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Abstract. We discuss here a weak and strong type estimate for fractional integral
operators on Morrey spaces over metric measure spaces, where the underlying measure
does not always satisfy the doubling condition.

1 Introduction

The aim of this paper is to propose a framework of Morrey spaces and fractional integral
operators on a metric measure space (X, d, µ), where µ is a Radon measure.

We recall that the Riesz potential Iα on Rd is given by

Iαf(x) =

∫
Rd

f(y)

|x− y|d−α
dy.

According to the Hardy-Littlewood-Sobolev theorem [2, 3, 10], Iα is bounded from
Lp(Rd) to Lq(Rd) as long as p, q ∈ (1,∞) satisfy 1

q
= 1

p
− α

d
. Morrey spaces, named

after C. Morrey, can also be used to describe the boundedness property of Iα. Here
we adopt the following notation to denote Morrey spaces. Let 1 6 q 6 p < ∞. For a
measurable function f on Rd, we define

‖f‖Mp
q

:= sup
{
|B|

1
p
− 1

q ‖f‖Lq(B) : B is a ball
}
.

The space Mp
q(Rd) denotes the set of all measurable functions f for which the norm

‖f‖Mp
q

is finite. According to Adams [1], Iα is bounded from Mp
q(Rd) to Ms

t(Rd),
provided that p, q, s, t ∈ (1,∞) satisfy p

q
= t

s
, 1

q
= 1

p
− α

d
.

In this paper, we aim to show that this theorem is independent from the geometric
structure of Rd by extending it to metric measure spaces, where all we have are the
distance function d and the Radon measure µ.

Let (X, d, µ) be a metric measure space with a distance function d and a Borel
measure µ. Recall that the measure µ is a doubling measure if it satisfies the so-called
doubling condition, that is, there exists a constant C > 0 such that

µ(B(a, 2r)) 6 Cµ(B(a, r)) (1.1)
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for every ball B(a, r) with center a ∈ X and radius r > 0. The doubling condition was
a key property in classical harmonic analysis but around a decade ago, it turned out
to be unnecessary. The point is that we modify the related definitions. Indeed, in the
present paper, we propose to redefine the fractional integral operator by

Iαf(x) :=

∫
X

f(y)

µ(B(x, 2d(x, y)))1−α
dµ(y). (1.2)

Note that the definition is independent of any notion of dimensions. The same can be
said for Morrey spaces, which we define now. For k > 0, 1 6 p < ∞ and f ∈ L1

loc(µ),
the norm is given by

‖f‖Mp
1(k,µ)

:= sup
{
µ(B(x, kr))1/p−1‖χB(x,r)f‖L1(µ) : x ∈ X, r > 0, µ(B(x, r)) > 0

}
,

where χB(x,r) denotes the characteristic function of the ball B(x, r).
We will prove here that Iα satisfies weak and strong type estimates on Morrey

spaces. Our main results are:

Theorem 1.1. If 1 < p <∞, 1 < s <∞, 0 < α < 1
p

and 1
s

= 1
p
− α, then there exists

C > 0 such that

µ{x ∈ B(a, r) : Iαf(x) > γ} 6 Cµ(B(a, 6r))1−1/p

(‖f‖Mp
1(2,µ)

γ

)s/p

for all positive µ-measurable functions f .

Theorem 1.2. If 1 < q 6 p <∞, 1 < s <∞, 0 < α < 1
p
, q

p
= t

s
and 1

s
= 1

p
− α, then

there exists C > 0 such that

‖Iαf‖Ms
t (6,µ) 6 C‖f‖Mp

q(2,µ)

for all positive µ-measurable functions f .

It hardly looks likely to replace 2d(x, y) with d(x, y) in the definition of fractional
integral operators and have the similar results according to the example in [9, Section 2].
The proof is a future work.

2 Main Results

We define, for k > 0, the centered maximal operator

Mkf(x) := sup
r>0

1

µ(B(x, kr))

∫
B(x,r)

|f(y)| dµ(y) (x ∈ supp(µ)).

For the maximal operator M2, we prove the following boundedness property on Morrey
spaces.
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Theorem 2.1. For any γ > 0, any positive µ-measurable function k and any ball
B(a, r),

µ{x ∈ B(a, r) : M2f(x) > γ} 6 4
µ(B(a, 6r))1−1/p

γ
‖f‖Mp

1(2,µ).

Proof. We actually prove the estimate

µ{x ∈ B(a, r) : M2f(x) > 2γ} 6 2
µ(B(a, 6r))1−1/p

γ
‖f‖Mp

1(2,µ). (2.1)

Once we prove that

µ{x ∈ B(a, r) : M2[χB(a,3r)f ](x) > γ} 6
µ(B(a, 6r))1−1/p

γ
‖f‖Mp

1(2,µ) (2.2)

and

µ{x ∈ B(a, r) : M2[χX\B(a,r)f ](x) > γ} 6
µ(B(a, 6r))1−1/p

γ
‖f‖Mp

1(2,µ), (2.3)

then estimate (2.1) follows automatically. Estimate (2.2) follows from the weak-L1(µ)
boundedness of M2 (see [8, 11]).

Denote by B(µ) the set of all balls with positive µ-measure. A geometric observation
shows that

M2[χX\B(a,3r)f ](x) 6 sup
B∈B(µ), B∩B(a,r) 6=∅,

B∩(X\B(a,3r)) 6=∅

1

µ(2B)

∫
B

|f(y)| dµ(y).

Let B be a ball which intersects both B(a, r) and X \ B(a, 3r). The ball B engulfs
B(a, r) if we double the radius of B. Thus,

µ(B(a, 6r))1/p−1µ{x ∈ B(a, r) : M2[χB(a,3r)f ](x) > γ}

6 µ(B(a, r))1/p−1 sup
B∈B(µ), B∩B(a,r) 6=∅,

B∩(X\B(a,3r)) 6=∅

1

µ(2B)

∫
B

|f(y)| dµ(y)

6 sup
B∈B(µ), B∩B(a,r) 6=∅,

B∩(X\B(a,3r)) 6=∅

µ(2B)1/p

µ(2B)

∫
B

|f(y)| dµ(y)

6 ‖f‖Mp
1(2,µ).

Thus, (2.3) follows.

Analogously, the following inequality holds:

Theorem 2.2. Let 1 < q 6 p <∞. Then there exists C > 0 such that

‖M2f‖Mp
q(6,µ) 6 C‖f‖Mp

q(2,µ)

for all positive µ-measurable functions f .
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The proof of Theorem 2.2 being similar to that of Theorem 2.1, we skip the proof,
which is based on the Lq(µ)-boundedness of M2 established in [8].

Next, we prove a Hedberg type estimate [4].

Theorem 2.3. If 1 < p <∞ and 0 < α < 1
p
, then there exists C > 0 such that

|Iαf(x)| 6 CM2f(x)1−pα‖f‖pα
Mp

1(2,µ)
(x ∈ X)

for all positive µ-measurable functions.

Proof. Let x ∈ X be fixed. We define

Rk(x) := inf
(
{R > 0 : µ(B(x, 2R)) > 2k} ∪ {∞}

)
.

Then, we have

|Iαf(x)|

6
∞∑

k=−∞

lim
ε↓0

∫
B(x,Rk(x))\B(x,Rk−1(x))

|f(y)|
µ(B(x, 2d(x, y) + ε))1−α

dµ(y)

6
∞∑

k=−∞

lim
ε↓0

∫
B(x,Rk(x))\B(x,Rk−1(x))

|f(y)|
µ(B(x, 2Rk−1(x) + ε))1−α

dµ(y)

=
∞∑

k=−∞

lim
ε↓0

1

µ(B(x, 2Rk−1(x) + ε))1−α

∫
B(x,Rk(x))\B(x,Rk−1(x))

|f(y)| dµ(y)

6
∑

k∈Z;Rk−1(x)<Rk(x)

lim
ε↓0

1

µ(B(x, 2Rk−1(x) + ε))1−α

∫
B(x,Rk(x))

|f(y)| dµ(y).

The condition Rk−1(x) < Rk(x) means that

2k−1 < µ(B(x, 2Rk−1(x) + ε)) 6 2k

for each ε ∈ (0, Rk(x)−Rk−1(x)). Therefore

|Iαf(x)| 6 C
∞∑

k=−∞

2kα min
(
M2f(x), 2−k/p‖f‖Mp

1(2,µ)

)
6 CMf(x)1−pα‖f‖pα

Mp
1(2,µ)

.

Thus, the estimate is proved.

Now we prove Theorem 1.1.

Proof. For |Iαf(x)| > γ, Theorem 2.3 gives us

M2f(x) >

(
γ

C‖f‖pα
Mp

1(2,µ)

)1/(1−pα)

.
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Hence, by applying Theorem 2.1, we obtain

µ{x ∈ B(a, r) : |Iαf(x)| > γ}

6 µ

x ∈ B(a, r) : M2f(x) >

(
γ

C‖f‖pα
Mp

1(2,µ)

)1/(1−pα)


6 Cµ(B(a, 6r))1−1/p‖f‖Mp
1(2,µ)

(
‖f‖pα

Mp
1(2,µ)

γ

)1/(1−pα)

6 Cµ(B(a, 6r))1−1/p
‖f‖1+αs

Mp
1(2,µ)

γs/p

6 Cµ(B(a, 6r))1−1/p

(‖f‖Mp
1(2,µ)

γ

)s/p

.

Thus, the proof is complete.

Theorem 1.2 can be proved in a similar way by using Theorem 2.3.
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