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Abstract. Algorithms for the asymptotic expansion of the solution to the Dirichlet
problem for a regular equation with a small parameter ε (ε > 0) at higher derivatives
on an unbounded domain (the whole space, the half space and a strip), based on the
solution to the degenerate (as ε → 0) Dirichlet problem for a regular hypoelliptic
equation of the lower order, are described. Estimates for remainder terms of those
expansions are obtained.

Introduction

The degeneration of the Dirichlet problem Dε for a regular (in the sense of Mikhailov
- Nikol’skii [10], [11], [13]-[15]) equation with a small parameter ε (ε > 0) at higher
derivatives to the Dirichlet problem D0 for a regular hypoelliptic equation (introduced
by Hörmander [5]) in the Sobolev anisotropic spaces WM

2 (G) (generated by a regular
polyhedron M and by unbounded domain G) is considered. The methods for con-
structing the asymptotic expansion of the solution to Problem Dε based on Lindshted-
Poincare’s method, Prandell’s boundary layer method (for references and for more
details about those methods see [1], [6], [7], [8], [12], [19], [22]), Lusternik-Vishik’s
method [23] and Newton’s polyhedron method [21] are described.

Note that the degenerate Problem D0 can be solved by Bubnov-Galerkin’s method
(see Ghazaryan and Karapetyan [3]) by choosing anisotropic B-splines as base functions
(see [18]).

1 Basic notation and terminology

Throughout the paper, we use the following standard notation: N is the set of all natural
numbers, N0 ≡ N ∪ {0}, R is the set of all real numbers. For n ∈ N, x = (x1, ..., xn) ∈
Rn, α = (α1, ..., αn) ∈ Nn

0 , β = (β1, ..., βn) ∈ Nn
0 , M ⊂ Nn

0 and ξ = (ξ1, ..., ξn) ∈ Rn we
denote

|x| =
(
x2

1 + ...+ x2
n

) 1
2 , x(j) = (x1, ..., xj−1, xj+1, ..., xn) (1 ≤ j ≤ n) ,
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α! = α1!...αn!, |α| = α1 + ...+ αn, β ≤ α⇔ βj ≤ αj (1 ≤ j ≤ n),(
α

β

)
=

α!

β! (α− β)!
(β ≤ α) , αβ = α1β1 + ...+ αnβn,

M 2 ≡ M ×M ≡ {(α, β) : α, β ∈ M } ,

M + M ≡ {α+ β : α, β ∈ M } ,

ξα = ξα1 ...ξ
α
n , Dα = Dα1

1 ...Dαn
n ,

where Dj = ∂
∂xj

(1 ≤ j ≤ n).
We denote by C(G) the space of all functions f uniformly continuous on the domain

G ⊂ Rn with the norm
‖f‖C(G) ≡ sup

x∈G
|f(x)|.

W(p)
2 (Ω) =

f ∈ LP (Ω) :
∑
|α|≤p

‖Dαf‖Lp(Ω) <∞

 .

For a finite set of multi-indices M ⊂ Nn
0 and a domain G ⊆ Rn we also denote

WM
2 (G) ≡

f ∈ L2(G) : ‖f‖WM
2 (G) ≡

∑
α∈〈M∪{0}〉

‖Dαf‖L2(G) <∞

 ,

where 〈M
⋃
{0}〉 is the convex hull of the collection M

⋃
{0}, and by H̊M (G) we

denote the closure of the set C∞
0 (G) with respect to the norm ‖.‖WM

2 (G). Let ∂G be
the boundary of G, let Ξ be Nikol’skii’s skeleton (see [14]) of the collection 〈M

⋃
{0}〉

and
W̊M

2 (G) ≡
{
f ∈ WM

2 (G) : Dαf |∂G = 0, ∀α ∈ Ξ
}
.

In a Hilbert space H the inner product will be denoted by (., .)H.
We consider only real function spaces.

2 Setting of the problem

Let Ω ⊂ Rn be a domain, N ⊂ Nn
0 and N0 ⊂ N be finite collections of multi-indices,

ε ∈ (0, 1). Let ψ be a non-negative function defined on N ×N , and let

Lε ≡ Lε (x,D) ≡
∑

α,β∈N

εψ(α,β)Dα
(
ηα,β (x, ε)Dβ

)
(ηα,β (x, ε) 6≡ 0, α, β ∈ N )

(2.1)
and

L0 ≡ L0 (x,D) ≡
∑

α,β∈N0

Dα
(
ηα,β (x, 0)Dβ

)
(ηα,β (x, 0) 6≡ 0, α, β ∈ N0) (2.2)

be linear differential operators with real-valued coefficients defined on Ω× [0, ε].
Consider the following boundary problems:
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Problem D0. Find a solution u ∈ W̊N0
2 (Ω) to the equation

L0u = h, h ∈ W∞
2 (Ω) ≡

∞⋂
p=1

W(p)
2 (Ω). (2.3)

Problem Dε. Find a solution uε ∈ W̊N
2 (Ω) to the equation

Lεuε = h, h ∈ W∞
2 (Ω). (2.4)

In the sequel the following notation will be used:

ϕ (ν) ≡ min
α,β∈N

α+β=ν

ψ (α, β) ν ∈ N + N ,

and

ϕoptM

(
α0
)
≡ min

{
q ∈ R : ∀ε ∈ (0, ε],∀ξ ∈ Rn, ξ ≥ 0, εqξα

0 ≤
∑
α∈M

εϕ(α)ξα

}
(2.5)

for M ⊆ N + N , α0 ∈ 〈M 〉 .
We impose the following restrictions on the operators L0 and Lε
(A1) a) the functions ηα,β (x, ε) (α, β ∈ N ) are infinitely differentiable on Ω× [0, ε];

b) for each α, β ∈ N0 the functions ηα,β (x, ε) tend to ηα,β (x, 0) as ε → 0
uniformly with respect to x;

c) for each α, β ∈ N0 ψ (α, β) = 0;
(A2) there exists a constant χ1 > 0 such that

(L0w,w) ≥ χ1

∑
α∈N0∪{0}

‖Dαw‖2 ∀w ∈ C∞
0 (Ω) ; (2.6)

(A3) {γ ∈ Nn
0 : γ ≤ α} ⊆ 〈N ∪ {0}〉 for all α ∈ N ;

(A4) a) the functions ηα,β (x, ε) are uniformly continuous with respect to x on
Ω× (0, ε], for (α, β) ∈ R ≡ {(α, β) ∈ N 2\N 2

0 : |α+ β| ≡ 0 (mod2)} ;
b) there exists a constant κ1 > 0 such that

|ηα,β (x, ε)| ≤ κ1 ∀x ∈ Ω,∀ε ∈ (0, ε], (α, β) ∈ R;

c) there exists a constant χ2 > 0 such that∑
(α,β)∈R

εψ(α,β)ηα,β (x, 0) (iξ)α+β ≥ χ2

∑
α∈B

εϕ
opt
N +N (2α)ξ2α ∀ξ ∈ Rn,∀ε ∈ (0, ε],

where
R ≡

{
(α, β) ∈ R : ϕ (α+ β) = ϕoptN +N (α+ β)

}
,

V ≡ {α ∈ N \N0 : α /∈ 〈(N \N0) \ {α}〉} ,

B ≡ V ∪
{
α ∈ (N \N0) \V : ϕopt(N \N0)\{α} (α) > ϕoptN \N0

(α)
}

;
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d) there exists a constant κ3 > 0 such that for every (α, β) ∈ I ≡
{(α, β) ∈ N 2\N 2

0 : |α+ β| ≡ 1 (mod2)} and γ, δ ∈ Nn
0 , if γ ≤ α, δ ≤ β and

γ + δ 6= α+ β, ∣∣Dγ+δηα,β (x, ε)
∣∣ ≤ κ3 x ∈ Ω, ε ∈ (0, ε];

(A5) for every α, β ∈ N + N , α ≤ β, α 6= β

ϕoptN +N (α) < ϕoptN +N (β) ;

(A6) for every (α, β) ∈ N ×N ψ (α, β) ∈ N0.

3 Solvability and uniform solvability

Definition 3.1. Problem D0 is said to be solvable if for every h ∈ L2(Ω) the equation
L0u = h has a unique solution u0 ∈ W̊N0

2 (Ω) such that

‖u0‖WN0
2 (Ω)

≤ C ‖h‖L2(Ω)

for some constant C > 0 independent of h.

Remark 3.1. (see [13], [14] and [11]). Let Ω be the whole space, the half space or
a strip. Then Problem D0 is solvable if Condition (A2) holds. If h ∈ W∞

2 (Ω) then
the solution w0 to Problem D0 is smooth, i.e. u0 ∈ W∞

2 (Ω) (see [16]) and hence
Dαu0 ∈ C

(
Ω
)

for any α ∈ Nn
0 by the known embedding theorem (see [2], §9).

Definition 3.2. (see [23]). Problem Dε is said to be uniformly solvable if there exists
a number ε0 > 0 for which

a) Problem Dε is solvable for ε ∈ (0, ε0], i.e., for every h ∈ L2(Ω) the equation
Lεu = h has a unique solution uε ∈ W̊N

2 (Ω);
b) there exists a number C0 > 0, and for each ε ∈ (0, ε0] a normed function space

Bε

(
W̊N

2 (Ω) ⊂ Bε

)
with the norm ‖.‖Bε

such that for all h ∈ L2 (Ω)

‖uε‖Bε
≤ C0 ‖h‖L2(Ω) , ε ∈ (0, ε0].

Remark 3.2. (see [13], [14] and [11]). Let Ω be the whole space, the half space or a
strip. Then Problem Dε is solvable for any fixed ε ∈ (0, ε0] if Conditions (A1) − (A4)
hold.

Theorem 3.1. (see [14] and [4]). Let Ω be the whole space, the half space or a strip.
If Condition (A3) holds then W̊N

2 (Ω) = H̊N (Ω) .

Theorem 3.2. (see [20]). Let N ⊂ Nn
0 , 〈N 〉 be a completely regular polyhedron,

Ω ⊂ Rn be a bounded domain satisfying the shift conditions (for example, see [2]
or [4]), and the operator Lε satisfy Conditions (A1) − (A6). Then Problem Dε is
uniformaly solvable. Moreover, there exist constants ε ∈ (0, ε] and C1 > 0 such that
for all u ∈ W̊N

2 (Ω)

‖u‖2
ε ≡

∑
α∈〈N 〉\〈N0〉

εϕ
opt
N +N (2α) ‖Dαu‖2 +

∑
α∈〈N0∪{0}〉

‖Dαu‖2 ≤ C1 (Lεu, u) ∀ε ∈ (0, ε].
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4 Poincare method on Rn

Theorem 4.1. Let Ω = Rn, m ∈ N0 and
I. a) Conditions (A1) and (A6) hold;

b) the coefficients ηα,β (x, ε) (α, β ∈ N ) of the operator Lε are bounded together
with their derivatives in xn up to order m+ 1 on Rn × [0, ε];

II. a) Problem D0 is solvable;
b) the solution w0 of Problem D0 is smooth, i.e. w0 ∈ W∞

2 (Rn);
III. Problem Dε is uniformly solvable;
Then the solution uε to Problem Dε admits the following asymptotic expansion:

uε = w0 +
m∑
i=1

εiwi + zm, (4.1)

where w0 is the solution to Problem D0, wi (i = 1, ...,m) are the solutions to the D0

type problems, and the remainder term zm satisfies the following estimate:

‖zm‖ε = O
(
εm+1

)
(4.2)

(‖.‖Bε
is the norm in Condition III, see Definition 3.2).

Proof. Let N ∈ N0. By Condition (A1,a) the coefficients ηα,β can be represented as a
finite power series with respect to ε with the remainder term of the order (N + 1):

ηα,β (x, ε) = η
(0)
α,β (x) +

N∑
i=1

εiη
(i)
α,β (x) + εN+1η̄

(N+1)
α,β (x, ε) (α, β ∈ N ) , (4.3)

where
η

(i)
α,β(x) =

1

i!

∂iηα,β(x, ε)

∂εi

∣∣∣∣
ε=0

,

η̄
(N+1)
α,β (x, ε) =

1

(N + 1)!

∂N+1ηα,β(x, ε)

εN+1

∣∣∣∣
ε=ε̄

,

(η
(0)
α,β (x) ≡ ηα,β(x, 0)).

Then by Conditions (A1,b), (A1,c) and (A6) .

Lε =
N∑
s=0

εsL(s) + εN+1L(N+1), (4.4)

where

L(0) ≡ L0, L(s) ≡ L(s)(D, x) ≡
∑

α,β∈N
0≤j≤N

ψ(α,β)+j=s

Dαη
(j)
α,β (x)Dβ (s = 1, ..., N) , (4.5)

L(N+1) ≡ L(N+1)(D, x, ε) ≡
∑

α,β∈N
0≤s≤N

ψ(α,β)+s≥N+1

εψ(α,β)+s−N−1Dαη
(s)
α,β (x)Dβ
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+
∑

α,β∈N

εψ(α,β)Dαη̄
(N+1)
α,β (x, ε)Dβ. (4.6)

Let N = m and let w0 be the solution of Problem D0, and let wi ∈ W̊N0
2 (Rn)

(i = 1, ...,m) be the solution of the equation

L0wi = −
i∑

s=1

L(s)wi−s (4.7)

It is obvious that by Condition III

wi ∈ W∞
2 (Rn) i = 1, ...,m. (4.8)

Denote

u(m) ≡ w0 +
m∑
i=1

εiwi.

Thus

Lεu
(m) = L0w0 +

m∑
i=1

εi

(
L0wi +

i∑
s=1

L(s)wi−s

)
+ εN+1

m∑
i=0

i∑
r=0

εi−rL(N+1−r)wi. (4.9)

It is not difficult to see (using expressions (4.5) and (4.6), by Conditions I, II and (4.8))
that there exists a number M > 0 such that∥∥L(N+1−r)wi

∥∥ ≤M (r = 0, ..., i; i = 0, ...,m) ,

hence from (4.9) by (4.7) it follows that there exists a number K > 0 such that∥∥Lεu(m) − h
∥∥ ≤ Kεm+1.

Let uε be the solution to Problem Dε, and let zm = uε − u(m) (it is easy to see that
zm ∈ W̊N

2 (Rn)). Then by Condition III

‖zm‖ε ≤ (Lεzm, zm) = (Lεuε, zm)−
(
Lεu

(m), zm
)

= −(Lεu
(m) − h, zm),

so by Cauchy type inequality for any ω > 0

‖zm‖ε ≤
1

2

(
ω
∥∥Lεu(m) − h

∥∥+
1

ω
‖zm‖

)
,

therefore
‖zm‖ε = O

(
εm+1

)
.

Corollary 4.1. Under Conditions (A1) − (A6) the solution uε admits asymptotic ex-
pansion (4.1) where w0 is the solution of Problem D0, and wi ∈ W̊N0

2 (Rn) (i = 1, ...,m)
is the solution to equation (4.7) and the remainder zm satisfies estimate (4.2).
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5 Regular degeneration

Denote
kn ≡ max

α∈N0

αn, ln ≡ max
α∈N

αn − kn,

en ≡ (0, ..., 0, 1) , qn ≡ ψ ((kn + ln) e
n, (kn + ln) e

n) .

We impose the following additional restriction on the coefficients of the operator
Lε.

(A7) For every α, β ∈ N + N

ψ (α, β) ≥ (αn + βn − 2kn) qn
2ln

with α+ β = (αn + βn) e
n,

ψ (α, β) >
(αn + βn − 2kn) qn

2ln
with α+ β 6= (αn + βn) e

n.

Let Ω = Rn
+ ≡ {x ∈ Rn : xn > 0} , κ ∈ N, N ∈ N0 and t = xnε

−κ. Then, under
Condition (A1) the coefficients ηα,β can be represented as in formula (4.3), and in
addition the functions η(i)

α,β can be represented as a finite power series with respect to
xn:

η
(i)
α,β (x) = η

(i,0)
α,β

(
x(n)
)
+

N∑
j=1

xjnη
(i,j)
α,β

(
x(n)
)
+xN+1

n η̄
(i,N+1)
α,β (x) (α, β ∈ N ; i = 0, 1, ..., N) ,

where η(i,0)
α,β

(
x(n)
)
≡ η

(i)
α,β

(
x(n), 0

)
.

Since
∂s

∂xsn
= ε−sκ

∂s

∂ts
(s ≥ 1) ,

for α, β ∈ N ; i = 0, 1, ..., N ; j = 0, 1, ..., N we get

Dα
x

(
xjnη

(i,j)
α,β

(
x(n)
))
Dβ
x = ε−κ(αn+βn)+κjDα

y

(
tjη

(i,j)
α,β (x)

)
Dβ
y , (5.1)

where y ≡
(
x(n), t

)
.

Using (5.1), the operator Lε can be represented as follows:

Lε =
∑

α,β∈N

(
N∑
i=0

(
N∑
j=0

εi−κ(αn+βn)+κj+ψ(α,β)Dα
y

(
tjη

(i,j)
α,β

(
x(n)
))
Dβ
y+

+ Dα
(
xN+1
n η̄

(i,N+1)
α,β (x)

)
Dβ
)

+ εN+1Dαη̄
(N+1)
α,β (x, ε)Dβ

)
. (5.2)

Denote
γ ≡ max

α,β∈N
(ψ (α, β)− κ (αn + βn)) .

From (5.2), combining terms with equal powers of ε, we get:

Lε = εγ

{
M0 +

N∑
s=1

εsRs + εN+1RN+1

}
, (5.3)
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where

M0 ≡
∑

α,β∈N

ψ(α,β)−κ(αn+βn)=γ

Dα
y η

(0,0)
α,β

(
x(n)
)
Dβ
y =

∑
α,β∈N

ψ(α,β)−κ(αn+βn)=γ

Dα
y ηα,β

(
x(n), 0, 0

)
Dβ
y ,

(5.4)
Rs ≡

∑
α,β∈N

0≤i≤N,0≤j≤N
ψ(α,β)−κ(αn+βn)+i+κj=γ+s

Dα
y

(
tjη

(i,j)
α,β

(
x(n)
))
Dβ
y (s = 1, ..., N) , (5.5)

and

RN+1 ≡
∑

α,β∈N
0≤i≤N,0≤j≤N

ψ(α,β)−κ(αn+βn)+i+κj>γ+N

εi−κ(αn+βn)+κj+ψ(α,β)−N−1Dα
y

(
tjη

(i,j)
α,β

(
x(n)
))
Dβ
y+

+
∑

α,β∈N

ε−γDα
x

(
xN+1
n η̄

(i,N+1)
α,β (x)

)
Dβ
x

0≤i≤N

+
∑

α,β∈N

ε−γDα
x η̄

(N+1)
α,β (x, ε)Dβ

x .

Proposition 5.1. For M0 to be an ordinary differential operator of order 2 (kn + ln)
with a minor member of order 2kn, it is necessary and sufficient that

10) γ = −knqn
ln

;

20) κ = qn
2ln

is a natural number;
30) ψ (α, β) ≥ (αn+βn−2kn)qn

2ln
for α+ β = (αn + βn) e

n,

ψ (α, β) > (αn+βn−2kn)qn
2ln

for α+ β 6= (αn + βn) e
n.

Proof. It is easy to see that the derivative ∂2kn

∂t2kn presents in M0 if and only if γ =

ψ (kne
n, kne

n) − 2κkn = −2κkn, and the derivative ∂2(kn+ln)

∂t2(kn+ln) presents in M0, if and
only if γ = ψ ((kn + ln) e

n, (kn + ln) e
n) − 2κ (kn + ln) = q − 2κ (kn + l), which are

equivalent to conditions 10) and 20). M0 was an ordinary differential operator if and
only if ψ (α, β)−κ (αn + βn) > γ for α+β 6= (αn + βn) e

n and ψ (α, β)−κ (αn + βn) ≥ γ
for α+ β = (αn + βn) e

n, which are equivalent to condition 30).

Remark 5.1. Note that under Condition (A6) we can assume that κ = qn
2ln

is a natural
number and is equal to 1 (otherwise we can obtain this by the change of the variable).

Remark 5.2. Under Conditions (A1), (A6) and (A7) (in respect to Remark 5.1) if
κ = qn

2ln
then the operator M0 is an ordinary differential operator.

Let M0 (introduced in (5.4)) is an ordinary differential operator and satisfies the
conditions of Proposition 5.1. We introduce the following equation (which is the char-
acteristic equation of the operator M0):

λ2κknQ (λ) ≡ λ2κkn
∑

αnen,βnen∈N

ψ(αnen,βnen)−κ(αn+βn)=γ

ηαnen,βnen

(
x(n), 0, 0

)
λαn+βn−2κkn = 0. (5.6)



72 G.A. Karapetyan, H.G. Tananyan

Definition 5.1. The degeneration of the Problem Dε into Problem D0 is called regular
if Conditions (A1), (A6) and (A7) hold and the characteristic polynomial Q (λ) has
exactly ln pairwise different roots with negative real parts.

Later, we use the following result.

Lemma 5.1. (see Lemma 4 in [23]). Let m,M ∈ N0 and let

P (t) =
2M∑
j=2m

ajt
j (a2m 6= 0, a2M 6= 0)

be a polynomial with real coefficients. If there exists C > 0 such that for all ξ ∈ R

Re (P (iξ)) ≡
M∑
j=m

(−1)j a2jξ
2j ≥ C

(
ξ2m + ξ2M

)
then P has exactly (M −m) roots with negative real parts.

For the complete symbol of the operator Lε, we introduce the notation

Lε (x, iξ) ≡
∑

α,β∈N

εψ(α,β)ηα,β (x, ε) (iξ)α+β .

Theorem 5.1. Let Conditions (A1), (A4.c), (A6) and (A7) hold. Then Q (defined in
(5.6)) has exactly ln roots with negative real parts.

Proof. It follows by Condition (A4.c) that there is a constant χ2 > 0 such that for all
ξn ∈ R and ε ∈ (0, ε]∑

(αnen,βnen)∈R

εψ(αnen,βnen)ηαnen,βnen

(
x(n), 0, 0

)
(iξn)

αn+βn ≥ χ2

∑
αnen∈B

εϕ
opt
N +N (2αnen)ξ2α

n .

(5.7)
Clearly, ∑

αnen,βnen∈N

ψ(αnen,βnen)−κ(αn+βn)=γ

εψ(αnen,βnen)ηαnen,βnen

(
x(n), 0, 0

)
(iξn)

αn+βn =

=
∑

αnen,βnen∈N

ψ(αnen,βnen)−κ(αn+βn)=γ

εγηαnen,βnen

(
x(n), 0, 0

)
(iξnε

κ)αn+βn = (iξn)
2κkn Q (iξnε

κ) .

It is not hard to check that

Re (iξn)
2κkn Q (iξnε

κ) =
∑

(αnen,βnen)∈R

εψ(αnen,βnen)ηαnen,βnen

(
x(n), 0, 0

)
(iξn)

αn+βn .

Then from condition (5.7), by Lemma 5.1, it immediately follows that the polynomial
Q has exactly ln roots with negative real parts.
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Remark 5.3. (see [9]). Let u ∈ W∞
2 (Rn

+). For u ∈ W̊N0
2

(
Rn

+

)
to be true, it is necessary

and sufficient that
∂su

∂xsn

∣∣∣∣
xn=0

= 0 (s = 0, 1, ..., kn − 1) , (5.8)

and for u ∈ W̊N
2

(
Rn

+

)
, to be true it is necessary and sufficient conditions (5.8) are

satisfied and
∂kn+su

∂xkn+s
n

∣∣∣∣
xn=0

= 0 (s = 0, 1, ..., ln − 1) . (5.9)

6 Boundary layer method on Rn
+ and on a strip

Definition 6.1. (see [23], p. 7). Let vε(x) = vε(x1, . . . , xn) be an s (s ∈ N) times
differentiable function in a domain Q ⊂ Rn. Then vε is called a boundary layer type
function of order k (k < s), if

1. for every closed subset K of the domain Q (K ⊂ Q), which does not intersect
the boundary ∂Q of the domain Q (K ∩∂Q = ∅) and for every δ > 0 there exists
positive number ε0 such that

|Dαvε(x)| ≤ δ ∀ε ∈ (0, ε0],∀x ∈ K, |α| ≤ s;

2. there exist positive numbers M and ε0 such that

|Dαvε(x)| ≤M ∀ε ∈ (0, ε0],∀x ∈ Q, |α| = k;

3. for every δ > 0 there exists positive number ε0 such that

|Dαvε(x)| ≤ δ ∀ε ∈ (0, ε0],∀x ∈ Q, |α| < k;

Example 1. The typical examples of boundary layer type functions of order k on
the positive semiaxis are

εke−
λt
ε and εkP

(
t

ε

)
e−

λt
ε ,

where λ > 0 and P is a polynomial.
Suppose τ ∈ (0,∞), and φ (y) is an infinitely differentiable function of one variable,

that equals to 1 when y ≤ τ
2

and vanishes when y ≥ τ .

Theorem 6.1. Let Ω = Rn
+, m ∈ N0 and

I. a) Conditions (A1) and (A6) hold;
b) The coefficients ηα,β (x, ε) (α, β ∈ N ) of the operator Lε are bounded with

its derivatives of xn up to order m+ kn + 1 on Rn
+ × [0, ε];

II. a) Problem D0 is solvable;
b) The solution w0 of Problem D0 is smooth, i.e. w0 ∈ W∞

2

(
Rn

+

)
;

III. Problem Dε is uniformly solvable;
IV. The degeneration of Problem Dε into Problem D0 is regular.
Then the solution uε of Problem Dε admits the following asymptotic expansion:

uε = w0 +
m∑
i=1

εiwi +
m+kn∑
i=0

εi (vi + εφ (xn)αi) + zm,



74 G.A. Karapetyan, H.G. Tananyan

where w0 is the solution of Problem D0, wi (i = 1, ...,m) is the solution of the D0 type
problem, vi = εknvi (i = 0, ...,m+ kn) is a boundary layer type function of order kn,
αi (i = 0, ...,m+ kn) is a polynomial of degree kn − 1 with respect to xn, and for the
remainder zm the following estimate holds:

‖zm‖ε = O
(
εm+1

)
(‖.‖ε is the norm in Condition III, see Definition 3.2).

The proof of Theorem 6.1 will be given below.
Denoting the roots of the polynomial Q with negative real parts by −λ1, ...,−λln ,

by Definition 5.1 we get

λq 6= λj (1 ≤ q 6= j ≤ ln) . (6.1)

Proposition 6.1. Let w0 be a solution of Problem D0. Under the conditions of The-
orem 6.1 there exist functions c0,1 ≡ c0,1

(
x(n), ε

)
, ..., c0,ln ≡ c0,ln

(
x(n), ε

)
uniformly

bounded in Rn
+ (with respect to ε) with their derivatives in any order such that the

functions (t = xnε
−1, xn = εt)

v0 ≡ εknv0 ≡ εkn

ln∑
s=1

c0,se
−λst = εkn

ln∑
s=1

c0,se
−λsxnε−1

, (6.2)

εα0 ≡ −εkn

ln∑
q=1

c0,q

kn−1∑
s=0

(−λqt)s

s!
= −ε

ln∑
q=1

c0,q

kr−1∑
s=0

εkn−1−s (−λqxn)
s

s!
. (6.3)

satisfy the following conditions
1) v0 is a boundary layer type function of the order kn;
2) the function w0 + v0 + εα0 satisfies the boundary conditions of Problem Dε.

Proof. Statement 1. We keep the requirement that w0 + v0 has to satisfy conditions
(5.9), i.e.

∂kn+s
(
w0 + εknv0

)
∂xkn+s

n

∣∣∣∣∣
xn=0

= 0 (s = 0, 1, ..., ln − 1) . (6.4)

By Condition II.b in Theorem 6.1 and Remark 3.1, from (6.4) we get

∂kn+sεknv0

∂xkn+s
n

∣∣∣∣
xn=0

= −∂
kn+sw0

∂xkn+s
n

∣∣∣∣
xn=0

(s = 0, 1, ..., ln − 1) , (6.5)

or
∂kn+sv0

∂tkn+s

∣∣∣∣
t=0

= −εs∂
kn+sw0

∂xkn+s
n

∣∣∣∣
xn=0

(s = 0, 1, ..., ln − 1) . (6.6)

Substituting representation (6.2) of the function v0 into (6.6), we get a system of
ln linear equations with ln unknown quantities c0,q = c0,q

(
x(n), ε

)
:

ln∑
q=1

(−λs)kn+s c0,q = −εs∂
kn+sw0

∂xkn+s
n

∣∣∣∣
xn=0

(s = 0, 1, ..., ln − 1) . (6.7)
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The determinant of this system is of Vandermonde type and it does not vanish by
the conditions (6.1).

Consequently, system (6.7) has a unique solution.
Statement 2. The function −εα0 is the sum of the first kn terms of the Taylor

series of v0 in a neighborhood of xn = 0. Therefore, the function v0 + εα0 satisfies
boundary conditions (5.8). On the other hand, εα0 is a kn − 1 order polynomial
of xn (or of t). Hence, it automatically satisfies conditions (5.9). Besides, w0 satisfies
boundary conditions (5.8) and w0+v0 satisfies boundary conditions (5.9), and therefore
the function w0 + v0 + εα0 satisfies boundary conditions (5.8) and (5.9).

Note that functions w0, α0 and their derivatives in any order are uniformly bounded
in Rn

+ (with respect to ε), and M0v0 = 0 in Rn
+. �

Remark 6.1. If d1, . . . , dln is a solution of the system
ln∑
q=1

(−λs)kn dq = −∂knw0

∂xkn
n

∣∣∣
xn=0

,

ln∑
q=1

(−λs)kn+s dq = 0 (s = 1, ...ln − 1) .

then it is not difficult to see that the solution c0,1, . . . , c0,ln to system (6.7) can be
represented in the form

c0,q
(
x(n), ε

)
= dq

(
x(n)
)

+
lr−1∑
s=1

gq,s
(
x(n)
)
εs,

where gq,s (q = 1, . . . , ln) are some functions independent of ε.

For t ∈ R and 1 ≤ j ≤ n we set
(
x(j), t

)
≡ (x1, ..., xj−1, t, xj+1, ..., xn).

Proposition 6.2. Under the conditions of Theorem 6.1 there exist functions ci,1 ≡
ci,1
(
x(n), t, ε

)
, ..., ci,ln ≡ ci,ln

(
x(n), t, ε

)
(0 < i ≤ m+ kn) uniformly bounded on Rn

+

(with respect to ε) with their derivatives of any order such that the functions

vi ≡ εknvi ≡ εkn

ln∑
q=1

ci,qe
−λqt, (6.8)

and

εαi ≡ −εkn

ln∑
q=1

ci,q
(
x(n), t, ε

) kn−1∑
s=0

(−λqt)s

s!
=

= −ε
ln∑
q=1

ci,q
(
x(n), t, ε

) kn−1∑
s=0

εkn−1−s (−λqxn)
s

s!
. (6.9)

satisfy the following conditions
1) αi and their derivatives of any order uniformly bounded on Rn

+ (with respect to
ε)
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2) the solution wi ∈ W̊N0
2

(
Rn

+

)
(i = 1, ...,m) of the equation

L0wi = hi ≡ −
i∑

s=1

L(s)wi−s −
i−1∑
s=0

L(s) (φ (xn)αi−s−1) (i = 1, ...,m) , (6.10)

and their derivatives of any order uniformly bounded on Rn
+ (with respect to ε)

3) ci,q
(
x(n), t, ε

)
are polynomials of t;

4) vi is a boundary layer type function of order kn such that

M0vi = −
i∑

s=1

Rsvi−s ( i > 0) , (6.11)

5) the function wi + vi + εαi satisfies the boundary conditions of Problem Dε.

Before proving Proposition 6.2, we give the following obvious lemma without a
proof.

Lemma 6.1. Let Q be a domain in R, let p ∈ N0, bi (t) ∈ Cp (Q) (i = 1, . . . , n) and
let A ∈ Rn×n be a matrix with detA 6= 0. Then:

a) the system of equations A (x1 (t) , . . . , xn (t))T = (b1 (t) , . . . , bn (t)), has a unique
solution, such that xr (t) ∈ Cp (Q) (r = 1, . . . , n), and

b) if
∂s

∂ts
br (t)

∣∣∣∣
t=t0

= 0 (s = 0, ..., p; r = 1, ..., n) ,

then
∂s

∂ts
xr (t)

∣∣∣∣
t=t0

= 0 (s = 0, ..., p; r = 1, ..., n) .

Proof of Proposition 6.2: Suppose that wi (i ≤ m) is a solution of equation (6.10),
satisfying boundary conditions (5.8).

We keep the requirement that wi + εknvi has to satisfy the conditions (5.9), i.e.

∂kn+svi
∂tkn+s

∣∣∣∣
t=0

= −εs∂
kn+swi
∂xkn+s

n

∣∣∣∣
xn=0

(s = 0, 1, ..., ln − 1) . (6.12)

where it is assumed that wi ≡ 0 when i > m.
The remainder part of the proof is similar to Proposition 6.1. We prove statements

1) and 2) by induction on i. Obviously, the function w0 satisfies 1) (see Conditions I
and IV, Remark 3.1 and Definition 3.1). Consequently, the function c0,q

(
x(n), t

)
also

satisfies 1) by Lemma 6.1, and hence the function α0 satisfies 1) (see representation
(6.3)).

By the induction assumption, all coefficients ci−s,q (0 < s ≤ i) are polynomials of
t, all functions vi−s (0 < s ≤ i) are of form (6.8) and the operator Rr,s+kr (s > 0) is
independent of Dr (or ∂

∂t
, see formula (5.5)). Therefore, the right-hand side of (6.11)

is of the form
ln∑
s=1

Fse
−λst,
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where Fs = Fs
(
x(n), t

)
is a polynomial of t. Consequently, the solution vi of equation

(6.11) has the form
vi = ϕi + θi,

where ϕi = ϕi
(
x(n), t

)
is a partial solution of nonhomogeneous equation (6.11), which

can be deduced by the uncertain coefficient method (see [17]) and has the form

ln∑
s=1

Kse
−λst

where Ks = Ks

(
x(n), t

)
is a polynomial t order. Its order is higher by 1 than the order

of Fs
(
x(n), t

)
of t (see condition (6.1)), and θi = θi

(
x(n), t

)
is a solution of form (6.8)

for the corresponding homogeneous equation, satisfying the boundary conditions

∂kn+sθi
∂tkn+s

∣∣∣∣
t=0

= −εs∂
kn+swi
∂xkn+s

n

∣∣∣∣
xn=0

− ∂kn+sϕi
∂tkn+s

∣∣∣∣
t=0

(s = 0, 1, ..., ln − 1) ,

Consequently, the function vi is of the form (6.8).
By the induction assumption for 0 ≤ j < i the functions wj, αj and cj,q satisfy

1). Hence, the function hi (see (6.10)) and its derivatives of any order are uniformly
bounded in Ω with respect to ε. Consequently, by Remark 3.2 the function wi satisfies
1). By Lemma 6.1, it is not difficult to see that the functions ci,q satisfies 1), and hence
also αi satisfies 1).

Statement 3) follows from 1) and 2), and the statement 4) immediately follows by
Proposition 6.2 and the definition of the function φ.

Proof of theorem 6.1: Let functions wi (i = 1, ...,m), vi and αi (i = 1, ...,m + kn)
satisfy the conditions of Propositions 6.1 and 6.2. Denote

u(m) ≡ w0 +
m∑
i=1

εiwi +
m+kn∑
i=0

εi (vi + εφ (xn)αi) .

Thus by using forms (4.4) (assuming that N = m) and (5.3) (assuming that N =
m+ kn) we get

Lεu
(m) =

{(
L0 +

m∑
s=1

εsL(s) + εN+1L(N+1)

)(
w0 +

m∑
i=1

εiwi +
m+kn∑
i=0

εi+1φ (xn)αi

)}
+

+εγ

{(
M0 +

m+kn∑
s=1

εsRs + εm+kn+1Rm+kn+1

)(
m+kn∑
i=0

εivi

)}
,

Hence

Lεu
(m) = L0w0 +

{
m∑
i=1

εi

(
L0wi +

i∑
s=1

L(s)wi−s +
i∑

s=0

L(s) (φ (xn)αi−s−1)

)
+

+
m+1∑
s=0

εsL(s)

(
m∑

i=m+1−s

εiwi +
m+kn∑
i=m−s

εi+1φ (xn)αi

)}
+
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+εγ

{
M0v0 +

m+kn∑
i=1

εi

(
M0vi +

i∑
s=1

Rsvi−s

)
+

m+kn+1∑
s=1

εsRs

m+kn∑
i=m+kn+1−s

εivi

}
.

By virtue of (6.10) and (6.11) we get

Lεu
(m) = h+

m+1∑
s=0

(
m∑

i=m+1−s

εi+sL(s)wi +
m+kn∑
i=N−s

εi+1+sL(s) (φ (xn)αi)

)

+
m+kn+1∑
s=1

m+kn∑
i=m+kn+1−s

εi+sRsvi. (6.13)

It is not hard to see that by Propositions 6.1 and 6.2 it follows that there exists
M > 0 such that ∥∥L(N+1−r)wi

∥∥ ≤M (r = 0, ..., i; i = 0, ...,m) ,∥∥L(N+1−r) (φ (xn)αi)
∥∥ ≤M (r = 0, ..., i; i = 0, ...,m+ kn) ,

‖RN+1−rvi‖ ≤M (r = 0, ..., i; i = 0, ...,m+ kn) .

Hence from (6.13) that there exists K > 0 such that∥∥Lεu(m) − h
∥∥ ≤ Kεm+1.

Similar to the proof of Theorem 4.1 we can show that

‖zm‖ε = O
(
εm+1

)
.

7 Newton’s polyhedron method on Rn
+ and on a strip

In this Section we will impose the following restriction instead of (A7):
(A′

7) there are natural numbers p ∈ [1, ln], s1, ..., sp (0 ≡ s0 < s1 < ... < sp ≡ ln)
such that for every r = 1, ..., p

a) for r < p (i.e. for p = 1 this condition is absent)

ψr − ψr−1

sr − sr−1

<
ψr+1 − ψr
sr+1 − sr

,

where ψj ≡ ψ ((kn + sj) e
n, (kn + sj) e

n) (j = 1, ..., p),
b) for every α, β ∈ N + N if (αn + βn) ∈ [2kn + 2sr−1, 2kn + 2sr] then

ψ (α, β) ≥ (αn + βn − 2kn) (ψr − ψr−1)

2 (sr − sr−1)
with α+ β = (αn + βn) e

n,

ψ (α, β) >
(αn + βn − 2kn) (ψr − ψr−1)

2 (sr − sr−1)
with α+ β 6= (αn + βn) e

n.

Let κr ∈ N0 (r = 1, ..., p). For r = 1, ..., p, denote

γr ≡ max
α,β∈N

(ψ (α, β)− κr (αn + βn)) ,
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Mr ≡
∑

α,β∈N

(αn+βn)∈[2kn+2sr−1,2kn+2sr]

ψ(α,β)−κr(αn+βn)=γr

Dα
y ηα,β

(
x(n), 0, 0

)
Dβ
y , (7.1)

Proposition 7.1. For Mr (r = 1, ..., p) to be an ordinary differential operator of order
2 (kn + ln) with a minor member of order 2 (kn + sr−1), it is necessary and sufficient
that

10) γr = −kn(ψr−ψr−1)
sr−sr−1

;

20) κr = ψr−ψr−1

2(sr−sr−1)
is a natural number;

30) the Condition (A′
7.b) holds.

Proof. Similar to the proof of Proposition 5.1.

Remark 7.1. Note that under Condition (A6) we can assume that κr = ψr−ψr−1

2(sr−sr−1)

(r = 1, ..., p) are natural numbers (otherwise we can obtain this by the change of the
variable).

Remark 7.2. Under Conditions (A1), (A6) and (A′
7) (with respect to Remark 7.1) if

κr = ψr−ψr−1

2(sr−sr−1)
(r = 1, ..., p) then the operator Mr is an ordinary differential operator.

Let Mr (r = 1, ..., p) (introduced in (7.1)) be an ordinary differential operator
satisfying the conditions of Proposition 7.1. We introduce the following equation (which
is the characteristic equation of the operator Mr):

The theorem remains valid with this definition of regular degeneration.

λ2κrknQr (λ) ≡ λ2κrkn
∑

αnen,βnen∈N

(αn+βn)∈[2kn+2sr−1,2kn+2sr]

ψ(αnen,βnen)−κr(αn+βn)=γr

ηαnen,βnen

(
x(n), 0, 0

)
λαn+βn−2κrkn = 0.

(7.2)

Definition 7.1. The degeneration of the Problem Dε into Problem D0 is called reg-
ular if the Conditions (A1), (A6) and (A′

7) hold and if for every r = 1, ..., p and
(x1, ..., xn−1) ∈ Rn−1 the characteristic polynomial Qr (λ) has exactly sr pairwise dif-
ferent roots with negative real parts.

Theorem 6.1 remains valid with this definition of regular degeneration.
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