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Abstract. In this paper we prove the O’Neil inequality for the Hankel (Fourier-Bessel)
convolution operator and consider some of its applications. By using the O’Neil inequal-
ity we study the boundedness of the Riesz-Hankel potential operator I, associated
with the Hankel transform in the Lorentz-Hankel spaces L, (0, 00). We establish nec-
essary and sufficient conditions for the boundedness of I3, from the Lorentz-Hankel
spaces Ly, q(0,00) to Lysa(0,00), 1 < p < g < oo, 1 <r <s < oo. We obtain
boundedness conditions in the limiting cases p = 1 and p = (2o +2)/3. Finally, for
the limiting case p = (2a+2)/ we prove an analogue of the Adams theorem on
exponential integrability of Ig, in L2a+2)/8,,(0, 00).

1 Introduction

In this section we recall some basic results in harmonic analysis related to the Hankel
(Fourier-Bessel) transform. More details can be found in [11]. We first begin with some
notation. Assuming that o > —1/2 we consider the following space

Lya = Lya(0,00) = L,((0,00), 2®*1dr), (1< p < ox)

of all measurable functions f defined on (0, c0) for which

00 1/p
||f||Lmz(/0 |f(93)|p:v2"+1dx) “ .

By Leoa(0,00) = Loo(0,00) we denote the space of all essentially bounded measurable
functions on (0, 00).

The Hankel transform appears taking different forms in the literature (see for in-
stance [6, 11]). Here we define the Hankel transform h,, by

half)(x) = / ey f )y dy, @ e (0,00),

where j,(s) = 2°T'(a + 1)s™*J4(s), with J, being the Bessel function of the first kind
and index o.
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Definition 1.1. 1) The generalized translation operator TY, y > 0, is defined by

TYf(z) = Ca/ F(\V/22 + y2 — 2xycosh )sin**db,

0

where Cp, = T'(a+1)[y/7 T(a+1/2)]7%

2) The Hankel (Fourier-Bessel) convolution operator of two functions f, g on (0, 00)
15 defined by

(H#9)@) = [ Ty, € (0.00)
0
It is well known that T f is the solution of the following differential equation

(La)ou = (La)yu7 u(z,0) = f(x), uy(wa 0) =0.

_ 9% 2a+1 du
Here (Lq),u = G5 + 2= 3¢

Definition 1.2. For0 < 8 < 2a+2, the Riesz-Hankel potential operator I, associated
with the Hankel transform is defined by

Tgaf(w) = f(a)ga’2
< 1
= /0 WTyf(x)92a+ldy

= / TYf(2)y"dy, € (0,00).
0

In this paper, we prove the O’Neil inequality for the Hankel convolution, and study
boundedness conditions for the Riesz-Hankel potential operator I3, in the Lorentz-
Hankel spaces L, (0,00) by using the O’Neil inequality. The paper is organized as
follows. In the second section, we prove the O’Neil inequality for the Hankel convolution
f#g. We establish necessary and sufficient conditions for the boundedness of I3, from
the Lorentz-Hankel spaces Ly, ;. 4(0,00) t0 Ly s4(0,00), 1 <p<g<oo,1 <r<s< 0.
In the third section, we obtain boundedness conditions in the limiting cases p = 1 and
p = (2a + 2)/3. After that, for the limiting case p = (2« + 2) /3, we prove an analogue
of the Adams theorem on exponential integrability of I, in Lat2)/8,ra(0,00).

2 O’Neil inequality for the Hankel convolutions and the bound-
edness of the Riesz-Hankel potential in the Lorentz-Hankel
spaces

In this section, we prove the O’Neil inequality for the Hankel convolution, and study
boundedness conditions for the Riesz-Hankel potential operator I, in the Lorentz-
Hankel spaces L, (0,00) by using the O’Neil inequality.

Let f : (0,00) — R be a measurable function and for any measurable set F,
|Ela = [, 2***'dz. We define a-rearrangement of f in decreasing order by

fat) =inf {s >0 : f.a(s) <t}, Vte (0,00),
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where f, ,(s) denotes the a-distribution function of f given by

fra(s) = {z € (0,00) : |f(z)] > s}a-

For the rearrangement of f the following properties hold (see [12]).

1)If feL,,0,00),1<p< oo, then

([ pesac) " (0 [ peatoras) "
([ wora) "

[ rias =g+ [ fats)as 22)
0 fa @)

We denote by WL, ,(0,00) the weak L, , space of all measurable functions f on (0, c0)
with finite norm

(2.1)

1fllwe,. = Stugtl/pf;i(t), 1<p< oo
>

¢
The function f*: (0,00) — [0, 0] is defined as f**(t) = %/ fx(s)ds. It is clear that
0

for the function f:* the subadditivity property is satisfied.

Definition 2.1. /2, 3/ If 0 < p,q < oo, then the Lorentz-Hankel space Ly, (0, 00) =
L, 4((0,00), z**dx) is the set of all measurable functions f on (0, 00) with finite quasi-

norm
o0 . th 1/q
g =151, = ([ @Ps0)'F)

If 0<p<oo, q=o00, then L,sq(0,00) = WL,.(0,00).
If 1 < q<porp=q= o0, then the functional ||f||
then the space Log oo.o(0,00) is denoted by Lo (0, 00).

pga 1S @ norm. If p=q= 0,

We need the following lemma to prove the O’Neil inequality for the rearrangements
of the Hankel convolutions associated with the Hankel transform.

Lemma 2.1. Let f and g be measurable functions on (0,00) such that sup{f(x): z €
(0,00)} < X and f vanishes outside of a measurable set E with |E|, = 7. Then, for all
t >0,

(f#9)a (8) < Armin{g:"(7), 95" (1)} - (2.3)

Proof. Without loss of generality we can assume that the functions f and g are non-
negative. For a > 0, define
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and let
9“(z) = g(z) — ga().
Then we can write

JH#g = J#9a + f#9".
If s > a, then g7 ,(8) = gua(s). If s < a, then we have

92 4(s) = / y*Hdy
{y:9°(y)>s}

_ / y2a+1 dy =0
{y:s<g®(y)<a}

and setting a = g} (t) we have
(f#9")a (1) < sup |(f#9") (¥)]
< sup fW)llg" ...
< )\/oo 9e o(8)ds
< )\Tc(zl < AT ().

The last inequality follows by equality (2.2) and thus the first inequality of the
lemma is established.
To prove the second inequality, set a = ¢ (7) to obtain

ok . 2a+1d
(f#9)a" (1) t@ﬁﬁ)t / \(f#9)(y y
< (sup |(f#9) ()]
< sup [(f#9a)(y)| + sup [(f#9")(y)|
(0,00) (0,00)
< Atg(t) + A rals)d
g2 (1) /gmg (s)ds

1 o
< A7 {gz(r) + —/ g*,a(s)ds}
T Jgn(r)

= Mg (7)
by equation (2.2). O

In the following theorem we show that the O’Neil inequality holds for the rear-
rangements of the Hankel convolution. The methods of the proof used here are close
to those in [12].

Theorem 2.1. (The O’Neil inequality for the rearrangements of the Hankel convolu-
tions) Let f and g be measurable functions, then for any t >0

(F49)7 (1) < L1 (g2 / £ (u)g (u (2.4)
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Proof. Fix t > 0 and select a doubly infinite sequence {y;} whose indices range from
—0o0 to oo such that

Yo = f;(t)a Yi < Yir1, lim y; = o0, and lim y; = 0.

1——00

Let

= > )

i=—00

where
0, it |f(2)] <yirs
filz) = q f(2) —yicasgnf(2), if v <[f(2)] < i
Yi — Yi—1sgnf(z), if yi < |f(2)]

Clearly, the series converges absolutely and therefore,

f#9 = (i f¢> #9

i=—00

(£ 50

= hy + hy

with
(f#g)a () < (ha)a" () + (h2)" (1).
To evaluate (hy)%*(t) we use inequality (2.3) with E; = {z : |f(2)| > y;-1} = E and
A= Yi — Yi—1 to obtain

()0 < 30~ vl 1)

= g, (1) Z fealYi-1)(Yi — Yi-1)-

The series on the right is the infinite Riemann sum for the integral

/ f*,a(y)dya
x(t)

and provides an arbitrarily close approximation with an appropriate choice of the
sequence {y;}. Therefore,

(h2) () < ga7( / fraly (2.5)

a

By inequality (2.3),

(h)5( Z ) feaWic1) gy (fealyior)).
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The sum on the right is the infinite Riemann sum tending (with proper choice of ;)
to the integral,

fa(t)
/0 Fral)g (oo (y))dy

It is not hard to see that the integral can be evaluated by making the substitution
y = fX(u) and then integrating by parts.
Therefore, we have

(2.6)
= —ug, ( w)ly® / fa(w)gs(u
<t (OF2(0) + / fi(w)g:
Thus by (2.6), (2.5), and (2.2),
()i (0) + () () < g7 [ A dy} / Folwgiu
oz [ Lo
]

By Theorem 2.1 we get the following result.

Theorem 2.2. If g € WL, ,(]0,00)), 1 <r < oo, then

(f#9)a(t) < (f#9)5 (1)

< lgllwe,. (r't-l/r [ s [ s—l/ff;xs)ds) o e
0 t

Proof. Since g € WL, ,([0,00)), we have gi(t) < ||g||WLT7at_1/7", g (t) <

rl|gllwr,..t~/". Taking into account inequality (2.4) we get inequality (2.7). O

Next we give a pointwise rearrengement estimate of the Riesz-Hankel potential
operator Ig,.

E]or)ollary 2.1. If g(z) = gpo(r) = 272272 0 < B<2a+2, and r = jSﬁﬁ, then by
2.7

(Ipaf)a(t) < (Igaf)a (1)

200 + 2 s [ 5
<llgsallwe sass (< )tm“ 1/ fS(S)d8+/ §2a+2 1fa*(8>d8)'
2a+2-8" 5 0 t
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In Theorem 2.3 we obtain necessary and sufficient conditions for the boundedness
of I3, from the Lorentz-Hankel spaces L, , (0, 00) to L, s o(0,00). The methods of the
proof of this theorem are close to those in [4]. We omit the proof.

Theorem 2.3. Let 0 < < 2a+2. Then, if 1 <p < (2a+2)/6,1 <r <s < oo, then
the condition 1/p — 1/q = B/(2a + 2) is necessary and sufficient for the boundedness
of 134 from Ly, 4(0,00) to L, 4(0,00).

3 Boundedness of the Riesz-Hankel potential in the limiting
cases

In this section, we obtain the boundedness conditions for Iz, in the limiting cases
p=1and p=(2a+2)/0.

Theorem 3.1. Let 0 < § < 2a + 2. Then the condition 1 — 1/q = B/(2a + 2) is
necessary and sufficient for the boundedness of Ig o from Ly ,(0,00) to WL, (0, 00).

Proof. Sufficiency: Let 1 — % =5 +2 and f € L; 4(0,00). By using inequality (2.4) we
get

Hsafllwe,. = sup tY% (I f)y (¢)

9 2 t 00
< (2a+ 2)%71 sup t1/4 (( a; )t?aﬁﬁl/ fx(s)ds +/ sQJi?lf;(s)ds>
0 t

t>0

2 2
a—i— sup/f

t>0

= (2a + 2)m=rz !

t>0

+ (20 + 2)%12_1 sup tl/q/ sTVaf(s)ds
¢
200 —|— 2

B _
< 2o+ 277 (14 ) il

M F

Necessity: Suppose that the operator I3, is bounded from L; ,(0, 00) to WL, (0, 00),
i.e., the following inequality is valid

Hlﬁ,afHWLq,a < C||f||L1,a7

where C'is independent of f. Define f;(x) =: f(tz) for t > 0. It is easy to show that
£z, =t £, and

2a+2

= (2a+ 2)'4)(1%_1 (1 +

Msafillys, . = 0D |1 fll,

Then we have

(Tsaf)sa(r) = t-CHD (I F), o (H97), safellwr,., =1 , and
2a+2
ol =0 Uil
20042 o
||L1 a = Ctﬂ+ (2 +2)||f||L1,a
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If1<2 —|— m, then for all f € L; ,(0,00) we have ||Iﬁ,af||Wan =0ast—0.

If 1 > = + 2£r2, then for all f € Lla(O o0) we have ||]g7af||WLq,a =0ast —
B

00. Therefore we get the equality 1 = = + 5o and the proof of the theorem is
completed. O
Theorem 3.2. Let 0 < < 2a+2, and f € L%’La(O, 00), then Igof € Looo(0,00)
and

B 2c00 + 2
paflli < o+ 20557 (14 2222

Proof. Let p = 2°‘+2 ,r=1,¢g=s=o00,and f € L2o¢+2 1.0(0,00). By using inequality
(2.4) we have

Hp.af | = sup (Ig.af), (t)
>0

2 2
< (2a+ 2)20512_1 sup <( S FETS / fa(s)ds —i—/ 32aﬁ+2_1f;(s)ds>
>0

2 2
§(20¢+2)ﬁ_1<1 o )/ s7arE “Lfr(s)ds
0

5
Nl .

200+ 2

= (2a+2)ﬁﬁ+2*1(1+

]

In the limiting case p = (2 + 2) /5 the boundedness of the Riesz-Hankel potential
operator Igq in L(2a+9)/8,r,a(0,00) for r # 1 does not hold. However, the following
theorem can be regarded as a substitute of the boundedness for I3, in this case. This
theorem is an analogue of the Adams theorem given in [1] on exponential integrability
for the Riesz potential of order 5 (0 < 8 < n).

We need the following lemma to prove Theorem 3.3.

Lemma 3.1. [1] Let a(s,t) be a nonnegative measurable function on (—oo,400) X
0, +00) such that 0 <s <t

a(s,t) <1, ae if 0<s<t,

0 00 ;1/
ess sup (/ +/ a(s,t)p/ds> =b< 0. (3.1)
>0

Then there is a constant Cy = Cy(p,b), such that for ¢ > 0 with

/ o(s)Pds < 1, (3.2)

/ e FOdr < O,
0

we have

where
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Theorem 3.3. Let 0 < f <2a+2, 7 € (1,00] and f € L%’m(o, 00).
i) If r € (1,00), then there exists a constant C' = C(a, 3,1,1) such that

/ exp (Ko’[ﬁa—f)’ ' 2y < O,
B(0,]) If

||L(2a+2)/5 o

8
where Ko = |B(0,1)|27 = (2a+2)'" s,
ii) If r = oo, then for every M < Ky there exists a constant C' = C(«, 3,1, M) such

B (Y L
o0 7 V1T _

’L<2a+2>/ﬂ,oo,a

Proof. i) First, assume that || f||£,,.4,5,..000) = 1. By Corollary 2.1, by using the
O’Neil inequality for the rearrangement of a convolution, we have

(Ipaf)alt) < (Ipaf)a (1)

< (20 +2)77" ((20‘;2 e /f ds+/Bsaf+z f;(s)ds)

2 2 1B
(o2t [ s [ gatorstas)
0 t

where |B| = |B(0,1)], = % Hence, by an appropriate change of variables, we obtain

200 + 2

Kouﬁ,af)zume-ws( )<|B|e / £(1Ble=)(| Ble™)do
+ [ g2l ) (Bl Ble)do - | ato.motorio (3.3)

0

where
o(0) = f2(IBle)(|Ble)== if o >0, (34)
and
1, 0<o<T <00,
alo,7) = { (282) (|Ble=) =5 (| Ble=) 75, 0<7 <0 < o0 (3:5)

Lemma 3.1 comes into play at this stage. Assumption (3.1) is obviously satisfied if
a is given by (3.5). As far as (3.2) is concerned we have
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whence sup [~ a(o,7)"do < co. By (3.4) for r € (1, 00),

>0

r - * —o —oyo 2= \"
0l = | (£20B17) Bl ) o
|B| B8 T dt
= [ (=) = W, o < 1
Thus, by (3.3) and Theorem 2.1
/ 2 1 |B| /
| eapBaltaaf @) s e = [ cap(Ka(Tna ) (0) d
B(0,0) 0

— 1B / " capl(FKolIpf)L(| Bl — rldr

< Bl /OOO exp [(/OOO oo, T)gb(d)dd) " T] ir

= |B|/ e Fdr < C
0

(3.6)

for some constant C' = C(a, 3,1,7), where || f||L 0 /5,0 = 1-

Now consider the general case.

If HfHL(Qa-Q—Q)/B,T,a 7A 1, then we denote g = f/”f||L(2a+2)/B,r,a' )
Thus Igag(z) = ]57af(x)/||f||L(2a+2)/5,r,a and ||g||L(2a+2)/[3,r,a = 1. By (3.6), it follows

that
Igof(z) ™ el
ex K‘—‘ 2ty < C.
/Bwl P ( “N7 )

”L(2a+2)/ﬁ o

i) First, assume that || f| 7., =1, then it can be easily seen that

/5,00,
fr) <t = forte (0,|B]). (3.7)
By (3.3) and (3.7), we infer that

a2l < 5 [ (252t [ gionis+ [ fatspsstas]

] ¢ B
< = <2a + 2)752(5%21/ s marE s —i—/ s_lds]
KO - ﬁ 0 t

1l (2a+2)2 | B
—E_B(2a+2_ﬁ)+log7}, t e (0,|B]).

Thus a constant C' = C(a, ) exists such that

B
/B o exp(M|Ig o f(z)|)2** de = /0 exp(M(I5 o f)5(t))dt (3.8)

< /OB exp(M [C + %log@])dt < 00
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for every M < K.
Now consider the general case.

If |’fHL(za+2)/@,oo,a = 1, then we denote g = f/HfHL(MH)/ﬁNQ. '
Thus I509(x) = Igaf(@)/ || fllLoaim0. 20d ||g||L(2a+2)/5,oo,a = 1. By (3.8) it follows

that
I,
/ exp (M‘ 5] () Dazzo‘“d:p < 00.
B(0,) 1 /]

’L(2a+2)/6,oo,a

]

Corollary 3.1. Let 0 < < 2ac+ 2, then there is a constant C = C(83, a, 1) depending
only on 3, a and 1 such that for all f € L(2a+42)/8,(B(0,1))

I54 (20+2)/ (2a+2—3)
B, f(]?) )anHdaj S C.

/B(O,l) exp ((Qa +2) ) H

Corollary 3.1 was proved in [5] for the Lebesgue spaces L, (R} ,) associated with
the Laplace-Bessel differential operator for the Riesz potential.

fHL(2a+2)/ﬁ,a
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