Eurasian Mathematical Journal

2013, Volume 4, Number 1

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation)

Published by

the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), O.V. Besov (Russia), B. Bojarski (Poland), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), R.C. Brown (USA), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), A.V. Mikhalev (Russia), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.D. Ramazanov (Russia), M. Reissig (Germany), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), B. Viscolani (Italy), Masahiro Yamamoto (Japan), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Executive Editor

D.T. Matin

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ will also publish survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Mathematical Reviews, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

Title page. The title page should start with the title of the paper and authors' names (no degrees). It should contain the Keywords (no more than 10), the Subject Classification (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the Abstract (no more than 150 words with minimal use of mathematical symbols).

<u>Figures</u>. Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

<u>Honorarium.</u> An honorarium will be paid to the authors (at 50 \$ per page, but no more than 2000 \$ for a paper) and to the reviewers (at 50 \$ per review). All papers will be edited with regard to usage of English. If severe editing is required, the honorarium may be reduced to 40 \$ per page. Papers may be submitted in Russian. They will be translated into English, and in this case the honorarium will be 25 \$ per page.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors. Only original papers are accepted for consideration. In particular, translations into English of papers already published in another language are not accepted. No other forms of scientific misconduct are allowed, such as plagiarism, falsification, incorrect interpretation of other works, incorrect citations, etc.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)

The Editorial Office

The L.N. Gumilyov Eurasian National University,

Main Building

Room 355

Tel.: +7-7172-709500 extension 31313

5 Munaitpasov Street

010008 Astana

Kazakhstan

Proceedings of the international workshop OPERATORS IN MORREY-TYPE SPACES AND APPLICATIONS (OMTSA 2011)

dedicated to 70th birthday of Professor V.I. Burenkov held through May 20-27, 2011 at the Ahi Evran University, Kirşehir, Turkey

Volume 2

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 4, Number 1 (2013), 65 – 75

ON DIMENSION-FREE INTEGRABILITY IMPROVEMENT FOR SOBOLEV EMBEDDINGS

M. Krbec, H.-J. Schmeisser

Communicated by D.D. Haroske

Key words: Sobolev space, embedding theorem, uncertainty principle, best constants for embeddings, logarithmic Lebesgue space.

AMS Mathematics Subject Classification: Primary 46E35; Secondary 46E30.

Abstract. We survey recent dimension-invariant embedding theorems for Sobolev spaces.

1 Introduction

We are interested in the inequalities

$$||f|L^p \log^{\alpha}(1+L)|| \le c||\nabla f|L^p||, \qquad f \in W_0^{1,p}(\Omega),$$
 (1.1)

and

$$\left(\int_{\Omega} |f(x)|^p V(x) \, dx\right)^{1/p} \leqslant c \left(\int_{\Omega} |\nabla f(x)|^p \, dx\right)^{1/p}, \qquad f \in W_0^{1,p}(\Omega), \tag{1.2}$$

where either Ω is a bounded domain in \mathbb{R}^N (specifically, Ω will be the unit cube in \mathbb{R}^N) or $\Omega = \mathbb{R}^N$ and V is a weight on Ω , that is, a.e. non-negative and locally integrable function on Ω . In some cases both the inequalities overlap as we shall see later.

Our primary concern is behaviour of the constant c in the right hand sides with respect to N. Naturally c must be independent of f and it might be dependent on Ω and p as it is usual in embedding theorems but we will study the case when the dimension grows. Recall the Sobolev embedding theorem, which states that $W_0^{1,p}(\Omega)$ $(1 \leq p < N)$, and if Ω has a sufficiently smooth boundary) is imbedded into $L^q(\Omega)$, where 1/q = 1/p - 1/N. Hence if $N \to \infty$, then $q \to p_+$ and there is a natural question about some residual improvement of the integrability independent of N, that is, some proper subspace of L^p , into which $W_0^{1,p}(\Omega)$ is embedded and the norm of the embedding is independent of N. Note in passing that such a target space, if exists at all, must lie outside the range of Lebesgue spaces. Let us also observe that one should be very careful when working with norms—the usual concept of equivalent norms usually includes dependence on the dimension without explicit warning (see also [36] for some observations in this direction).

Inequality (1.2) has been studied in \mathbb{R}^N or on domains in \mathbb{R}^N using various methods, in particular, in connection with a boom of weighted inequalities during the 1970s and

it is alternatively called the *trace inequality* or the *uncertainty principle*. It has found numerous applications in analysis.

As to (1.2) let us recall at least [1], [28], [29], [32], [18], [11], the special case N=2 in [12], [24], [2].

The question concerning independence of the dimension has also importance for instance in theory of contraction semigroups and finds applications in quantum physics (see e.g. [25] for some of the references).

Notation. We shall use standard notations for the Sobolev, Lebesgue, Lorentz and Orlicz spaces, the respective domain will be sometimes omitted if no confusion can arise. Sometimes we shall write $||f|L^p||$ etc. instead of $||f||_p$ and the like. We shall work with Sobolev spaces of functions with zero traces, defined as a completion of $C_0^{\infty}(\Omega)$ with respect to the norm $||\nabla f|L^p(\Omega)||$. Note that this space does not generally coincide with the space of functions in $W^{1,p}(\mathbb{R}^N)$ whose support is contained in $\overline{\Omega}$. Both spaces coincide e.g. if Ω has a Lipschitz boundary. (See, for example, Triebel [35], Theorem 4.30, p. 121 for a more general result.)

Various constants independent of functions will be often denoted by the same symbol c and the like.

If V is a weight in a domain $\Omega \subset \mathbb{R}^N$, then the weighted Lebesgue space $L^p(V) = L^p(V)(\Omega)$ is defined as the space of all measurable f on Ω with the finite norm $||f|L^p(V)|| = \left(\int_{\Omega} |f(x)|^p V(x) \, dx\right)^{1/p}$. If f is a measurable function in \mathbb{R}^N , then f^* will denote its non-increasing rearrangement.

If Φ is a Young function, that is, if Φ is even, convex, $\Phi(0) = 0$, $\lim_{t\to\infty} \Phi(t)/t = \infty$, and $\Omega \subset \mathbb{R}^N$ is measurable, then $m(\Phi, f) = \int_{\Omega} \Phi(f(x)) dx$ is the modular and the (quasi-)norm in the corresponding Orlicz space $L_{\Phi} = L_{\Phi}(\Omega)$ is the Minkowski functional of the modular unit ball, namely, $||f|L_{\Phi}|| = \inf\{\lambda > 0 : m(\Phi, f/\lambda) \leq 1\}$ (the Luxemburg norm). Replacing dx by V(x)dx where V is a weight function, we get the weighted Orlicz space $L_{\Phi}(V)$ (or $L_{\Phi}(\Omega, V)$) in a more detailed notation).

Assumptions on Φ can be weaker, e.g. Φ can be convex just on some interval (a, ∞) (a > 0) or one can even consider Φ increasing rather than convex. We refer to [31] for the theory of classical Orlicz spaces and of general modular spaces.

We shall restrict ourselves to a characterization of weighted Orlicz spaces $L_{\Phi}(V) = L_{\Phi}(\Omega, V)$, generated by the modular $m(\Phi, V, f) = \int_{\Omega} \Phi(f(x))V(x) dx$ as special Musielak-Orlicz spaces. Generally, if $\Phi = \Phi(x, t) : \Omega \times \mathbb{R} \to [0, \infty)$ is a generalized Young function or the Musielak-Orlicz function, that is, Φ is a Young function of the variable t for each fixed $t \in \mathbb{R}$, then $m(\Phi, f) = \int_{\Omega} \Phi(x, f(x)) dx$ is a modular and we can consider the corresponding Orlicz space, which is called the Musielak-Orlicz space. Hence with the modular $m(\Phi, V, f)$ the weighted Orlicz space becomes a Musielak-Orlicz space.

Special Orlicz spaces, with the generating Young function $t \mapsto |t|^p \log^{\alpha}(1+|t|)$, $t \in \mathbb{R}$, will be denoted by $L^p \log^{\alpha}(1+L)$ $(1 \le p < \infty, \alpha > 0)$. The symbol $L_{\exp t^{\alpha}}$ for $\alpha > 0$ will stand for the space with the Young function $t \mapsto \exp(|t|^{\alpha}) - 1$, $t \in \mathbb{R}$. For $\alpha = 1$ we shall write $L^p \log(1+L)$ and L_{\exp} . Note that the function $t \mapsto t^p \log^{\alpha}(1+t)$ is not generally convex near the origin. It is, however, a purely technical problem to consider an equivalent Young function convex on the whole of \mathbb{R} .

2 The basic main result

Our first attempt to find the target space for the Sobolev dimension-free embedding goes back to [20], where we used the celebrated Gross logarithmic inequality [13], generalized later in various directions by several authors, see, e.g. [15], [14]. Recall that the Gross logarithmic inequality (see [25] for a detailed account and [3], [5], [10] for further interesting discussions of the topic),

$$\int_{\mathbb{R}^N} |f(x)|^2 \log \left(\frac{|f(x)|^2}{\|f\|_2^2} \right) dx + N \|f\|_2^2 \leqslant \frac{1}{\pi} \int_{\mathbb{R}^N} |\nabla f(x)|^2 dx, \tag{2.1}$$

gives, for a function $f \in W^{1,2}(\mathbb{R}^N)$ and supported in a bounded domain $\Omega \subset \mathbb{R}^N$, $\|\nabla f|L^2(\Omega)\| \leq 1$, and sufficiently large N,

$$\int_{\Omega} |f(x)|^2 \log |f(x)| \, dx \le \frac{1}{2\pi} \int_{\Omega} |\nabla f(x)|^2 \, dx \tag{2.2}$$

(since for N large enough we have $\log ||f||_2 \leq 0$; this follows from the claim on the best constant in the Sobolev embedding and simple application of Hölder's inequality—see (2.11)).

Note that one can formally put 0 in the integral on the left-hand side of (2.1) and (2.2) if f(x) = 0 (which corresponds well to $\lim_{t\to 0_+} t^{\delta} \log t = 0$ for any $\delta > 0$).

Inequalities (2.1) and/or (2.2) are *not* embedding inequalities since they express a fine balance of positive and negative terms.

In [20] we have employed the Gross theorem to show that

$$\int_{B} |f(x)|^{2} \log(1 + |f(x)|/\|\nabla f\|_{2}) dx \le c \|f|W_{0}^{1,2}(B)\|^{2}$$
(2.3)

 $(W_0^{1,2}(B) = \overline{C_0^{\infty}(B)}^{W^{1,2}(B)}, B \text{ being the unit ball in } \mathbb{R}^N)$ with a constant c independent of f and N.

The next natural step was a generalization of (2.3), that is,

$$\int_{\Omega} |f(x)|^p \log \left(1 + \frac{|f(x)|}{\|\nabla f\|_p} \right) dx \leqslant c \|\nabla f| L^p(\Omega)\|^p,$$

and the weighted dimension-free embedding

$$\int_{\Omega} |f(x)|^p V(x) \, dx \leqslant c \|\nabla f| L^p(\Omega) \|^p, \tag{2.4}$$

for $f \in W_0^{1,p}(\Omega)$, where $2 \leq p < \infty$ when $\Omega = Q = (0,1)^N$, the unit cube in \mathbb{R}^N , and $1 when <math>\Omega = B$, c depending just on p and V. Note that the reason to consider $\Omega = Q$ is that the measure of B tends to 0 as $N \to \infty$ and this affects essentially the corresponding estimates. Conditions for V will be derived from a variant of Ishii's embedding theorem for generalized Orlicz-Musielak spaces [16] and [31], and will be expressed in terms of suitable exponential integrability of (a multiple of) V.

The generalized form of the Gross inequality for 1 , see Gunson [14], has actually rather surprising form:

$$\int_{\mathbb{R}^N} |f(x)|^p \log(|f(x)|) dx + \gamma_{N,p} \leqslant \int_{\mathbb{R}^N} |\nabla f(x)|^p dx, \tag{2.5}$$

for all $f \in W^{1,p}(\mathbb{R}^N)$, $||f||_p = 1$, with

$$\gamma_{N,p} = \frac{N}{p} + \frac{N \log \pi}{2p} + \frac{N \log p}{p^2} - \frac{N(p-1)\log(p-1)}{p^2} - \frac{1}{p} \log \left(\frac{\Gamma(1+N/2)}{\Gamma(1+N/p')}\right),$$
(2.6)

where Γ is the Gamma function and p' = p/(p-1).

Substituting $f(x)/||f||_p$ into (2.5) we get the more usual Lebesgue form of the above inequality, namely,

$$\int_{\mathbb{R}^N} |f(x)|^p \log \frac{|f(x)|}{\|f\|_p} dx + \gamma_{N,p} \|f\|_p^p \leqslant \int_{\mathbb{R}^N} |\nabla f(x)|^p dx.$$
 (2.7)

First of all we shall make use of the (generalized) Gross logarithmic inequality to get the following

Theorem 2.1 ([22]). Let $2 \leq p \leq \infty$. Then

$$\int_{Q} |f(x)|^{p} \log \left(1 + \frac{|f(x)|}{\|\nabla f\|_{p}} \right) dx \leqslant c \|\nabla f| L^{p}(Q) \|^{p}$$

$$\tag{2.8}$$

for all $f \in W_0^{1,p}(Q)$ and some c independent of f and N.

The following theorem is a weighted variant of the dimension-free estimate.

Theorem 2.2 ([22]). Under the assumptions of the preceding Theorem, if $V \in L_{\exp}$, then

$$\int_{Q} |f(x)|^{p} V(x) dx \leqslant c \int_{Q} |\nabla f(x)|^{p} dx, \qquad f \in W_{0}^{1,p}(Q).$$
 (2.9)

Sketch of the proofs of Theorem 2.1 and 2.2. We shall restrict ourselves to the main steps and explaining the idea of the proofs.

Step 1. By a suitable manipulation with the constant $\gamma_{N,p}$ from (2.6) it is possible to get relation more similar to the original Gross inequality:

$$\int_{\mathbb{R}^N} |f(x)|^p \log \frac{|f(x)|}{\|f\|_p} dx \leqslant c(p) N \log N \|f\|_p^p + \int_{\mathbb{R}^N} |\nabla f(x)|^p dx, \tag{2.10}$$

true for all $f \in W^{1,p}(\mathbb{R}^N)$.

The best constant C in the Sobolev embedding $W_0^{1,p} \hookrightarrow L^q$, $1 \leqslant p < N$, $N \geqslant 3$,

$$\left(\int_{\mathbb{R}^N} |f(x)|^{Np/(N-p)} dx\right)^{(N-p)/Np} \leqslant C \|\nabla f|L^p\|, \qquad f \in W^{1,p}(\mathbb{R}^N),$$

is (see e.g. [34])

$$C = \sqrt{1/\pi} \frac{1}{N^{1/p}} \left(\frac{p-1}{N-p} \right)^{1-1/p} \left(\frac{\Gamma(N)\Gamma(1+N/2)}{\Gamma(N/p)\Gamma(1+N/p')} \right)^{1/N}.$$
 (2.11)

Using asymptotic properties of the Gamma function (Stirling's formula) we obtain $C \sim 1/N^{1/2}$. Denoting again by f the extension of $f \in W_0^{1,p}(Q)$ by zero to the whole of \mathbb{R}^N , we have

$$||f|L^p(Q)||^p \leqslant \frac{c}{N^{p/2}} ||\nabla f|L^p(\mathbb{R}^N)||^p.$$

Together,

$$c(p)N\log N \|f|L^p\|^p \leqslant \frac{c(p)\log N}{N^{(p/2)-1}} \|\nabla f|L^p\|^p.$$

If p > 2, then the constant on the right hand side is uniformly bounded with respect to N.

Inserting this into (2.10) we get, for 2 ,

$$\int_{Q} |f(x)|^{p} \log \frac{|f(x)|}{\|f\|_{p}} dx \leqslant c \|\nabla f| L^{p} \|^{p}, \tag{2.12}$$

for all $f \in W_0^{1,p}(Q)$, with a constant c independent of f and N. The case p = 2 follows easily because $\gamma_{N,2} > 0$ so that the term with this constant can be omitted directly.

Step 2. Now we want to show that for $N \geqslant 3$ and $2 \leqslant p < \infty$ there exists c independent of N such that

$$\int_{Q} |f(x)|^{p} \log \left(1 + \frac{|f(x)|}{\|\nabla f\|_{p}} \right) dx \leqslant c \|\nabla f| L^{p} \|^{p}$$
 (2.13)

for all $f \in W_0^{1,p}(Q)$, and the norm of the embedding of $W_0^{1,p}(Q)$ into $L^p \log(1+L)$ is independent of N. This part of the proof does not use particularly deep tools but it is rather technical and lengthy. The idea is to prove the auxiliary inequality

$$\int_{\mathbb{R}^{N}} (|f(x)| + \varepsilon^{2} s_{\varepsilon}(x))^{p} \log(1 + |f(x)| + \varepsilon^{2} s_{\varepsilon}(x)) dx$$

$$\leq c \|\nabla f| L^{p} \| + \varepsilon c(N) < \infty,$$
(2.14)

where c is independent of the dimension (c(N)) might depend on N but it is independent of f) and of ε and with a suitable smooth function s_{ε} supported in $(1 + \varepsilon)Q$. Letting ε tend to 0, inequality (2.13) follows from (2.14) by virtue of Fatou's lemma.

For a general $f \in W_0^{1,p}(Q)$, $f \neq 0$, note that (2.13) holds for $f(x)/(\|\nabla f\|L^p\|)$, hence

$$\int_{Q} |f(x)|^{p} \log \left(1 + \frac{|f(x)|}{\|\nabla f(L^{p})\|} \right) dx \leqslant c \int_{Q} |\nabla f(x)|^{p} dx.$$

Step 3. Theorem 2.2 follows from the embedding (2.13), nevertheless, after some longer effort. We shall just survey the main points of the procedure. Our weighted embedding will be the second part of the chain of $W_0^{1,p}(Q) \hookrightarrow L^p \log(1+L)(Q) \hookrightarrow L^p(V)(Q)$ and the proof borrows from the paper by Ishii [16], see also [31], which gives necessary and

sufficient condition for an embeddings between general Musielak-Orlicz spaces. First one proves that

$$\int_{Q} |g(x)|^{p} V(x) dx \le c \int_{Q} |g(x)|^{p} \log(1 + |g(x)|) dx$$
 (2.15)

for all g such that $||g|L^p \log(1+L)|| = 1$; the last equality is equivalent to

$$\int_{Q} |g(x)|^{p} \log(1 + |g(x)|) dx = 1$$

(g belongs to the modular unit sphere). This can be proved by contradiction. Should there exists a sequence g_k , where g_k have the $L^p \log(1+L)$ norm equal to 1, and $B_k \to \infty$ such that

$$\int_{Q} |g_k(x)|^p V(x) \, dx \geqslant B_k \int_{Q} |g_k(x)|^p \log(1 + |g_k(x)|) \, dx = B_k, \tag{2.16}$$

choose $\varkappa < 1$ and a sequence $A_k \searrow 0$. Then for large k,

$$\int_{Q} A_k^p |g_k(x)|^p \log(1 + A_k |g_k(x)|) dx < \frac{\varkappa}{4K}.$$

Hence

$$\int_{Q} A_{k}^{p} |g_{k}(x)|^{p} V(x) \, dx \leqslant \varkappa$$

and putting $A_k = 1/B_k^{1/p}$ we get

$$\int_{Q} |g_k(x)|^p V(x) \, dx \leqslant \varkappa B_k, \tag{2.17}$$

which contradicts with (2.16). Hence the embedding (2.15) holds and according to Ishii's theorem [16] the embedding (2.15) is equivalent to

$$t^{p}V(x) \leqslant Kt^{p}\log(1+t) + h(x), \qquad t > 0, \quad x \in Q,$$
 (2.18)

where K is some constant, $K \ge 1$, and h is a suitable non-negative function, integrable over $(0, \infty)$. This condition can be reformulated as

$$\sup_{t>0} \left[tV(x)/K - t \log(1 + t^{1/p}) \right] \leqslant h(x)/K, \qquad x \in Q$$
 (2.19)

with some integrable function h. Hence the left hand side of (2.19) should be integrable over Q. Invoking Young's inequality for complementary Young functions (see e.g. [19]) this is guaranteed by integrability of $\Psi(V(x)/K)$, where Ψ is a Young function complementary to $t \mapsto |t| \log(1 + |t|^{1/p})$. Plainly Ψ is equivalent to $t \mapsto \exp|t| - 1$. \square

3 An alternative approach and general α

Theorems of the preceding section suggest that we might look about an improvement in the sense of higher exponents at the logarithmic function. Moreover, the case $1 has not been discussed until now. Consider again the space <math>W_0^{1,p}(Q)$, where Q is the unit cube in \mathbb{R}^N . Then relying on suitable expression for the (quasi-)norm in logarithmic Lebesgue spaces, using the claim on the best constant in the Sobolev embedding, one can give a surprisingly simple proof of a stronger dimension-free estimate. The weight estimate follows then as a corollary or, alternatively, with additional plugging of extrapolation characterization of exponential Orlicz spaces.

The same estimate for the logarithmic Lebesgue norms was independently proved by Martín and Milman [26], based on the isoperimetric inequality. It was quite surprising that both the complicated proofs from [26] and from our paper [22] are covered by the procedure described in the remainder of this section.

In [23] an interested reader can find detailed discussions on weight functions, some other variants of the proof, and a survey of equivalent (quasi-)norms in $L^p \log^{\alpha}(1+L)$.

First of all recall that an equivalent (quasi-)norm in $L^p \log^{\alpha}(1+L)$ is given by the formula

$$\left(\int_0^1 f^*(t)^p \log^\alpha \frac{e}{t} dt\right)^{1/p},$$

see, e.g. [6]. Here, the equivalence constants do not depend on the dimension ([23]).

Theorem 3.1 ([22], (3.1)). If 1 , then

$$||f|L^p \log^{p/2}(1+L)(Q)|| \le c||\nabla f|L^p(Q)||$$
 (3.1)

for all $f \in W_0^{1,p}(Q)$ and some c independent of f and N.

Proof. The embedding inequality follows from the following chain of estimates:

$$\int_{0}^{1} f^{*}(t)^{p} \left(\log \frac{e}{t}\right)^{\alpha} dt$$

$$\leqslant \left(\int_{0}^{1} f^{*}(t)^{Np/(N-p)} dt\right)^{(N-p)/N} \left(\int_{0}^{1} \left(\log \frac{e}{t}\right)^{N\alpha/p} dt\right)^{p/N}$$

$$\leqslant \frac{c}{N^{p/2}} \|\nabla f|L^{p}\|^{p} \left[\Gamma\left(1 + \frac{N\alpha}{p}\right)\right]^{p/N}$$

$$\leqslant \frac{c}{N^{p/2}} \|\nabla f|L^{p}\|^{p} \left[\left(\frac{N\alpha}{p}\right)^{p/(N\alpha)}\right]^{\alpha} \left(\left[\Gamma\left(\frac{N\alpha}{p}\right)\right]^{p/(N\alpha)}\right)^{\alpha}$$

$$\leqslant \frac{c}{N^{p/2}} \|\nabla f|L^{p}\|^{p} \left(\frac{N\alpha}{p}\right)^{\alpha}.$$

We have used claim on the best constant for the Sobolev embedding and properties of the Gamma function $(\Gamma(\xi)^{1/\xi} \sim \xi \text{ as } \xi \to \infty)$. It is clear that $\alpha \leq p/2$ guarantees independence of N.

Remark 18. As to the weighted inequality (1.2) one can proceed similarly. We use [4] as to the best constant for the improved Sobolev embedding of $W_0^{1,p}$ ($1) into the Lorentz space <math>L^{q,p}$, where q is the Sobolev exponent corresponding to p; note in passing that it has the same value as for the embedding into L^q . We have

$$\int_{Q} |f(x)|^{p} V(x) dx \leq c \frac{\|V|L^{N/p,\infty}\|}{N^{p/2}} \|\nabla f|L^{p}\|^{p}
\leq c \frac{\|V|L^{N/p}\|}{N^{p/2}} \|\nabla f|L^{p}\|^{p}
\leq cc(p) \frac{\|V|L^{N/p}\|}{(N/p)^{p/2}} \|\nabla f|L^{p}\|^{p}
\leq cc(p) \sup_{q \geq 1} \frac{\|V|L^{q}\|}{q^{p/2}} \|\nabla f|L^{p}\|^{p}.$$
(3.2)

Now it suffices to use the standard extrapolation fact that

$$||V|L_{\exp t^{\beta}}(Q)|| \sim \sup_{q \geqslant 1} \frac{||V|L^{q}(Q)||}{q^{1/\beta}} < \infty.$$
 (3.3)

On the other hand one can use the equivalence

$$||V|L_{\exp t^{\beta}}(Q)|| \sim \sup_{0 < t < 1} \frac{V^*(t)}{(1 + |\log t|)^{1/\beta}} < \infty.$$
 (3.4)

to obtain (1.2) as a consequence of Theorem 3.1.

Theorem 3.2 ([22], Theorem (3.1)). If 1 , then

$$\left(\int_{Q} |f(x)|^{p} V(x) dx \right)^{1/p} \leqslant c \left(\|V| L_{\exp t^{2/p}}(Q) \| \right)^{1/p} \|\nabla f| L^{p}(Q) \|$$
 (3.5)

for all $f \in W_0^{1,p}(Q)$ and some c independent of f and N.

Proof. Let $V \in L_{\exp t^{2/p}}(Q)$. It follows from (3.4) that

$$V^*(t) \le c \|V|L_{\exp t^{2/p}}(Q)\| (1+|\log t|)^{p/2}.$$

Using the estimate in the proof of Theorem 3.1 with $\alpha = p/2$ we find

$$\int_{Q} |f(x)|^{p} V(x) dx \leq \int_{0}^{1} f^{*}(t)^{p} V^{*}(t) dt$$

$$\leq \|V|L_{\exp t^{2/p}}(Q)\| \int_{0}^{1} (1 + |\log t|)^{p/2} f^{*}(t)^{p} dt$$

$$\leq c \|V|L_{\exp t^{2/p}}(Q)\| \|\nabla f|L^{p}(Q)\|^{p}.$$

Acknowledgments

The research of this author was supported by the Academy of Sciences of the Czech Republic, Institutional Research Plan no. AV0Z10190503, and by the Grant Agency of the Czech Republic under No. 201/10/1920.

References

- [1] D. Adams, Traces of potentials arising from translation invariant operators, Ann. Scuola Norm. Sup. Pisa 25 (1971), 1–9.
- [2] R.A. Adams, General logarithmic Sobolev inequalities and Orlicz embeddings, J. Funct. Anal. 34 (1979), 292–303.
- [3] R.A. Adams, F.H. Clarke, Gross's logarithmic Sobolev inequality: A simple proof, Amer. J. Math. 101 (1979), 1265–1269.
- [4] A. Alvino, Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. Un. Mat. Ital. (5) 14-A (1977), 148-156.
- [5] W. Beckner, Geometric asymptotics and the logarithmic Sobolev inequality, Forum Math. 11 (1999), 105–137.
- [6] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.
- [7] H. Brézis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Part. Diff. Equations 5 (1980), 773–789.
- [8] F. Chiarenza, M. Frasca, A remark on a paper by C. Fefferman, Proc. Amer. Math. Soc. 108 (1990), 407–409.
- [9] D. Cruz-Uribe, M. Krbec, Localization and extrapolation in Lorentz-Orlicz spaces, In: M. Cwikel et al. Function Spaces, Interpolation Theory and Related Topics. Proc. Conf. Lund (Sweden), August 17-22, 2001 (A. Kufner, L. E. Persson, G. Sparr, M. Englis eds.) de Gruyter, Berlin 2002, 389–401.
- [10] M. Del Pino, J. Dolbeault, The optimal Euclidean L^p-Sobolev logarithmic inequality, J. Funct. Anal. 197 (2003), 151–161.
- [11] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129–206.
- [12] J.-P. Gossez, A. Loulit, A note on two notions of unique continuation, Bull. Soc. Math. Belg. Ser. B 45 (1993), no. 3, 257–268.
- [13] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1976), 1061–1083.
- [14] J. Gunson, *Inequalities in Mathematical Physics*. In: Inequalities. Fifty years on from Hardy, Littlewood and Pólya, Proc. Int. Conf., Birmingham/UK 1987, Lect. Notes Pure Appl. Math. 129 (1991), 53–79.
- [15] F. Güngör, J. Gunson, A note on the proof by Adams and Clarke of Gross's logarithmic inequality, Appl. Anal. 59 (1995), 201–206.
- [16] J. Ishii, On equivalence of modular function spaces, Proc. Japan Acad. Sci. 35 (1959), 551–556.
- [17] T. Iwaniec, A. Verde, On the operator $\mathcal{L}(f) = f \log |f|$, J. Funct. Analysis 169 (1999), 391–420.
- [18] R. Kerman, E. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators, Ann. Inst. Fourier (Grenoble) 36 (1986), 207–228.
- [19] M.A. Krasnosel'skii, Ya.B. Rutitskii, Convex functions and Orlicz spaces, Noordhoff, Amsterdam, 1961.
- [20] M. Krbec, H.-J. Schmeisser, A limiting case of the uncertainty principle, In: Proceedings of Equadiff 11, Proceedings of minisymposia and contributed talks, July 25-29, 2005, Bratislava (eds.: M. Fila et al.), Bratislava 2007, 181–187.

- [21] M. Krbec, H.-J. Schmeisser, Dimension-invariant embeddings of Sobolev spaces, Preprint, Math/Inf/01/10 Jena, 2010.
- [22] M. Krbec, H.-J. Schmeisser, On dimension-free embeddings I. DOI: 10.1016/j.jmaa.2011.08.061. To appear in J. Math. Anal. Appl.
- [23] M. Krbec, H.-J. Schmeisser, On dimension-free embeddings II. DOI: 10.1007/s13163-011-0068-5 To appear in Rev. Mat. Complutense.
- [24] M. Krbec, T. Schott, Superposition of embeddings and Fefferman's inequality, Boll. Un. Mat. Ital., Sez. B, Artic. Ric. Mat. 8,2 (1999), 629–637.
- [25] E.H. Lieb, M. Loss, "Analysis, second edition", Graduate Studies in Mathematics Vol. 14, Amer. Math. Soc, Providence, R.I., 2001.
- [26] J. Martín, M. Milman, Isoperimetry and symmetrization for logarithmic Sobolev inequalities, J. Funct. Anal. 256 (2009), 149–178.
- [27] J. Martín, M. Milman, Pointwise symmetrization inequalities for Sobolev functions and applications, Preprint arXiv:0908.1751v2[math.FA], 13 Aug. 2009.
- [28] V.G. Maz'ya, Classes of domains and embedding theorems for functional spaces, Dokl. Akad. Nauk SSSR 133 (1960), 527–530.
- [29] V.G. Maz'ya, On the theory of the n-dimensional Schrödinger operator, Izv. Akad. Nauk SSSR, ser. Matem. 28 (1964), 1145–1172.
- [30] M. Milman, Extrapolation and optimal decompositions, Springer-Verlag, Berlin, 1994.
- [31] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., Vol. 1034, Springer-Verlag, Berlin, 1983.
- [32] E.T. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc. 308 (1988), 533–545.
- [33] H.-J. Schmeisser, W. Sickel, Traces, Gagliardo-Nirenberg inequalities and Sobolev type embeddings for vector-valued function spaces, Jenaer Schriften zur Mathematik und Informatik, Math/Inf/24/01, Jena, 2001.
- [34] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353–372.
- [35] H. Triebel, Function Spaces and Wavelets on Domains, EMS Tracts in Mathematics 7, EMS, Zürich, 2008.
- [36] H. Triebel, *Tractable embeddings of Besov spaces into Zygmund spaces*, Banach Center Publications, to appear.

Miroslav Krbec

Institute of Mathematics, Academy of Sciences Žitná 25, 115 67 Praha 1 Czech Republic

Mathematisches Institut Fakultät für Mathematik und Informatik Friedrich-Schiller-Universiät Ernst-Abbe-Platz 1-2, 07743 Jena Germany

E-mail: mhj@uni-jena.de Received: 7.10.2011