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Abstract. For general Carnot groups, we obtain coercive estimates for homogeneous
differential operators with constant coefficients, kernels of which have finite dimen-
sion. We develop new Sobolev-type integral representations of differentiable functions
which are a crucial tool for deriving coercive estimates. Moreover we prove some aux-
iliary results having independent interest, in particular, Sobolev type embedding and
compactness theorems for John domains.

1 Introduction

In the series of well-known papers [33, 34, 35, 36, 37| S.L. Sobolev applied two types
of integral representations of functions for proving embedding theorems. In the first of
them a function possessing weak derivatives equals the sum of a smooth function and
an integral of potential type of weak derivatives of the given function. The second one
decomposes a function into two summands: the first one is a polynomial and the second
one is an integral of potential type like in the previous case. These representations
turned out to be useful both in the theory of function spaces, see for instance |3, and
in the theory of PDE, see O.A. Ladyzhenskaya and T.N. Shilkin [17|. They also are
applied in the quasiconformal analysis, see Yu. G. Reshetnyak [28], and in the theory
of elasticity [21].

Coercive estimates arose in the theory of differential operators as a tool for finding
a solution to a differential equation, see [1]. Later a way was found for obtaining
coercive estimates by means of special integral representation of functions |2].

It is natural to expect that integral representations of functions may be useful for
more complicated metric structures different from the Euclidean one. The main goal of
our paper is obtaining coercive estimates for a class of differential operators on Carnot
groups. Derivation of these estimates is based on special integral representations of
differentiable functions on Carnot groups (see Theorems 2 and 3 below), embedding
theorems for the Riesz potentials [41, 6] and a Zygmund—Calderén type theorem (see
Lemma 4 below).

We consider a Carnot group G of topological dimension N with Lie algebra V =
Vied...®V,, where [V}, V)| = Vg fori =1,...,m—1, [V1,V,,] = {0}, dimV; = n.
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Let left-invariant vector fields X3, ..., Xy constitute a basis of Lie algebra V' such that
the family of vector fields Xgimvy+-+dimV,_y+1s - - - s Xdim Vi +-+dim v; 1S @ basis of V. Let
o; be the degree of the vector field X;: o; = {k | X; € Vi}. We will consider the

N
coordinates of the first type, that is z = (x1,...,2y5) = exp(Z xiXi> (e) where e is
i=1

the unit of the group. The Lebesgue measure on R” is the bi-invariant Haar measure
on G.

The Carnot-Carathéodory metric d.. is the infimum of lengths of horizontal curves
joining two points. (A piece-wise smooth curve 7 is horizontal if 7 (t) € Vi(v(t))
for almost all ¢.) The Hausdorff dimension with respect to the Carnot—Carathéodory
metric is v = .~ | 0.

To a multi-index I = (iy,...,4x) € {1,..., N}¥ it corresponds the differential
operator X’ = X; ... X; and the weight d(I) = 25:1 0;,. By multi-index with
subindex h we shall always denote the horizontal multi-index I, = (i1,..., i), i; =
1,...,n. Obviously, the length of the horizontal multi-index coincides with its weight:
d(l,) = k.

For a multi-index I = (i1,... i), 41,...,ix = 1,..., N, set ! = z; - ... x;.
Clearly, 2’ is homogeneous of degree d(I), that is (6z) = tDa! where dr =
(t7'xq,. .., tNxN), t > 0, is a dilation on Carnot group G. A function f is said to be a
polynomial on G if f(x) = >, a;z’ where all but finitely many of the coefficients a; van-
ish. For the polynomial f, the (homogeneous) degree is said to be max{d(l): a; # 0}.
Denote by Py the linear space of polynomials on G of homogeneous degree < k.

Let € be a domain in G, s,l € N, 1 < ¢ < oo. The Sobolev space Wé(Q,RS)
consists of the functions f = (fi,..., fs): @ — R* having the weak derivatives X' f;
for d(Iy) =k, k=1,...,1,j=1,...,s, and a finite norm

I lwiozs = 1fllaa+ D IX" fllan

0<d(I)<!

where || - ||, is Ly;norm of a measurable vector-valued function on €.

We apply the abovementioned integral representations of functions to obtaining
coercive estimates of differential operators with constant coefficients, kernels of which
have finite dimension, on John domains. John introduced such domains in the Eu-
clidean case for studying the stability of isometries [14]. We can regard the John
domains as a natural extension of the class of Lipschitz domains and the domains
satisfying the cone condition. It turned out that the geometry of such domains in R”
enables us to construct integral representations and to prove a Sobolev-type embedding
theorem [27]. The definition of a John domain can be extended easily to the case of
metric spaces. In the case of Carnot groups the class of John domains coincides with
the class of the so-called Boman chain domains (see [4]). Balls in Carnot-Carathéodory
metric are obvious examples of John domains.

A domain Q C G is a John domain J(a,3), 0 < a < 3, if there exists a point
xo € () such that every x € €2 can be joined in  with xy by a rectifiable curve
parameterized by the arc length, such that

v(0) =z, y(I) = xo, I < B, and dist(y(s),0) > ? for all s € [0,1].



60 D.V. Isangulova, S.K. Vodopyanov

It is obvious that B(zg,a) C Q C B(xg, ).
Let © be a domain on G and ) be a homogeneous differential operator of or-

der k£ with constant coefficients acting from R*-valued vector functions w of the class
W} (G,R?) to R™-valued vector functions:

(Qu(z); =Y Y cjX'wi(x), j=1,...,m. (1)

i=1 d(I)=k
The main result of the paper is the following.

Theorem 1. Let 1 < p < oo, p < q < 00, and Q be a John domain J(a, ) in G,
Q be a homogeneous differential operator (1) of order k with constant coefficients and
finite-dimensional kernel. Then there exists a projector 11 on the kernel of Q) and an
integer | > k such that ker Q C P11 and

0
X (0~ M)l < O(2) diam(@)F= 25 Quil
for every function u € W) (Q,R®) and every multi-index J, satisfying d(J) < k, with

49— l—d(J)+v if g # o0,
S ll—d()+v+rv/p if q= o0,

and p, q meeting one of the following conditions:
1) p < q < %y, for (k—d(J))p <v, d(J) <k;
2) p< g < oo for (k—d(J))p=v;
8) p < q < oo for (k—d(J))p>v;
4) q=p ford(J) =k.
Here C > 0 is independent of u, 2, a and (3.

The proof of coercive estimates is based on appropriate integral representation
formulas (Theorems 2 and 3). In Theorems 2 and 3 we use the following quasimetric:

-----

triangle inequality: doo(2,y) < ¢(doo(, 2) + dwo(z,y)) for all z,y, z € G. Denote a ball
in quasimetric d., by Box(a,r) = {x : d(a,z) < r}. Notice that the quasimetric d, is
equivalent to the Carnot—Carathéodory metric de.: ¢1doo(2,y) < dec(z,y) < codo(z, )
forall z,y € G, 0 < ¢; < ¢ < 00 are constants.

Theorem 2. Let an integer | > 0 and a function w € C*(G). Then
u(r) = /U(y)w(y‘lx) dy+ /XIhU(y)th (y~'x)dy (2)
% d(In)=1 &,
for all z € G where

p € C®(G), suppyp C Box(e, 1)\ Box(e, 1/2),
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N
/(p(x)dle, /x?l...m?vNcp(x)dx:(), O<Zai<l,
i=1

Box(e,1) Box(e,1)
K;, € C*(G\ {e}), supp K, C Box(e, 1),

and
XK, (2)] < Magyydoo(,€) "D for any multi-index J.

Here Mgy.yy > 0 is a constant independent of u and x € G.

Remark 1. Rewrite formula (2) in R™:

u(z) = /() T —y dy+Z/Da — ) dy.

Rn |a| an

Emphasize that such integral representation of a function is new for the Fuclidean
spaces also since the kernel of the integral operator in Theorem 2 depends only on x —y
but not on (x,y — x), as in [37].

In the second integral representation theorem we want to see a function as the sum
of a polynomial and a singular integral of derivatives.

Theorem 3. Let an integer | > 0, 3¢ = ¢+ ¢* + 2¢® where c is the constant of the gen-
eralized triangle inequality of the quasimetric d, and a function uw € C*°(Box(e, 5)).
Then for every x € Box(e, 1) the integral representation formula

ue) = Rule)+ Y [ XD, (0.0 dy

d(In)= lBox(e )

holds where

P, is a projection of Ly(Box(e, 1)) to Py,

Ki, (y,7) = K, (y~'z) + Ly, (y, ) with Ky, from Theorem 2,
and

Ly, € C*(G x G), supp Ly, (-, ) C Box(e, ») for x € Box(e, »).

Notice that, on two-step Carnot groups, Sobolev type integral representation of
functions were obtained in [29] and [25]. The method of its proof is based on works by
S. Sobolev and Yu. Reshetnyak. However, its generalizations to arbitrary groups meet
serious technical obstacles.

In our paper we apply a different method for deriving integral representations. This
method was introduced by V.S. Rychkov in [31, 32]. It is based on a representation of
functions by means of the convolution with a kernel which is a sum of dyadic dilations.
This method can be considered as a counterpart of Calderén-type reproducing formula.

We give below several corollaries of Theorem 1 on coercive estimates.

Consider the differential operator Qu = V%u = {Xu}y(,)=x. Then its kernel is
just the space Py of polynomials of degree < k. As a particular case we have Poincaré
inequality for higher derivatives. Notice that, by a different method, it was obtained
also by G. Lu in [18, 19].
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Theorem 4 (Poincaré inequality). Let [ > 0, 1 < p < ¢ < o0, U be a John domain
J(a,3) in G. Then there is a projection P: W)(U) — Py such that

(4
X7 (0= Pu)lyor < ©(2) (@)= T

for any function u of the Sobolev class WZI,(U) and every multi-index J, d(J) < I, with
I)p<g< ﬁfor ({l—d(J))p <v;
2) p<q<oo for (I—d(J))p=v;
) p < g < o0 for (I—d(J))p>v;
) qg=o00 forl—d(J) = v,
[—1—d(J)+v if ¢ # 0,
l—-1—-d(J)+v+v/p ifq= 0.
Here C' > 0 is independent of u, U, a and (5.

3
4

and 68 =

The next corollary is an embedding theorem. In Euclidean spaces the embedding
theorem on John domains was established by Yu. G. Reshetnyak [26]. The embedding
into Orlicz spaces is proved by S. I. Pohozhaev [24] for bounded domains with locally
Lipschitz boundary and by B. V. Trushin [39] for domains satisfying flexible o-cone
condition. This class includes the class of John domains.

On Carnot groups the global embedding theorem can be found in [8]. The em-
bedding theorems for [ = 1 on John domains are obtained in [11]. In the following
theorem we state embedding theorem and estimate the norms of embedding operators.
For formulating the theorem, define several functional spaces.

Let U be a domain in G. Denote by C*(U), k = 0,1, ..., the space of continuous
functions f: U — R with continuous derivatives X+ f for all multi-indices d(I;,) < k,
and with a finite norm || f{|cr () = sup{| X" f(z)|: @ € U, d(I;) < k}.

For defining the class of Holder functions we introduce the inner metric d¥, 0 <
7 < 1, defined on a domain U C G:

m

d¥(z,y) = inf{Z(dcc(xi,xi_l))T |z =zo,21,..., 2 =y €U,

=1

dec(i, xi—1) < max{dist(z;, 0U), dist(z;—1,0U)}, i =1,... ,m}.

Notice that d¥(-,-) coincides with the infimum of the lengths of all horizontal curves
joining two points in U. If U is a John domain J(«, 3) then its diameter is bounded
in the metric d¥ for all T € (0, 1].

A space C*"(U), k = 0,1,..., 0 < 7 < 1, consists of all functions f: U — R
having continuous derivatives X' f for all d(I},) < k and the finite norm

(X f () — X f(y)]
[fllerr@y = sup  [X™f(x)]+ sup .
O sev, atiy<i €U, zy, d(In)=k d¥(x,y)



Coercive estimates and integral representation formulas on Carnot groups 63

A space CH(U) is a subspace of C*-smooth functions with the finite norm

ety = sup X7 f(x)]
oc er? d(Ih)Sk
b XSGR X - 2X 0 ()
B(JJ,T)CU, dcc(eah):Tv r
d(Ip)=k

Set ®(t) = exp(t") — 1, n = 1. Let C*®(U) be the space of functions f: U — R
having bounded continuous derivatives X f for d(I) < k and the weak derivatives
X f satisfying

/(J(I)(\thf(x)\) do < oo for d(I) — k

equipped with the following norm:

[fllere@y = sup  |X™f(z)]

zeU, d(Ip)<k
X
+ inf{p >0 / ¢<M> dr < 1, d(I)) = k:}
U P

Obviously C%?® is the Orlicz space L.

Theorem 5 (Embedding theorem). Let l e N, k€ ZT, k<[, 1 <p < o0, and U be a
John domain J(a, B) in G.
(1) If (I—k)p < v then W)(U) is continuously embedded in WF(U) for1 < ¢ < %
(here we assume W) = Ly):

WU) < WD),

I—1—k+v
Jilbwgarwgr < C(2) T (diam Uy~ ma (diam ), 1)

If g < ﬁ then the embedding is compact.

(2) If (I —k)p = v and p > 1 then WL(U) is continuously embedded in C**(U) for
O(t) =exp(t") — 1, n < sk

W,(U) < CH*(U),

p

ﬁ)llirl/Jru/p

lellwiymorew) < C(-

(diam U) /P max{(diam U)'~* 1}.
a

Ifn < z% then the embedding is compact.
(3) If p=1 and | — k = v then WL(U) is continuously embedded in C*(U):
W(U) - CH),

p

6) I-1—k+v+v/p

lillwioy—cor@) < C(—

(diam U) /P max{(diam U)"~* 1}.
a

Moreover, W/ (U) is continuously compactly embedded in C**(U) with an arbitrary
n € (1,00).
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4) If (I —Fk)p >vand (I —k—1)p < v then W)(U) is continuously embedded in
ChU),0<7<l-k—-2<L

W) < ok (U),

p

) é I-1-k+v+v/p —ulp . —k
lillwiwy—orr@) < C (diam U) ™"/ max{(diam U)"", 1}.
a

Ifr<l—Fk-— % then the embedding is compact. In addition, Wé(U) 15 continuously

compactly embedded in C*(U).
(B) If (I —Fk)p >vand (I —k—1)p = v then W)(U) is continuously embedded in
Cioe (U),

loc

W,(U) = Ciee (U),

loc

ﬁ) I-1—k+v+v/p

lellwswymcrrw) < C(&

(diam U) /P max{(diam U)"~* 1}.
Furthermore, WL(U) is continuously compactly embedded in C*(U) and C*™(U) with

7€ (0,1).

Remark 2. Applying method of paper [{0] we can prove that a function f € C*™(U)
can be extended by the continuity to the completion of the domain U with respect to the
metric dY .

The Sobolev space Wé(Q) consists of the functions f:  — R having the weak
derivative X'n f for d(I,) = [, and a finite norm

1 ey = Ifllaa+ D 1X™ flloo.

d(Ip)=l

Like the Euclidean case, the spaces Wé and Wé coincide on John domains.

Theorem 6. Let €2 be a John domain on Carnot group G, 1 < p < oo, l € N. Then

W) = WHQ)

p

and the norms are equivalent.

The proof of Theorem 6 is based essentially on Theorem 4.

One more application of Theorem 1 is an extension theorem of Sobolev-type func-
tions defined on (e,d)-domains. Jones [15] proved the extension theorems for the
Sobolev space W} beyond such domains in R". Lu [19] established extension the-
orems for the weighted Sobolev spaces on (e, d)-domains of Carnot groups. In this
paper we introduce and extend functions belonging to some Sobolev-type class. Notice
that bounded sets with smooth boundaries are (e,d)-domains (e. g., see [7, 29]) on
two-step Carnot groups. Besides of this balls in the Heisenberg groups with respect to
Carnot—Carathéodory metric are (g, 0)-domains [42].
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An open set € is an (g,0)-domain if for all x,y € Q, dy(x,y) < J, there exists a
rectifiable curve v with endpoints x and y such that ~ lies in €2 and

doo(xyy) €doo(.T,Z)doo(y7Z)
length G\, Y) Q) >
ength(y) < pa— d(z,00) ()

for all z € ~.

Radius of an open set €2 is a number
rad Q = sup{r > 0: 9 Box(p,s) NQ £ for all p € Q,0 < s < r}.

Let @ be a homogeneous differential operator (1) of order k with constant coefficients
and with finite-dimensional kernel. Let II be a projection of L;(Box(e, 1),R?®) to the
kernel of @) from Theorem 8.

Consider a domain €2, Box(e,1) C Q. A locally integrable function u: Q@ — R®
belongs to the functional space WZQ(Q,RS) if Qu is well-defined in the sense of weak
derivatives and the following norm is finite:

[ulle ) = Mull + |Qullp.0-

Notice that, by Theorem 1, the space WpQ(Q) coincides with the usual Sobolev
class WF(€2) for each John domain €.

Theorem 7 (Extension theorem). Let 2 be a bounded (g, §)-domain on a Carnot group
G, Box(e,1) € Q, 1 < p < co. There is an extension operator

ext: WPQ(Q) — WpQ(G),
and the norm of the operator ext depends only on €,9, k,p and radius of the domain 2.

We prove first Theorem 2 and then Theorem 3. After doing this we are ready to
prove a local version of coercive estimates for the differential operator (1) (Theorem
8). It left to justify only a way from local to global estimates. It is done in Theorem 9.

The structure of the paper is the following. In Section 2 we give necessary defini-
tions and some auxiliary results. Section 3 is devoted to the proof of Theorems 2 and
3. In Section 4 we give embedding theorems for Riesz potentials (Lemma 3), estab-
lish Zygmund-Calderén type theorem (Lemma 4), and prove local coercive estimates
(Theorem 8). Section 5 is devoted to passing from local estimates to global ones. In
Section 6 we prove Theorems 4-7.

Authors thank Anton Parfenov for introducing the method of papers [31, 32].

2 Definitions and auxiliary results

2.1 Left- and right-invariant vector fields

On G one can choose coordinates x1,...,zy such that
0 0
X, = Po(2)—
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where P,; is a polynomial of homogeneous degree (o; — ;). (Here we follow Jerison

[13].)
We have 27! = —z, Xj' = =X and X; = 52 for X; € V.

Set Rf(z) = f(z71) and XBf = RXRf. If X is a left-invariant vector field then
X% is right-invariant. Moreover,

z‘ - axz ZPW 8:E] ZZl,,N

0;>0;

It is easy to verify using induction on ¢ beginning with the trivial case o; = m and
decreasing to 0; = 1 that for some polynomials );; with homogeneous degree o; — 0;
0

8:131»

0 >0
Therefore, X; = 2?21 X jRAij where A;; are differential operators satisfying A;; = —id
and [ A;jpdr =0 for any p € C5° and i # j.

2.2 Convolution

For any integrable functions f and ¢, the convolution f x ¢ is a function defined as

follows:
frg(x /far Y)g y)dyz/(;f(y)g(y

It is easy to verify that the following properties holds for any smooth integrable
functions f, g, and a left-invariant vector-field X:

1) fxg#g*f;

2) X(fxg)=[f=*Xg;

3) (X[f)*g=—f=(X"g).

2.3 Smooth approximations of Sobolev functions

In this subsection we show the density of smooth functions in Sobolev spaces. (Density
of smooth functions in the Sobolev spaces on Carnot groups can be found in [11] for

I=1)

Let ¢ € C°(B(e,1)) and a = [ ¢(z)dz. Set ¢. = 906 .. Then for any function
u € L,(G) we have ||u. — aul|,c — 0 as € — 0 where u. = u * ¢, [9].
Lemma 1. Let Q be open set on G with nonempty boundary. Then C*°(Q) N fW;ﬁ(Q)
is dense in W)(Q) and C*(Q) NWL(Q) is dense in W(S2).

Proof. Take ¢ € C§°(B(e,1)) with [p(z)dz = 1 and f € Wé(Q) Then f. €
C* ()N /I/Iv/]ﬁ(Q’) for €' compactly supported in €.
Consider first [ = 1. Then

Xife=fxXipe =[5> XFAype == X;f* Aijepe
s j=1
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and fAz‘j% = —0;;. 1t follows
| X fe — Xif”p,gl —0 ase—0.

Let now [ be arbitrary. The same is true for any multi-index I, d(I,) = . Indeed,

Xifo=faXlp.=fx Y XMWRAL 0 =(=1)" Y XfxAppo.
d(Jp)=l d(Jp)=l
where Achi are differential operators with Alhli = (—1)ld and fAIhJﬁapE = 0. (Here
Jt = (i, ..., 1) for J, = (j1,...,J1).) Therefore, || X f. — X f||,or — 0 as e — 0.

Passing from ' to Q2 repeats word-by-word the proof in Euclidean setting (see, for
example, [20]). O

2.4 Construction of the function ¢ from Theorem 2

For a function ¢, define
To(z) = 2"p(622).
Obviously,
1) TFo(z) = 28 p(dgex) = T T p(x) if i+ 5=k, 1,5,k €N;
2) X;TF = 2°*T*X; and XJTF = 20FTF X i =1,..  N.
Lemma 2. Let [ > 0 be an integer. There exists a smooth function ¢ supported in the
annuli Box(e, 1) \ Box(e, 1/2) such that

R
Box(e,1)

/()x‘fl...x?\,Ngo(x)dxzo, 0<Zoz,;<l, o €Z7,
Box(e,1

and

To—p= Y X,
d(In)=l

where the smooth functions (;, are supported in the annuli Box(e, 1) \ Box(e, 1/4).

In the Euclidean case the analog of the lemma can be found in |23, Lemma 3.7].
For proving Lemma 2, we construct a smooth function ¢): R — R such that

supp ¢ C [a, b], /Oo P(s)ds =1,

/ s*p(s)ds =0 forallk=1,...,1—1.

[e.9]

It is sufficient to consider [ test functions vy, ..., supported on the interval [a,b]
satisfying det A # 0 where

A = {aij}ﬁjzl, aij = / Si_l’gZ)j(S) dS, Z,] = ]_, ey l

—00
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Put a vector

C1 1
o]
C] 0

Then ¢ = Eizl c;v; satisfies all the properties we need.
Let a function f € C§°(R) satisfy

/ f(s)ds =0, / s"f(s)ds=0 forallk=1,...,1—1.

[e.9]

Then f(s) = %S(s) where

1 s _
€0) = oy | _s— 0o
Moreover, supp & C supp f.

Proof of Lemma 2. Consider N functions ¢; € Cg°(R), i = 1,..., N, satisfying

/wi(s)ds:l, / s*i(s)ds =1 forall k=1,...,1—1,

and supp ¢; C [277 1].

Set (x) = b1 (21)ts(w2) .. b (n). Then ¢ € C3¥(G) and suppp € Box(e, 1) \
Box(e, 1/2). Furthermore, T'p(x) = Hi\; t%11);(x;) where the operator t is defined as
follows: ti(s) = 21 (2s). Therefore

To(x) — (x) = (t1(z1) — 1(z1))2(22) - Y (2N)
+ 691 (1) (B (22) — Yho(w2))¥3(3) - - - Y (zn)
ot () 8T g () (87 () — () )i (Tisa) - Y ()
ot () -t N (en-) (BT YN (TN) — PN ().

We have T'p — p = ZZN:1 aa—;l_g with
G(z) = tr(z1) . A7 (i) (@) Viga (Tig) - N (TN),

supp ¢; € Box(e, 1) \ Box(e, 1/4),

1

o) = gy (= 06— wo)

Show that
ox lCz— Z XIhRQIh
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It suffices to verify it for [ = 1. Recall that X} = —-2 — > Pj(—= )8:1: , and

0;>0;
the polynomial P,;(—z) has homogeneous degree o; — 0;. It follows that Pj;(—zx) is
independent of x; since the polynomial x; has homogeneous degree o;. Thus,

B R 0
o (2) = —XFG(a) + Y a—%(ﬂj(—m)é’i(ﬂﬁ))

0 >0
- _XRCz Z XR z] z( ))
0;>0;
+ Y P Py(—0)G(@)
O'k>0']>0'1
Taking into account a—ik = —XE for X, € V,, and proceeding as follows, we finally

come to the following equality:

N
x) = ZXJRQJ»(x), Gj € C5°(Box(e, 1)).

Here (;; equals ¢; multiplied by the polynomial of degree (o; — o).

Horizontal vector fields X, ..., X2 generate the whole Lie algebra V. Hence
Xj= Z X X = Z C;hXIh’R‘
os+oL=0; d(Ip)=0;
The desired property follows immediately. 0

2.5 Stratified Taylor formula with integral remainder
The Taylor formula in R! with integral remainder is known: f € C'(R), [ > 0,

-1

— 1d b f(s 1
Zy dt l'/o gt(l)(t—sy ds. 3)

k=0

Fix points xg, 2 € G. Consider a curve y(t) = zod;z, t = 0. We have

N
= Z oit” 2 X (y(1)).
i=1

Let u € CY(G,R). Put f(s) = u(xodsz). Then

k
d’“dJ;iS):Z 3 S OEQy () X (b2

where Q. 7(z) is a homogeneous polynomial of degree d(I).
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Obviously,

K
ddii()) =3 > Qri(2)X u(x) = Z Qu, (2) X ™ u(xo).

J=11€{1,..,N}J, d(Iy)=

Here we replaced X; of degree o; > 1 by a linear combination of o; horizontal vector
fields. Notice that Qp,(z) is the homogeneous polynomial of degree d(I},) = k.
Applying Taylor formula (3) with t = 1 we obtain

u(zo2) Z | Z Qr, (= 2) X (o)

d(Ip)=k
1

Ry Q%@ / DX Ty (05,2) (1 — 5) = ds. (4)

J=lre{1,.,NY,
(1>l

Example 10. Heisenberg group H has topological dimension N =3 and 2 dimensional
horizontal subspace Vi spanned by X, = 8%1—1-2:1;2 ai and Xy = — 21,2 Jag , X0, Xe) =
—46%3 = —4X3. The group law is given by the following rule: (.’Jcl,xg,xg) (Y1,Y2,Y3) =

(T1 + Y1, T2 + Y2, T3 + Y3 — 22192 + 2T2y1).
Taylor formula (4) can be rewritten as

1
w(zoz) = u(wg) + / (21X1 + 22X5 + 2523 X3) u(wo052) ds,
0
forl=1, and

u(zoz) = u(wo) + 21 X u(wo) + 20 Xou (o)
1
1—
+ / TS(QZSXB + 21 X1 X1 + 2122(X0 Xo 4 X0 X1) + 25 X0 X5
0

+ 482’123X1X3 -+ 482223X2X3 + 4822’§X3X3)'LL<5L'0532) ds

forl = 2.

3 Integral representation formulas

3.1 Proof of Theorem 2

Let ¢ be a function constructed in Lemma 2. Since [T*p = 1 and supp Ty C
Box(e,27%) we have T*p — § as k — oo in the sense of distributions. Notice T*p =
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@+ SV TH Ty — ¢). From here we have pointwise equality

ule) = Jim (= TH)(a) = o ple) +u S THT = )

=ux*p(x +U*ZTk Z XBe

k=0 d(Ih

=ux*p(x)+ ux* Z ZQ‘lkXIh’RTkCIh(x)

d(1,)=1 k=0

=ux*p(x Z thu*ZQIka

d(Ip)=l

Here we have denoted I}, = (iy,...,4;) for the multi-index I, = (iq,..., 7).
Fix I, = (i1,...,4) € {1,...,n}". Define

'Y 2T
k=0

We have supp K, C Box(e,1). Take z € Box(e, 1) \ {0}. Set an integer j > 0 such
that ' '
2797 Cdo(m,e) < 279,

Obviously TkCI,g( z)=0forall k> j+1and k <j—2. Thus, K;, € C*(G\ {0}).
Fix multi-index J. Estimate | XK, (z)|. If j > 0 we have

X7, () = (~1)/2 D XTIy (1) + (—1)12 5 XITICy ()
= (_1)l2(*l+d(J))(J*1)Tj*1XJCIi(x) + (_1)12(fl+d(J))jTjXJCIE(x)

and

|XJKIh ($)| < (2(—l+d(J)+l/)(j—1) + 2(—l+d(J)+V) ) sup |X g]t |
Box(e,1)

There are three cases:
2 HADFNG=DF i [ — d(J) > v,

1%
| X7 K, (2)] < sup [X7¢Cp| x {2 if | —d(J) =v,
Box(e,1) 2(4+d(])+u)j+1 if | — d(J) <v

If] =0 then |XJKIh (:C)‘ < SupBox(e,l) |XJCIZ‘
In all cases we have

|X‘]K1h ()] < My pydoo(, e)l_du)_”

where

M, = 2= sup{|X7¢;, (2)] - 2 € Box(e, 1),d(I;) = 1,d(J) = s}.
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3.2 Proof of Theorem 3

For proving Theorem 3 we have to show that the function u * ¢ equals polynomial plus
integral of derivatives of u of order [.

Fix points z, 2o € Box(e, 1). Substitute Taylor formula for u with respect to zg to
the convolution u * ¢. It follows

ux plz) = / M)y

-1

=2 > ) [ Qe dy

k=0 d(Ip,)= Box(z,1)

+Z Z / /Qll%y d(1)-1
Box(z,1)

J=11€e{1,...N}
d(I)>1

x XMu(wods(zg'y)) (1 — ) oy~ ) ds dy.

Since all the moments of the function ¢ vanish and the polynomial Qr, (z5'y) has
homogeneous degree d(1I),) < [, it follows that

/ th($aly)‘10<y_lm) dy = th(xalx)'
Box(z,1)

In the second summand make a change of variables: z = xds(75'y). Then y =
xoél/s(xglz) and dy = s7Vdz. We have

-1
Qz,z(flo y) sTD= X (208, (25 y)) (1 — ) Lo(y~ 2) ds dy

Box(z,1) 0

/ /Qll 51/s Ty ))Sd(l)—l—u

x (1= )" (815 (2 o)y ') ds dz

1
_ /XIU(Z)QZ,I(;O 12) / (1 — 8)1_150(51/8<Z_1£L‘0>I51$) ds dz.
G

SlJru
0

In the last equality we used the homogeneity of the polynomial @); ;.
Consider the last integral over s:

1
1—3 -1
I(z, 2, o) _/%¢(51/s(21xo)$olx) ds
0
[(t—1)-!
:/—( tl—l) tl+l’_2<p(5t(z_1x0)xalx)dt.
1
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The function ¢ is supported in Box(e, 1). It follows, ds(J;(2  20)zy 2z, 0) < 1. From

here, tduo (2, 70) = duo(0:(27120), 0) < (1 + doo (0, 7)) < (1 + 2¢). If % > 1 then

dc(1(+2c)) 1
I(z,x,20)] < sup |p / UV e < O sup | .
’ ( 0)‘ Box(e,1) ‘ | 1 Box(e,1) ’ |doo(27 xO)H_V_l

If <1+20) 1 then Z = 0.

Differentiating Z(z, x, xy) with respect to the variable z, we obtain

X/ T(z,,10) t””*d(‘])’Q(XJ’R@)(ét(z’lxo)xalx) dt.

»—A\g

It follows

1
sup |X7Fg).

XJI , , < C
(X2 Tz, 20)] < oo (2, 20) T HUN ! poien)

Differential operator X! has degree d(I) > [. It can be rewritten as a linear
combination of d(I) horizontal vector fields. Differentiating by parts d(I) — [ times we
finally obtain

-1

X! hu( a:o
*
h
wkp(z) =) Z Q) (g ')
k=0 d(I),)=
+ Z X'u(2) Ly, (27 ae; 29 ') dz
d(Ip)=l

Box(zo,c+2c2)

where
1

doo(T0, 2)V" 1
Multiply u * ¢(x) by ¢(x¢) and integrate over zg. It follows

Ly, (2 oy 2 )| < C

wx p(z) = / P Pl deo

-1

Xhu(z
DI AU 0. 5 (o)
Box(e,1) —q d(Iy)=k !

+ Z / / X™u(2) Ly, (27 2o; 29 o) (o) dz dxg
Box(e,1)

d(In)=l Box(zo,c+2c2)

-1 Y
:/ ( )Z Z %‘XI’L(Q%(:UO ) (0))(13:0
Box(e,1 k=0 d(I;,) !

I)=k
+ thu(z)/ Ly, (2 wo; g w) (o) dog dz
d( Box(e,1)

Ih):lBox(e,c+02 +2¢3)
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= P_ju(z) + Z / X"u(z)L] (z,2) dz

d(In)=t Box(e,c+c2+2c3)

where P,_; is a projection on polynomials of degree < I, L} (z,2) € C* and
supp L, (+,2) € Box(e, ¢+ ¢* + 2¢%) for all - € Box(e,1). (Here we used Box(zo, ¢ +
2¢?) C Box(e, ¢+ ¢ + 2¢3) for all 7y € Box(e, 1).)

Now it rests to insert the term u * ¢ in the integral representation formula from
Theorem 2.

4 Local coercive estimates

4.1 Singular integrals

In what follows, C' denotes various positive constants. They may differ even in a same
string of estimates. Set s = ¢ + ¢ + 2¢3.
Introduce the following fractional integral operator (analog of the Riesz potential):

R’Y’U(Z') = /B (e, )U(y) dOO(xay)’Y_V dy> 0 < CAS LP(BOX(ea %))7 Y > 0.

vp

. Then there exists a constant C' such
that for every nonnegative function v € L (Box(e, %)) the following inequality holds:

Lemma 3. Let 1 <p <oo,yp<vandq=

IRl < Cillvllppoxtes i p>1,

q
{x € Box(e, ») | R7v(x) >t} < Cs (HH1B+B%)) . t>0, ifp=1.

Constants Cy and Cy are independent of v. Moreover, C} < Csqt ~% where the constant
Cj5 is independent of q.

In the case p > 1 Lemma 3 can be found in [41, Theorem 10|, for p = 1 see [6,
Theorem 4.1].

Lemma 4. Let a function n satisfy the following conditions:
() n e C‘”(G), suppn C Box(e, 1) \ Box(e, 1/4);
(i) [on(x)de=0.
ForveL (G), 1 <p<oo, set

= Thn()

and
Ko@) = [ Ky o)y
G\Box(z,¢)
Then
1Kevllp < Apllvllp
where A, s z'ndependent of v and €. Moreover, for each function v € L,(G), there

exists lim_q K. v 2 K and 1|, < Apllvll,-
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Proof of Lemma 4 is based on the following technical lemma.

Lemma 5 (|16, Lemma 11]). Let p(n) > 0 be a function on the integers n € Z with
d =3 _wn)Y? <oo. IfTy,...,Tx are linear operators on a Hilbert space with
LT} < @i = j) and | T7T5]| < (i — j) for alli and j, then [Ty + -+ + Ty[| < @,
independently of N.

Proof of Lemma 4. Consider p = 2. The proof of the boundedness of the operator
ICin Ly follows arguments of paper [16]. Meanwhile we cannot use it directly since our
kernel is not homogeneous.

Set

Kif (2) = f o+ T /fwy ) Tn(y) dy.
Then

and
LS = £ Ky, Konla) = [ Tnlye) Tn(y) dy
KL = F+ Ky, Kiy(a) = [ Tnfa) Ty dy.
Analog of classical Young inequality (||f * gll2 < [|g[[1]|f]l2) yields

1K K oo < [ Eik 1

It suffices to estimate || K x|y with k& > j since Kj(z) = Ki;j(z ™).
Since T%n has the mean value 0, then

Kju(x) = / (Tn(yz) — Tin(z)) T*n(y) dy,

and
Kulh < / / Tin(ye) — Tin(@)| [T*n(y)| dedy (21 = Sy, 42 = 6wy)
— gk // n(yier) — nae)| In(Bses90)] dar dys

<2 // dec(yn, €) sup [V en(2)] [n(d2s—531)| dvy dys

< C2k—ivgi=k / dzy / dy, < C27F,
doo (z1,€)<c(14277F) 20—k=2<d (y1,0)<29—k

The norm || K7 |1 can be estimated in a similar way.

Now, using Lemma 5 we can obtain boundedness of the operator C in L,. For
proving the boundedness of Kin L,, 1 < p < 2, one can use Marcinkiewicz interpolation
theorem. For doing this one needs to prove that the mapping f — K f is of weak-type
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(1,1). The latter can be verified by standard argument (see, e. g. [38, Theorem 3, Ch.
I, § 5]).

For p > 2 we use adjoint operator K*. It is easy to see, that the boundedness
of the operator K in L, follows from the boundedness of the operator £* in L,, with
1,1
pp

Remark 3. In Lemma 4 we can consider function n supported on any annuli centered at
e and being Lipschitzian with respect to both left-invariant and right-invariant metrics.

4.2 Coercive estimate. Local version

In this subsection we consider differential operator @) defined in (1).

Theorem 8. Let 1 < p < oo, Q be a differential operator of order k with constant coeffi-
cients and finite-dimensional kernel. Then there is a projector I1: W} (Box(e, »), R®) —
ker ) such that

||XJ(U - Hu)”q,BOX(eJ) < C“QUHP,BOX(e,%) (5)

for every function u € W (Box(e, »),R®) and every multi-index J, d(J) < k, with g
satisfying

1) p<g< m for (k—d(J))p<v, d(J) <k;

2) p< g <oo for (k—d(J)p=v;

3) p<q< oo for (k—d(J))p>v;

4) q=p ford(J) = k.

Here C' > 0 is independent of u.

Proof. The idea of the proof is given in [29]| for Heisenberg groups. (The case of
two-step Carnot groups see in [25].) We give briefly a short sketch of this idea. It
suffices to prove the theorem for the smooth function w. Then, by standard arguments
we can pass to the Sobolev function wu.

STEP 1. Denote by Py, the linear space of polynomials on G of homogeneous
degree 7. Since the kernel of @ is finite-dimensional there is a number [ > k such that
PriNker Q = {0}. It follows P;Nker V- *Q = {0}. (Here V% = { X! d(I},) = 1 -k}
is the homogeneous differential operator of order [ — k.)

Therefore there is a matrix A with constant coefficient such that V2 *Q = AV..
Thus, the matrix A is reversible and VL. = A7V *Q.

By integral representation theorem we have

uo) - Pue) = Y [ XK @)y = [ K (o) V) dy
d(Ih):lBOX(e,%) Box(e, )

for z € Box(e, 1) where P is a projection operator on P, and K'(y, x) is a matrix-valued
kernel. Integrating by parts we obtain

u(z) — Pu(x) = / K'(y,2) AV Quiy) dy = / H(y, ) Quiy) dy
)

Box(e, s Box(e, )
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where H(y,z) is matrix-valued function such that H(y,z) = Hi(y,z) + Ha(y '),
H, € CF(G x G), supp Hy(+,x) C Box(e, ), Hy € CF (G \ {0}), supp Hs C Box(e, 1),
and

| X Hy(y™ ') < Mdoo(,y)*" "™ for any multi-index J.

First, we prove
X7 (u = Pu)lgpoxey < CllQullpox(ess, d(J) < k. (6)

STEP 2. Set v =k —d(J). If v = 0 then (6) holds by Lemma 4 with p = ¢ > 1.
The case v > v is trivial since X7 H (y,r) is a smooth function. Consider the case
0<y<v.

In the case yp > v we use Holder inequality for obtaining (6):

”XJ<U - Pu)”oo,Box(e,l)

1/p'
<yt s ([ ey ay)
Box(e, )

z€Box(e,1)

b
< C||Qul|p,Box(e, ) <p’ = pTl> :

For vp < v and ¢ = 2 Lemma 3 yields (6).

v—yp’
It rests to consider the case yp = v. Consider a number p; = V_q;:/q. Obviously,
l<pi<pifg> uiy By Lemma 3

HXJ(U - Pu)”q,BOX(e,l) < C”QUHPLBOX(@,%) < CHQUHP,BOX(&%)'

STEP 3. Now we need to replace Pu by projection to the kernel of ). Consider any
projection P;: P, — ker @) such that ker(Id — P;) = ker Q. Then ||g — Pig|| < C||Qy]|
for any polynomial g € P; since in finite-dimensional space all the norms are equivalent.
Existing of such a projecting P; is rather evident: one just needs to take a basis of
ker@ and to complete it till the basis of P;.

Set I = P o P. Then II is a projection of L;(Box(e, 1)) on the kernel of ). We
have

@Pu—@(u— / ( )H(y,@@u(y)dy)

—Qu- / QuH, (4, 2)Qu(y) dy — / QuHaly ') Quly) dy
Box(e, ) B

ox(e, )

= Qu — K1(Qu) — Ko(Qu).

Operators Ky and Ko are bounded in L, for all p € (1,00). The first one is bounded
since the function H; is C*°-smooth, the second is bounded by Lemma 4. Indeed all the
conditions of Lemma 4 hold. All the elements of the matrix-valued function Q H, have
the form Y 2, T*n, where the smooth function 7 is supported in the annuli Box(e, 1) \
Box(e,1/4), and the mean value vanishes. Therefore, ||QPul| < ||Qu||p Box(e,5)-
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Finally,

1X7 (w = ) [l Boxeny < I1X7(w = Pu) |l Box(eny + | X7 (Pu — PrPu)l|g Bose.1)
< HQqu Box(e, ») + HPU - Plpu” CHQqu Box(e, ) + CHQPqu Box(e, )

and the theorem follows. O

5 From local to global

Theorem 1 on coercive estimate on John domains follows from the local result (Theorem
8). The same concerns the Poincaré inequality. In order to get the global result from
the local, we apply the well-known technique (see, e. g. |19, 25, 11]). This method is
based on nice covering by balls of the John domain. We will give the proof in order to
write down the explicit dependence of the John coefficients o and .

Passing from local to global does not explore any group structure of G. So, through-
out this section we will consider metric space X with a metric d and a Borel measure .
We assume also that u is doubling which means that u(2B) < Cyu(B) for every ball
B C X. A standard iteration of the doubling condition yields u(B) < Cb(ﬁ)u,u(B’)
whenever B is an arbitrary ball of radius » and B’ = B(2/,r’), ' € B, ' < r. The
exponent v depends only on the doubling constant Cy. If € is a bounded subset of X
then u(B(x,r)) > (zdl%r for every x € Q and r < diam 2 [12, Lemma 14.6].

We begin, though, with some preliminary lemmas. Our first lemma is a variant of
a rather well-known lemma (e. g. see [11, 5]); we include a proof for completeness.

Lemma 6. Suppose that 1 <p < oo, h > 1, Q is a domain in X. Let F be a family of
balls contained in 2, and let ag be a non-negative number for each ball B € F. Then

HZ aBXhB|| < Ch”p HZ aBXB
BeF b BeF P

where C' s independent of h, p and 2.

Proof. Let g be a non-negative function in L, (2), p’ = p/(p — 1). Then

1= (S amn) adu< v S an| o [ gauts)

BeF BeF

The bracketed quantity is dominated by maximal function M (gxq)(y) for every y € B.
Now recall that [M(gxo) 0 < [M(9xa)lyx < Cuplgxallysx (e g see [5]) where
the constant C); is independent of p. Therefore, using Holder inequality and the
boundedness of the maximal operator in L, we obtain

< Cyh” ZCLB/MQXQ dp = Cyh /MQXQ )Y apxsdu

BeF BeF
< CthHM(gXQ)Hp’,QH Z aBXhBH < CbCMthHng’,QH Z CLBXhBH
BeF Pl BeF Pl
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Taking a supremum over all ¢ > 0 in the unit ball of L, (), the lemma follows by
duality. O
Since the definition of the John domains is given only in metric terms we do not
repeat it for metric space setting. The next lemma is a well-known result stating that
John domains satisfies the so-called Boman chain condition (see, for example, [4]).
Here and in the sequel we denote dg(z) = dist(z, 0Q2) for a point x of a domain 2.

Lemma 7. Let sc > 1, Q be a John domain J(«, 3) with distinguished point xo € €,
By = B(xo, @) Then there is a countable family of balls F such that
1) By € F, UpersB =Q, B C Q for all B € F, {{5B}per is a pairwise disjoint
collection of balls;
2) for each ball B € F there is a positive integer m = m(B) and a chain
{Bo, ..., By, = B} C F satisfying the following properties for all i =0,...,m — 1:
() Z4r(B) < r(Bun) < Z5r(B);
(ii) B; N Bjt1 contains a ball G of radius 3 min{r(B;),r(Bj+1)};
(iii) B C G, and B C hoBj with hy = 2(23¢ + 21), hy = (3¢ + 10);
3) {Buo, ..., B} is a chain for the ball B; fulfilling (i)—(iii), j =0,...,m

Proof. 1) Consider a covering of €2 by balls {B(z,r) : x € Q,r = do(z)/s}. Choose a
countable family F such that Uper3 B = Q and {55 B} e is a disjoint family. Without

loss of generality we may assume that the ball By = B(xo do ‘TO)) e F.

2)-3) Fix a ball B € F. By definition of John domain there is a curve 7 joining
center of the ball B and x,. Consider a chain of balls { By, ..., By—mp) = B} C F such
that | J;3B; D v and 1B, N 1B #0,i=0,...,m— 1. Let the chain {By,..., Bn}
be minimal in the following sense: Ui# %Bi D ~ for any j. Hence, for every i =
0,...,m — 1, there is a number s; < [ such that y(s;) € %Bi.

Denote B; = B(z;,7;), i =0,...,m. Consider 0 < i < k < m. Obviously,

d(wy, 2;) < d(@g,v(sk) +d(v(sk), (s0)) + d((si), 21) < %’“ + gdg(’y(si)) + %
< g—k + é(d(”y(si),a:i) +do(w)) + % < %’“ + @ri

and »ry = do(xy) < d(zg, x;) + 2r;. From here rp < 6’@7"1 Then, for every y € By, we

have d(z;,y) < d(x;, 21) +rx < (10 + 5)r.
Since §$B; N 3Bi1 # 0 and ser; = do(w;) it follows that 324 < ;- < 224 and

i1 > 23—1

there is a ball G; = B(y;, pi) C B; N By with radius p; = 3 mln{n,nﬂ} and centre

€iB,NiB;.
Suppose pi = <, where j equals either i or i + 1.  Then d(y;,y) <
d(yi, xj) +d(zj,y) < pi + rjg(%+ 10) < pi2 B(25¢421) for all y € By, O

Let P be a vector space of R*-valued functions on X with the following properties:
sup |P(z)| < Cs'sup |P(x)|, sup|P(z) / |P(z)| dp(z (7)
€SB z€eB z€eB

for every ball B € X, number s > 1, and every functlon P € P, where the number
[ > 0 and the constant C are independent of the function P and the ball B.
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Example 11. 1. Obuviously, the family of constant functions satisfies the conditions

(7)-
2. In the case of Carnot groups the set of polynomials of degree < k (X =G and
P = Py) satisfies (7) with l =k — 1 (for example, see [19, Lemma 2.1]).

The next theorem is the main result of this section.

Theorem 9. Let (X,d, p) be a doubling space, P be a vector space of functions on X
satisfying (7), Q be a John domain J(«, 3) with distinguished point xo, and f and g
be measurable functions defined on §2. Suppose x> 1, 1 < p<oo,p<Lg< oo, A >0,
and, for each ball B with »B C Q, there exists a function P(B) € P such that

If = P(B)llgs < Cr(B)*gllp,ses-

Then N
1f = P(Bo)lae < C(%) (diam ©)gllpa

I +v if ¢ # oo,

where B :Bx,M and 0 =
= Bl ) a0 = {7002

If X is a Carnot group and P is the space of polynomials of homogeneous degree
< [ the theorem is formulated in [19, Lemma 4.2].
The proof of Theorem 9 is based on the following lemma.

Lemma 8. Let X,P,€), f, g, Bo,0,p,q,\ be as in Theorem 9. Then
P(B) — P(B < (%) (diam 0)*
1P(B) = P(Bo)llgs < C( ) (diamQ)|gllp.0

for any ball B with r(B) = dist(z(B),09)

2

Proof. Consider a ball B with r(B) = dist(z(B).0%  Construct a chain of balls

2

{By, ..., By = B} satistying conditions (i)-(iii) of Lemma 7.
Step 1: q = oco. We have

m(B)—1
IP(B) = P(Bo)loo,s < ) IP(Bis1) = P(Bi)low.s
=0
m(B)—1
<Y swp [P(Bin)(x) - P(B)(@)
i=0 r€h1G;
m(B)—1
<Oy Y 1P(Bi) = P(B)lwg
=0
m(B)—1
<Oy Y (If = P(Bist)llooiy + I1f = P(By)lloc.5,)

1=0
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m(B) m(B)
< O3 (B ollon, = CH 3 s
=0

where ag = 7(B)*||g|lp,s5-
For every = € B, we have Z;i(f) ap, < Y, 4B, Xnyn,(x). Moreover, for every x € B},
j=0,...,m(B), we have

J m(B)
If = P(Bo)lloo.8; < ChY ZGB CIYY ~ apXnos, (x) < CBL Y apxns,(x).
i=0 i=0
m(B)
Set ' = |J B; D By. It is easy to see that || > |By| > Ca”. Then, by Lemma 6,
i=1
|IP(B) — P(Bo)ll5,5 < [P(B) = P(Bo) 5.0

Ch'?

’Q/|/ Z BXth > d:u( )
|Q/|/ Z BXmB > dp(x)
hlphgp |Q’ / Z ap, X1OB dlLL( ) hlphgp |Q’| Z ap, :LL

Chlph”p —(diam 2) AWZ / 2)|P dx

B

< ChPhYP

Chlph”p —(diam Q)| g% -

Step 2: q # oo. We have

m(B)—1
IP(Bo) = P(B)llg < Y [IP(Bis1) = P(Bi)llq5
1=0

m(B)—1
<SB!y sup |P(Bin)(x) — P(B;)()]
i=0 rch1G;
m(B)—1

1/q Z Chl 1/ | P(Biy1) — P(Bs) g,

m(B) 1

— P(Bis)llgpis , IIf = P(Bi)lly.5,
< 1/q1,1 ||f +1)11g,Bit1 9,04
< OB ; ( 1(Biy1)ta i pu(B;)/a

m(B) T(B‘)/\ m(B)
< CulB)1y 3 Lol = CoB)H Y

i=0 =0

where
_ (B

ap = I91lp,s8-
p(B)Ya
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It is evident, for every x € B, we have

m(B)
Z Z a5Xp, 5 (%
= BerF

Then, by Lemma 6,

IP(B) - PB, < OHY [ (Zanth ), du(a)

105 BeF
<l [ (3 apnn,s(@) dule) < CHY [ 37 al sladuta)
© Ber BeF
CHPR Y " abp(B) < ChP B (diam Q) / )P dp(x
BeF Ber 7P
< Ch'PRYP (diam Q) /Z lg(2)|PX e () dpu(x)
Ber
< ChEhy? (diam Q)| g} o (8)

Proof of Theorem 9. Let F be a family of balls covering 2 from Lemma 7.
Step 1: q = oo. For every € > 0, there is a ball B € F such that

If = P(Bo)llsc2 < [I.f = P(Bo)lloo,5 + ¢
In view of Lemma 8 we obtain the desired estimate:
|f = P(Bo)llg.s < |f = P(B)llg.5 + [[P(Bo) — P(B)llg.5
A BN, . by BN\Y, .. A
Cr(B) gl +C (=) (diam 2P lgllpe < C (=) (diam Q) gl

Step 2: q < oco. Consider a ball B € F and its chain By, By, ..., By, = B. By
Lemma 8 we have

If = P(Bo)llgs < |If = P(B)llg.s + [|1P(Bo) = P(B)ll4,5

m(B) T(B')/\ m(B)
< Cr(B) gl + CulB)/*1s 3_ s glhoas, < Cu(B)'/*H: 3 _ a
i=0 ! i=0
r(B)*
h bef —_— »B- i
where as before ag = M(B)l/quHp p. Since
m(B)
Z Z aBXth x) for every x € B,

i= BeF
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we have by (8)

I5-PEa < Ol S [ (3 apy,p0) duto)

Ber’ 158 “per

iy [ (3 apv,5(e)) dula) < CPR @iam 2 gl
BeF

O
Proof of Theorem 1. We have X = G, John domain €2, operator () of order k
with constant coefficients and finite dimensional kernel, and function u & Wf(Q,RS).
Let ker @ C P,. Recall that Carnot—Carathéodory metric d.. and quasimetric d., are
equivalent: c¢1do(7,y) < dee(x,y) < cado(z,y) for all z,y € G. By local coercive
estimate (Theorem 8) for every ball B = B..(a,r) with B..(a, »rcy/ci) C €2 there is a
polynomial P(B) € ker @ of order < [ such that

X7 (u = P(B)lg.Bectar) < HXJ(U—P( Dl Boxar/er)

< Cr'” # V/p+y/qHQqu Box(a,ser/c1) CT/\”Qqu,Bcc(a,m62/61)~

(Here p, ¢, J satisty conditions of Theorem 1 and A =k —d(J) —v/p+v/q.)
Applying Theorem 9 with P = Py, f = X7u, g = Qu we obtain Theorem 1.
O

6 Corollaries

6.1 Poincaré inequality (proof of Theorem 4)

To prove Poincaré inequality on John domains (Theorem 4), it suffices to prove it on
balls (Theorem 10 below) and apply Theorem 9.

Theorem 10. Let [ > 0, 1 < p < q < o0. Then there is a projection
P: W/} (Box(e, 1)) — Py such that

||XJ(U - PU)Hq,Box(e,l) < O||vlﬁu”P:BOX(€v”‘)

Jor any function u of the Sobolev class W) (Box(e, »)) and every multi-index J, d(J) <,
with

1) p<a < o=y for (- ( ))p<V;

2)p<q<oof0r(l— d(J))p =

3) p<g< oo for (I—d(J ))p>V

4) q =00 forl—d(J) > v.

Constant C' depends only on p, q, | and d(J).

N

Proof. Theorem 10 is a version of Theorem 8 for the operator Q = V. except of

the case p = 1. Therefore it suffices to prove inequality (6) for p = 1, ¢ = - and
y=1—-d(J) <v.



84 D.V. Isangulova, S.K. Vodopyanov

Set
S = {x € Box(e, ») : 28 < | X7 (u(z) — Pu(z))| < 2"}, ke Z,
2" if | X7 (u(x) — Pu(z))] < 2F,
ug(z) = < | X7 (u(x) — Pu(z))| if 2% < | X7 (u(x) — Pu(z))| < 28,
2k+1 if | X7 (u(x) — Pu(x))| > 2k,
and

2M < ||vl[;uH1,BoX(e,%) < 2M+1~
Since |Viuy| < |Viu|ys, it follows
u(r) < CRY(|Vhulxs, )(z) for x € Box(e, 1).

We have
/ |X‘](u(x) — Pu(x))|? dz
Box(e,1)

< X7 (ule) — Pu(e))| da

/];ox(e71)ﬂ{|XJ(u—Pu)§2M}

o X (u(e) — Pula)lde = i + I
Box(e,1)N{| X7 (u—Pu)|>2M}

The first summand can be estimated as

I < |BOX(€, 1)|2Mq < C“vlﬁuHiBox(e,%)'

To estimate the second summand we recall
Sk N Box(e, 1) C {x € Box(e, 1) : R7(|V%ulxs,) > 2¥/C}.

Applying Lemma 3 we obtain

[e.e]

L= / | X7 (u(x) — Pu(x))|*de < Y |S N Box(e, 1)[20+D7
k=0 ¥ SkNBox(e,1)

k=M

q
Veu()] d:v) < IVl o
[l

6.2 Embedding theorem (proof of Theorem 5)

For proving Theorem 5, investigate first projection P,,: Li(Box(e, 1)) — P,, defined
in Theorem 3.

Consider John domain Q € J(«, 3) with distinguished point zy and the Sobolev
space W"(€2). The projection operator P: W)"(2) — P, from Poincaré inequality
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(Theorem 4) is just the translated projection P, from Box(e, 1) to Box(zg,r) where
da(zo) ~ _a
scoy T zecy”

Estimate || P, g|lq,0 for g € W) (§2). For z € Box(e, 1), set y = w00,z € Box(zo,7)
and u(z) = g(y) € W' (Box(e, 1)). The polynomial P, u € P,, equals

/BOX oy P GIulz0) dz0

Making the change-of-variable formula (zo = d1/,(z "' y0)) We obtain

r =

d(J

m—1
_ dy
Z (01/r (25 7y)) / .1 (01/+(25"90))9(%0) VO
Box(zo,r) r

d(J)=0

= (a5'y)’
- v / 0.7 (01/r (5 40))9(¥0) dyo.
r Box(zo,r)

d(J)=0
Thus,
. , (diam Q)4)
1 Pngllge < C(diam Q)" Z WHQHLBM(@@
d(J)<m
m—1+v/p
<o(2)" am ) g 0 9
(0%

and

TnZ_l (dlam Q)d(J)_d(Ih)

HX]hng“q,Q < C(diam Q)V/q rd(J)+v ||g||17BOX(9507T)

=d
m—1+v/
< ()" im0, (10)

Proof of Theorem 5. We have a John domain Q € J(a, (), a function f € W()
and a nonnegative integer k < [.

Consider a multi-index I, with d(I;) € [0,...,k]. Set m =1 —k and g = XInf €
W (€2). Poincaré inequality (Theorem 4) yields

ﬁ 9 : m—v 14 m
lg = Prgllae < C(=) (diam Q)14 V2 g]l, 0 (11)
where

o_ m—-1+v=Il-1—-k+v if ¢ # oo,
B m—1+v+v/p=l—-1—k+v+v/p ifqg=0
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(1) (I = k)p < v. Consider ¢ such that p < ¢ < ;—7F5;- From (9) and (11) it
follows

5 m_1+V : m—v 14 m
1X" fllae =lgllae < C(5)" " (diam Q)74 gl
m—1+4v/
+O(2) am ) g
«
ﬁ I—k—1+v I—k
gc(-) (diam ©)"/7~/% maxc{ (diam 2)'~* 1}| fllw1 0.
o P

To prove compactness we use the compactness of the Riesz-type potential
R": L, — L4 on balls for ¢ < VZ—ip defined in Subsection 4.1 (it can be derived,
for example, from |41, Theorem 13|). Observe that the projection operator P, is com-
pact on any ball. Indeed, it maps bounded family of functions in L; to the bounded
family of polynomials. Since the space P, is finite-dimensional, there is converging
sequence in the uniform norm.

Consider (I — k)p < v, ¢ < ¢ = ﬁ, and the countable family of balls {B,}
from Lemma 7 covering 2. Take any bounded sequence {f;} in W}(€2). Then it
will be also bounded in W}-norm: HfZ-HW;c*(Q) < Cy. It suffices to show that there

is a Cauchy subsequence in Wf—norm on Q. Recall that the operator R!=* and the
projection operator P, are compact on balls. Therefore, on any ball B; we can obtain
Cauchy subsequence {f;,} in the Wq’“—norm. Applying Cantor’s diagonal method we
can extract a subsequence {f;,} which is the Cauchy sequence in Wf—norm on each
ball B;, j =1,2,.... Denote this subsequence again by f;.

Fix e > 0. Since } 77, | Bj| < 0o, there is number M, > 0 such that |2, Bj| <

q*

ga—a. Define Q. = U2, B;.
There is a number M > 0 such that || fi, — fi,[lwe(s,) < 57 for any 41,43 > M5 and
J < M. Then

M;—1

1fir = fiallwr) < 1fir = fisllwryy + 1 fi = fillwran
q q J q
j=1
Le+ ||fz1 - fi2||W§*(QE)|QE|1_q/q* < 8(1 + 200) for any il,ig > MQ.

Hence, the sequence {f;} is the Cauchy sequence in Wf—norm on 2.

(4) l—Fk)p>vand (I —k—1)p <v. Consider d(I,) € [0,...,k], m=1—k and
g = X'nf. Equations (9) and (11) yield

ﬁ m—l4+vtv/p ey m
1X" Fllce = gl <C(%) (diam Q)7 Vgl

«

6 m—1+v/p . —v/p
i C<a> (diam 2)™"*[|g]|.0
I—k—1+v+v/
<c(y) *(diam ©) /" max (diam )5, 1} lwyo-

CONTINUITY. Show that X' f is continuous on € for d(I;,) =0, ..., k.
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Consider a sequence of C*-smooth functions f; (f; € C*(Q)) such that ||f; —
f||W’g(Q) — 0 as j — 00. As before, we have

[fom = Filler PG ¢ kHXI’L( — fillcoa < C(Q K, L) fin = Fillwpo

This means that X’ f; converges to X' f uniformly on Q as j — oo for all d(I) =
0,...,k. Hence, X' f is continuous.

HOLDER CONTINUITY. Now we show that ¢ = X’ f is Holder continuous (g €
C*7(Q), 7 = 1—k—v/p) for all multi-indices I;, with d(I;) = k. By Poincaré inequality
(Theorem 4) there is a polynomial IIz € P,, of homogeneous degree strictly less than
[ — k such that (11) is fullfilled on the ball B:

lg — Hpllee,s < CT7|IVE9|lp,5- (12)

Fix two points z,y € U such that r = d.(z,y) < max{dist(z,0Q), dist(y, 9Q)}.
Without loss of generality we may assume that a ball B = B(z,r) C Q. Set B’ =
B(z,dist(z,09)) and By = B(xo, dist(xg, 02)) where z; is the distinguished point in
Q) from the definition of the John domain.

We have

l9(x) — g(y)| < lg(x) — g(y) — Tp(z) + Ts(y)|
+ [Mp(z) — p(y) — p(z) + 1z (y)|
+ M (2) — I (y) — My () + Hp, (y)]
+ Mg, (z) — g, (y)] = A + Az + A3z + Ay

Estimate each summand separately.
Obviously, from (12) it follows

Ar = |g(z) — TIp(x) — g(y) +1s(y)| < 2C77||VE9llp,B-

If ] —k—1 = 0 then all the polynomials IIg, IIg and Ilg, are constants and
As = A3 = A, = 0. Assume [ — k — 1 > 0. Estimate Ay. By Poincaré inequality, for

vp

q = T (—k—1)p’ we have

Cr
AQ < T’HVL(HB - HB/)”OO,B X |B|1/q ||VL< HB/)Hq,B

< O ([Ve(g = o) s + [V elg — o) o)
< O (V2 gl + IV Eglls) < Cr V20

By Lemma 8 we obtain

Az = IHBO(SE)—HBo(y)—HBf( )+ (y)| < 7l[Ve(llp = 1g)|oo,n

T ﬂ v m
|B|1/q||va<nBo Ha)llas <Cr7 (=) IVEglhe
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v
v—(l—-k-1)p"

For evaluating A4, we apply inequality (10). It follows

where ¢ =

ﬁ)l—k—l—i—y/p

Ay <7V Pay e < Cr (5 diam (€)= lgl|p

Assume for simplicity diam 2 = 1. Then r < 1 and we finally obtain

ﬁ l—k—14v . ﬁ l—k—1+4v .
9@ =g <C(2) el e <C(5) T gl

It rests to consider two arbitrary points z,y € Q. Then for any sequence {z;}/_, C
Q, xg = 2, v; =y and deo(z, z,-1) < max{dist(z;,00Q),dist(z;,_1,00Q)} for all i =
1,...,7, we have

9t2) = 9w < Y lote) — i)l < C(2) T llwgron Dl ze2))

i=1
Passing to the infimum over all sequences {z;} we get

l—k—14v
o) o)l < (D) ) lglhwp

Let now R = diam(€2) be arbitrary. Define Q = {y = 2001 /r(zy ' x), * € Q}. Then

diam(Q) = 1 and Q € J(a, ). Set §(y) = g(z). Then g € W () and

[Flp@ = > 1X"Gl,5=R"" 3 RU|X g],q

d([h)gm d(Ih)gm
< CR™/P max{R™, LHlgllwm -

COMPACTNESS of the embedding into C*(2) is obvious. Indeed, take any sequence
{fi}z2, € W)(Q) bounded in W/-norm. Then {f;} is uniformly bounded in C*-norm:
| fillcx @y < Co for all i. Consider X' f; = g;, d(I,) < k. If d(I,) < k then

If d(I,) = k then by Holder continuity
l9:(x) — gi(y)| < CdH(,y)Cy for all z,y € Q.

It means that the sequence {g;}5°, is uniformly bounded and equicontinuous. Hence,
there is a convergent subsequence.

Show the compactness of the embedding W}(Q) — C*(Q) for any t < 7 = [ —
k — v/p. Continuity of this embedding is obvious. Consider any bounded sequence
{fi} in W}-norm. By compactness of the embedding W}(€2) — C*(Q) shown above,
there is a subsequence {f;,} converging to some function fy in C*-norm. Denote g, =
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X™(fi, = fo) e WH(Q) € C(Q), d(I),) = k. Fix € > 0. It suffices to show that there
is a number M = M(e) > 0 such that

‘gs(‘r) — gs(Q)’
di*(x,y)

Since the sequence {gs} is uniformly bounded in the Wé‘k—norm on €, it follows
{g:} € C*7(Q) and |gs(x) — gs(y)| < Cod*(z,y) for all s € N and all points z,y €
where Cj is independent of s and x,y.

We have g, — 0 as s — oo uniformly on €. Therefore, there is a number M > 0
such that sup |gs(z)| < e7 for each s > M. Take any two points z,y € Q. Consider

€

< e forany s > M and x,y € Q.

sequence of points xg = z, ..., x, = y such that d..(z;, x;—1) < max{dqo(z;),do(z;—1)}
forall2=1,...,m. Then

195(z) — gs5(y)| < Z 195(2:) — gs(zi1)]
(|9s($z’) — gs(Ti1
(dec(i, 2-1))7

t/T
)|) (dee(2i, w51))gs () — gs(@iy) Y7

< Cé/T(dcc(xia Ti1))2€

M= 10

=1

for any s > M. Passing to the infimum over all sequences {z;} we obtain the necessary
estimate.

(5) (I —k)p > v and (I —k — 1)p = v. Continuity of X f for d(I,) € [0, k]
can be shown as in the item (4). Verify that ¢ = X™»f € Cp1(Q), d(I,) = k. Take
B = B(xz,r) C Q and h with d..(h,e) =r. Then

lg(xh) + g(ah™") — 2g(x)|
< lg(zh) + g(zh™) = 2g(x) — Mp(xh) — Mp(zh™") + 201 ()|
+ |lg(zh) + Np(zh™) — 211z(z) — Up(xh) — Mg/ (zh™") + 20 p/(z)]
+ Mg (zh) + M (xh™) — 2l (x) — M, (xh) — g, (zh ™) + 20, (z)|
+ |, (wh) + I, (xh™") — 201, (z)| = C1 + Cy + C3 + Cy.

Estimate each summand separately. From (12) with 7 = 1 it follows
C1 <ACTIVEglly5-

If | — k —2 = 0 then all the polynomials IIg, IIp and Ilp, are linear and Cy = C5 =
Cy=0. Assume [ — k — 2 > 0. To estimate Co—C; we use Lemma 9. By Lemma 9 and
Poincaré inequality (12) we have

Co < Cr?||VZ(Ils = Tlp) oo < Cr* /4| Vi (Il —T15) 4.5
<OP(IVE(g ~ Usllgs + IVE(g = Tp)lgz) < Or|[VEG s
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Here we set B’ = B(z, dist(x,0%)), By = B(xo, dist(zo, 09)), ¢ = ﬁ.
Applying Lemma 8 we get
Cs < Cr?| V(g — g,)|lsep < Cr*~9||VE (I — g, |5
B I-k—3+
<or(S) T IVEglpe

In view of (10) we obtain

I—k—1+v/p oy
e < 0P| V3Ig, s < 02 (2) T diam(@) 2 gl

Finally, assuming diam €2 = 1 we have

_ ﬁ l—k—14v
lg(ah) + g(eh™) =29 < Cr(Z) T lglhwp

Since W (€2) is continuously embedded in C*7(Q) for all 7 € (0,1), the compactness
follows from the item (4).

(2) I—Fk)p=vand p> 1. If k> 0 then p = % >
for all d(I),) < k (see item (4)). Moreover,

sup | X f(x)]
z€Q,d(Ip)<k

I,
71 and X" f is continuous

l—k—14v+v/
o
(6%

(diam )77 masc{ (diam @), 1} g

Consider the multi-index I, of the weight k. As before, m = [ — k and g = X f.
Rewrite equation (11) for g € W)"(2) C W2(Q2) with p* < p and ¢ = v

v—mp* "’

p*,Q

ﬁ m—1+v m
g = Pugllge < Cq'~ (5) IVZg

p—1 ﬁ 71 —+v
<cq' 7 (5)" T IVEglpe (13)

Here we used Lemma 3, proof of Theorem 9, and assumed diam(2) = 1.
Equations (9) and (13) imply

ﬁ m=14v , 1 " ﬁ +v/p
X" flluo = llgloa < C(=) " a7 V2 gupmc(a) 9l

5 l k 1+l/ p—1 1
<o) dT Iflwe

p=t -
For a constant p = 2% eCo(é)l o

i+

[ fllw e, we have

Z/QJ. a




Coercive estimates and integral representation formulas on Carnot groups 91

Thus, for ®(t) = ¢” — 1 with n = -£, there is continuous embedding WiQ) —
CH?(Q) with the norm satisfying necessary condition.

Take any 7 € [1, L —£-). Then by Hélder inequality
p—1 -
1 j 1 i2r \"r [IQN\"T"
/7(|g<a:>|)mm< ([ 4 (lyng,)™ (190
QJ: P QJ: P J:
Therefore, for any 7 <5 ; there will be also continuous embedding.
Now we show the compactness of the embedding for n < z%' Fix a bounded

sequence {f;}72, in W}(€). In view of item (5) we have compact embedding W'(Q) —
C*1(Q). Hence, there is subsequence {f;,} converging in the C*~1-norm. Denote this
subsequence again by {f;}.

Take any ¢ > 0. The sequence {f;} is bounded in C*®(Q) for ®(t) = exp(tr-1)— 1.
Let p be the supremum of the norms of {f;}: p = sup; || fil ck.# (). Denote X™ f; = g;
with d(I,) = k. Then

= .
lgillj—2- o < p(y!) # forall i

pl’

and
p=n(p—1)

||gi||j77,Q < ( ) pj |Q| njp

It is easy to verify that the series

7 7 ( ) 2 77.71
5B 5
g ] - £ Vi

converges for arbitrary ¢; and i5. Thus, there is a number M; > 0 such that

190 (%) = g (@) n(p=1) 2p\i 1 L
Z/ : xgnj?! : <l Z(f) ]|<2_eé

Jj=M Jj=M

for all ¢; and 7.

For any ¢; = jn, n < p%l, there is p; < p such that ¢; < *ﬁfkm. Hence, the
embedding Wzﬁj(Q) — ij (Q) is compact by item (1). In view of Cantor’s diagonal
method there is a subsequence { f;,} which is the Cauchy sequence in W(Z—norm for all
j. Denote it again by {f;}. Then, there is an integer My > 0 such that

£
195, — 9izlg;.0 < 51/

for all 41,45 > M,y and for 7 < M. It follows

. Mi—-1
|gi1(x) —gi2(l'>|m 1 1
E . dr < E — 42— 2 < 3 — 1+2—e2=1.
1 T 127 + e € +

j=1
That is, the sequence {f;} is a Cauchy sequence in C*®-norm for n < le

(3) p=1and v =1 — k. The proof of the embedding into C*(2) is obvious, it
follows the proof of the item (4).
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Obviously, C*(Q) — C*®(Q) for all n € (0,00). Show the compactness of this
embedding. Fix n € (0,00). Take any 1o > 1. Then W}(Q) is continuously embedded
in C*™(Q). As in the item (2) we can derive from here that W!(Q) is compactly

embedded in C*7((Q2).

Lemma 9. Let P € P,,11 be a polynomial on G. Then there is a constant C = C(m) >

0 such that
|P(zh) + P(xh™") — 2P(2)| < Cr*||VZP||oo.B(er)

for any two points v, h € G, r = d..(h,e).

Proof. Write down the polynomial P € P, 1:

P(y)= Y arlz'y)".
d(1)=0

Let NV (P) be the following norm of the polynomial P:

N(P)= sup |ag|r®®D.

d(I)<m
One can verify that the norms || - ||oo, 5,y and N are equivalent.
We have
|P(zh) + P(xh™') — 2P (2)| = 2’ Z arh’| < Cr?  sup
iD= 2<d(I)<m
d(I) is even

Recall V2P = { X" P}yu,)=2 and X" P(y) = 370 )y ar X (v~ 'y)" where X (z~'y)’

is either zero or polynomial of degree d(I) — 2. Therefore

sup |as[r™* < C sup N(X™"P) < C||VEP||wo,5(

2<d(I)<m d(I,)=2

6.3 Proof of Theorem 6

It’s evident that, W}(Q) C W;,(Q) and this embedded operator is bounded. In view
of Lemma 1, C*°(Q)-functions are dense in vazl,(Q) and the integral representation
formulas in Theorems 2 and 3 hold for Wé(ﬂ) It follows from here Theorem 4 for
€ Wé(Q) belongs
also to W(Q). It means, that W} (Q) = Wlﬂ(Q) By well-known Banach theorem the

Tri7l . . . .
f € W;(€2). Hence, Theorem 4 implies that an arbitrary function f

inverse embedded operator is also bounded.

]a;\rdm’?

x,r)-
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6.3 Extension operator (proof of Theorem 7)

Proof. Using the well-known technique of Jones [15] we can construct an extension
operator
.k k
ext’: W (Q) — W, (G).

The norm of ext’ depends only on ¢,6, k,p and the radius of the domain €2 (see, e. g.
[19, 43]).
Let extu = u = [Tu + ext/(u — ITu). Then

Q6 = | Q(ext/(u — TMu))lp < Cllext’(u — ) () < Cllu — Tl o)

By Theorem 1, there is a projector P on kernel of @ such that [[u — Pullwr@q) <
C|Qul|p.o. From here

lu = ullweq) < lu=Pullw@) + [[H(u — Pu)lwr) < Cl|Qullpo

Since ITw = ITu the theorem follows. O
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