x1
+2x2

∂
∂x3

and X2 = ∂
∂x2
−2x1

∂
∂x3

, [X1, X2] =

−4 ∂
∂x3

= −4X3. The group law is given by the following rule: (x1, x2, x3) · (y1, y2, y3) =
(x1 + y1, x2 + y2, x3 + y3 − 2x1y2 + 2x2y1).

Taylor formula (4) can be rewritten as

u(x0z) = u(x0) +

∫ 1

0

(
z1X1 + z2X2 + 2sz3X3

)
u(x0δsz) ds,

for l = 1, and

u(x0z) = u(x0) + z1X1u(x0) + z2X2u(x0)

+

∫ 1

0

1− s

2

(
2z3X3 + z2

1X1X1 + z1z2(X1X2 +X2X1) + z2
2X2X2

+ 4sz1z3X1X3 + 4sz2z3X2X3 + 4s2z2
3X3X3

)
u(x0δsz) ds

for l = 2.

3 Integral representation formulas

3.1 Proof of Theorem 2
Let ϕ be a function constructed in Lemma 2. Since

∫
T kϕ = 1 and suppT kϕ ⊆

Box(e, 2−k) we have T kϕ → δ as k → ∞ in the sense of distributions. Notice T kϕ =
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ϕ+
∑k−1

i=0 T
i(Tϕ− ϕ). From here we have pointwise equality

u(x) = lim
k→∞

(u ∗ T kϕ)(x) = u ∗ ϕ(x) + u ∗
∞∑

k=0

T k(Tϕ− ϕ)(x)

= u ∗ ϕ(x) + u ∗
∞∑

k=0

T k
∑

d(Ih)=l

XIh,RζIh(x)

= u ∗ ϕ(x) + u ∗
∑

d(Ih)=l

∞∑

k=0

2−lkXIh,RT kζIh(x)

= u ∗ ϕ(x) + (−1)l
∑

d(Ih)=l

XIhu ∗
∞∑

k=0

2−lkT kζIt
h
(x).

Here we have denoted I th = (ik, . . . , i1) for the multi-index Ih = (i1, . . . , il).
Fix Ih = (i1, . . . , il) ∈ {1, . . . , n}l. De�ne

KIh = (−1)l
∞∑

k=0

2−lkT kζIt
h
.

We have suppKIh ⊆ Box(e, 1). Take x ∈ Box(e, 1) \ {0}. Set an integer j > 0 such
that

2−j−1 6 d∞(x, e) < 2−j.

Obviously T kζIt
h
(x) = 0 for all k > j + 1 and k 6 j − 2. Thus, KIh ∈ C∞(G \ {0}).

Fix multi-index J . Estimate |XJKIh(x)|. If j > 0 we have

XJKIh(x) = (−1)l2−l(j−1)XJT j−1ζIt
h
(x) + (−1)l2−ljXJT jζIt

h
(x)

= (−1)l2(−l+d(J))(j−1)T j−1XJζIt
h
(x) + (−1)l2(−l+d(J))jT jXJζIt

h
(x)

and
|XJKIh(x)| 6

(
2(−l+d(J)+ν)(j−1) + 2(−l+d(J)+ν)j

)
sup

Box(e,1)

|XJζIt
h
|.

There are three cases:

|XJKIh(x)| 6 sup
Box(e,1)

|XJζIt
h
| ×





2(−l+d(J)+ν)(j−1)+1 if l − d(J) > ν,

2 if l − d(J) = ν,

2(−l+d(J)+ν)j+1 if l − d(J) < ν.

If j = 0 then |XJKIh(x)| 6 supBox(e,1) |XJζIt
h
|.

In all cases we have

|XJKIh(x)| 6 Md(J)d∞(x, e)l−d(J)−ν

where
Ms = 2|l−s−ν| sup{|XJζIh(z)| : z ∈ Box(e, 1), d(Ih) = l, d(J) = s}.
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3.2 Proof of Theorem 3
For proving Theorem 3 we have to show that the function u∗ϕ equals polynomial plus
integral of derivatives of u of order l.

Fix points x, x0 ∈ Box(e, 1). Substitute Taylor formula for u with respect to x0 to
the convolution u ∗ ϕ. It follows

u ∗ ϕ(x) =

∫

Box(x,1)

u(y)ϕ(y−1x) dy

=
l−1∑

k=0

∑

d(Ih)=k

XIhu(x0)

k!

∫

Box(x,1)

QIh(x
−1
0 y)ϕ(y−1x) dy

+
l∑

j=1

∑

I∈{1,...,N}j

d(I)>l

∫

Box(x,1)

1∫

0

Ql,I(x
−1
0 y)

l!
sd(I)−l

×XIu(x0δs(x
−1
0 y))(1− s)l−1ϕ(y−1x) ds dy.

Since all the moments of the function ϕ vanish and the polynomial QIh(x
−1
0 y) has

homogeneous degree d(Ih) < l, it follows that
∫

Box(x,1)

QIh(x
−1
0 y)ϕ(y−1x) dy = QIh(x

−1
0 x).

In the second summand make a change of variables: z = x0δs(x
−1
0 y). Then y =

x0δ1/s(x
−1
0 z) and dy = s−νdz. We have

∫

Box(x,1)

1∫

0

Ql,I(x
−1
0 y)

l!
sd(I)−lXIu(x0δs(x

−1
0 y))(1− s)l−1ϕ(y−1x) ds dy

=

∫

G

XIu(z)

1∫

0

Ql,I(δ1/s(x
−1
0 z))

l!
sd(I)−l−ν

× (1− s)l−1ϕ(δ1/s(z
−1x0)x

−1
0 x) ds dz

=

∫

G

XIu(z)
Ql,I(x

−1
0 z)

l!

1∫

0

(1− s)l−1

sl+ν
ϕ(δ1/s(z

−1x0)x
−1
0 x) ds dz.

In the last equality we used the homogeneity of the polynomial Ql,I .
Consider the last integral over s:

I(z, x, x0) =

1∫

0

(1− s)l−1

sl+ν
ϕ(δ1/s(z

−1x0)x
−1
0 x) ds

=

∞∫

1

(t− 1)l−1

tl−1
tl+ν−2ϕ(δt(z

−1x0)x
−1
0 x) dt.
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The function ϕ is supported in Box(e, 1). It follows, d∞(δt(z
−1x0)x

−1
0 x, 0) < 1. From

here, td∞(z, x0) = d∞(δt(z
−1x0), 0) 6 c(1 + d∞(x0, x)) < c(1 + 2c). If c(1+2c)

d∞(z,x0)
> 1 then

|I(z, x, x0)| 6 sup
Box(e,1)

|ϕ|
∫ c(1+2c)

d∞(z,x0)

1

tl+ν−2 dt 6 C sup
Box(e,1)

|ϕ| 1

d∞(z, x0)l+ν−1
.

If c(1+2c)
d∞(z,x0)

6 1 then I = 0.
Di�erentiating I(z, x, x0) with respect to the variable z, we obtain

XJ
z I(z, x, x0) =

∞∫

1

(t− 1)l−1

tl−1
tl+ν+d(J)−2(XJ,Rϕ)(δt(z

−1x0)x
−1
0 x) dt.

It follows
|XJ

z I(z, x, x0)| 6 C
1

d∞(z, x0)l+ν+d(J)−1
sup

Box(e,1)

|XJ,Rϕ|.

Di�erential operator XI has degree d(I) > l. It can be rewritten as a linear
combination of d(I) horizontal vector �elds. Di�erentiating by parts d(I)− l times we
�nally obtain

u ∗ ϕ(x) =
l−1∑

k=0

∑

d(Ih)=k

XIhu(x0)

k!
Q′Ih(x

−1
0 x)

+
∑

d(Ih)=l

∫

Box(x0,c+2c2)

XIhu(z)LIh(z
−1x0;x

−1
0 x) dz

where
|LIh(z−1x0;x

−1
0 x)| 6 C

1

d∞(x0, z)ν−1
.

Multiply u ∗ ϕ(x) by ϕ(x0) and integrate over x0. It follows

u ∗ ϕ(x) =

∫

Box(e,1)

u ∗ ϕ(x)ϕ(x0) dx0

=

∫

Box(e,1)

l−1∑

k=0

∑

d(Ih)=k

XIhu(x0)

k!
QIh(x

−1
0 x)ϕ(x0) dx0

+
∑

d(Ih)=l

∫

Box(e,1)

∫

Box(x0,c+2c2)

XIhu(z)LIh(z
−1x0; x

−1
0 x)ϕ(x0) dz dx0

=

∫

Box(e,1)

l−1∑

k=0

∑

d(Ih)=k

(−1)ku(x0)

k!
XIh
x0

(QIh(x
−1
0 x)ϕ(x0)) dx0

+
∑

d(Ih)=l

∫

Box(e,c+c2+2c3)

XIhu(z)

∫

Box(e,1)

LIh(z
−1x0;x

−1
0 x)ϕ(x0) dx0 dz
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= Pl−1u(x) +
∑

d(Ih)=l

∫

Box(e,c+c2+2c3)

XIhu(z)L′Ih(z, x) dz

where Pl−1 is a projection on polynomials of degree < l, L′Ih(z, x) ∈ C∞ and
suppL′Ih(·, x) ⊆ Box(e, c + c2 + 2c3) for all x ∈ Box(e, 1). (Here we used Box(x0, c +
2c2) ⊂ Box(e, c+ c2 + 2c3) for all x0 ∈ Box(e, 1).)

Now it rests to insert the term u ∗ ϕ in the integral representation formula from
Theorem 2.

4 Local coercive estimates

4.1 Singular integrals
In what follows, C denotes various positive constants. They may di�er even in a same
string of estimates. Set κ = c+ c2 + 2c3.

Introduce the following fractional integral operator (analog of the Riesz potential):

Rγv(x) =

∫

Box(e,κ)

v(y) d∞(x, y)γ−ν dy, 0 6 v ∈ Lp(Box(e,κ)), γ > 0.

Lemma 3. Let 1 6 p <∞, γp < ν and q = νp
ν−γp . Then there exists a constant C such

that for every nonnegative function v ∈ Lp(Box(e,κ)) the following inequality holds:
‖Rγv‖q,G 6 C1‖v‖p,Box(e,κ) if p > 1,

|{x ∈ Box(e,κ) | Rγv(x) > t}| 6 C2

(‖v‖1,Box(e,κ)

t

)q

, t > 0, if p = 1.

Constants C1 and C2 are independent of v. Moreover, C1 6 C3q
1− γ

ν where the constant
C3 is independent of q.

In the case p > 1 Lemma 3 can be found in [41, Theorem 10], for p = 1 see [6,
Theorem 4.1].
Lemma 4. Let a function η satisfy the following conditions:

(i) η ∈ C∞(G), supp η ⊆ Box(e, 1) \ Box(e, 1/4);
(ii)

∫
G η(x) dx = 0.

For v ∈ Lp(G), 1 < p <∞, set

K(x) =
∞∑

k=0

T kη(x)

and
Kεv(x) =

∫

G\Box(x,ε)

K(y−1x) v(y) dy.

Then
‖Kεv‖p 6 Ap‖v‖p

where Ap is independent of v and ε. Moreover, for each function v ∈ Lp(G), there
exists limε→0Kεv

Lp
= Kv and ‖Kv‖p 6 Ap‖v‖p.
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Proof of Lemma 4 is based on the following technical lemma.

Lemma 5 ([16, Lemma 11]). Let ϕ(n) > 0 be a function on the integers n ∈ Z with
Φ =

∑∞
n=−∞ ϕ(n)1/2 < ∞. If T1, . . . , TN are linear operators on a Hilbert space with

‖TiT ∗j ‖ 6 ϕ(i − j) and ‖T ∗i Tj‖ 6 ϕ(i − j) for all i and j, then ‖T1 + · · · + TN‖ 6 Φ,
independently of N .

Proof of Lemma 4. Consider p = 2. The proof of the boundedness of the operator
K in L2 follows arguments of paper [16]. Meanwhile we cannot use it directly since our
kernel is not homogeneous.

Set
Kkf(x) = f ∗ T kη(x) =

∫
f(xy−1)T kη(y) dy.

Then
K∗kf(x) =

∫
f(xy)T kη(y) dy

and

KjK∗kf = f ∗Kjk, Kjk(x) =

∫
T jη(yx)T kη(y) dy,

K∗jKkf = f ∗K ′
jk, K ′

jk(x) =

∫
T jη(y)T kη(xy) dy.

Analog of classical Young inequality (‖f ∗ g‖2 6 ‖g‖1‖f‖2) yields

‖KjK∗k‖L2→L2 6 ‖Kjk‖1.

It su�ces to estimate ‖Kjk‖1 with k > j since Kjk(x) = Kkj(x
−1).

Since T kη has the mean value 0, then

Kjk(x) =

∫
(T jη(yx)− T jη(x))T kη(y) dy,

and

‖Kjk‖1 6
∫∫

|T jη(yx)− T jη(x)| |T kη(y)| dx dy (x1 = δ2jx, y1 = δ2jy)

= 2(k−j)ν
∫∫

|η(y1x1)− η(x1)| |η(δ2k−jy1)| dx1 dy1

6 2(k−j)ν
∫∫

dcc(y1, e) sup
z
|∇Lη(z)| |η(δ2k−jy1)| dx1 dy1

6 C2(k−j)ν2j−k
∫

d∞(x1,e)<c(1+2j−k)

dx1

∫

2j−k−2<d∞(y1,0)<2j−k

dy1 6 C2j−k.

The norm ‖K ′
jk‖1 can be estimated in a similar way.

Now, using Lemma 5 we can obtain boundedness of the operator K in L2. For
proving the boundedness of K in Lp, 1 < p < 2, one can use Marcinkiewicz interpolation
theorem. For doing this one needs to prove that the mapping f 7→ Kf is of weak-type
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(1, 1). The latter can be veri�ed by standard argument (see, e. g. [38, Theorem 3, Ch.
I, � 5]).

For p > 2 we use adjoint operator K∗. It is easy to see, that the boundedness
of the operator K in Lp follows from the boundedness of the operator K∗ in Lp′ with
1
p

+ 1
p′ = 1. ¤

Remark 3. In Lemma 4 we can consider function η supported on any annuli centered at
e and being Lipschitzian with respect to both left-invariant and right-invariant metrics.

4.2 Coercive estimate. Local version
In this subsection we consider di�erential operator Q de�ned in (1).

Theorem 8. Let 1 < p <∞, Q be a di�erential operator of order k with constant coe�-
cients and �nite-dimensional kernel. Then there is a projector Π: W k

p (Box(e,κ),Rs) →
kerQ such that

‖XJ(u− Πu)‖q,Box(e,1) 6 C‖Qu‖p,Box(e,κ) (5)
for every function u ∈ W k

p (Box(e,κ),Rs) and every multi-index J , d(J) 6 k, with q
satisfying

1) p 6 q 6 νp
ν−(k−d(J))p

for (k − d(J))p < ν, d(J) < k;
2) p 6 q <∞ for (k − d(J))p = ν;
3) p 6 q 6 ∞ for (k − d(J))p > ν;
4) q = p for d(J) = k.
Here C > 0 is independent of u.

Proof. The idea of the proof is given in [29] for Heisenberg groups. (The case of
two-step Carnot groups see in [25].) We give brie�y a short sketch of this idea. It
su�ces to prove the theorem for the smooth function u. Then, by standard arguments
we can pass to the Sobolev function u.

Step 1. Denote by Ph,i the linear space of polynomials on G of homogeneous
degree i. Since the kernel of Q is �nite-dimensional there is a number l > k such that
Ph,l∩kerQ = {0}. It follows Pl∩ker∇l−k

L Q = {0}. (Here ∇l−k
L = {XIh : d(Ih) = l−k}

is the homogeneous di�erential operator of order l − k.)
Therefore there is a matrix A with constant coe�cient such that ∇l−k

L Q = A∇l
L.

Thus, the matrix A is reversible and ∇l
L = A−1∇l−k

L Q.
By integral representation theorem we have

u(x)− Pu(x) =
∑

d(Ih)=l

∫

Box(e,κ)

XIhu(y)K ′
Ih

(y, x) dy =

∫

Box(e,κ)

K ′(y, x)∇l
Lu(y) dy

for x ∈ Box(e, 1) where P is a projection operator on Pl and K ′(y, x) is a matrix-valued
kernel. Integrating by parts we obtain

u(x)− Pu(x) =

∫

Box(e,κ)

K ′(y, x)A−1∇l−k
L Qu(y) dy =

∫

Box(e,κ)

H(y, x)Qu(y) dy
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where H(y, x) is matrix-valued function such that H(y, x) = H1(y, x) + H2(y
−1x),

H1 ∈ C∞O (G×G), suppH1(·, x) ⊆ Box(e,κ), H2 ∈ C∞O (G \ {0}), suppH2 ⊆ Box(e, 1),
and

|XJ
xH2(y

−1x)| 6 Md∞(x, y)k−d(J)−ν for any multi-index J.
First, we prove

‖XJ(u− Pu)‖q,Box(e,1) 6 C‖Qu‖p,Box(e,κ), d(J) 6 k. (6)

Step 2. Set γ = k − d(J). If γ = 0 then (6) holds by Lemma 4 with p = q > 1.
The case γ > ν is trivial since XJ

xH(y, x) is a smooth function. Consider the case
0 < γ < ν.

In the case γp > ν we use H�older inequality for obtaining (6):

‖XJ(u− Pu)‖∞,Box(e,1)

6 C‖Qu‖p,Box(e,κ) sup
x∈Box(e,1)

(∫

Box(e,κ)

d∞(x, y)p
′(γ−ν) dy

)1/p′

6 C‖Qu‖p,Box(e,κ)

(
p′ =

p

p− 1

)
.

For γp < ν and q = νp
ν−γp , Lemma 3 yields (6).

It rests to consider the case γp = ν. Consider a number p1 = qν
ν+γq

. Obviously,
1 < p1 < p if q > ν

ν−γ . By Lemma 3

‖XJ(u− Pu)‖q,Box(e,1) 6 C‖Qu‖p1,Box(e,κ) 6 C‖Qu‖p,Box(e,κ).

Step 3. Now we need to replace Pu by projection to the kernel of Q. Consider any
projection P1 : Pl → kerQ such that ker(Id− P1) = kerQ. Then ‖g − P1g‖ 6 C‖Qg‖
for any polynomial g ∈ Pl since in �nite-dimensional space all the norms are equivalent.
Existing of such a projecting P1 is rather evident: one just needs to take a basis of
kerQ and to complete it till the basis of Pl.

Set Π = P1 ◦ P . Then Π is a projection of L1(Box(e, 1)) on the kernel of Q. We
have

QPu = Q

(
u−

∫

Box(e,κ)

H(y, x)Qu(y) dy

)

= Qu−
∫

Box(e,κ)

QxH1(y, x)Qu(y) dy −
∫

Box(e,κ)

QxH2(y
−1x)Qu(y) dy

= Qu−K1(Qu)−K2(Qu).

Operators K1 and K2 are bounded in Lp for all p ∈ (1,∞). The �rst one is bounded
since the function H1 is C∞-smooth, the second is bounded by Lemma 4. Indeed all the
conditions of Lemma 4 hold. All the elements of the matrix-valued function QH2 have
the form

∑∞
k=0 T

kη, where the smooth function η is supported in the annuli Box(e, 1)\
Box(e, 1/4), and the mean value vanishes. Therefore, ‖QPu‖ 6 ‖Qu‖p,Box(e,κ).
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Finally,

‖XJ(u− Πu)‖q,Box(e,1) 6 ‖XJ(u− Pu)‖q,Box(e,1) + ‖XJ(Pu− P1Pu)‖q,Box(e,1)

6 ‖Qu‖p,Box(e,κ) + ‖Pu− P1Pu‖ 6 C‖Qu‖p,Box(e,κ) + C‖QPu‖p,Box(e,κ)

and the theorem follows. ¤

5 From local to global
Theorem 1 on coercive estimate on John domains follows from the local result (Theorem
8). The same concerns the Poincar�e inequality. In order to get the global result from
the local, we apply the well-known technique (see, e. g. [19, 25, 11]). This method is
based on nice covering by balls of the John domain. We will give the proof in order to
write down the explicit dependence of the John coe�cients α and β.

Passing from local to global does not explore any group structure of G. So, through-
out this section we will consider metric space X with a metric d and a Borel measure µ.
We assume also that µ is doubling which means that µ(2B) 6 Cdµ(B) for every ball
B ⊂ X. A standard iteration of the doubling condition yields µ(B) 6 Cb

(
r
r′
)ν
µ(B′)

whenever B is an arbitrary ball of radius r and B′ = B(x′, r′), x′ ∈ B, r′ 6 r. The
exponent ν depends only on the doubling constant Cd. If Ω is a bounded subset of X
then µ(B(x, r)) > µ(Ω)

(2 diamΩ)ν r
ν for every x ∈ Ω and r 6 diam Ω [12, Lemma 14.6].

We begin, though, with some preliminary lemmas. Our �rst lemma is a variant of
a rather well-known lemma (e. g. see [11, 5]); we include a proof for completeness.

Lemma 6. Suppose that 1 6 p <∞, h > 1, Ω is a domain in X. Let F be a family of
balls contained in Ω, and let aB be a non-negative number for each ball B ∈ F . Then

∥∥∥
∑
B∈F

aBχhB

∥∥∥
p,Ω

6 Chνp
∥∥∥
∑
B∈F

aBχB

∥∥∥
p,Ω

where C is independent of h, p and Ω.

Proof. Let g be a non-negative function in Lp′(Ω), p′ = p/(p− 1). Then

I =

∫

Ω

(∑
B∈F

aBχhB

)
g dµ 6 hν

∑
B∈F

aB

[
Cb

1

µ(hB)

∫

hB∩Ω

g dµ

]
µ(B).

The bracketed quantity is dominated by maximal functionM(gχΩ)(y) for every y ∈ B.
Now recall that ‖M(gχΩ)‖p′,Ω 6 ‖M(gχΩ)‖p′,X 6 CMp‖gχΩ‖p′,X (e. g. see [5]) where
the constant CM is independent of p. Therefore, using H�older inequality and the
boundedness of the maximal operator in Lp′ we obtain

I 6 Cbh
ν

∑
B∈F

aB

∫

B

M(gχΩ) dµ = Cbh
ν

∫

Ω

M(gχΩ)
∑
B∈F

aBχB dµ

6 Cbh
ν‖M(gχΩ)‖p′,Ω

∥∥∥
∑
B∈F

aBχhB

∥∥∥
p,Ω

6 CbCMh
νp‖g‖p′,Ω

∥∥∥
∑
B∈F

aBχhB

∥∥∥
p,Ω
.
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Taking a supremum over all g > 0 in the unit ball of Lp′(Ω), the lemma follows by
duality. ¤

Since the de�nition of the John domains is given only in metric terms we do not
repeat it for metric space setting. The next lemma is a well-known result stating that
John domains satis�es the so-called Boman chain condition (see, for example, [4]).
Here and in the sequel we denote dΩ(x) = dist(x, ∂Ω) for a point x of a domain Ω.
Lemma 7. Let κ > 1, Ω be a John domain J(α, β) with distinguished point x0 ∈ Ω,
B0 = B

(
x0,

dΩ(x0)
κ

)
. Then there is a countable family of balls F such that

1) B0 ∈ F , ∪B∈F 1
2
B = Ω, κB ⊂ Ω for all B ∈ F , { 1

10
B}B∈F is a pairwise disjoint

collection of balls;
2) for each ball B ∈ F there is a positive integer m = m(B) and a chain

{B0, . . . , Bm = B} ⊂ F satisfying the following properties for all i = 0, . . . ,m− 1:
(i) 2κ−1

2κ+1
r(Bi) 6 r(Bi+1) 6 2κ+1

2κ−1
r(Bi);

(ii) Bj ∩Bj+1 contains a ball Gj of radius 1
2
min{r(Bj), r(Bj+1)};

(iii) B ⊂ h1Gj and B ⊂ h2Bj with h1 = β
α
(2κ + 21), h2 = β

α
(κ + 10);

3) {B0, . . . , Bj} is a chain for the ball Bj ful�lling (i)�(iii), j = 0, . . . ,m.
Proof. 1) Consider a covering of Ω by balls {B(x, r) : x ∈ Ω, r = dΩ(x)/κ}. Choose a
countable family F such that ∪B∈F 1

2
B = Ω and { 1

10
B}B∈F is a disjoint family. Without

loss of generality we may assume that the ball B0 = B
(
x0,

dΩ(x0)
κ

) ∈ F .
2)�3) Fix a ball B ∈ F . By de�nition of John domain there is a curve γ joining

center of the ball B and x0. Consider a chain of balls {B0, . . . , Bm=m(B) = B} ⊂ F such
that

⋃
i

1
2
Bi ⊃ γ and 1

2
Bi ∩ 1

2
Bi+1 6= ∅, i = 0, . . . ,m − 1. Let the chain {B0, . . . , Bm}

be minimal in the following sense:
⋃
i 6=j

1
2
Bi + γ for any j. Hence, for every i =

0, . . . ,m− 1, there is a number si < l such that γ(si) ∈ 1
2
Bi.

Denote Bi = B(xi, ri), i = 0, . . . ,m. Consider 0 6 i < k 6 m. Obviously,

d(xk, xi) 6 d(xk, γ(sk)) + d(γ(sk), γ(si)) + d(γ(si), xi) 6 rk
2

+
β

α
dΩ(γ(si)) +

ri
2

6 rk
2

+
β

α
(d(γ(si), xi) + dΩ(xi)) +

ri
2

6 rk
2

+
β(κ + 1)

α
ri

and κrk = dΩ(xk) 6 d(xk, xi) + κri. From here rk 6 6β
α
ri. Then, for every y ∈ Bk, we

have d(xi, y) 6 d(xi, xk) + rk 6 β
α
(10 + κ)ri.

Since 1
2
Bi ∩ 1

2
Bi+1 6= ∅ and κri = dΩ(xi) it follows that 2κ−1

2κ+1
6 ri

ri+1
6 2κ+1

2κ−1
and

there is a ball Gi = B(yi, ρi) ⊂ Bi ∩ Bi+1 with radius ρi = 1
2
min{ri, ri+1} and centre

yi ∈ 1
2
Bi ∩ 1

2
Bi+1.

Suppose ρi =
rj
2
, where j equals either i or i + 1. Then d(yi, y) 6

d(yi, xj) + d(xj, y) 6 ρi + rj
β
α
(κ + 10) 6 ρi

β
α
(2κ + 21) for all y ∈ Bk. ¤

Let P be a vector space of Rs-valued functions on X with the following properties:

sup
x∈sB

|P (x)| 6 Csl sup
x∈B

|P (x)|, sup
x∈B

|P (x)| 6 C

µ(B)

∫

B

|P (x)| dµ(x) (7)

for every ball B ∈ X, number s > 1, and every function P ∈ P , where the number
l > 0 and the constant C are independent of the function P and the ball B.
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Example 11. 1. Obviously, the family of constant functions satis�es the conditions
(7).

2. In the case of Carnot groups the set of polynomials of degree < k (X = G and
P = Pk) satis�es (7) with l = k − 1 (for example, see [19, Lemma 2.1]).

The next theorem is the main result of this section.

Theorem 9. Let (X, d, µ) be a doubling space, P be a vector space of functions on X
satisfying (7), Ω be a John domain J(α, β) with distinguished point x0, and f and g
be measurable functions de�ned on Ω. Suppose κ > 1, 1 6 p <∞, p 6 q 6 ∞, λ > 0,
and, for each ball B with κB ⊂ Ω, there exists a function P (B) ∈ P such that

‖f − P (B)‖q,B 6 Cr(B)λ‖g‖p,κB.

Then
‖f − P (B0)‖q,Ω 6 C

(β
α

)θ
(diam Ω)λ‖g‖p,Ω

where B0 = B(x0,
dΩ(x0)
κ ) and θ =

{
l + ν if q 6= ∞,

l + ν + ν/p if q = ∞.

If X is a Carnot group and P is the space of polynomials of homogeneous degree
< l the theorem is formulated in [19, Lemma 4.2].

The proof of Theorem 9 is based on the following lemma.

Lemma 8. Let X,P ,Ω, f, g, B0, θ, p, q, λ be as in Theorem 9. Then

‖P (B)− P (B0)‖q,B 6 C
(β
α

)θ
(diam Ω)λ‖g‖p,Ω

for any ball B with r(B) = dist(x(B),∂Ω)
κ .

Proof. Consider a ball B with r(B) = dist(x(B),∂Ω)
κ . Construct a chain of balls

{B0, . . . , Bm(B) = B} satisfying conditions (i)�(iii) of Lemma 7.
Step 1: q = ∞. We have

‖P (B)− P (B0)‖∞,B 6
m(B)−1∑
i=0

‖P (Bi+1)− P (Bi)‖∞,B

6
m(B)−1∑
i=0

sup
x∈h1Gi

|P (Bi+1)(x)− P (Bi)(x)|

6 Chl1

m(B)−1∑
i=0

‖P (Bi+1)− P (Bi)‖∞,Gi

6 Chl1

m(B)−1∑
i=0

(‖f − P (Bi+1)‖∞,Bi+1
+ ‖f − P (Bi)‖∞,Bi

)
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6 Chl1

m(B)∑
i=0

r(Bi)
λ‖g‖p,κBi

= Chl1

m(B)∑
i=0

aBi
,

where aB = r(B)λ‖g‖p,κB.
For every x ∈ B, we have

∑m(B)
i=0 aBi

6
∑

i aBi
χh2Bi

(x). Moreover, for every x ∈ Bj,
j = 0, . . . ,m(B), we have

‖f − P (B0)‖∞,Bj
6 Chl1

j∑
i=0

aBi
6 Chl1

j∑
i=0

aBi
χh2Bi

(x) 6 Chl1

m(B)∑
i=0

aBi
χh2Bi

(x).

Set Ω′ =
m(B)⋃
i=1

Bi ⊃ B0. It is easy to see that |Ω′| > |B0| > Cαν . Then, by Lemma 6,

‖P (B)− P (B0)‖p∞,B 6 ‖P (B)− P (B0)‖p∞,Ω′

6 Chlp1
1

|Ω′|
∫

Ω′

(∑
i

aBi
χh2Bi

(x)
)p
dµ(x)

6 Chlp1 h
νp
2

1

|Ω′|
∫

Ω′

(∑
i

aBi
χ 1

10
Bi

(x)
)p
dµ(x)

6 Chlp1 h
νp
2

1

|Ω′|
∫

Ω′

∑
i

apBi
χ 1

10
Bi

(x)dµ(x) 6 Chlp1 h
νp
2

1

|Ω′|
∑
i

apBi
µ(Bi)

6 Chlp1 h
νp
2

1

αν
(diam Ω)λp+ν

∑
i

∫

κBi

|g(x)|p dx

6 Chlp1 h
νp
2

βν

αν
(diam Ω)λp‖g‖pp,Ω.

Step 2: q 6= ∞. We have

‖P (B0)− P (B)‖q,B 6
m(B)−1∑
i=0

‖P (Bi+1)− P (Bi)‖q,B

6 µ(B)1/q

m(B)−1∑
i=0

sup
x∈h1Gi

|P (Bi+1)(x)− P (Bi)(x)|

6 µ(B)1/q

m(B)−1∑
i=0

Chl1
1

µ(Gi)1/q
‖P (Bi+1)− P (Bi)‖q,Gi

6 Cµ(B)1/qhl1

m(B)−1∑
i=0

(‖f − P (Bi+1)‖q,Bi+1

µ(Bi+1)1/q
+
‖f − P (Bi)‖q,Bi

µ(Bi)1/q

)

6 Cµ(B)1/qhl1

m(B)∑
i=0

r(Bi)
λ

µ(Bi)1/q
‖g‖p,κBi

= Cµ(B)1/qhl1

m(B)∑
i=0

aB

where
aB =

r(B)λ

µ(B)1/q
‖g‖p,κB.
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It is evident, for every x ∈ B, we have

m(B)∑
i=0

aBi
6

∑

eB∈F
a eBχh2

eB(x).

Then, by Lemma 6,

‖P (B)− P (B0)‖pq,B 6 Chlp1

∫
1
10
B

(∑

eB∈F
a eBχh2

eB(x)
)p
dµ(x)

6 Chlp1

∫

Ω

(∑

eB∈F
a eBχh2

eB(x)
)p
dµ(x) 6 Chlp1 h

νp
2

∫

Ω

∑

eB∈F
apeBχ 1

10
eB(x)dµ(x)

6 Chlp1 h
νp
2

∑

eB∈F
apeBµ(B̃) 6 Chlp1 h

νp
2 (diam Ω)λp

∑

eB∈F

∫

κ eB
|g(x)|p dµ(x)

6 Chlp1 h
νp
2 (diam Ω)λp

∫

Ω

∑

eB∈F
|g(x)|pχκB(x) dµ(x)

6 Chlp1 h
νp
2 (diam Ω)λp‖g‖pp,Ω. (8)

¤
Proof of Theorem 9. Let F be a family of balls covering Ω from Lemma 7.

Step 1: q = ∞. For every ε > 0, there is a ball B ∈ F such that

‖f − P (B0)‖∞,Ω 6 ‖f − P (B0)‖∞,B + ε.

In view of Lemma 8 we obtain the desired estimate:

‖f − P (B0)‖q,B 6 ‖f − P (B)‖q,B + ‖P (B0)− P (B)‖q,B
6 Cr(B)λ‖g‖p,B + C

(β
α

)θ
(diam Ω)λ‖g‖p,Ω 6 C

(β
α

)θ
(diam Ω)λ‖g‖p,Ω.

Step 2: q <∞. Consider a ball B ∈ F and its chain B0, B1, . . . , Bm(B) = B. By
Lemma 8 we have

‖f − P (B0)‖q,B 6 ‖f − P (B)‖q,B + ‖P (B0)− P (B)‖q,B

6 Cr(B)λ‖g‖p,B + Cµ(B)1/qhl1

m(B)∑
i=0

r(Bi)
λ

µ(Bi)1/q
‖g‖p,κBi

6 Cµ(B)1/qhl1

m(B)∑
i=0

aB

where as before aB =
r(B)λ

µ(B)1/q
‖g‖p,κB. Since

m(B)∑
i=0

aBi
6

∑

eB∈F
a eBχh2

eB(x) for every x ∈ B,



Coercive estimates and integral representation formulas on Carnot groups 83

we have by (8)

‖f−P (B0)‖pq,Ω 6 Chlp1
∑
B∈F

∫
1
10
B

(∑

eB∈F
a eBχh2

eB(x)
)p
dµ(x)

6 Chlp1

∫

Ω

(∑

eB∈F
a eBχh2

eB(x)
)p
dµ(x) 6 Chlp1 h

νp
2 (diam Ω)λp‖g‖pp,Ω.

¤
Proof of Theorem 1. We have X = G, John domain Ω, operator Q of order k
with constant coe�cients and �nite dimensional kernel, and function u ∈ W k

p (Ω,Rs).
Let kerQ ⊂ Pl. Recall that Carnot�Carath�eodory metric dcc and quasimetric d∞ are
equivalent: c1d∞(x, y) 6 dcc(x, y) 6 c2d∞(x, y) for all x, y ∈ G. By local coercive
estimate (Theorem 8) for every ball B = Bcc(a, r) with Bcc(a,κrc2/c1) ⊂ Ω there is a
polynomial P (B) ∈ kerQ of order < l such that

‖XJ(u− P (B))‖q,Bcc(a,r) 6 ‖XJ(u− P (B))‖q,Box(a,r/c1)

6 Crk−d(J)−ν/p+ν/q‖Qu‖p,Box(a,κr/c1) 6 Crλ‖Qu‖p,Bcc(a,κrc2/c1).

(Here p, q, J satisfy conditions of Theorem 1 and λ = k − d(J)− ν/p+ ν/q.)
Applying Theorem 9 with P = Pl−d(J), f = XJu, g = Qu we obtain Theorem 1.

¤

6 Corollaries

6.1 Poincar�e inequality (proof of Theorem 4)
To prove Poincar�e inequality on John domains (Theorem 4), it su�ces to prove it on
balls (Theorem 10 below) and apply Theorem 9.

Theorem 10. Let l > 0, 1 6 p 6 q 6 ∞. Then there is a projection
P : W l

p(Box(e, 1)) → Pl such that

‖XJ(u− Pu)‖q,Box(e,1) 6 C‖∇l
Lu‖p,Box(e,κ)

for any function u of the Sobolev classW l
p(Box(e,κ)) and every multi-index J , d(J) < l,

with
1) p 6 q 6 νp

ν−(l−d(J))p
for (l − d(J))p < ν;

2) p 6 q <∞ for (l − d(J))p = ν;
3) p 6 q 6 ∞ for (l − d(J))p > ν;
4) q = ∞ for l − d(J) > ν.
Constant C depends only on p, q, l and d(J).

Proof. Theorem 10 is a version of Theorem 8 for the operator Q = ∇l
L except of

the case p = 1. Therefore it su�ces to prove inequality (6) for p = 1, q = ν
ν−γ and

γ = l − d(J) < ν.
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Set

Sk = {x ∈ Box(e,κ) : 2k < |XJ(u(x)− Pu(x))| 6 2k+1}, k ∈ Z,

uk(x) =





2k if |XJ(u(x)− Pu(x))| 6 2k,

|XJ(u(x)− Pu(x))| if 2k < |XJ(u(x)− Pu(x))| < 2k+1,

2k+1 if |XJ(u(x)− Pu(x))| > 2k+1,

and
2M < ‖∇l

Lu‖1,Box(e,κ) 6 2M+1.

Since |∇l
Luk| 6 |∇l

Lu|χSk
it follows

uk(x) 6 CRγ(|∇l
Lu|χSk

)(x) for x ∈ Box(e, 1).

We have
∫

Box(e,1)

|XJ(u(x)− Pu(x))|q dx

6
∫

Box(e,1)∩{|XJ (u−Pu)|62M}
|XJ(u(x)− Pu(x))|q dx

+

∫

Box(e,1)∩{|XJ (u−Pu)|>2M}
|XJ(u(x)− Pu(x))|q dx = I1 + I2.

The �rst summand can be estimated as

I1 6 |Box(e, 1)|2Mq 6 C‖∇l
Lu‖q1,Box(e,κ).

To estimate the second summand we recall

Sk ∩ Box(e, 1) ⊂ {x ∈ Box(e, 1) : Rγ(|∇l
Lu|χSk

) > 2k/C}.

Applying Lemma 3 we obtain

I2 =
∞∑

k=M

∫

Sk∩Box(e,1)

|XJ(u(x)− Pu(x))|q dx 6
∞∑

k=M

|Sk ∩ Box(e, 1)|2(k+1)q

6 C

∞∑

k=M

(∫

Sk

|∇l
Lu(x)| dx

)q

6 C‖∇l
Lu‖q1,Box(e,κ).

¤

6.2 Embedding theorem (proof of Theorem 5)
For proving Theorem 5, investigate �rst projection Pm : L1(Box(e, 1)) → Pm de�ned
in Theorem 3.

Consider John domain Ω ∈ J(α, β) with distinguished point x0 and the Sobolev
space Wm

p (Ω). The projection operator P : Wm
p (Ω) → Pm from Poincar�e inequality



Coercive estimates and integral representation formulas on Carnot groups 85

(Theorem 4) is just the translated projection Pm from Box(e, 1) to Box(x0, r) where
r = dΩ(x0)

κc2 > α
κc2 .

Estimate ‖Pmg‖q,Ω for g ∈ Wm
p (Ω). For z ∈ Box(e, 1), set y = x0δrz ∈ Box(x0, r)

and u(z) = g(y) ∈ Wm
p (Box(e, 1)). The polynomial Pmu ∈ Pm equals

m−1∑

d(J)=0

zJ
∫

Box(e,1)

ϕJ(z0)u(z0) dz0.

Making the change-of-variable formula (z0 = δ1/r(x
−1
0 y0)) we obtain

Pmg(y) =
m−1∑

d(J)=0

(δ1/r(x
−1
0 y))J

∫

Box(x0,r)

ϕJ(δ1/r(x
−1
0 y0))g(y0)

dy0

rν

=
m−1∑

d(J)=0

(x−1
0 y)J

rd(J)+ν

∫

Box(x0,r)

ϕJ(δ1/r(x
−1
0 y0))g(y0) dy0.

Thus,

‖Pmg‖q,Ω 6 C(diam Ω)ν/q
∑

d(J)<m

(diam Ω)d(J)

rd(J)+ν
‖g‖1,Box(x0,r)

6 C
(β
α

)m−1+ν/p

(diam Ω)ν/q−ν/p‖g‖p,Ω (9)

and

‖XIhPmg‖q,Ω 6 C(diam Ω)ν/q
m−1∑

d(J)=d(Ih)

(diam Ω)d(J)−d(Ih)

rd(J)+ν
‖g‖1,Box(x0,r)

6 C
(β
α

)m−1+ν/p

(diam Ω)−d(Ih)+ν/q−ν/p‖g‖p,Ω. (10)

Proof of Theorem 5. We have a John domain Ω ∈ J(α, β), a function f ∈ W l
p(Ω)

and a nonnegative integer k < l.
Consider a multi-index Ih with d(Ih) ∈ [0, . . . , k]. Set m = l − k and g = XIhf ∈

Wm
p (Ω). Poincar�e inequality (Theorem 4) yields

‖g − Pmg‖q,Ω 6 C
(β
α

)θ
(diam Ω)m−ν/p+ν/q‖∇m

L g‖p,Ω (11)

where

θ =

{
m− 1 + ν = l − 1− k + ν if q 6= ∞,

m− 1 + ν + ν/p = l − 1− k + ν + ν/p if q = ∞.
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(1) (l − k)p < ν. Consider q such that p 6 q 6 νp
ν−(l−k)p . From (9) and (11) it

follows

‖XIhf‖q,Ω =‖g‖q,Ω 6 C
(β
α

)m−1+ν

(diam Ω)m−ν/p+ν/q‖∇m
L g‖p,Ω

+ C
(β
α

)m−1+ν/p

(diam Ω)ν/q−ν/p‖g‖p,Ω

6C
(β
α

)l−k−1+ν

(diam Ω)ν/q−ν/p max{(diam Ω)l−k, 1}‖f‖W l
p(Ω).

To prove compactness we use the compactness of the Riesz-type potential
Rγ : Lp → Lq on balls for q < νp

ν−γp de�ned in Subsection 4.1 (it can be derived,
for example, from [41, Theorem 13]). Observe that the projection operator Pm is com-
pact on any ball. Indeed, it maps bounded family of functions in L1 to the bounded
family of polynomials. Since the space Pm is �nite-dimensional, there is converging
sequence in the uniform norm.

Consider (l − k)p < ν, q < q∗ = νp
ν−(l−k)p , and the countable family of balls {Bj}

from Lemma 7 covering Ω. Take any bounded sequence {fi} in W l
p(Ω). Then it

will be also bounded in W k
q∗-norm: ‖fi‖Wk

q∗ (Ω) < C0. It su�ces to show that there
is a Cauchy subsequence in W k

q -norm on Ω. Recall that the operator Rl−k and the
projection operator Pm are compact on balls. Therefore, on any ball Bj we can obtain
Cauchy subsequence {fis} in the W k

q -norm. Applying Cantor's diagonal method we
can extract a subsequence {fis} which is the Cauchy sequence in W k

q -norm on each
ball Bj, j = 1, 2, . . . . Denote this subsequence again by fi.

Fix ε > 0. Since
∑∞

j=1 |Bj| <∞, there is number M1 > 0 such that |⋃∞
j=M1

Bj| <
ε

q∗
q∗−q . De�ne Ωε =

⋃∞
j=M1

Bj.
There is a number M2 > 0 such that ‖fi1 − fi2‖Wk

q (Bj) 6 ε
2j for any i1, i2 > M2 and

j < M1. Then

‖fi1 − fi2‖Wk
q (Ω) 6

M1−1∑
j=1

‖fi1 − fi2‖Wk
q (Bj) + ‖fi1 − fi2‖Wk

q (Ωε)

6 ε+ ‖fi1 − fi2‖Wk
q∗(Ωε)|Ωε|1−q/q∗ < ε(1 + 2C0) for any i1, i2 > M2.

Hence, the sequence {fi} is the Cauchy sequence in W k
q -norm on Ω.

(4) (l − k)p > ν and (l − k − 1)p < ν. Consider d(Ih) ∈ [0, . . . , k], m = l − k and
g = XIhf . Equations (9) and (11) yield

‖XIhf‖∞,Ω = ‖g‖∞,Ω 6C
(β
α

)m−1+ν+ν/p

(diam Ω)l−k−ν/p‖∇m
L g‖p,Ω

+ C
(β
α

)m−1+ν/p

(diam Ω)−ν/p‖g‖p,Ω

6 C
(β
α

)l−k−1+ν+ν/p

(diam Ω)−ν/p max{(diam Ω)l−k, 1}‖f‖W l
p(Ω).

Continuity. Show that XIhf is continuous on Ω for d(Ih) = 0, . . . , k.
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Consider a sequence of Ck-smooth functions fj (fj ∈ Ck(Ω)) such that ‖fj −
f‖W l

p(Ω) → 0 as j →∞. As before, we have

‖fm − fj‖Ck(Ω) = sup
d(Ih)=0,...,k

‖XIh(fm − fj)‖∞,Ω 6 C(Ω, k, l, p)‖fm − fj‖W l
p(Ω).

This means that XIhfj converges to XIhf uniformly on Ω as j → ∞ for all d(Ih) =
0, . . . , k. Hence, XIhf is continuous.

H�older continuity. Now we show that g = XIhf is H�older continuous (g ∈
C0,τ (Ω), τ = l−k−ν/p) for all multi-indices Ih with d(Ih) = k. By Poincar�e inequality
(Theorem 4) there is a polynomial ΠB ∈ Pm of homogeneous degree strictly less than
l − k such that (11) is full�lled on the ball B:

‖g − ΠB‖∞,B 6 Crτ‖∇m
L g‖p,B. (12)

Fix two points x, y ∈ U such that r = dcc(x, y) 6 max{dist(x, ∂Ω), dist(y, ∂Ω)}.
Without loss of generality we may assume that a ball B = B(x, r) ⊂ Ω. Set B′ =
B(x, dist(x, ∂Ω)) and B0 = B(x0, dist(x0, ∂Ω)) where x0 is the distinguished point in
Ω from the de�nition of the John domain.

We have

|g(x)− g(y)| 6 |g(x)− g(y)− ΠB(x) + ΠB(y)|
+ |ΠB(x)− ΠB(y)− ΠB′(x) + ΠB′(y)|
+ |ΠB′(x)− ΠB′(y)− ΠB0(x) + ΠB0(y)|
+ |ΠB0(x)− ΠB0(y)| = A1 +A2 +A3 +A4.

Estimate each summand separately.
Obviously, from (12) it follows

A1 = |g(x)− ΠB(x)− g(y) + ΠB(y)| 6 2Crτ‖∇m
L g‖p,B.

If l − k − 1 = 0 then all the polynomials ΠB, ΠB′ and ΠB0 are constants and
A2 = A3 = A4 = 0. Assume l − k − 1 > 0. Estimate A2. By Poincar�e inequality, for
q = νp

ν−(l−k−1)p
, we have

A2 6 r‖∇L(ΠB − ΠB′)‖∞,B 6 Cr

|B|1/q ‖∇L(ΠB − ΠB′)‖q,B
6 Cr1−ν/q(‖∇L(g − ΠB)‖q,B + ‖∇L(g − ΠB′)‖q,B′

)

6 Cr1−ν/q(‖∇m
L g‖p,B + ‖∇m

L g‖p,B′
)

6 Crτ‖∇m
L g‖p,B′ .

By Lemma 8 we obtain

A3 = |ΠB0(x)− ΠB0(y)− ΠB′(x) + ΠB′(y)| 6 r‖∇L(ΠB′ − ΠB0)‖∞,B

6 Cr

|B|1/q ‖∇L(ΠB0 − ΠB′)‖q,B 6 Crτ
(β
α

)l−k−2+ν

‖∇m
L g‖p,Ω
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where q = νp
ν−(l−k−1)p

.
For evaluating A4, we apply inequality (10). It follows

A4 6 r‖∇LPB0‖∞,B 6 Cr
(β
α

)l−k−1+ν/p

diam(Ω)−1−ν/p‖g‖p,Ω.

Assume for simplicity diam Ω = 1. Then r < 1 and we �nally obtain

|g(x)− g(y)| 6 C
(β
α

)l−k−1+ν

(rτ + r)‖fg‖Wm
p (Ω) 6 C

(β
α

)l−k−1+ν

rτ‖g‖Wm
p (Ω).

It rests to consider two arbitrary points x, y ∈ Ω. Then for any sequence {xi}ji=0 ⊂
Ω, x0 = x, xj = y and dcc(xi, xi−1) 6 max{dist(xi, ∂Ω), dist(xi−1, ∂Ω)} for all i =
1, . . . , j, we have

|g(x)− g(y)| 6
j∑
i=1

|g(xi)− g(xi−1)| 6 C
(β
α

)l−k−1+ν

‖g‖Wm
p (Ω)

j∑
i=1

(dcc(xi, xi−1))
τ .

Passing to the in�mum over all sequences {xi} we get

|g(x)− g(y)| 6 C
(β
α

)l−k−1+ν

dΩ
τ (x, y)‖g‖Wm

p (Ω).

Let now R = diam(Ω) be arbitrary. De�ne Ω̃ = {y = x0δ1/R(x−1
0 x), x ∈ Ω}. Then

diam(Ω̃) = 1 and Ω̃ ∈ J(α, β). Set g̃(y) = g(x). Then g̃ ∈ Wm
p (Ω̃) and

‖g̃‖Wm
p (eΩ) =

∑

d(Ih)6m
‖XIh g̃‖p,eΩ = R−ν/p

∑

d(Ih)6m
Rd(Ih)‖XIhg‖p,Ω

6 CR−ν/p max{Rm, 1}‖g‖Wm
p (Ω).

Compactness of the embedding into Ck(Ω) is obvious. Indeed, take any sequence
{fi}∞i=1 ⊂ W l

p(Ω) bounded in W l
p-norm. Then {fi} is uniformly bounded in Ck-norm:

‖fi‖Ck(Ω) 6 C0 for all i. Consider XIhfi = gi, d(Ih) 6 k. If d(Ih) < k then

|gi(x)− gi(y)| 6 dΩ
1 (x, y)‖∇Lgi‖∞,Ω 6 C0d

Ω
1 (x, y) for all x, y ∈ Ω.

If d(Ih) = k then by H�older continuity

|gi(x)− gi(y)| 6 CdΩ
τ (x, y)C0 for all x, y ∈ Ω.

It means that the sequence {gi}∞i=1 is uniformly bounded and equicontinuous. Hence,
there is a convergent subsequence.

Show the compactness of the embedding W l
p(Ω) ↪→ Ck,t(Ω) for any t < τ = l −

k − ν/p. Continuity of this embedding is obvious. Consider any bounded sequence
{fi} in W l

p-norm. By compactness of the embedding W l
p(Ω) ↪→ Ck(Ω) shown above,

there is a subsequence {fis} converging to some function f0 in Ck-norm. Denote gs =



Coercive estimates and integral representation formulas on Carnot groups 89

XIh(fis − f0) ∈ W l−k
p (Ω) ⊂ C(Ω), d(Ih) = k. Fix ε > 0. It su�ces to show that there

is a number M = M(ε) > 0 such that

|gs(x)− gs(y)|
dΩ
t (x, y)

< ε for any s > M and x, y ∈ Ω.

Since the sequence {gs} is uniformly bounded in the W l−k
p -norm on Ω, it follows

{gs} ⊂ Ck,τ (Ω) and |gs(x) − gs(y)| 6 C0d
Ω
τ (x, y) for all s ∈ N and all points x, y ∈ Ω

where C0 is independent of s and x, y.
We have gs → 0 as s → ∞ uniformly on Ω. Therefore, there is a number M > 0

such that sup
x∈Ω

|gs(x)| < ε
τ

τ−t for each s > M . Take any two points x, y ∈ Ω. Consider
sequence of points x0 = x, . . . , xm = y such that dcc(xi, xi−1) 6 max{dΩ(xi), dΩ(xi−1)}
for all i = 1, . . . ,m. Then

|gs(x)− gs(y)| 6
m∑
i=1

|gs(xi)− gs(xi−1)|

6
m∑
i=1

( |gs(xi)− gs(xi−1)|
(dcc(xi, xi−1))τ

)t/τ

(dcc(xi, xi−1))
t|gs(xi)− gs(xi−1)|1−t/τ

6
m∑
i=1

C
t/τ
0 (dcc(xi, xi−1))

t2ε

for any s > M . Passing to the in�mum over all sequences {xi} we obtain the necessary
estimate.

(5) (l − k)p > ν and (l − k − 1)p = ν. Continuity of XIhf for d(Ih) ∈ [0, k]
can be shown as in the item (4). Verify that g = XIhf ∈ C0,1

loc (Ω), d(Ih) = k. Take
B = B(x, r) ⊂ Ω and h with dcc(h, e) = r. Then

|g(xh) + g(xh−1)− 2g(x)|
6 |g(xh) + g(xh−1)− 2g(x)− ΠB(xh)− ΠB(xh−1) + 2ΠB(x)|
+ |ΠB(xh) + ΠB(xh−1)− 2ΠB(x)− ΠB′(xh)− ΠB′(xh

−1) + 2ΠB′(x)|
+ |ΠB′(xh) + ΠB′(xh

−1)− 2ΠB′(x)− ΠB0(xh)− ΠB0(xh
−1) + 2ΠB0(x)|

+ |ΠB0(xh) + ΠB0(xh
−1)− 2ΠB0(x)| = C1 + C2 + C3 + C4.

Estimate each summand separately. From (12) with τ = 1 it follows

C1 6 4Cr‖∇m
L g‖p,B.

If l − k − 2 = 0 then all the polynomials ΠB, ΠB′ and ΠB0 are linear and C2 = C3 =
C4 = 0. Assume l − k − 2 > 0. To estimate C2�C4 we use Lemma 9. By Lemma 9 and
Poincar�e inequality (12) we have

C2 6 Cr2‖∇2
L(ΠB − ΠB′)‖∞,B 6 Cr2−ν/q‖∇2

L(ΠB − ΠB′)‖q,B
6 Cr2−ν/q(‖∇2

L(g − ΠB‖q,B + ‖∇2
L(g − ΠB′)‖q,B′) 6 Cr‖∇m

L g‖p,B′ .
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Here we set B′ = B(x, dist(x, ∂Ω)), B0 = B(x0, dist(x0, ∂Ω)), q = νp
ν−(l−k−2)p

.
Applying Lemma 8 we get

C3 6 Cr2‖∇2
L(ΠB′ − ΠB0)‖∞,B 6 Cr2−ν/q‖∇2

L(ΠB′ − ΠB0)‖q,B
6 Cr

(β
α

)l−k−3+ν

‖∇m
L g‖p,Ω.

In view of (10) we obtain

C4 6 Cr2‖∇2
LΠB0‖∞,B 6 Cr2

(β
α

)l−k−1+ν/p

diam(Ω)−2−ν/p‖g‖p,Ω.

Finally, assuming diam Ω = 1 we have

|g(xh) + g(xh−1)− 2g(x)| 6 Cr
(β
α

)l−k−1+ν

‖g‖Wm
p (Ω).

SinceW l
p(Ω) is continuously embedded in Ck,τ (Ω) for all τ ∈ (0, 1), the compactness

follows from the item (4).
(2) (l− k)p = ν and p > 1. If k > 0 then p = ν

l−k >
ν

l−k+1
and XIhf is continuous

for all d(Ih) < k (see item (4)). Moreover,

sup
x∈Ω, d(Ih)<k

|XIhf(x)|

6 C
(β
α

)l−k−1+ν+ν/p

(diam Ω)−ν/p max{(diam Ω)l−k, 1}‖f‖W l
p(Ω).

Consider the multi-index Ih of the weight k. As before, m = l − k and g = XIhf .
Rewrite equation (11) for g ∈ Wm

p (Ω) ⊂ Wm
p∗ (Ω) with p∗ < p and q = νp∗

ν−mp∗ :

‖g − Pmg‖q,Ω 6 Cq1−m
ν

(β
α

)m−1+ν

‖∇m
L g‖p∗,Ω

6 Cq
p−1

p

(β
α

)m−1+ν

‖∇m
L g‖p,Ω. (13)

Here we used Lemma 3, proof of Theorem 9, and assumed diam(Ω) = 1.
Equations (9) and (13) imply

‖XIhf‖q,Ω = ‖g‖q,Ω 6 C
(β
α

)m−1+ν

q
p−1

p ‖∇m
L g‖p,Ω + C

(β
α

)m−1+ν/p

‖g‖p,Ω

6 C0

(β
α

)l−k−1+ν

q
p−1

p ‖f‖W l
p(Ω).

For a constant ρ = 2
p−1

p eC0

(
β
α

)l−k−1+ν‖f‖W l
p(Ω), we have

∫

Ω

Φ
( |g(x)|

ρ

)
dx =

∞∑
j=1

∫

Ω

1

j!

( |g(x)|
ρ

)j p
p−1

6
∞∑
j=1

1

j!

(
j

p

p− 1

)j 1

2jej
p

p−1

6
∞∑
j=1

1

2j

(
e1− p

p−1
p

p− 1

)j
< 1. (14)
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Thus, for Φ(t) = tη − 1 with η = p
p−1

, there is continuous embedding W l
p(Ω) ↪→

Ck,Φ(Ω) with the norm satisfying necessary condition.
Take any η ∈ [1, p

p−1
). Then by H�older inequality

∫

Ω

1

j!

( |g(x)|
ρ

)ηj
dx 6

(∫

Ω

1

j!

( |g(x)|
ρ

)j p
p−1
dx

)η p−1
p

( |Ω|
j!

)1−η p−1
p

.

Therefore, for any η < p
p−1

there will be also continuous embedding.
Now we show the compactness of the embedding for η < p

p−1
. Fix a bounded

sequence {fi}∞i=1 in W l
p(Ω). In view of item (5) we have compact embedding W l

p(Ω) ↪→
Ck−1(Ω). Hence, there is subsequence {fis} converging in the Ck−1-norm. Denote this
subsequence again by {fi}.

Take any ε > 0. The sequence {fi} is bounded in Ck,Φ(Ω) for Φ(t) = exp(t
p

p−1 )−1.
Let ρ be the supremum of the norms of {fi}: ρ = supi ‖fi‖Ck,Φ(Ω). Denote XIhfi = gi
with d(Ih) = k. Then

‖gi‖j p
p−1

,Ω 6 ρ(j!)
p−1
pj for all i

and
‖gi‖jη,Ω 6 ρ(j!)

p−1
pj |Ω| p−η(p−1)

ηjp .

It is easy to verify that the series
∞∑
j=1

∫

Ω

|gi1(x)− gi2(x)|ηj
εηjj!

dx 6 |Ω|1− η(p−1)
p

∞∑
j=1

(2ρ

ε

)ηj 1

j!

converges for arbitrary i1 and i2. Thus, there is a number M1 > 0 such that
∞∑

j=M1

∫

Ω

|gi1(x)− gi2(x)|ηj
εηjj!

dx 6 |Ω|1− η(p−1)
p

∞∑
j=M1

(2ρ

ε

)ηj 1

j!
< 2− e

1
2

for all i1 and i2.
For any qj = jη, η < p

p−1
, there is pj < p such that qj < νpj

ν−(l−k)pj
. Hence, the

embedding W l
pj

(Ω) ↪→ W k
qj

(Ω) is compact by item (1). In view of Cantor's diagonal
method there is a subsequence {fis} which is the Cauchy sequence in W k

qj
-norm for all

j. Denote it again by {fi}. Then, there is an integer M2 > 0 such that

‖gi1 − gi2‖qj ,Ω 6 ε

21/η

for all i1, i2 > M2 and for j < M1. It follows
∞∑
j=1

∫

Ω

|gi1(x)− gi2(x)|ηj
εηjj!

dx 6
M1−1∑
j=1

1

j!2j
+ 2− e

1
2 < e

1
2 − 1 + 2− e

1
2 = 1.

That is, the sequence {fj} is a Cauchy sequence in Ck,Φ-norm for η < p
p−1

.
(3) p = 1 and ν = l − k. The proof of the embedding into Ck(Ω) is obvious, it

follows the proof of the item (4).
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Obviously, Ck(Ω) ↪→ Ck,Φ(Ω) for all η ∈ (0,∞). Show the compactness of this
embedding. Fix η ∈ (0,∞). Take any η0 > η. Then W l

p(Ω) is continuously embedded
in Ck,η0(Ω). As in the item (2) we can derive from here that W l

p(Ω) is compactly
embedded in Ck,η(Ω). ¤

Lemma 9. Let P ∈ Pm+1 be a polynomial on G. Then there is a constant C = C(m) >
0 such that

|P (xh) + P (xh−1)− 2P (x)| 6 Cr2‖∇2
LP‖∞,B(x,r)

for any two points x, h ∈ G, r = dcc(h, e).

Proof. Write down the polynomial P ∈ Pm+1:

P (y) =
m∑

d(I)=0

aI(x
−1y)I .

Let N (P ) be the following norm of the polynomial P :

N (P ) = sup
d(I)6m

|aI |rd(I).

One can verify that the norms ‖ · ‖∞,B(x,r) and N are equivalent.
We have

|P (xh) + P (xh−1)− 2P (x)| = 2

∣∣∣∣
m∑

d(I)=2
d(I) is even

aIh
I

∣∣∣∣ 6 Cr2 sup
26d(I)6m

|aI |rd(I)−2.

Recall ∇2
LP = {XIhP}d(Ih)=2 and XIhP (y) =

∑m
d(I)=2 aIX

Ih
y (x−1y)I where XIh

y (x−1y)I

is either zero or polynomial of degree d(I)− 2. Therefore

sup
26d(I)6m

|aI |rd(I)−2 6 C sup
d(Ih)=2

N (XIhP ) 6 C‖∇2
LP‖∞,B(x,r).

¤

6.3 Proof of Theorem 6
It's evident that, W l

p(Ω) ⊂ W̃ l
p(Ω) and this embedded operator is bounded. In view

of Lemma 1, C∞(Ω)-functions are dense in W̃ l
p(Ω) and the integral representation

formulas in Theorems 2 and 3 hold for W̃ l
p(Ω). It follows from here Theorem 4 for

f ∈ W̃ l
p(Ω). Hence, Theorem 4 implies that an arbitrary function f ∈ W̃ l

p(Ω) belongs
also to W l

p(Ω). It means, that W l
p(Ω) = W̃ l

p(Ω). By well-known Banach theorem the
inverse embedded operator is also bounded.
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6.3 Extension operator (proof of Theorem 7)
Proof. Using the well-known technique of Jones [15] we can construct an extension
operator

ext′ : W k
p (Ω) → W k

p (G).

The norm of ext′ depends only on ε, δ, k, p and the radius of the domain Ω (see, e. g.
[19, 43]).

Let extu = ũ = Πu+ ext′(u− Πu). Then

‖Qũ‖p,G = ‖Q(ext′(u− Πu))‖p,G 6 C‖ext′(u− Πu)‖Wk
p (G) 6 C‖u− Πu‖Wk

p (Ω).

By Theorem 1, there is a projector P on kernel of Q such that ‖u − Pu‖Wk
p (Ω) 6

C‖Qu‖p,Ω. From here

‖u− Πu‖Wk
p (Ω) 6 ‖u− Pu‖Wk

p (Ω) + ‖Π(u− Pu)‖Wk
p (Ω) 6 C‖Qu‖p,Ω.

Since Πũ = Πu the theorem follows. ¤
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