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Abstract. We characterize the boundedness of Volterra operators from Bergman
spaces to Morrey spaces. Tools in the holomorphic function spaces, properties of Car-
leson measures and the atomic decomposition for functions in Bergman spaces are
heavily employed.

1 Introduction

Let D be the unit disk of the complex plane, and ∂D be the boundary of the unit disk
D. Denote the set of all holomorphic functions on D by H(D). For ϕ and f in H(D),
the Volterra operator Vϕ acting on f is defined by

Vϕ(f)(z) =

∫ z

0

f(w)ϕ′(w)dw , z ∈ D .

A natural and interesting question about the Volterra operator is to characterize the
symbol function ϕ so that Vϕ is bounded from one holomorphic space to another.

On Hardy and Bergman spaces the boundedness of Vϕ in terms of ϕ are well un-
derstood. For example, it is proved in [1] (see also the references therein), that for
p > q > 0, Vϕ maps Hp into Hq if and only if ϕ ∈ Hr with 1/r = 1/q − 1/p; Vϕ maps
Hp into itself if and only if ϕ ∈ BMOA; for 0 < p < q and 1/p − 1/q 6 1, Vϕ maps
Hp into Hq if and only if ϕ ∈ B1− 1

p
+ 1

q ; and for 0 < p < q and 1/p− 1/q > 1, Vϕ maps
Hp into Hq if and only if ϕ is constant. On Bergman spaces, or from Hardy spaces to
Bergman spaces, the characterization of the boundedness of Vϕ can be reduced to the
characterization of ϕ so that the embedding inequality∫

D
|f(z)|q|ϕ′(z)|q(1− |z|)βdA(z) 6 C ‖f‖q

holds on Bergman or Hardy spaces. These embedding inequalities have been well
studied and understood on Bergman and Hardy spaces, even for the most general forms∫

D |f
(n)(z)|qdµ(z) 6 C ‖f‖q (see, for example, [2, 4, 6, 7, 8, 15]). The boundedness of Vϕ

from Bergman spaces to Hardy spaces, and from Hardy spaces to Morrey spaces have
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been studied recently in [11, 12]. For example, it is proved in [12] that for 2 6 p 6 ∞,
Vϕ maps Hp into L2,1− 2

p bounded if and only if ϕ ∈ BMOA.
In this paper, we investigate the boundedness of the Volterra operator from

Bergman space Ap to Morrey space L2,q (see definitions later). Leaving the notation
and definitions later, we state our main results first.

Main Theorem. Suppose 2 6 p 6 ∞ and 0 < q 6 1.

(1) For q > 1− 2
p
, Vϕ : Ap → L2,q is bounded if and only if ϕ ∈ B

3−q
2
− 2

p .

(2) For q 6 1− 2
p
, Vϕ : Ap → L2,q is bounded if and only if the measure

|ϕ′(z)|
2p

p−2 (1− |z|)
p

p−2dA(z)

is a pq
p−2

-Carleson measure.

One can establish the corresponding results for the compactness of the operator
Vϕ : Ap → L2,q by modifying the proofs provided for the main theorem.

2 Notation, definitions and preliminaries

Let |dζ| be the Lebesgue measure on ∂D, dA(z) = 1
π
dxdy be the normalized Lebesgue

measure on D. For 0 < p <∞, the Hardy space Hp and the Bergman space Ap consist
of, respectively, all holomorphic functions f ∈ H(D) satisfying, respectively

‖f‖p
Hp = sup

0<r<1

∫
∂D
|f(rζ)|p |dζ|

2π
<∞ and ‖f‖p

Ap =

∫
D
|f(z)|p dA(z) <∞.

For p = ∞, we say that f ∈ H∞ = A∞ if f is a bounded holomorphic function on D.
For α > 0, the Bloch type space Bα is the set of all analytic functions ϕ on D such

that
sup
z∈D

|ϕ′(z)|(1− |z|)α <∞ .

Define Bα = {constants} if α < 0.
Let f ∈ H2. It is well known that f has the boundary value f(ζ) = limr→1− f(rζ)

for all ζ ∈ ∂D. For s ∈ R, define the Morrey space L2,s to be the sets of all f ∈ H2

such that

sup
arc I⊂∂D

1

|I|s

∫
I

|f(ζ)− fI |2
|dζ|
2π

<∞ .

Here |I| =
∫

I
|dζ|/(2π) is the normalized length of arc I, fI = 1

|I|

∫
I
f(ζ) |dζ|

2π
. It is clear

that L2,s = H2 if s 6 0, L2,1 = BMOA, and L2,s is Bloch type space if s > 1. Therefore
0 < s 6 1 is the most interesting range for Morrey space L2,s.

The Carleson square based on an arc I in D is defined by

S(I) = {z ∈ D : |z| > 1− |I| and z/ |z| ∈ I} .
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For fixed s > 0, a non-negative measure µ on D is called an s−Carleson measure if
there exists a C > 0 such that

µ (S(I)) 6 C |I|s for all arc I ⊂ ∂D .

It is well known that 1−Carleson measures are related to BMO space (see, for example,
page 240 in [5]), and for s < 1, the s−Carleson measures are associated with Morrey
spaces and Q spaces (see, for example, [13] and [14]). The following theorem is due to
Carleson [2] if p = q, and Duren [4] if q > p.

Theorem A. Let 0 < p 6 q 6 ∞ and µ be a non-negative measure on D. Then the
inequality ∫

D
|f(z)|q dµ(z) 6 C ‖f‖q

Hp , ∀f ∈ Hp

holds if and only if µ is a q
p
−Carleson measure.

Part (2) of the following theorem (for 0 < s < 1) was proved in [13], the other parts
are either easy or well known.

Theorem B. Let s ∈ R and ϕ be analytic on D. Let

dµϕ(z) = |ϕ′(z)|2 (1− |z|)dA(z).

(1) If s 6 0, then µϕ is an s–Carleson measure if and only if ϕ ∈ H2;

(2) If 0 < s 6 1, then µϕ is an s–Carleson measure if and only if ϕ ∈ L2,s;

(3) If 1 < s 6 3, then µϕ is an s–Carleson measure if and only if ϕ ∈ B 3−s
2 ;

(4) If s > 3, then µϕ is an s–Carleson measure if and only if ϕ ≡ constant.

Throughout this paper, C and c denote positive constants that may change from
one step to the next. We say that two positive functions a and b are equivalent, denoted
by a � b, if there are two positive constants c and C such that ca 6 b 6 Ca.

3 Proof of Main Theorem

Let ϕa be a Möbius transformation of D such that ϕa(0) = a and ϕa(a) = 0. The
Bergman distance of z and w in D is defined by

d(z, w) =
1

2
log

(
1 + |ϕw(z)|
1− |ϕw(z)|

)
,

which is Möbius invariant. For fixed a ∈ D and t > 0, the Bergman disk of center a
and radius t is defined by

D(a, t) = {w ∈ D : d(w, a) < t} ,

which is also a Euclidean disk of center 1−r2

1−|a|2r2a and radius r 1−|a|2
1−|a|2r2 , where r = e2t−1

e2t+1
.
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Geometries associated with the Bergman distance are useful in the study of holo-
morphic spaces and the operator theory. It is standard that for fixed a ∈ D

|1− az| � (1− |z|) � (1− |a|) , ∀z ∈ D(a, t) . (3.1)

If |D(a, t)| is the the area of D(a, t) with respect to dA(z), then the we have clearly

|D(a, t)| =
∫

D(a,t)

dA(z) � (1− |a|)2 , ∀a ∈ D. (3.2)

For f ∈ H(D) and r, t > 0, it is standard that the following mean value inequality
holds:

|f(z)|r 6
C

|D(z, t)|

∫
D(z,t)

|f(w)|r dA(w), ∀z ∈ D . (3.3)

Proof of Main Theorem, part (1). Suppose q > 1 − 2
p

and ϕ ∈ B
3−q
2
− 2

p . By Theorem
B, we need to show that the measure

dµVϕ(f)(z) = |Vϕ(f)′(z)|2 (1− |z|)dA(z) = |f(z)|2 |ϕ′(z)|2 (1− |z|)dA(z)

is a q-Carleson measure for any f ∈ Ap.
Since |ϕ′(z)| (1− |z|)

3−q
2
− 2

p 6 C holds for all z ∈ D, we have

|ϕ′(z)|2 (1− |z|) 6 C(1− |z|)q−2(1− 2
p
), ∀z ∈ D.

Hence for any arc I ⊂ ∂D, we have

µVϕ(f)(S(I)) =

∫
S(I)

|f(z)|2 |ϕ′(z)|2 (1− |z|)dA(z)

6 C

∫
S(I)

|f(z)|2 (1− |z|)q−2(1− 2
p
)dA(z)

6

(∫
S(I)

|f(z)|pdA(z)

) 2
p
(∫

S(I)

(1− |z|)
pq

p−2
−2dA(z)

) p−2
p

.

Since q > 1− 2
p

implies pq
p−2

> 1, we have clearly∫
S(I)

(1− |z|)
pq

p−2
−2dA(z) = C|I|

pq
p−2 .

Therefore
µVϕ(f)(S(I)) 6 C ‖f‖2

Ap |I|q.

Suppose now q > 1 − 2
p

and Vϕ : Ap → L2,q is bounded. We need to show that

ϕ ∈ B
3−q
2
− 2

p . By Theorem B, we know that the measure |f(z)|2 |ϕ′(z)|2 (1− |z|)dA(z)
is a q-Carleson measure for any f ∈ Ap.

For a ∈ D, let fa(z) = 1−|a|

(1−az)
1+ 2

p
. It is easy to check that

‖fa‖Ap � 1, ∀a ∈ D.
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Let I(a) be the arc of center a/|a| and length 1 − |a|. We have, for small enough
t > 0 ∫

D(a,t)

|fa(z)|2 |ϕ′(z)|2 (1− |z|)dA(z)

6
∫

S(I(a))

|fa(z)|2 |ϕ′(z)|2 (1− |z|)dA(z)

6 C ‖fa‖2
Ap |I(a)|q

6 C(1− |a|)q.

By (3,1), (3.2) and (3.3), we can conclude that

|ϕ′(a)|2 (1− |a|)3− 4
p 6 C(1− |a|)q, for all a ∈ D.

This is enough to obtain the desired result.

We need atomic decomposition theorem for Bergman spaces in order to prove part
(2) of the main theorem.

It is well-known (see for example [3]) that for every δ > 0, there exists a distinct
sequence {zj} in D, called a δ−lattice, such that d(zj, zk) > δ/5 if j 6= k, and⋃

j

D(zj, δ) = D and
∑

j

χD(zj ,5δ)(z) 6 L , ∀z ∈ D . (3.4)

Here, L > 0 is a uniform constant and χE is the characteristic function of a set E. The
following theorem is due to Rochberg [9].

Theorem C. Let p > 0. There exists δ0 > 0 such that for any δ ∈ (0, δ0), any δ−lattice
{zj} in D, and any m > max{−1, 2(1− 1/p)}, the following statements hold.

(B.1) If f ∈ Ap, then there exists {aj} ∈ `p with ‖{aj}‖`p 6 C ‖f‖Ap such that

f(z) =
∑

j

aj
(1− |zj|)m

(1− zjz)
m+ 2

p

.

(B.2) If {aj} ∈ `p, then the function f defined by the above series converges in Ap and
‖f‖Ap 6 C ‖{aj}‖`p.

Proof of Main Theorem, part (2). Suppose 0 < q 6 1− 2
p

and the measure

|ϕ′(z)|
2p

p−2 (1− |z|)
p

p−2dA(z)

is a pq
p−2

-Carleson measure. By Theorem B, we need to show that the measure

dµVϕ(f)(z) = |Vϕ(f)′(z)|2 (1− |z|)dA(z) = |f(z)|2 |ϕ′(z)|2 (1− |z|)dA(z)

is a q-Carleson measure for any f ∈ Ap.
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For an arc I ⊂ ∂D, we have

µVϕ(f)(S(I)) =

∫
S(I)

|f(z)|2 |ϕ′(z)|2 (1− |z|)dA(z)

6

(∫
S(I)

|f(z)|pdA(z)

) 2
p

×
(∫

S(I)

|ϕ′(z)|
2p

p−2 (1− |z|)
p

p−2dA(z)

) p−2
p

6 C ‖f‖2
Ap

(
|I|

pq
p−2

) p−2
p

= C ‖f‖2
Ap |I|q.

This is the desired result.
To prove the “only if" part, let I be a arc on ∂D. By Theorem B, we know that the

measure
dµVϕ(f)(z) = |f(z)|2 |ϕ′(z)|2 (1− |z|)dA(z)

is a q-Carleson measure for any f ∈ Ap.
We start with the estimate∫

S(I)

|f(z)|2 |ϕ′(z)|2 (1− |z|)dA(z) 6 C |I|q ‖f‖2
Ap , ∀f ∈ Ap . (3.5)

If p = ∞, then (3.5) implies clearly the desired result. Therefore we consider p <∞.
In the following, we will employ Theorem C and Khinchine’s inequality to refine

the above estimate. This idea was first used by Luecking in [8] (see also [10, 12]).
For x ∈ [0, 1), let rj(x) = r0(2

jx), j = 1, 2, · · · with

r0(y) =

{
1, 0 6 y − [y] < 1/2;

−1, 1/2 6 y − [y] < 1.

Khinchine’s inequality says: for any 0 < p <∞ and integer N > 0, there exists cp > 0
such that

cp

(
N∑

j=0

|cj|2
)p/2

6
∫ 1

0

∣∣∣∣∣
N∑

j=0

cjrj(x)

∣∣∣∣∣
p

dx 6
1

cp

(
N∑

j=0

|cj|2
)p/2

.

Let {zj} be a δ−lattice in D, m > max{−1, 2(1− 1/p)} (> 0), and

fj(z) =
(1− |zj|)m

(1− zjz)
m+ 2

p

, j = 1, 2, · · · .

By Theorem C, we know that for sufficient small δ > 0, and any Λ = {λj} ∈ `p, the
function

fΛ(z) =
∑

j

λjfj(z)
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is a function in Ap and
‖fΛ‖Ap 6 C ‖Λ‖`p .

For every x ∈ [0, 1), let Λ(x) = {λjrj(x)}. It is clear that

‖Λ(x)‖`p = ‖Λ‖`p , ∀x ∈ [0, 1).

Replacing f(z) by fΛ(x)(z) in the estimate (3.5), we have∫
S(I)

∣∣fΛ(x)(z)
∣∣2 |ϕ′(z)|2 (1− |z|)dA(z) 6 C |I|q

∥∥fΛ(x)

∥∥2

Ap 6 C |I|q ‖Λ‖2
`p .

Integrating both sides of the above inequality over [0, 1) with respect to x, and then
using Khinchine’s inequality, we obtain∫

S(I)

∑
j

|λj|2 |fj(z)|2 |ϕ′(z)|2 (1− |z|)dA(z) 6 C |I|q ‖Λ‖2
`p .

For convenience, write Dj = D(zj, δ). By the estimate (3.1), we know∫
Dj

|fj(z)|2 |ϕ′(z)|2 (1− |z|)dA(z) � (1− |zj|)−
4
p

∫
Dj

|ϕ′(z)|2 (1− |z|)dA(z).

Hence the above estimate implies∑
j:Dj⊂S(I)

|λj|2

(1− |zj|)
4
p

∫
Dj

|ϕ′(z)|2 (1− |z|)dA(z)

�
∑

j:Dj⊂S(I)

|λj|2
∫

Dj

|fj(z)|2 |ϕ′(z)|2 (1− |z|)dA(z)

6 C
∑

j:Dj⊂S(I)

∫
Dj

∑
k

|λk|2 |fk(z)|2 |ϕ′(z)|2 (1− |z|)dA(z)

(by (3.4)) 6 CL

∫
S(I)

∑
j

|λj|2 |fj(z)|2 |ϕ′(z)|2 (1− |z|)dA(z)

6 C |I|q ‖Λ‖2
`p .

This further implies, by the duality relation of `
p
2 and `

p
p−2 , that ∑

j:Dj⊂S(I)

(
1

(1− |zj|)
4
p

∫
Dj

|ϕ′(z)|2 (1− |z|)dA(z)

) p
p−2

1− 2
p

6 C |I|q .

By (3.1), (3,2) and (3.3), we have for each j = 1, 2, · · · and z ∈ Dj

|ϕ′(z)|2 (1− |z|) 6 C(1− |zj|)−2

∫
Dj

|ϕ′(w)|2 (1− |w|)dA(w).
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Therefore∫
Dj

|ϕ′(z)|
2p

p−2 (1− |z|)
p

p−2dA(z)

6 C |Dj| (1− |zj|)
−2p
p−2

(∫
Dj

|ϕ′(z)|2 (1− |z|)dA(z)

) p
p−2

� C

(
1

(1− |zj|)
4
p

∫
Dj

|ϕ′(z)|2 (1− |z|)dA(z)

) p
p−2

.

or equivalently ∑
j:Dj⊂S(I)

∫
Dj

|ϕ′(z)|
2p

p−2 (1− |z|)
p

p−2dA(z) 6 C |I|
pq

p−2 . (3.6)

For an arc I, let JI = {j : Dj ∩ S(I) 6= ∅}. Clearly

S(I) ⊂
⋃
j∈JI

Dj.

Let Ĩ be the smallest arc on ∂D such that⋃
j∈JI

Dj ⊂ S(Ĩ).

It is not hard to see that I ⊂ Ĩ and |Ĩ| � |I|. Since estimate (3.6) holds for any arc I,
we have ∫

S(I)

|ϕ′(z)|
2p

p−2 (1− |z|)
p

p−2dA(z)

6
∑
j∈JI

∫
Dj

|ϕ′(z)|
2p

p−2 (1− |z|)
p

p−2dA(z)

6
∑

j:Dj⊂S(Ĩ)

∫
Dj

|ϕ′(z)|
2p

p−2 (1− |z|)
p

p−2dA(z)

6 C|Ĩ|
pq

p−2

6 C |I|
pq

p−2 .

The above is enough to conclude the desired result.

For α > 0, the little Bloch type space Bα
0 is the set of all analytic functions ϕ ∈ Bα

0

such that
lim

|z|→1−
|ϕ′(z)|(1− |z|)α = 0 .

For fixed s > 0, a non-negative measure µ on D is called a compact s−Carleson
measure if it is an s-Carleson measure and satisfies

lim
|I|→0

µ (S(I))

|I|s
= 0 .

To end this paper, we state the following theorem, which can be proved similarly.
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Theorem 3.1. Suppose 2 6 p 6 ∞ and 0 < q 6 1.

(1) For q > 1− 2
p
, Vϕ : Ap → L2,q is compact if and only if ϕ ∈ B

3−q
2
− 2

p

0 .

(2) For q 6 1− 2
p
, Vϕ : Ap → L2,q is compact if and only if the measure

|ϕ′(z)|
2p

p−2 (1− |z|)
p

p−2dA(z)

is a compact pq
p−2

-Carleson measure.
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