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Abstract. It is proved that in one of the popular definitions of general local and
global Morrey-type spaces the functional parameter which enters these definitions can
be replaced, without essential loss of generality, by another one, which has better
regularity properties.

1 Introduction

In the last three decades there is a great interest in studying general Morrey-type
spaces, operators acting in such spaces, and applications to real analysis and to the
theory of partial differential equations. See, for example, recent survey papers [1, 2, 7,
8, 9, 10, 11, 12, 13].

One of popular definitions of such spaces is as follows. Let B(x, r) denote the open
ball in Rn centered at x ∈ Rn of radius r > 0.

Definition 1. Let 0 < p, θ 6 ∞ and let w be a non-negative Lebesgue measurable
function on (0,∞). Then LMpθ,w(·) ≡ LMpθ,w(·)(Rn) is the local Morrey-type space, the
space of all functions f Lebesgue measurable on Rn with finite quasi-norm

‖f‖LMpθ,w(·) =
∥∥w(r)‖f‖Lp(B(0,r))

∥∥
Lθ(0,∞)

.

Furthermore, GMpθ,w(·) ≡ GMpθ,w(·)(Rn) is the global Morrey-type space, the space
of all functions f Lebesgue measurable on Rn with finite quasi-norm

‖f‖GMpθ,w(·) = sup
x∈Rn

‖f(x+ ·)‖LMpθ,w(·) = sup
x∈Rn

∥∥w(r)‖f‖Lp(B(x,r))

∥∥
Lθ(0,∞)

.

The first natural question which arises is to find out for which functions w the spaces
LMpθ,w(·) and GMpθ,w(·) are nontrivial, i. e. consist not only of functions equivalent to
0 on Rn. In order to formulate the answer to this question the following definition is
required.



126 T.V. Tararykova

Definition 2. Let 0 < p, θ 6 ∞. Then Ωθ is the set of all functions w which are
non-negative, Lebesgue measurable on (0,∞), not equivalent to 0 on (t,∞) for any
t > 0, and such that for some t > 0

‖w(r)‖Lθ(t,∞) <∞. (1.1)

Furthermore, Ωpθ is the set of all functions w which are non-negative, Lebesgue mea-
surable on (0,∞), not equivalent to 0 on (t,∞) for any t > 0, and such that some
t > 0 ∥∥w(r)rn/p

∥∥
Lθ(0,t)

<∞ , ‖w(r)‖Lθ(t,∞) <∞ , (1.2)

or, which is equivalent, ∥∥∥w2(r)

(
r

t+ r

)n
p ∥∥∥

Lθ2
(0,∞)

<∞ . (1.3)

Note that if condition (1.2) is satisfied for some t > 0, then it is also satisfied for all
t > 0. (Hence condition (1.3) is also satisfied for all t > 0.) Indeed, if 0 < τ 6 t then 1

‖w(r)r
n
p ‖Lθ(0,τ) 6 ‖w(r)r

n
p ‖Lθ(0,t) <∞ ,

and

‖w(r)‖Lθ(τ,∞) 6 2

(
1
θ
−1

)
+
(
‖w(r)‖Lθ(τ,t) + ‖w(r)‖Lθ(t,∞)

)
6 2

(
1
θ
−1

)
+
(
τ−

n
p ‖w(r)r

n
p ‖Lθ(0,t) + ‖w(r)‖Lθ(t,∞)

)
<∞ .

Also, if t < τ <∞ then

‖w(r)‖Lθ(τ,∞) 6 ‖w(r)‖Lθ(t,∞) <∞ ,

and

‖w(r)r
n
p ‖Lθ(0,τ) 6 2

(
1
θ
−1

)
+
(
‖w(r)r

n
p ‖Lθ(0,t) + ‖w(r)r

n
p ‖Lθ(t,τ)

)
6 2

(
1
θ
−1

)
+
(
‖w(r)r

n
p ‖Lθ(0,t) + τ

n
p ‖w(r)‖Lθ(t,∞)

)
<∞ .

Let, for a function w ∈ Ωθ,

a = inf{t > 0 : ‖w‖Lθ(t,∞) <∞} .

By the above it follows that if w ∈ Ωpθ then a = 0.

Lemma. ([4], [5]) Let 0 < p, θ 6 ∞ and let w be a non-negative Lebesgue mea-
surable function on (0,∞), which is not equivalent to 0 on (t,∞) for any t > 0.

Then the space LMpθ,w(·) is non-trivial if and only if w ∈ Ωθ, and the space GMpθ,w(·)
is non-trivial if and only if w ∈ Ωpθ.

Moreover, if w ∈ Ωθ , then the space LMpθ,w(·) contains all functions f ∈ Lp(Rn)
such that f = 0 on B(0, t) for some t > a. If w ∈ Ωpθ, then

Lp(Rn) ∩ L∞(Rn) ⊂ GMpθ,w(·) .

1 As usual, α+ = max{α, 0} for α ∈ R.
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2 Main result

If a > 0 then f ∈ LMpθ,w(·) if and only if f ∈ Lloc
p (Rn), f is equivalent to 0 on B(0, a),

and
‖f‖LMpθ,w(·) =

∥∥w(r)‖f‖Lp(B(0,r))

∥∥
Lθ(a,∞)

<∞ .

If w ∈ Ωθ then it may happen that w is equivalent to zero on certain subintervals of
(a,∞) which is not convenient for some applications. This drawback can be overcome if
one replaces w by a function w̃ which is positive on (a,∞) and is such that ‖f‖LMpθ,w(·)

and ‖f‖LMpθ,w̃(·) are sufficiently close. More precisely, the following statement holds.
Let Ω+

θ and Ω+
pθ be the sets of all positive on (0,∞) functions w ∈ Ωθ, w ∈ Ωpθ

respectively.

Theorem 2.1. Let 0 < p, θ 6 ∞.
If θ < ∞ and w ∈ Ωθ, then for each ε > 0 there exists a function wε ∈ Ω+

θ such
that wε > w on (0,∞), LMpθ,wε(·) = LMpθ,w(·), and

‖f‖LMpθ,w(·) 6 ‖f‖LMpθ,wε(·) 6 (1 + ε)‖f‖LMpθ,w(·) (2.1)

for all f ∈ LMpθ,w(·).
If θ = ∞ and w ∈ Ω∞, then there exists a function w̃ ∈ Ω+

∞ such that w̃ > w on
(0,∞), LMp∞,w̃(·) = LMp∞,w(·), and

‖f‖LMp∞,w̃(·) = ‖f‖LMp∞,w(·) (2.2)

for all f ∈ LMp∞,w(·). Also there exists a function w̄ ∈ Ω+
∞ such that w̄ > w almost

everywhere on (0,∞), w̄ is non-increasing and continuous on the right on (a,∞),
LMp∞,w̄(·) = LMp∞,w(·), and equality (2.2) holds with w̃ replaced by w̄.

Moreover, a similar statement holds if everywhere Ωθ and Ω+
θ are replaced by Ωpθ

and Ω+
pθ, and local Morrey-type spaces LM are replaced by global Morrey-type spaces

GM .

Proof. 1. First, let w ∈ Ωθ. Let bk = a+ k − 1, k ∈ N. We set

uθ =

{
1 if r ∈ (0, a],

2−
k
θ ‖w‖Lθ(bk,∞) if r ∈ (bk−1, bk], k ∈ N, (2.3)

Furthermore, if θ <∞ for ε > 0 we set

wε = w1,ε, (2.4)

where
w1,ε(r) =

(
wθ(r) + δuθ

θ(r)
) 1

θ , r ∈ (0,∞), (2.5)

and δ = (1 + ε)θ − 1.
Clearly wε > w on (0,∞) and wε > 0 on (0,∞).
Moreover, for all t > a

‖wε‖θ
Lθ(t,∞) = ‖w1,ε‖θ

Lθ(t,∞) 6

∞∫
t

wθ(r)dr + δ
∑

k: bk>t

2−k

∞∫
bk

wθ(r)dr
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6

∞∫
t

wθ(r)dr + δ
( ∑

k: bk>t

2−k
) ∞∫

t

wθ(r)dr 6 (1 + δ)

∞∫
t

wθ(r)dr ,

therefore

‖w‖Lθ(t,∞) 6 ‖wε‖Lθ(t,∞) 6 (1 + δ)
1
θ ‖w‖Lθ(t,∞) = (1 + ε)‖w‖Lθ(t,∞) <∞ .

Hence wε ∈ Ω+
θ .

2. Furthermore, for all f ∈ LMpθ,w(·), taking into account that f is equivalent to 0
on B(0, a), we get

‖f‖θ
LMpθ,wε(·)

= ‖f‖θ
LMpθ,w1,ε(·)

=

∞∫
a

(
w1,ε(r)‖f‖Lp(B(0,r))

)θ
dr

=

∞∫
a

(
w(r)‖f‖Lp(B(0,r))

)θ
dr + δ

∞∑
k=1

2−k

( ∞∫
bk

wθ(r)dr

) bk∫
bk−1

(
‖f‖Lp(B(0,r))

)θ
dr

6 ‖f‖θ
LMpθ,w(·)

+ δ
∞∑

k=1

2−k

(
‖f‖θ

Lp(B(0,bk)

∞∫
bk

wθ(r)dr

)

6 ‖f‖θ
LMpθ,w(·)

+ δ
∞∑

k=1

2−k

( ∞∫
bk

wθ(r)‖f‖θ
Lp(B(0,r))dr

)

6 ‖f‖θ
LMpθ,w(·)

+ δ
( ∞∑

k=1

2−k
)
‖f‖θ

LMpθ,w(·)
= (1 + δ)‖f‖θ

LMpθ,w(·)
.

Therefore

‖f‖LMpθ,w(·) 6 ‖f‖LMpθ,wε(·) 6 (1 + δ)
1
θ ‖f‖LMpθ,w(·) = (1 + ε)‖f‖LMpθ,w(·) .

3. If θ = ∞ we can, in the spirit of Step 1, set

w̃(r) = max{w(r), u∞(r)} , r ∈ (0,∞),

and prove that w̃ ∈ Ω+
∞ and equality (2.2) holds. Also, clearly, w̃ > w. However, there

is no guarantee that w̃ is non-increasing and continuous on the right on (a,∞).
For this reason we shall use a different approach for constructing the functions w̄

and w̃. Let
w̄(r) =

{
max{w(r), 1} if r ∈ (0, a],
‖w‖L∞(r,∞) if r ∈ (a,∞).

(2.6)

Clearly, 0 < w̄(r) < ∞ on (0,∞) and w̄ is non-increasing on (a,∞). Also by the
properties of essential supremums it follows that w̄ is continuous on the right on (a,∞).
Moreover, for all t > a

‖w̄‖L∞(t,∞) = ‖‖w‖L∞(r,∞)‖L∞(t,∞) 6 ‖w‖L∞(t,∞) <∞ ,



Comments on definitions of general local and global Morrey-type spaces 129

hence w̄ ∈ Ω+
θ .

Note that w(r) 6 w̄(r) for almost all r > 0. Indeed, assume to the contrary that
the Lebesgue measure |A| of the set A = {r ∈ (a,∞) : w(r) > w̄(r)} is positive. Let,
for ε > 0, Aε = {r ∈ (a,∞) : w(r) > w̄(r) + ε}. Since Aε1 ⊂ Aε2 if ε1 > ε2 > 0 and⋃

ε>0Aε = A, it follows that |Aε| > 0 for some ε > 0. Moreover, for this ε there exists
r ∈ Aε such that |Aε ∩ (r, r + ε)| > 0 for all δ > 0. Therefore for this r for all δ > 0

w̄(r) = ‖w‖L∞(r,∞) > ‖w‖L∞(Aε∩(r,r+δ)) = ess sup%∈Aε∩(r,r+δ)w(%)

> ess sup%∈Aε∩(r,r+δ)(w̄(%) + ε) > w̄(r + δ) + ε .

Since w̄ is continuous on the right on (a,∞), by passing to the limit as δ → 0+, we
arrive at a contradiction.

Therefore for any f ∈ LMp∞,w(·)

‖f‖LMp∞,w(·) =
∥∥w(r)‖f‖Lp(B(0,r))

∥∥
L∞(a,∞)

6
∥∥w̄(r)‖f‖Lp(B(0,r))

∥∥
L∞(a,∞)

= ‖f‖LMp∞,w̄(·) =
∥∥‖w(%)‖L∞(r,∞)‖f‖Lp(B(0,r))

∥∥
L∞(a,∞)

6
∥∥‖w(%)‖f‖Lp(B(0,%))‖L∞(r,∞)

∥∥
L∞(a,∞)

6 ‖w(%)‖f‖Lp(B(0,%))‖L∞(a,∞) = ‖f‖LMp∞,w(·) ,

hence equality (2.2) follows with w̃ replaced by w̄.
Since the function w̃ defined by

w̃(r) = max{w(r), w̄(r)}, r > 0, (2.7)

is equivalent to w̄ on (0,∞), it satisfies the requirements of the theorem.
4. Next, let w ∈ Ωpθ with θ < ∞. In this case a = 0. Let τ > 0 be such that w is

not equivalent to 0 on (0, τ), let b∗k = max{bk, τ}, and let

vθ = 2−
k
θ ‖w(r)r

n
p ‖Lθ(0,b∗k−1) if r ∈ (bk−1, bk], k ∈ N. (2.8)

Furthermore, if θ <∞ we set for ε > 0

wε = min{w1,ε, w2,ε} (2.9)

where w1,ε is the same as in Step 1 and

w2,ε(r) =
(
wθ(r) + δvθ

θ(r)
) 1

θ , r ∈ (0,∞). (2.10)

Then by Step 1 for all t > 0

‖wε‖Lθ(t,∞) 6 ‖w1,ε‖Lθ(t,∞) 6 (1 + ε)‖w‖Lθ(t,∞) <∞ .

Moreover,
‖wε(r)r

n
p ‖θ

Lθ(0,t) 6 ‖w2,ε(r)r
n
p ‖θ

Lθ(0,t)

6

t∫
0

(
w(r)r

n
p
)θ
dr + δ

∑
k: b∗k−1<t

2−k

b∗k−1∫
0

(
w(r)r

n
p
)θ
dr
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6

t∫
0

(
w(r)r

n
p
)θ
dr + δ

( ∞∑
k=1

2−k
) max{t,τ}∫

0

(
w(r)r

n
p
)θ
dr

= (1 + δ)

max{t,τ}∫
0

(
w(r)r

n
p
)θ
dr ,

therefore

‖w(r)r
n
p ‖Lθ(0,t) 6 ‖wε(r)r

n
p ‖Lθ(0,t) 6 (1 + ε)‖w(r)r

n
p ‖Lθ(0,max{t,τ}) <∞ .

Hence wε ∈ Ω+
pθ.

5. If θ = ∞, ∈ Ωp∞ and τ is the same as in Step 4, we set

w̄ =

{
r−

n
p ‖w(%)%

n
p ‖L∞(r,2τ) if r ∈ (0, τ),

‖w(%)‖L∞(r,∞) if r ∈ [τ,∞),
(2.11)

where
c = τ

n
p ‖w(%)%

n
p ‖−1

L∞(τ,2τ)‖w(%)‖L∞(τ,∞) .

Clearly, w̄ is positive and non-increasing on (0,∞). Moreover, by the properties of
essential supremums it follows that w̄ is continuous on the right on (0,∞).

Similarly to Step 3
‖w̄‖L∞(τ,∞) 6 ‖w‖L∞(τ,∞) <∞ .

Also

‖w̄(r)r
n
p ‖L∞(0,τ) = c ‖‖w(%)%

n
p ‖L∞(r,2τ)‖L∞(0,τ) 6 ‖w(%)%

n
p ‖L∞(0,2τ) <∞ .

Hence w̄ ∈ Ω+
pθ.

6. By Step 2 it follows that for θ <∞

‖f‖GMpθ,w(·) 6 ‖f‖GMpθ,wε(·) 6 ‖f‖GMpθ,w1,ε(·) = sup
x∈Rn

∥∥w1,ε(r)‖f‖Lp(B(x,r))

∥∥
Lθ(0,∞)

6 (1 + ε) sup
x∈Rn

∥∥w(r)‖f‖Lp(B(x,r))

∥∥
Lθ(0,∞)

= (1 + ε)‖f‖GMpθ,w(·) ,

because the argument of Step 2 does not change if the ball B(0, r) is replaced by the
ball B(x, r). If θ = ∞ then similarly

‖f‖GMp∞,w(·) 6 ‖f‖GMp∞,w̄(·) = sup
x∈Rn

∥∥w̄(r)‖f‖Lp(B(x,r))

∥∥
L∞(0,∞)

6 sup
x∈Rn

∥∥w(r)‖f‖Lp(B(x,r))

∥∥
L∞(0,∞)

= ‖f‖GMp∞,w(·) ,

hence
‖f‖GMp∞,w̄(·) = ‖f‖GMp∞,w(·) .
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3 Applications

The meaning of Theorem 2.1 is that without essential loss of generality one may assume
that in Definition 2 the function w belongs to Ω+

θ for the case of local Morrey-type
spaces and w belongs to Ω+

pθ for the case of global Morrey-type spaces.
Clearly Theorem 2.1 allows reducing the problem of boundedness of a certain op-

erator A from one local Morrey-type space LMp1θ1,w1(·) to another one LMp2θ2,w2(·) for
w1 ∈ Ωθ1 and w2 ∈ Ωθ2 to the case in which w1 ∈ Ω+

θ1
and w2 ∈ Ω+

θ2
or from one

global Morrey-type space GMp1θ1,w1(·) to another one GMp2θ2,w2(·) for w1 ∈ Ωp1θ1 and
w2 ∈ Ωp2θ2 to the case in which w1 ∈ Ω+

p1θ1
and w2 ∈ Ω+

p2θ2
.

Indeed, assume, for example, that for a certain class F (p1, θ1, p2, θ2) of pairs w1 ∈
Ω+

θ1
and w2 ∈ Ω+

θ2
the inequality

‖Af‖LMp2θ2,w2(·) 6 c(w1, w2) ‖f‖LMp1θ1,w1(·) (3.1)

holds, where c(w1, w2) > 0 is independent of f ∈ LMp1θ1,w1(·).
Next, let w1 ∈ Ωθ1 and w2 ∈ Ωθ2 . Consider the functions w1,ε ∈ Ω+

θ1
and w2,ε ∈ Ω+

θ2

constructed in the proof of Theorem 2.1 for all sufficiently small ε > 0. Assume that
the class F (p1, θ1, p2, θ2) is such that the pairs w1,ε, w2,ε belong to it for all such ε. Then
by (3.1)

‖Af‖LMp2θ2,w2(·) 6 ‖Af‖LMp2θ2,w2,ε
(·)

6 c(w1,ε, w2,ε) ‖f‖LMp1θ1,w1,ε
(·) 6 c(w1,ε, w2,ε)(1 + ε) ‖f‖LMp1θ1,w1

(·) ,

hence A is bounded from LMp1θ1,w1(·) to LMp2θ2,w2(·).
Moreover, it may happen that lim

ε→0+
c(w1,ε, w2,ε) = c(w1, w2) in which case we arrive

at inequality (3.1).
In many cases for a proof of inequality (3.1) or of more complicated inequalities

of such type it is not important whether w1 ∈ Ω+
θ1

, w2 ∈ Ω+
θ2

or w1 ∈ Ωθ1 , w2 ∈
Ωθ2 . However, it may happen that there are difficulties in giving direct proof of such
inequalities for all w1 ∈ Ωθ1 and w2 ∈ Ωθ2 . This is the case in paper [3] where the
following interpolation theorem is stated.

Theorem 3.1. Let 0 < p, q0, q1, q <∞, q0 6= q1, 0 < θ < 1,

1

q
=

1− θ

q0
+
θ

q1
,

and w ∈ Ω+
1 . Then (

LM
pq0,w

1
q0 (·)

, LM
pq1,w

1
q1 (·)

)
θ,q

= LM
pq,w

1
q (·)

. (3.2)

Moreover, there exist c1, c2 > 0 depending only on p, q0, q1 and θ such that

c1 ‖f‖LM

pq,w
1
q (·)

6 ‖f‖(
LM

pq0,w
1
q0 (·)

, LM

pq1,w
1
q1 (·)

)
θ,q

6 c2 ‖f‖LM

pq,w
1
q (·)

(3.3)

for all f ∈ LM
pq,w

1
q (·)
.
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The proof outlined in [3] is based on the equality

‖f‖LMpσ,u(·) = ‖f‖
LM

v(·)
pσ
≡
( ∞∫

α

(‖f‖Lp(B(0,r))

v(r)

)σ
dv(r)

v(r)

) 1
σ

,

where 0 < σ <∞,

v(r) = σ−
1
σ ‖u‖−1

Lσ(r,∞) , a < r <∞ , α = lim
r→a+

v(r) ,

which holds only if u ∈ Ω+
σ . (For such u the function v is positive locally absolutely

continuous and strictly increasing on (a,∞) which allows changing variables in order
to obtain the above equality.)

Theorem 3.2. Theorem 3.1 holds for any w ∈ Ω1. Moreover, inequality (3.3) holds
for w ∈ Ω1 with the same c1, c2 as in Theorem 3.1.

Proof. Consider the functions uθ defined by equality (2.3) for θ = 1, q0, q1. Then it
follows that

uqm = (u1)
1

qm , m = 1, 2.

Let
νε(r) = w(r) + γu1(r) , r ∈ (0,∞),

where γ = min{δ0, δ1}, δm = (1 + ε)qm − 1,m = 1, 2.
Hence by formulas (2.3)–(2.5) with θ = qm and δ = δm(

w
1

qm

)
ε
=
((
w

1
qm

)qm
(r) + δm(uqm)qm

) 1
qm

= (w(r) + δmu1(r))
1

qm > (w(r) + γu1(r))
1

qm = (νε)
1

qm .

So
(νε)

1
qm 6

(
w

1
qm

)
ε
, m = 1, 2.

Therefore by the left-hand-side inequality in (3.3) and inequality (2.1)

c1 ‖f‖LM

pq,w
1
q (·)

6 c1 ‖f‖LM

pq,(νε )
1
q (·)

6 ‖f‖(
LM

pq0,(νε )
1
q0 (·)

, LM

pq1,(νε )
1
q1 (·)

)
θ,q

=
∥∥∥ inf

f=f0+f1

(
‖f0‖LM

pq0,(νε )
1
q0 (·)

+ t ‖f1‖LM

pq1,(νε )
1
q1 (·)

)∥∥∥
Φθ,q

6
∥∥∥ inf

f=f0+f1

(
‖f0‖LM

pq0,

(
w

1
q0

)
ε
(·)

+ t ‖f1‖LM

pq1,

(
w

1
q1

)
ε
(·)

)∥∥∥
Φθ,q

6 (1 + ε)
∥∥∥ inf

f=f0+f1

(
‖f0‖LM

pq0,w
1
q0 (·)

+ t ‖f1‖LM

pq1,w
1
q1 (·)

)∥∥∥
Φθ,q

= (1 + ε)‖f‖(
LM

pq0,w
1
q0 (·)

, LM

pq1,w
1
q1 (·)

)
θ,q

. (3.4)
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Here the infimum is taken over all representations f = f0 + f1 where

f0 ∈ LM
pq0,w

1
q0
ε (·)

= LM
pq0,w

1
q0 (·)

and f1 ∈ LM
pq0,w

1
q1
ε (·)

= LM
pq0,w

1
q1 (·)

.

Furthermore, let δ = (1 + ε)
1
q − 1. Since q lies between q0 and q1 we have δ > γ

and by formulas (2.3)–(2.5)(
w

1
q
)

ε
= (w(r) + δu(r))

1
q > (w(r) + γu1(r))

1
q = (νε)

1
q .

Hence by the right-hand-side inequality in (3.3) and inequality (2.1)

‖f‖(
LM

pq0,w
1
q0 (·)

, LM

pq1,w
1
q1 (·)

)
θ,q

6 ‖f‖(
LM

pq0,(νε )
1
q0 (·)

, LM

pq1,(νε )
1
q1 (·)

)
θ,q

6 c2 ‖f‖LM

pq,(νε )
1
q (·)

6 c2 ‖f‖LM

pq,

(
w

1
q

)
ε
(·)

6 (1 + ε) c2 ‖f‖LM

pq,w
1
q (·)

. (3.5)

Since c1 and c2 are independent of ε, by passing to the limit in (3.4) and (3.5) as
ε→ 0+, we get inequality (3.3).
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