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Abstract. Algorithms for the asymptotic expansion of the solution to the Dirichlet
problem for a regular equation with a small parameter € (¢ > 0) at higher derivatives
on an unbounded domain (the whole space, the half space and a strip), based on the
solution to the degenerate (as e — 0) Dirichlet problem for a regular hypoelliptic
equation of the lower order, are described. Estimates for remainder terms of those
expansions are obtained.

Introduction

The degeneration of the Dirichlet problem ®. for a regular (in the sense of Mikhailov
- Nikol’skii [10], [11], [13]|-[15]) equation with a small parameter € (¢ > 0) at higher
derivatives to the Dirichlet problem ®, for a regular hypoelliptic equation (introduced
by Hormander |5]) in the Sobolev anisotropic spaces Wy? (G) (generated by a regular
polyhedron .# and by unbounded domain G) is considered. The methods for con-
structing the asymptotic expansion of the solution to Problem ®. based on Lindshted-
Poincare’s method, Prandell’s boundary layer method (for references and for more
details about those methods see [1], [6], [7], 8], [12], [19], [22]), Lusternik-Vishik’s
method [23] and Newton’s polyhedron method [21] are described.

Note that the degenerate Problem ®, can be solved by Bubnov-Galerkin’s method
(see Ghazaryan and Karapetyan [3]) by choosing anisotropic B-splines as base functions
(see [18]).

1 Basic notation and terminology

Throughout the paper, we use the following standard notation: N is the set of all natural
numbers, Ng = NU {0}, R is the set of all real numbers. For n € N, z = (x4, ...,2,) €
R™ a = (aq,....,00) € N§, 8= (S1,..., Bn) € Ng, A4 CNj and £ = (&1, ...,&,) € R" we
denote

1 ,
2| = (27 4+ ... +22) 2, a9 = (21,250,500, 1) (1< <0),
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al = aql.ay!, la] = ag + ... + ay, f<aef<aq (1<j<n),
(g) ey (=) aB=abit et ad,
M =M< M= {(a,B):a,3E MY,
MAM={a+p a,p€ M},
£ =78, D* = D ..Dom,
WhereDj:i_ (1<j<n).

Ox;
We denote by C(G) the space of all functions f uniformly continuous on the domain

G C R™ with the norm
| fllc@) = sup|f(z)].
zeG

WE(Q) =S FeLp(@): > 1D flly ) < oo

la<p

For a finite set of multi-indices .# C N{j and a domain G C R" we also denote

Wy (G) = ¢ f € La(G) : || fllwpee) = Z 1D fllLoya) < o0 gy
ae(A0{0})

where (. |J{0}) is the convex hull of the collection . |J{0}, and by H ,(G) we
denote the closure of the set Cg° (&) with respect to the norm |||y« (). Let 9G be
the boundary of G, let = be Nikol’skii’s skeleton (see [14]) of the collection (. | J{0})
and

Wy (G) = {f e W/ (G) : D*floc =0, Va€eZ}.

In a Hilbert space H the inner product will be denoted by (., .)g.
We consider only real function spaces.

2 Setting of the problem

Let 2 C R" be a domain, .4/ C Nj and .45 C .4 be finite collections of multi-indices,
€ € (0,1). Let ¢ be a non-negative function defined on .4 x .47, and let

L.=L.(x,D) = Z g¥(@f) pa (na,@ (z,€) Dﬁ) (Nap(x,6) Z0, a,f € N)

a,peN
(2.1)
and
Lo=Lo(z,D)= > D*(nags(x,0) D% (Nap (£,0) 0, a, B € A5)  (2.2)
a,BEN

be linear differential operators with real-valued coefficients defined on Q x [0,7].
Consider the following boundary problems:
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Problem ©,. Find a solution u € W (Q) to the equation

Lou=h, heWrQ)= ﬁwg’”(@). (2.3)

Problem D.. Find a solution u. € Wy () to the equation
L.u. = h, h € W3 (). (2.4)
In the sequel the following notation will be used:

¢ (v) = min ¥ («a, ) vewN+ N,

a,BeN
a+p=v

and

¢ (a”) = min {q €R:Ve€ (0,8, V¢ €R™, £ >0, < Zf-:w(a)ga} (2.5)
oaceM

for 4 C N+ N, € (M).
We impose the following restrictions on the operators Ly and L.
(A;) a) the functions 7,5 (2, ) (o, 3 € A") are infinitely differentiable on 2 x [0, ];
b) for each a, 3 € A; the functions 7,4 (z,¢) tend to 1,4 (x,0) as e — 0
uniformly with respect to z;
c) for each o, 8 € A ¢ (o, B) = 0
(Ag) there exists a constant x; > 0 such that

(Low,w) = x1 Y [[ID*w|*  VweCF(Q); (2.6)
aeMU{0}

(A3) {v e N} v <a} C (A U{0}) for all a € A
(A4) a) the functions 7, (x,¢) are uniformly continuous with respect to = on
Q x (0,2, for (o, B) € Z = {(, ) € N/ *\A? : |a+ B] = 0(mod2)} ;

b) there exists a constant x; > 0 such that
a5 (,€)] < Ky Vo e Q,Ve € (0,8],(a, B) € Z

c) there exists a constant ys > 0 such that

D M (2,0) (1) 2 xa ) e Her BT e € R Ve € (0,7],
(a,ﬂ)e@ ae%’

Z={(a,8) €Z:p(a+0) =%, ,(a+P)},
VYV ={ae N\A:a¢ {(AN\AM)\{a})},

%= U{ae (AT 60 e (@) > & (@]
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d) there exists a constant k3 > 0 such that for every (a,() € & =
{(a, 8) € /\AN? i Ja+ B =1(mod2)} and ~,6 € Np, if v < a, § < 3 and
Y+ £ a+ S,
‘D”‘;na,g (:c,g)‘ < kg r e ee (0,2
(Ap) for every a, b€ N + N ,a < B,a# [

QO,O/Ver,/V (O‘) < @%+,M (6) ;

(Ag) for every (a, B) € N/ x A ¢ (a, ) € Ny.

3 Solvability and uniform solvability

Definition 3.1. Problem D is said to be solvable if for every h € Lo(£2) the equation
Lou = h has a unique solution ug € W3 (Q) such that

oty < € Il 0

for some constant C' > 0 independent of h.

Remark 3.1. (see [13], [14] and [11]). Let Q be the whole space, the half space or
a strip. Then Problem 3, is solvable if Condition (As) holds. If h € W3°(€Q2) then
the solution wy to Problem Dg is smooth, i.e. wuy € W3°(2) (see [16]) and hence
D®ug € C (Q) for any o € Njj by the known embedding theorem (see [2], §9).

Definition 3.2. (see [23|). Problem D, is said to be uniformly solvable if there exists
a number ¢y > 0 for which

a) Problem D, is solvable for ¢ € (0,g], i.e., for every h € Ly(2) the equation
L.u = h has a unique solution u. € Wy (Q);

b) there exists a number Cy > 0, and for each € € (0, g4] a normed function space

B. (W‘Q/V Q) C BE> with the norm ||| such that for all h € Ly ()

[ucll s, < Collhll,@), € (0,0

Remark 3.2. (see [13|, [14] and [11]). Let Q be the whole space, the half space or a
strip. Then Problem ®. is solvable for any fixed ¢ € (0, o] if Conditions (A;) — (Ay)
hold.

Theorem 3.1. (see [14] and [4]). Let Q be the whole space, the half space or a strip.
If Condition (As) holds then W3 (Q) = H 4 (Q).

Theorem 3.2. (see [20]). Let & C Ng, (A) be a completely regular polyhedron,
Q C R"™ be a bounded domain satisfying the shift conditions (for example, see [2]
or [4]), and the operator L. satisfy Conditions (A1) — (Ag). Then Problem ®. is
uniformaly solvable. Moreover, there exist constants € € (0,2] and Cy > 0 such that

for all u € Wy ()

2= > eFenCODou?+ N D% < Oy (Lewu) Ve € (0,3).
a€( N\ (A0) ae(AHU{0})
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4 Poincare method on R"

Theorem 4.1. Let ) = R", m € Ny and
I.  a) Conditions (A1) and (Ag) hold;
b) the coefficients no 5 (z,€) (o, B € A) of the operator L. are bounded together
with their derivatives in x, up to order m 4+ 1 on R™ x [0,Z];
II. a) Problem ®y is solvable;
b) the solution wy of Problem ®y is smooth, i.e. wy € W (R");
ITI. Problem ®. is uniformly solvable;
Then the solution u. to Problem ®. admits the following asymptotic expansion:

U = wo + Zgiwi + Zm, (4.1)

=1

where wy is the solution to Problem g, w; (i = 1,...,m) are the solutions to the D
type problems, and the remainder term z,, satisfies the following estimate:

l2mll. = O (™) (4.2)
(.|| . is the norm in Condition III, see Definition 3.2).

Proof. Let N € Ny. By Condition (A;,a) the coefficients 7, 5 can be represented as a
finite power series with respect to € with the remainder term of the order (N + 1):

(N
Nays (,8) = 1% ( +Zenaﬁ + M (2,e) (a.fe ), (43)

where o (2,0
@ oy L0apl,€
os(@) = 5

Y

e=0
FNED (3 ) = 1 0" p(ae)
Nap YT (N +1)! eN+1 6:57
0
(i () = 7,5(,0)).
Then by Conditions (Aj,b), (Aj,c) and (Ag) .
N
L.= ZéSL(S) 4 N L(NHD) (4.4)
where
[O=r, LY=L9Dax= Y D @)D" (s=1,..N), (45)
a,BeN
0<j<N
Y(e,B)+j=s
LON = LV(D g o)=Y Wt NTIpayl) (4) D
a,BEN
0<s<N

P(a,B)+s>N+1
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+ Z ¥ na]\gﬂ) (z,e) DP. (4.6)
a,BeN

Let N = m and let wy be the solution of Problem g, and let w; € W30 (R)
(1 =1,...,m) be the solution of the equation

Low; = =Y L®w;_, (4.7)

It is obvious that by Condition III

w; € W (R") i=1,..,m. (4.8)
Denote m
ul™ = wy + Z&iwi.
i=1
Thus
Lu™ = Lowg +Ze (Lowl + ZL(S w;_ > +5N+1zzsl TLNFLI 0, (4.9)
=0 r=0

It is not difficult to see (using expressions (4.5) and (4.6), by Conditions I, IT and (4.8))
that there exists a number M > 0 such that

| LN || < M (r=0,..,4;i=0,..,m),
hence from (4.9) by (4.7) it follows that there exists a number K > 0 such that
|| Lew™ — || < Ke™*.

Let U be the solution to Problem ®., and let 2, = u. — u(™ (it is easy to see that
Zm € W5 (R™)). Then by Condition III

2l < (Lezms 2m) = (Lette, 2m) — (Leu™, 2,) = —(Leul™ — h, 2,,),

so by Cauchy type inequality for any w > 0

1 " 1
fonll < 3 (12t = 1]+ 2 el
therefore
||Zm||£ = O (€m+1) :
O

Corollary 4.1. Under Conditions (A1) — (Ag) the solution u. admits asymptotic ex-
pansion (4.1) where wq is the solution of Problem ®g, and w; € W30 (R™) (i =1, ...,m)
is the solution to equation (4.7) and the remainder z,, satisfies estimate (4.2).
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5 Regular degeneration

Denote

k, = maxa,,, l, = maxa,, — k,,
aEN aeN

= (0,.,0,1),  gu = ((kn +Ln) €, (kn + 1) ") .

We impose the following additional restriction on the coefficients of the operator
L..
(A7) For every o, € N + N

(an + Bn — an) an

U p) 2 with @+ 0 = (0, + B.) ",
) > oL 2RI it o5 £ (0, + )"

Let Q =R} = {ze€R":2, >0}, » € N, N € Ny and ¢t = z,67*. Then, under
Condition (A;) the coefficients 7,3 can be represented as in formula (4.3), and in
addition the functions 'flg)@ can be represented as a finite power series with respect to
Tt

¢><rw#m<"+§)my> N () (@ fe Ni=0,1,.,N),

where 77( 0 (x(”)) 772)5 (x(”), 0) :

Since 50 50
— —S8xx > 1
g ¢ o 02
fora,0e A5i=0,1,...N;7=0,1,...., N we get
D ( It (x “”)) DY = gmentbu+=i po (tfn& 7 (:c)) Dy, (5.1)

where y = (a:(”), t) .
Using (5.1), the operator L. can be represented as follows:

N N
Ls _ Z (Z (Zgz se(an~+0Bn)+j+y(a,B) Da (t_] (4,3) ( )) Dﬁ—i-

a,Ber \i=0 \j=0

+ D (X505 V(@) D) 4 N Do (@, 2) D7) (5.2)

Denote
v = max (¥ («a,B) — s (an+ Fn)) -

a,BeN

From (5.2), combining terms with equal powers of ¢, we get:

N
L.=¢" {MO +) R+ aN“RNH} , (5.3)

s=1
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where
(3 070 n o n
M, = > Den®Y (2) DF = > D1 s (2™,0,0) DS,
a,BEN a,BEN
Y(a,B)—e(an+PBn)=y W(a,B)—se(an+Bn)="y
R, = 3 Do (tﬂngg;( W)) DY (s=1,..N),  (5.)
a,BeN
0<i<N,0<j<N
(e, B)—s(an+0n)+itrcj=1+s
and
Baaz Y csensaesies v () o0) Dt
a,BeN
0<i<N,0<j<N

P(a,B)—se(on~+LBn)+it i >v+N

« N 74N+1 — o — N+1
+ 3 e ( N1+ )Dﬁ+ N e DN () DL
a,BeN a,peN
0<i<N

Proposition 5.1. For M, to be an ordinary differential operator of order 2 (k, + 1,,)
with a minor member of order 2k, it is necessary and sufficient that
]0) = knqn;

DY) 5 = 31— s a natural number;

L) 1) (a, f) > LotlazZnlin for o 1 B = (0, + 3,) €,
Y (a, B) > otbaBadin for o 4 3 £ (ay + f,) €

Proof. 1t is easy to see that the derivative a:%n
U (kpe™, kpe™) — 2k, = —2xk,, and the derivative % presents in M, if and
only if v = ¥ ((kn, + 1) e, (kn + 1) €") — 25¢(k, + 1) = q — 25¢(k,, +1), which are
equivalent to conditions 1Y) and 2Y). Mj was an ordinary differential operator if and

Only 1f¢ (Oé, ﬁ)_% (an + Bn) =7 for Oé—i_ﬁ % (an + 6n) e" and 1/} (Oé, 5)_%(0571 + ﬁn) > Y
for a + B8 = (a,, + ,,) ", which are equivalent to condition 3°). ]

presents in M, if and only if v =

Remark 5.1. Note that under Condition (Ag) we can assume that s = J* is a natural

number and is equal to 1 (otherwise we can obtain this by the change of the variable).

Remark 5.2. Under Conditions (A;), (Ag) and (A7) (in respect to Remark 5.1) if

x =" then the operator M, is an ordinary differential operator.

Let M, (introduced in (5.4)) is an ordinary differential operator and satisfies the
conditions of Proposition 5.1. We introduce the following equation (which is the char-
acteristic equation of the operator M):

)\2%an ()\) = \2%kn Z Nevyen e (x(n)’ 0, 0) \on+Br—25kn _ () (5.6)
ane”, Bpenec N
p(ane™,Bne™)—r(an+0n)=y
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Definition 5.1. The degeneration of the Problem ®. into Problem ®j is called regular
if Conditions (A;), (Ag) and (A7) hold and the characteristic polynomial @ (A) has
exactly [, pairwise different roots with negative real parts.

Later, we use the following result.

Lemma 5.1. (see Lemma 4 in [23]). Let m, M € Ny and let

2M

P(t)= > ajt/  (amym #0,a #0)

j=2m
be a polynomial with real coefficients. If there exists C' > 0 such that for all £ € R

M

Re (P (i) = Y (—1) aye¥ > C (& + M)

j=m
then P has exactly (M — m) roots with negative real parts.

For the complete symbol of the operator L., we introduce the notation

L. (,i8) = Y "o (x,e) (1)

a,BeN

Theorem 5.1. Let Conditions (A1), (As.c), (Ag) and (A7) hold. Then @ (defined in
(5.6)) has exactly l,, roots with negative real parts.

Proof. 1t follows by Condition (A4.c) that there is a constant xo > 0 such that for all
& € Rand e € (0,2

ST B e (2,0,0) (16,) 0 >y Y e F e Ranegle

(ane™,fne™)EZ ane"eR
(5.7)
Clearly,

Z Ew(anenﬂnen)nanenﬁnen (l.(n)7 0, 0) (i€n>an+6n =

ane™,Bnene N
Y(ane™,Bne™)—se(an+Brn)="y

= Z EMapen Boen (l,(n)7 0, 0) (i§n5%>an+ﬁ" = (ign)%{kn Q (&™) .

ane™, BneneN
Qp(anen ,ﬁne”)—%(an +ﬁn):7

It is not hard to check that

Re (ifn)2%k" Q (ifngﬂ) — Z Ew(ane",ﬁne")nanenﬁnen (I(”), 0, 0) (ign)an-i-ﬁn .

(ane" 7,3716")6@

Then from condition (5.7), by Lemma 5.1, it immediately follows that the polynomial
@ has exactly [, roots with negative real parts. O]
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Remark 5.3. (see [9]). Let u € W5°(R?%). Foru € W (R%) to be true, it is necessary
and sufficient that

0*u

oxs

n

=0 (s=0,1,.ky—1), (5.8)

zn=0

and for u € WQW (]Ri), to be true it is necessary and sufficient conditions (5.8) are
satisfied and
Ofn sy

n,=0
6 Boundary layer method on R’} and on a strip

Definition 6.1. (see [23], p. 7). Let v.(x) = v.(x1,...,2,) be an s (s € N) times
differentiable function in a domain ) C R". Then v, is called a boundary layer type
function of order k£ (k < s), if

1. for every closed subset K of the domain @ (K C @), which does not intersect
the boundary 9Q of the domain Q (K NOQ = @) and for every § > 0 there exists
positive number gy such that

|IDv.(2)| <0 Ve€ (0,e0),Vr € K,|a| < s;
2. there exist positive numbers M and ¢, such that

| D% (z)| < M Ve € (0,e0],Vz € Q, || = k;
3. for every 6 > 0 there exists positive number ¢y such that

|D%.(z)| <6 Ve € (0,50),Vr € Q,|a] < k;

Example 1. The typical examples of boundary layer type functions of order £ on
the positive semiaxis are
t
e~ and &P (—> 6_%,
€

where A > 0 and P is a polynomial.
Suppose T € (0,00), and ¢ (y) is an infinitely differentiable function of one variable,
that equals to 1 when y < 7 and vanishes when y > 7.

Theorem 6.1. Let @ =R}, m € Ny and
I.  a) Conditions (A1) and (Ag) hold;
b) The coefficients nap (z,€) (a, B € A") of the operator L. are bounded with
its derivatives of x, up to order m +k, +1 on R% x [0,2];
a) Problem Dy is solvable;
b) The solution wq of Problem Dq is smooth, i.e. wy € W (Ri);
IT1. Problem ®. is uniformly solvable;
IV. The degeneration of Problem ®. into Problem ®q s regular.
Then the solution u. of Problem 3. admits the following asymptotic expansion:

m-tkn

—wo+zawz+ Z (vi + €6 (20) ) + 2,
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where wy 1s the solution of Problem ®q, w; (i = 1,...,m) is the solution of the Dy type
problem, v; = e*v; (i =0,...,m+k,) is a boundary layer type function of order k,,
a; (1=0,....,m+ k) is a polynomial of degree k, — 1 with respect to x,, and for the
remainder z,, the following estimate holds:

||Z’m||5 = O (€m+1)
(|I-|l. s the norm in Condition III, see Definition 3.2).

The proof of Theorem 6.1 will be given below.
Denoting the roots of the polynomial () with negative real parts by —\q, ..., —A; ,
by Definition 5.1 we get

Ay # Aj (1<qg#j<lI,). (6.1)
Proposition 6.1. Let wy be a solution of Problem ®q. Under the conditions of The-
orem 6.1 there exist functions co1 = con (x(”),s) s €O, = Coly (m(”),s) uniformly

bounded in RY (with respect to €) with their derivatives in any order such that the
functions (t = x,e™ !z, = et)

In In
— _ _ —1
vy = eFngy = P E Co.s€ Ast — ghn E Co.s€ Asne™" (6.2)
s=1 s=1

In kn—1

(_)\ t)s ln k’l‘_l (_)\ T )S
eqp = —ak”ZcMZ 5;1 = —5200’(]28’“"’1’5%. (6.3)
q=1 q=1 =0 ’

=0 ’

satisfy the following conditions
1) vg is a boundary layer type function of the order ki ;
2) the function wy + vy + ey satisfies the boundary conditions of Problem ®..

Proof. Statement 1. We keep the requirement that wy + vy has to satisfy conditions
(5.9), i.e.
OFn s (wo + ey
Oxknts

—0  (s=0,1,...0,—1). (6.4)

xn=0

By Condition II.b in Theorem 6.1 and Remark 3.1, from (6.4) we get

akn—&-sgk akn—i-s

"o Wo
T o ko+s = T Aok ts (820517'-'7ln_ 1)7 (65)
61‘ﬁ"+ =0 8$7]Zn+ xn=0
or hnt Hlnt
n 560 " Sw[)
_ _s9 o (s=0,1,.., 0, — 1) (6.6)
dtFnts |, Oxknts |

Substituting representation (6.2) of the function 7, into (6.6), we get a system of

)
I, linear equations with [,, unknown quantities ¢y, = co 4 (:v("), 5):

In L
)\ kn+s _ sa 77«+8w0
(=As) Coq = —¢

’ axknﬂ (S = O? 17 ceey ln - 1) . (67)

q=1 =0
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The determinant of this system is of Vandermonde type and it does not vanish by
the conditions (6.1).

Consequently, system (6.7) has a unique solution.

Statement 2. The function —eqq is the sum of the first k, terms of the Taylor
series of vy in a neighborhood of x,, = 0. Therefore, the function vy + caq satisfies
boundary conditions (5.8). On the other hand, caq is a k, — 1 order polynomial
of z,, (or of t). Hence, it automatically satisfies conditions (5.9). Besides, wy satisfies
boundary conditions (5.8) and w+wvy satisfies boundary conditions (5.9), and therefore
the function wy + vy + ey satisfies boundary conditions (5.8) and (5.9).

Note that functions wy, ap and their derivatives in any order are uniformly bounded
in R? (with respect to €), and Movy = 0 in R} O]
Remark 6.1. If dq,...,d; is a solution of the system

n

ln

kn ko
> (-A)d, = ~gmm|

q=1 xn,=0
ln
S (=) d,=0 (s=1,..0,—1).
qg=1
then it is not difficult to see that the solution cgy,...,coy, to system (6.7) can be
represented in the form
l—1

Co,q ("E(n)7 5) =dq (x(n)) + ngs (x(n)) 2
s=1

where g, (¢ =1,...,1,) are some functions independent of .
Fort € Rand 1 < j <n we set (a:(j),t) = (21,000, Ty, 6, T, oy ).

Proposition 6.2. Under the conditions of Theorem 6.1 there exist functions c¢;; =
Ci1 (x("),t, 5) s Cily = Cily (:E("),t, E) (0 <i<m+ky) uniformly bounded on R
(with respect to €) with their derivatives of any order such that the functions

v; = M = Ek"Zciyqe_)‘qt, (6.8)
q=1
and
ln kn_l S
— At
oy = —5’“"201-,(1 (m ),t,s) ( s? ) =
q=1 s=0
In ke —1 (=M’
kn—1— n
= —52@7@{ (x(n), t,é‘) 25 s#. (69)
q=1 s=0

satisfy the following conditions
1) oy and their derivatives of any order uniformly bounded on R'} (with respect to
£)



76 G.A. Karapetyan, H.G. Tananyan
2) the solution w; € W3 (R%) (i =1,...,m) of the equation

i i—1
Low; = h; = —ZL(S)wi,S - ZL(S) (¢ (zn) ati_s—1) (1=1,...,m), (6.10)
s=1 s=0

and their derivatives of any order uniformly bounded on R, (with respect to ¢)
3) Cig (w(”),t,s) are polynomials of t;
4) v; is a boundary layer type function of order k, such that

Myw; = > R, (i>0), (6.11)
s=1

5) the function w; + v; + ey satisfies the boundary conditions of Problem D..

Before proving Proposition 6.2, we give the following obvious lemma without a
proof.

Lemma 6.1. Let Q be a domain in R, let p € Ny, b;(t) € CP(Q) (i=1,...,n) and
let A € R™" be a matriz with det A # 0. Then:

a) the system of equations A (zy (t),...,zn ()" = (by (t),... by (1)), has a unique
solution, such that z, (t) € C* (Q) (r=1,...,n), and

b) if
88
b (1) =0 (s=0,...,p; T=1,...,n),
ot —to
then .
T (t) =0 (s=0,..,p; r=1,...,n).
ot —to

Proof of Proposition 6.2: Suppose that w; (i < m) is a solution of equation (6.10),
satisfying boundary conditions (5.8).
We keep the requirement that w; + £*"7; has to satisfy the conditions (5.9), i.e.

akn+85i sakn+swi
atkn“!‘s =0 = ¢ axfbn—‘,—s - (S - 07 17 ey ln - 1) . (612)

where it is assumed that w; = 0 when ¢ > m.

The remainder part of the proof is similar to Proposition 6.1. We prove statements
1) and 2) by induction on i. Obviously, the function wy satisfies 1) (see Conditions I
and IV, Remark 3.1 and Definition 3.1). Consequently, the function ¢, (x("),t) also
satisfies 1) by Lemma 6.1, and hence the function «q satisfies 1) (see representation
(6.3)).

By the induction assumption, all coefficients ¢;_5, (0 < s <) are polynomials of
t, all functions v;_s (0 < s < 7) are of form (6.8) and the operator R, 5. (s > 0) is
independent of D, (or 2, see formula (5.5)). Therefore, the right-hand side of (6.11)

. a,

is of the form
In
E Fse_Ast,
s=1
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where F, = F| (a:(”), t) is a polynomial of t. Consequently, the solution v; of equation
(6.11) has the form

v = @i + 6,
where ¢; = ¢; (as(”), t) is a partial solution of nonhomogeneous equation (6.11), which
can be deduced by the uncertain coefficient method (see [17]) and has the form

ZKSe”\“

s=1

where K, = K, (:E("), t) is a polynomial ¢ order. Its order is higher by 1 than the order
of Fy (™, t) of ¢ (see condition (6.1)), and 6; = §; (2™, t) is a solution of form (6.8)

for the corresponding homogeneous equation, satisfying the boundary conditions

k k.
0 "+89i 58 ”*Swl

E— = —¢ —
k'n +s kn +s
ot 0 Oxk o

8kn+sgpi

Dtknts

(s=0,1,...0,— 1),

t=0

Consequently, the function v; is of the form (6.8).

By the induction assumption for 0 < j < 7 the functions w;, «; and c;, satisfy
1). Hence, the function h; (see (6.10)) and its derivatives of any order are uniformly
bounded in €2 with respect to e. Consequently, by Remark 3.2 the function w; satisfies
1). By Lemma 6.1, it is not difficult to see that the functions ¢; , satisfies 1), and hence
also «; satisfies 1).

Statement 3) follows from 1) and 2), and the statement 4) immediately follows by
Proposition 6.2 and the definition of the function ¢.

Proof of theorem 6.1: Let functions w; (i = 1,...,m), v; and o; (i = 1,...,m + ky,)
satisfy the conditions of Propositions 6.1 and 6.2. Denote

m-tkn

_w0+26w,+ Z (v; + € () ) -

Thus by using forms (4.4) (assuming that N = m) and (5.3) (assuming that N =
m + k) we get

m m+kn
Lou™ = { (Lo +) e L® + €N+1L(N+1)> <wg + Ze w; + Z e () z) } +

s=1
+&7 { <Mo + Z R, + €m+k"+1Rm+kn+1) ( Z EiUi) } :
s=1 =0

Hence

Lou™ = Lowo + {Ze <Lowz+ZL wi S+ZL(S ) Qi 1)> +
m+1 m+kn
—I—ZeSL(S ( Z g'w; + Z e () Z)}—i—
s=0

i=m-+1—s i=m—s
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m+kn i mtkn+1 m+kn
+e7 {Movo + Z gt (Mofui + ZRSvis) + Z e°R, Z 5%1} )
s=1

i=1 s=1 i=m+kn+1—s
By virtue of (6.10) and (6.11) we get

m+1 m mtkn
Lsu(m) — h + Z ( Z 8i+SL(S)wi + Z €i+1+SL(S) (¢ (xn) al>>

i=m+1—s i=N-—s

m-tkn+1 m—+kn

+ ) > &R (6.13)

s=1 i=m+k,+1—s
It is not hard to see that by Propositions 6.1 and 6.2 it follows that there exists
M > 0 such that

HL(NH*T)wZ-H <M (r=0,...,4i=0,..,m),
LN (g (zp) )| <M (r=0,.,50i=0,....,m+k,),
|Rns1—rvs|| < M (r=0,..,45i=0,..m+k,).
Hence from (6.13) that there exists K > 0 such that
| Leu™ — h|| < Ke™.
Similar to the proof of Theorem 4.1 we can show that

”ZmHa =0 (gm—H) :

7 Newton’s polyhedron method on R” and on a strip

In this Section we will impose the following restriction instead of (Az):
(A7) there are natural numbers p € [1,1,],51,...,8, (0 = 89 < 81 < ... < 8, = I,,)
such that for every r =1,...;,p
a) for r < p (i.e. for p = 1 this condition is absent)

wr - wrfl < errl - wr

)
Sp — Sr—1 Sr41 — Sp

where ©; =9 ((k, + s;5) €”, (kn +s5) ™) (1 =1,...,p),
b) for every a, B € N + N if (o, + 5,) € [2kn + 25,_1, 2k, + 25,] then

(an + ﬁn - an) (¢T - 77Z)7’—1)

w<a76)2 2(5 —8_1) WithOé—i-B:(Oén—Q—ﬂn)en,
b0 8) > 2t h ’;@Zf”)s(ﬁ’")_ 1) ith @+ 8 # (an + ) "

Let ». € Ny (r=1,...,p). For r =1,...,p, denote

V= a%g}j/ (¢ (aaﬁ) - X (an + ﬁn)) )
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M, = > D1 (z™,0,0) DY, (7.1)
a,BeN
(an+B8n)E2kn~+28r—1,2kn+2sy,]
Y(a,B)=se (an+Bn)="r

Proposition 7.1. For M, (r =1,...,p) to be an ordinary differential operator of order
2 (k, + 1) with a minor member of order 2 (k, + s,_1), it is necessary and sufficient

that
]0) ,.)/T — _kn(wr_wr—l),

Sr—Sr—1 !

D) 3, = % is a natural number;

%) the Condition (A,.b) holds.

Proof. Similar to the proof of Proposition 5.1. m
¢7-—¢r—1

2(37‘_37“71)
(r =1, ...,p) are natural numbers (otherwise we can obtain this by the change of the

variable).

Remark 7.1. Note that under Condition (Ag) we can assume that s, =

Remark 7.2. Under Conditions (A;), (Ag) and (AL) (with respect to Remark 7.1) if

”, = % (r =1,...,p) then the operator M, is an ordinary differential operator.

Let M, (r = 1,...,p) (introduced in (7.1)) be an ordinary differential operator
satisfying the conditions of Proposition 7.1. We introduce the following equation (which
is the characteristic equation of the operator M, ):

The theorem remains valid with this definition of regular degeneration.

)\Q%Tk;nQr ()\) = )\Q%Tkn Z Nevyen Byen (gj(n)’ 0’ O) )\Ocn-i-ﬁn—?%ﬂcn —=0.
ane™, Bnene N
(an+08n)€2kn+2sr—1,2kn+2s,]
w(anen7,6n3n)_%r(an+ﬂn):7r
(7.2)

Definition 7.1. The degeneration of the Problem ®. into Problem 3 is called reg-

ular if the Conditions (A;), (Ag) and (A%) hold and if for every r = 1,...,p and
(21, ..., Zn_1) € R"! the characteristic polynomial Q, (\) has exactly s, pairwise dif-
ferent roots with negative real parts.

Theorem 6.1 remains valid with this definition of regular degeneration.
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