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Abstract. We characterize the boundedness of Volterra operators from Bergman
spaces to Morrey spaces. Tools in the holomorphic function spaces, properties of Car-
leson measures and the atomic decomposition for functions in Bergman spaces are
heavily employed.

1 Introduction

Let D be the unit disk of the complex plane, and JD be the boundary of the unit disk
D. Denote the set of all holomorphic functions on D by H(D). For ¢ and f in H(D),
the Volterra operator V,, acting on f is defined by

V,(f)(z) = / ) (w)dw. 2eD.

A natural and interesting question about the Volterra operator is to characterize the
symbol function ¢ so that V,, is bounded from one holomorphic space to another.

On Hardy and Bergman spaces the boundedness of V,, in terms of ¢ are well un-
derstood. For example, it is proved in [1] (see also the references therein), that for
p>q >0, V, maps H? into H? if and only if ¢ € H" with 1/r = 1/¢ — 1/p; V, maps
HP into itself if and only if ¢ € BMOA; for 0 < p < g and 1/p —1/q < 1, V,, maps
‘H? into H? if and only if ¢ € Bl_%Jr%; and for 0 <p <gand 1/p—1/q > 1, V,, maps
‘HP? into H? if and only if ¢ is constant. On Bergman spaces, or from Hardy spaces to
Bergman spaces, the characterization of the boundedness of V, can be reduced to the
characterization of ¢ so that the embedding inequality

/le(z)lq\sO'(Z)!q(l = |2])7dA(z) < CIfII"

holds on Bergman or Hardy spaces. These embedding inequalities have been well
studied and understood on Bergman and Hardy spaces, even for the most general forms
Jo [F™(2)|9du(z) < C|| fI|? (see, for example, [2, 4, 6, 7, 8, 15]). The boundedness of V,

from Bergman spaces to Hardy spaces, and from Hardy spaces to Morrey spaces have
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been studied recently in [11, 12]. For example, it is proved in [12] that for 2 < p < oo,

V,, maps ‘H? into £>'"% bounded if and only if o € BMOA.

In this paper, we investigate the boundedness of the Volterra operator from
Bergman space AP to Morrey space £*7 (see definitions later). Leaving the notation
and definitions later, we state our main results first.

Main Theorem. Suppose 2 < p < oo and 0 < g < 1.
(1) Forq>1- %, Vi o AP — L29 is bounded if and only if ¢ € B,

(2) Forq<1-— %, Vi, AP — L29 s bounded if and only if the measure

' (2)[7=2 (1 = [2]) P2 dA(2)
18 a ——Ca’rleson measure.

One can establish the corresponding results for the compactness of the operator
V, : AP — L£*7 by modifying the proofs provided for the main theorem.

2 Notation, definitions and preliminaries

Let |d¢| be the Lebesgue measure on 9D, dA(z) = Zdzdy be the normalized Lebesgue
measure on . For 0 < p < oo, the Hardy space H” and the Bergman space AP consist
of, respectively, all holomorphic functions f € H(ID) satisfying, respectively

d
Pl <o and ity = [ 1P dAE) < o0

1f P = sw | £ (r¢)
For p = oo, we say that f € H* = A* if f is a bounded holomorphic function on D.
For o > 0, the Bloch type space B* is the set of all analytic functions ¢ on D such
that

sup |¢'(2)|(1 — [2[)* < o0
zeD

Define B* = {constants} if a < 0.
Let f € H?. Tt is well known that f has the boundary value f(¢) = lim, _;_ f(r¢)
for all ¢ € OD. For s € R, define the Morrey space £2° to be the sets of all f € H?

such that
1 2 |d(]|
— — <
arc 1COD |]|8 /]’f(c—) f]| 2T

sup

Here |I| = [, |d¢|/(2m) is the normalized length of arc I, f; = ﬁ [ F(©) ‘dd It is clear

that £2° = H? if s <0, £L>' = BMOA, and £%* is Bloch type space if s > 1. Therefore
0 < s < 1 is the most interesting range for Morrey space £2°.
The Carleson square based on an arc [ in D is defined by

S(I)={z€D:|z|>1—|I| and z/|z| € I}.
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For fixed s > 0, a non-negative measure p on I is called an s—Carleson measure if
there exists a C' > 0 such that

p(S(I) < C|I|° forallarc I C ID.

It is well known that 1—Carleson measures are related to BM O space (see, for example,
page 240 in [5]), and for s < 1, the s—Carleson measures are associated with Morrey
spaces and () spaces (see, for example, [13] and [14]). The following theorem is due to
Carleson 2| if p = ¢, and Duren [4] if ¢ > p.

Theorem A. Let 0 < p < g < o0 and p be a non-negative measure on . Then the
inequality

[Uera <clin . e
D
holds if and only if p is a %—C’arleson measure.

Part (2) of the following theorem (for 0 < s < 1) was proved in [13], the other parts
are either easy or well known.

Theorem B. Let s € R and ¢ be analytic on D. Let
dpg(2) = ¢/ (2)]” (1 = |2[)dA(2).
(1) If s <0, then p, is an s—Carleson measure if and only if o € H?;
(2) If 0 < s < 1, then p, is an s—Carleson measure if and only if p € L**;
(3) If 1 < s < 3, then p, is an s—Carleson measure if and only if ¢ € 832;5;
(4) If s > 3, then p, is an s—Carleson measure if and only if ¢ = constant.

Throughout this paper, C' and ¢ denote positive constants that may change from
one step to the next. We say that two positive functions a and b are equivalent, denoted
by a =< b, if there are two positive constants ¢ and C' such that ca < b < Ca.

3 Proof of Main Theorem

Let ¢, be a Mébius transformation of D such that ¢,(0) = a and ¢,(a) = 0. The
Bergman distance of z and w in D is defined by

) = Loe (L Pu(2)]
d(zw) 21g<1—\¢w<z>|)’

which is Mo6bius invariant. For fixed a € D and ¢ > 0, the Bergman disk of center a
and radius t is defined by

D(a,t) ={weD :d(w,a) < t},

1-|a|?
1—|a|2r2’

e2t—1

where r = 2t

. . . . _p2 .
which is also a Euclidean disk of center %a and radius r
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Geometries associated with the Bergman distance are useful in the study of holo-
morphic spaces and the operator theory. It is standard that for fixed a € D

1—az| < (1—|2]) < (1—|a]), Vz € D(a,t). (3.1)

If |D(a,t)| is the the area of D(a,t) with respect to dA(z), then the we have clearly
D(a, )] = / dA() = (1—la))?, VaeD. (3.2)
D(a,t)

For f € H(D) and r,t > 0, it is standard that the following mean value inequality
holds:

re ¢ w)|" dA(w z
N < (B o, FOOT dA), vz eD. (33

Proof of Main Theorem, part (1). Suppose ¢ > 1 — % and ¢ € B, By Theorem

B, we need to show that the measure

duv,(5)(2) = Vo (F) ()" (1 = |2D)dAz) = [f ()P &' ()] (1 = [2])dA(2)

is a g-Carleson measure for any f € AP.
3—q 2
Since |¢'(2)| (1 —|z]) 2 "7 < C holds for all z € D, we have

10 ()1 = |2) <O — |20, VzeD.

Hence for any arc I C 0D, we have
tven(S() = /S FEP ()] (1= |2])dA(2)

(I)
< O IfEPA =) PdA(2)
S(I)

p—2

< (] § If(2)|pdA(Z))Z (/ - )P ae)

. 2 . .
Since ¢ > 1 — = implies ]% > 1, we have clearly

/ (1—|2))7 2 2dA(2) = C|I|7=.
S(I)

Therefore
v (S(D) < C N f 1% 11
Suppose now ¢ > 1 — % and V,, : A» — £*7 is bounded. We need to show that
©E Bg%q_%. By Theorem B, we know that the measure ]f(z)]2 |g0’(z)]2 (1 — |z|)dA(z)

is a ¢-Carleson measure for any f € A?.
For a € D, let f,(z) = ——% It is easy to check that

2
(1-az)'*?

fall o <1, VYaeD.
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Let I(a) be the arc of center a/|a| and length 1 — |a|. We have, for small enough
t>0

/D L IBEPIFEP 0~ i)

N

[ IR@PEN - DA
5(I(a))

< COlfalll (@)
< CO(1—|a]).

By (3,1), (3.2) and (3.3), we can conclude that
10/ (@)? (1= |a))* 7 < C(1—|a])?, forall a€D.
This is enough to obtain the desired result. O

We need atomic decomposition theorem for Bergman spaces in order to prove part
(2) of the main theorem.

It is well-known (see for example [3|) that for every > 0, there exists a distinct
sequence {z;} in D, called a d—lattice, such that d(z;, z;) > 0/5 if j # k, and

UD(zj,(S) =D and ZXD(Z].,&;)(Z) <L, VzeD. (3.4)
J J

Here, L > 0 is a uniform constant and y g is the characteristic function of a set E. The
following theorem is due to Rochberg [9].

Theorem C. Letp > 0. There exists g > 0 such that for any 6 € (0,0), any d—lattice
{z;} in D, and any m > max{—1,2(1 — 1/p)}, the following statements hold.

(B.1) If f € AP, then there exists {a;} € (7 with |[{a;}|,, < C| f|| 4 such that

f(Z) _ Zaj (1 - |Z]Dm '

Sk

(B.2) If{a;} € (7, then the function f defined by the above series converges in AP and
1 llar < Cl{asHlp-

Proof of Main Theorem, part (2). Suppose 0 < g < 1 — 120 and the measure
/ % e
¥/ (2)[7=2 (1 — |2[)72dA(2)
is a I%—Carleson measure. By Theorem B, we need to show that the measure

duv,(p)(2) = Vo (F) ()" (1 = 21)dAGz) = | F () &' ()] (1 = |2])dA(2)

is a ¢-Carleson measure for any f € AP.
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For an arc I C 0D, we have

pvan(SU)) = L(I)If(2)|2|w’(2)l2(1—IZI)dA(Z)

< ([, weraace)’
<( [, @ 0=l *
< I (1)

= CIIfI 11

This is the desired result.
To prove the “only if" part, let I be a arc on dD. By Theorem B, we know that the
measure

dpv,(p)(2) = [F P IF G (1 = [2])dA(z)

is a g-Carleson measure for any f € AP.
We start with the estimate

/S(I) @19 (2)° (1= [2)dAR) S O fl% . VF e A (3.5)

If p = 00, then (3.5) implies clearly the desired result. Therefore we consider p < oo.
In the following, we will employ Theorem C and Khinchine’s inequality to refine
the above estimate. This idea was first used by Luecking in [8] (see also [10, 12]).
For z € [0,1), let 7;(x) = ro(2x), j =1,2,--- with

i 17 Ogy—[y]<1/2;
roly) = ~1, 1/2<y—[y <L

Khinchine’s inequality says: for any 0 < p < oo and integer N > 0, there exists ¢, > 0

such that
N p/2 1| N p 1 N p/2
o(Ser) <[ ane] et (Ser)
=0 0 1j=0 P \j=0
Let {z;} be a 0—lattice in D, m > max{—1,2(1 —1/p)} (> 0), and

(1—[zD™
2
(1—zz)""%

f](z): j:1a27

By Theorem C, we know that for sufficient small 6 > 0, and any A = {);} € (7, the

function
fa(z) = Z Aifi(2)
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is a function in AP and

[fallap < CHIA -
For every z € [0,1), let A(z) = {A\;r;(z)}. It is clear that

IA@) [l = 1M, Y € [0, 1).
Replacing f(2) by faw)(2) in the estimate (3.5), we have

/S(I) s @] 19 P (1= [2)dAR) < C I [ faw Ly < CHITIAIG -

Integrating both sides of the above inequality over [0, 1) with respect to x, and then
using Khinchine’s inequality, we obtain

/ Z|>\| 5@ 1) (1= [2)dA(z) < O " AIZ -
For convenience, write D; = D(z;,d). By the estimate (3.1), we know

[ IR IFER A= 120246 < 0=l [ PP - i)

Hence the above estimate implies

|A|
- [P = [2)dAG)
j§:D; CS(I |z] p/
= F 1A P 1o () (1 = [=))dA(2)
j:Dj CS / 90
< c Z /Zmr )P 16 () (1= 2 dA(:)
§:D;CS(I)

(by (34)) < CL /S(]) S INPIHEP 191 (1= |2)dA(2)
J
< CHI" A -
This further implies, by the duality relation of £% and EP%?, that

1—2
£ p

2. (1_%' 2/ ¢/ (2)° (1 = [2])dA(z )) <O

j:D;CSI)

By (3.1), (3,2) and (3.3), we have for each j =1,2,--- and z € D;

' ()7 (1= J2]) S C(L = %)) / [ (W) (1 = w])dA(w).
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Therefore
/D ()P (1 |2])72dA(2)

< OIDy (1 - |57 </ (2 1—|z|>dA<>)p

p

~ ( / () (1 — 2D Az )),,'
(1= l21])7

Y [, R0 A <ol 36)

or equivalently

j:D;CS(I
For an arc I, let J; ={j : D; N S(I) # @}. Clearly
c |J b
JEJI

Let I be the smallest arc on D such that

| D; c s

JjeJr

It is not hard to see that I € I and |I| < |I|. Since estimate (3.6) holds for any arc I,
we have

/ )7 (1— |2]) P2 dA(2)
S(I)
< /|90 )7 (1 — |2]) 2 dA(2)

JEJT
< ¥ [ WEEa- e
j:D;C8(h) "I
< Ol
< C|I|s
The above is enough to conclude the desired result. O

For o > 0, the little Bloch type space B is the set of all analytic functions ¢ € B
such that

Tim [¢(I(1— |2 =

For fixed s > 0, a non-negative measure p on D is called a compact s—Carleson
measure if it is an s-Carleson measure and satisfies

p(SI))
o I =0

To end this paper, we state the following theorem, which can be proved similarly.
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Theorem 3.1. Suppose 2 < p<ooand<q< 1.

1N

3-q_
(1) Forq>1— %, V, o AP — L9 is compact if and only if ¢ € B, 7.

(2) Forq<1-— %, Vy, : AP — L>9 s compact if and only if the measure

1¢/(2)[772 (1 — |2]) 72 dA(2)

is a compact I%—Carleson measure.

143
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