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Abstract. The notion of a hypodecreasing function is introduced. Some properties of
hypodecreasing functions are proved and several examples are given. It is established
that the Hardy-type inequality for L,-spaces with 0 < p < 1 is satisfied for some spaces
of hypodecreasing functions. The obtained result is in a certain sense sharp.

1 Introduction

It is well known that for L,-spaces with 0 < p < 1 the Hardy inequality is not satisfied
for arbitrary non-negative measurable functions, but it is satisfied for non-negative
non-increasing functions. Moreover, in [3], pp. 90-91, the sharp constant in the Hardy-
type inequality for non-negative non-increasing functions was found. (See [4] for more
details.) Namely the following statement was proved there.

Theorem 1. Let0 < p < 1 and —Il) <a< 1—%. Then for all functions f non-negative

and non-increasing on (0,00)

xafl / fdy
0

and the constant (1 — i — 04)_% is sharp.

1 _% o
1=2 = a) e @0 W

<
Ly(0,00)

/N

Remark 1. Ifa > 1—%, then there exists a function f non-negative and non-increasing
on (0,00) such that ||z f(z)||L,(0,00)) < 00, but |2°7 f(2)||L,(0,00)) = 00. (For exam-
ple, this holds for any function f non-negative non-increasing continuous on [0, 00)
which is not equivalent to zero and is such that supp f C [0,00).) If a < —1—1), then
for each function which is non-negative non-increasing on (0, 00) and is not identically
equal to zero ||z f(2)[ L, ((0,00)) = 0©-

Later inequalities of type (1) were proved in [1], [2] for non-negative quasi-decreasing
functions, also with sharp constants.
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In [7] the Hardy-type inequality for 0 < p < 1 was proved under weaker assumptions
on f but still of monotonicity type. The result was proved for the n-dimensional variant
of the Hardy operator, namely for the operator H defined for all functions f € LP¢(R™)

by
1

Al

(Hf)(t) =

where By is the ball centered at the origin of radius v and v, is the volume of the unit
ball in R™.

/fdy, 0<t<oo,
By

Theorem 2. Let0<10<1,oz<n—}—17 and M > 0.

MW@,?U@T, let f be a function non-negative measurable on R™ such that
Hf(x)’xWHLp(Br) < o0 and

1f (@) 2y < M f(@)]|2]7 ||, 8,) (2)
for all v > 0, where p' = p%l.
Then .
[E“(CH )| 200,000 < NILf(2)|2]*7 7 [, @) s (3)
where

N =, ((n—a)p—1)"7 M. (4)

The aim of this paper is finding a still wider space of functions such that for all
functions f in this space inequality (3) is satisfied with some N > 0, independent of f.
It will be shown that for 0 < p < 1 a slightly stronger version of inequality (3) is itself
a certain condition of monotonicity type on a function f.

2 Spaces of hypodecreasing functions

Definition 1. Let 0 < p < 1,a € R and M > 0. We say that a function f is
hypodecreasing with the parameters p,a and M if f is a function non-negative and
measurable on R™ for which

a_n=1
1f (@)% |2, (8, < o0

and ) »
Il < Mr™ 72~ f(2)|z]*" 7 ||, (5)

for all r > 0.
We also say that a function [ is hypodecreasing with the parameters p and o if for
some M > 0 it is hypodecreasing with the parameters p,a and M.

In order to simplify the formulation of the main result it is convenient to agree that
if the right hand side of inequality (5) is infinite, then this inequality is satisfied, and
to denote by H Dy (M) the space of all functions f non-negative and measurable on
R™ for which inequality (5) holds for all 0 < r < oo. So the space H Dy (M) contains
all functions f hypodecreasing with the parameters p, « and M and also all functions
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a—2—=2

f non negative and measurable on R™ for which ||f(z)|z| PIHLP(BT) = oo for all
0 <r < oo. We also set
HDS = | ) HDg(M).
M>0

n—1

Remark 2. If || f(x)|x|*” v |,@®ny <00 and o > n — %, then inequality (5) holds for
all v > 0 only if f is equivalent to zero on R™. This follows by passing to the limit as
r — 00.

Remark 3. If' o < n — %, then inequality (5) implies that for all 0 < p < oo and
r >0

n—i—q a—n=1
1fX s, LBy < Mr™ 27 f(2) x5, (@) |27 % ||2,5,)-

For p = oo this is inequality (5). If p < oo and 0 < r < p, it again coincides with
inequality (5). If p < r < oo, then by inequality (5) with r = p

n—1i—qa a—n=1
x5, ey = [ flleamy < Mp™ 2 f (@) 2" 7 |l s,)

n—i_q a—n=t
< M f (@)X, (@) 2% (L, -
because n — % —a > 0.

Thusforagn—%

fE€HD)(M) = fx, € HD;(M)
for all 0 <r < oo.

Remark 4. If p > 1 and « <n—%forp> la<n—1 forp=1, then by Holder’s
inequality

—aqt+n=L a_n=L
1A lem < WMl e, ol f @)l 7 Mz,

1 _n-1
= ar” P f @) e,

(e
cL = 0n » —a|p+n

ifp>1andc, =11 p=1. Here o, = nv, is the surface area of the unit sphere in
R™.
Next note that

where

Y e

¢ if 1<p§oo,a<n—]1),
[FAIPAES: B . B
sup — =4q1 if p=1l,a<n-—1,

n—1i—q a1
ror H.f(x)|$‘ P HLp(BT) oo if 0< p < 1704 € R,

!'We are mostly interested in the case o < n — %, because the formulation of the main result in
Section 4 contains this assumption.
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where the supremum is taken with respect to all r > 0 and all non-negative measurable
functions f for which

n

q_n=1
0 < | f(x)]z]* 7 ||L,(B,) < o0

for all r > 0.
n—1y\,_/

The statement for 1 < p < oo follows since for f(z) = |z|T*" %% the above
inequality turns in an equality. The statement for p = 1 follows if one takes f = e’I*l,
1 < v < oo and passes to limit as v — oo. The statement for 0 < p < 1 follows if one
takesr =1, f = Xpp, 0 <V <1, and passes to the limit as v — 1=. Therefore for
l<p<oo,a<n— 110 orp=1,a <n—1 inequality (5) with M > ¢; does not impose
any further restrictions on a function f for which ||f(x)|x]a_n771||Lp(Br) < oo for all
r > 0, whilst for 0 < p < 1 it imposes further restrictions for any o € R and M > 0.
Remark 5. In terms of the introduced definition, in Theorem 2 for 0 < p <1 and a <

1l
n— 1—17 Hardy-type inequality (3) is proved under the assumption that f € HD, *(M).
Remark 6. The spaces HDZ‘;“(M) possess monotonicity properties in the indices p and
a. Namely, if 0 <p<qg<l,a e R,M >0, then

11
HDy(M) C HDj(on *M), (6)
and if 0 <p < l,a € R, B < a, then
HDS (M) C HDJ(M). (7)
More generally, if 0 < a<qg<1and (< a-+ % — %, then
HDZ (M) C HDS(esM), (8)
where .
L 1 1\t v
o =0 ° [(a—ﬁ) (———) +1
p q
Inclusion (8) implies that
HDy C HD)). (9)

Indeed, let f € HDy(M). Then by Hélder’s inequality with the exponent ]% > 1

11

a-1=1 a—pB—(n—-1)(=—= _n—1
L @)l Ny < Ml 1 f @)™ (1,8,

where £ =1 — 1 Gince
s p q

a2 G g ) = o

we have ) o
Il < Mr"=e=2 f (@))% [|L,,)
nl_ _n-1
< MO f@) |2 (s,

hence inclusion (8) follows.
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Lemma. Let 0 < p < 0o, € R, 3 > O and let f be a function non-negative and
measurable on R™ such that || f(y)|y|* 7 ||Lp(Br < oo for all >0 and

f(z) < LF )Y ey (10)

|x|a+1

for almost all x € R™.
1. Ifa<n-— ]lj, then inequality (5) is satisfied with

M = pey . (11)

(Hence f € HDa(pcé "))

2. Ifa=n— 5, then this constant is sharp.

3. Ifa>n— %, then inequality (10) does not imply inequality (5) with any M > 0
independent of fand r.

Proof. 1. Let « < n — =. Note that for all » > 0 for almost all x € B,

flz) = (f(x)\x!”%)l’p(fp(:v)!x\“”’”“)\xl""‘a

< T (f ()] ) PSP () ] P (12)
hence by (10)

i3
flz) < ey P ( fm(y)hA“p‘”+1dy> fP () || P (13)
Big|

Integrating over B, and taking thrice the spherical coordinates we have

— _1_
1 fllzusy < e Pr" v %l

- ( o)yl "“dy) (S fp(p(a)da)) #edp.
J

1_
Moreover, I = o/

s [([([ o) ma) " ([ s

Therefore

where

where

[RATNES)

L P v
<c””paﬁ P(to)do | P dt d
p fP(to) p
0 0 Sn—1
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1
= pey ” P (an/o /0 < . fp(ta)da) tpo‘dt)p
— ped P ( Periar)

n— a—n=1
=pey 'O F @)l (-

Hence the first statement follows.

2. By the above argument it follows that if in inequalities (12) and (13) there are
equalities, then

| Fllzacs, = pes PIF @15 a0,

which implies that inequality (5) is satisfied with M = pey ™ and is not satisfied
with any M < pc; *. Hence the constant pcy * is sharp if there exists a function
[ € Li(R™) for which inequalities (12) and (13) turn in equalities and which is not
equivalent to zero on R".

-p

3. Let a =n— i, then there is equality in (12). Assume that f(x) = g(|z|) where
g is a non-negative differentiable function on (0,00) and equality (12) is satisfied, i.e.

11
glp) = 5" (/ 9(Iyl)p|y|"(p‘”dy> glp)Pp"® V., 0<p< oo
BP
By taking the spherical coordinates it follows for all p > 0

p
(9(p)p")" = cson / g,
0
By differentiating this equality and carrying out simple calculations it follows that

g'(p)p+ag(p) =0

where

ch0m
P

a=mn—

This equation is satisfied by g(p) = p~.
Thus equations (12) and (13) are satisfied for f(x) = |z|™® for all x € R™ |, x # 0.
Also f € Li¢(R") since a < n. Hence the second statement of the lemma follows.

4. Let a > n — é,—a— i < pu < —nand f(z)=|z|* for all z € R",x # 0. Then
||f(x)|x|°‘*n7?1||Lp(Br) < oo for all » > 0 because a — ”le > =2, but [[f|lLys,) = o0
because i < —n, hence inequality (5) does not hold for this function f for any M > 0.

Il
Remark 7. In [7] for the case a = n — % by a simpler argument it was proved that

under the assumptions of the Lemma inequality (5) is satisfied with M = c3
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3 Examples of hypodecreasing functions

Example 1. Let 0 < p < 1, € R and M > 0. Then the function |z|*,p € R is
hypodecreasing with the parameters p and o if and only if p > max {—n, —a — %} and it

is hypodecreasing with the parameters p and o and M if only if > max{—n, —a — i}
and M > c3, where

Pl a)p+ 1)
P (0 a)p + 1] . (14)
w+n

This follows since,

n—1

a—n=1 1
|”+ P HLl(BT) <00 &= 1> —a—]—)

|z, == 1> —=n, |z

and the minimal value of M > 0 for which inequality (5) is satisfied is equal to

sup 2]z, (B.) _ Oon ( o )_P e
n—1 - - .
>0 T"*%*a”\xwmf ey MR (p+a)p+1

Moreover,?

—00 < j4 < 00 if a<n-—1,
P

1 1

15
p< —a—oor > —n if a>n-—_. (15)

x| € HD) <= {

It suffices to take into account that in the case p < —oz—% one has |||z T 7 | 2,B,) =

oo for all 0 < r < oo, hence inequality (5) is trivially satisfied.

Example 2. Let 0 < p < 1, € R. Then the function |:1c|“><B1 (x), n € R, is hypode-

creasing with the parameters p and o« if only if a < n — % and |t > —a — }D, and

1
[z["xp, () € HDy < agn—ﬁ and —oo < p < oo.

This follows because if o > n — %, then

x5, (@)l (80)
su = 00

n—1

i a1
22 X, (@)

Moreover,
[2lxe,, (@) ¢ HD} forall pa €R,
because
e Xey, (@)lza
Sup n—i_—a pto—2=t
>0 " p H|1’| P XcB1 <x>||Lp(Br)

2 Recall that we are mostly interested in the case o < n — %.
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HWWm&wn

> lim >
1+ n—f—a —
o ([ PRy
> lim+ 1 min{r#, 1}vn(7’ — 1) — — 0.
T T T max T 1}vn (rm—1)»

In particular,

1
Xp, € HD) <= a<n——- and x, ¢ HD, forall a€cR.
p

Moreover, if —= < a<n-—= then
Xp, € HD;V(M) <~ M > ¢y,

where L
-1 1
cs=0n 0 (pa+1)p.
If a < —%, then
Xp, € HD,(M) forall M >0.

Example 3. If 0 < p < oo, > —% and f(z) = g(|z|),z € R"™, where g is a non-

negative non-increasing function on (0,00) such that ||g(p)p®||r,0,1) < 00, then the
right hand side of inequality (10) is finite for all x # 0 and inequality (10) is satisfied
with

Moreover, this constant is sharp.
Indeed, for all x € R", x #0

F@W 7 ey = No(yDIyl®™ 7 N,

=

> g(le) ([, Iyl 1)

(325)" Fl@lal*

and the first statement follows. To verify the second one it suffices to consider f(z) = 1.

Example 4. Let 0 < p <1 and f(x) = g(|z|) where g is non-negative non- increasz'ng
atly 31
on (0,00) and g # 0. If—l <a< n—l then f € HD;(cs), where c5 = pp( A > .

1
If a =n— =, then f € HD (p;vn ) and there exists a function f satisfying the

above condztzons such that f ¢ HDy (M) for any 0 < M < p%vﬁil

The first statement immediately follows by the Lemma and Example 1. One should
also note that 1 € HDy(M) if and only if M > p%vﬁil (by Example 1).
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Example 5. Let 3 > 0. Consider the space of quasi-decreasing function QD® which
consists of all functions f such that f(x) = g(|z|),z € R", where g is a non-negative
function on (0,00) and such that the function p~Pg(p) is non-increasing on (0,00).
Similarly to Ezample 3, if 0 < p < co,a > —3 — 2 and |p®g(p)||r,01) < o0, then the

P
right-hand side of inequality (10) is finite for all x # 0 and inequality (10) is satisfied

with )
<(a+ﬁ)p+ 1>p
cg=| —m—mmm .
On

Moreover, this constant is sharp.

Indeed, for all x € R", x #0

ot f— o

_n—1 _ 1
17 Mlem.y = lalyDlyl =1yl s

> gl ( /

1
» atl
= (o)’ f@lal™

and equality is attained if f(z) = |z|°.
Similarly to Example 4, if 0 <p<1l,a<n— 113, then

B =

|y’p(a+ﬁ)n+1dy)

||

at+ B+t
QD" Cc HD{(cs), where cg = pr (a—p) , (16)
hence
B «
QD’ C HDS. (17)
In particular for any 8> 0
ol 51
QD’ c HD, "(c;), where ¢ :p% (n;—ﬁ) : (18)
Also )
QD ¢ HD, *(M) forany 0< M < cx. (19)

no 1
This follows since |x|° € QDP but by Example 1 |x|° ¢ HD,, " (M) for any 0 < M <
Cr.

Example 6. Let 0 < p <1 and a < n — %. Ezxample 1 shows that a hypodecreasing
function with the parameters p and o can be a radially increasing function. Moreover,
any power function |x|", u > 0, is hypodecreasing with the parameters p and a.
Howewver, there are restrictions on the rapidness of growth of a hypodecreasing func-
tion. For example, if g is a positive continuous function on (0,00) for which both limits

n n

oy IO, sl
' / g(p)p"dp / g(p)p"dp
0 0

(20)
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are finite, then the function g(|x|) is hypodecreasing with the parameters p and n — %

(and hence, by Remark 6, also with the parameters p and o < n — %), but if at least

one of these limits is infinite, then it is not hypodecreasing with the parameters p and
1
Indeed, for a =n — %

o (el ([ storrap)
i <r>13 lo(lz)lz]? ) - |

Lp(Br)

If both limits (20) are finite, then by the L’Hospital rule

r p
< / g(p)p”‘ldp> n 1-p
111’(I)l+ 07“ =p 111’(I)l+ ( _ Q(T)r ) < o
' / glpye™tdp " / g(p)p"dp

0 0

and similarly the limit as r — 400 is finite, hence S < oo. If at least one of limits
(20) is infinite, then for the same reason S = 0o, and the statement follows.

By applying the L’Hospital rule once more it follows that if g is a positive contin-
uously differentiable function on (0,00) for which both limits

lim "2 7) tim 7(")
rm0t o g(r) T e g(r)

are finite, then the function g(|x|) is hypodecreasing with the parameters p and o <

n — 113, and if one of these limits 1s infinite, then g is not hypodecreasing with the

parameters p and n — %.

In particular, if ¥ is a positive continuously differentiable function on (0,00) such
that v'(r) > 0 for all r > 0 and liin Y(r) = oo, then

n—l
|$‘¢(le) ¢ HD, *

for any 0 < p < 1 because of too rapid growth at infinity. For example, for any ¢ > 0
ol
el ¢ HD, *.
(Roughly speaking, any radially increasing function which grows at infinity quicker

than any power function is not hypodecreasing with the parameters p and n — i)

Example 7. Let 0 € N, h € R", 0 < q < 00, Afp be the difference of order o with
step h of a function ¢ € L,(R"™) and

f(h) = ||AZQO||LQ(RH) :

Then for all 0 < p < 0o and o € R the function [ satisfies inequality (10) with some
c3 > 0 depending only on p, q, o, a and h (see, for example [5],[7] and [6]). Hence by
the lemma f € HDy for any 0 <p <1 andagn—%.
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4 The main result

In this section, for 0 < p < 1, we give sufficient conditions close to necessary ones in
terms of spaces of hypodecreasing functions ensuring that the following stronger version
of the Hardy-type equality is satisfied for all functions f non-negative and measurable
on L,(R")

12 CH (X)) 0000 < NILF@)x, @) (|1 (21)
for all 0 < r < oo, where N > 0 is independent of f and r. If r = oo this is inequality
(5).

Remark 8. If « > n — ]lg, then for any continuous function with compact support
the right hand side of inequality (5) is finite for all v > 0 whilst the left hand side is
infinite. Hence, for any space Z(R™) of functions defined on R", containing at least

one continuous function with compact support, inequality (5) cannot be satisfied for

all functions f € Z(R™). Since all spaces Z(R™) under consideration contain some

continuous functions with compact supports, it is natural to assume that o < n — %.

Definition 2. Given 0 < p < 1, a < n — % and N > 0, we denote by HY(N) the

space of all functions f non-negative and measurable on R™ for which inequality (21)
is satisfied ® for all 0 < r < co. We also set

Hy = | Hy(N).

N>0

Example 8. Let 0 <p<l,a<n— i. Then

lz[" € HyY for all peR.
The case 1 < —a — 1—1) is trivial since in this case H|x|“+a7nT?1HLP(BT) = oo for all
0<r<oo. If,u>—oz—% and N > 0, then

|z[* € HY(N) <= N >cun,
where
_1 1 ~1 1
11 :nan"<n— ——a> (w+mn)r .
p
Indeed, in this case for all 0 < r < oo

_n—1 1 . .
" L8 = o [(+ a)p+ 1] wr T

for all0 <r,t <oco and p>—n

o min{¢,r} .
(e, @) () = 2 [ ot

v t"

3 As in the case of inequality (5), the convention is that if the right hand side of inequality (21)
is infinite, then this inequality is satisfied. This convention implies that any function f non-negative

and measurable on R"™ for which ||f(9c)|x|°“_n7_1 |z,(B,) = oo for all r > 0 belongs to the space H,'(N)
for all N > 0.
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n
= —— ¢t " min{¢t, r}#"
i {t,r}

and

1t (H (Jz]" X5, () ()], 0.00)

1

r +oo >

= Z </ t(a+“)pdt+r“+”/ t(an)pdt>p
prn r

= npr ((n+@)p+ 1) ((n— a)p— 1) (p+n)r " < oo

if and only if o« <n — 5 (hence p > —n). Therefore the minimal value of N for which
inequality (21) is satisfied for the function |x|* is equal to

[t (H (|2[*X 5, () (B)]]z,00)

_n=1
O<r<oe ||, (@)l 7 [, 0.00)

= C11-

Example 9. Let 0 < p < l,a < n — %. Consider the space ﬁ[g of all functions f

measurable on R™ for which ||f(x)|x\°‘_n771\|Lp(Br) < 00 for all 0 < r < oo and for
some N > 0 inequality (21) is satisfied for all 0 < r < co. Ezample 8 shows that the
space fl;‘ contains some radially increasing functions. Moreover, any power function
|z|*, 1> 0, belongs to f[;

However, there are restrictions on the rapidness of growth of a function belonging
to Hy. For example, if g is a posilive continuous function on (0,00) for which both

limits (20) are finite, then g(|x|) € [?[g‘, but if at least one of limits (20) is infinite, then

9(|z]) ¢ Hy.
Indeed,
t*(H(g(|z|)x 00) P
"= sup [t (H (g(|2])x 5, (x ))()HLPO _ 7 TO
0<r<oo Hg('x‘)XBTCU)’Z" p HLp()oo) Opn 0<r<oo
where [
T(ry =
/g(Q)an”dQ
0
and

r t p
I = / t(“*”)”( / g(@)@"“c@) dt,
0 0

T(a—n)p-ﬁ-l T ~ »
0

(n—a)p—
If both limits (20) are finite, then by the L’Hospital rule

lim T'(r)? = (n — 1 04)71 lim ( glr)r” ) 7 < 00,

r—0+t p r—0t
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and similarly the limit as r — 400 s finite, hence T < oo. If at least one of limits
(20) is infinite, then for the same reason T = oo, and the statement follows.

Similarly to Example 6 it follows that if 1 is a positive continuously differentiable
function on (0,00) such that ¢'(r) >0 for all 7 > 0 and lim (r) = oo, then

r—-400

|x|w(lr|) ¢ HY

1

forany0<p<1cmda<n—5.

Theorem 3. Let0<p<1cmda<n—ll).
1. F07"all04<ﬁ§n—]lJ

B « a
HD, C H} C HD;. (22)
2. Forall&<ﬁ§n—]% and M >0
HDJ(M) C H (c12M) (23)

where ci13 = v, ((8 — Oé)p)_% and this constant is sharp.
3. For all N >0
H&(N) C HD%(c13N) (24)

where c13 = v, ((n — a)p — 1)% and this constant is sharp.

Remark 9. In terms of inequalities inclusions (22) mean that if a function f non-
negative and measurable on R™ satisfies for some N > 0 inequality (21) for all 0 < r <
00, then it also satisfies inequality (5) with some M = M(N,n,a,p) > 0, depending
only on N,n,a and p, for all 0 < r < oo.

Moreover, if a function f non-negative and measurable on R™ satisfies for some
M > 0 a slightly stronger inequality than inequality (5), namely inequality (5) where «
is replaced by any B € (a,n — %], for all 0 < r < oo, then it also satisfies inequality
(21) with some N = N(M,n,«, 3,p) > 0, depending only on N,n,a, 3 and p, for all
0 <r < oo. In particular, it satisfies inequality (3).

Hence, all functions f which satisfy inequality (21), a stronger version of inequality
(3), and are such that Hf(x)|x|a_nT?IHLp(BT) for all v > 0, are hypodecreasing with the
parameters p and c.

Statements 2 and 3 are more precise versions of the above. In the first part
M(N,n,a,p) = c13N, and c13 cannot be replaced by a smaller quantity. In the second

part N(M,n,«a, 3,p) = c12M, and c12 cannot be replaced by a smaller quantity.

Corollary. Let 0 < p < lL,a < < n— % and M > 0. Then for each function f
hypodecreasing with the parameters p,3 and M inequality (3) is satisfied with N =
c1oM, and the quantity c15 cannot be replaced by a smaller one.

Remark 10. For = n—% the first statement of the Corollary coincides with Theorem
2.



40 V.I. Burenkov, A. Senouci, T.V. Tararykova

Proof. 1. Let a < <n — %, M >0and f € HDg(M). Then by inequality (5)

[#*CH ) ()| 2 (0.00)

1
o) p P
= ;! ( / t<a—n>p( f(x)dx) dt)
0 By
- 1
<uv,'M (/ tla=fp-1 ( fp(a:)].r|ﬁp_"+1dx> dt)
0 By

oot ([ paprs |
R" |

z|

1
t(aﬁ)Pldt) ?

— @ -a i ([ Pl

— 0 (8 — a)p)F M| f(2)|2]°7"F ||, @),

and inequality (20) for all r = oo follows with N = v, *((3 — Oz)p)_%M.

By Remark 3 fx, € HDg(M) for all 0 < r < oo, therefore in the above argument
the function f can be replaced by fx, which implies inequality (21) for all 0 < r < co.
2. Let cJy be the minimal value of ¢ > 0 for which the inclusion HDg(M) C
HDyg(cM) holds. Consider the function f(z) = |2|* with 4 > —a—% , hence p > —ﬁ—%
and > —n. By Example 1 |z[* € HDj(c3). On the other hand by Example 8

|z|* € H;‘(N) if and only if N > ¢1, hence ¢j,c3 > ¢11. Consequently

C11
*
Clp = sup —

_a_l C3
p>—o p

_ 1
sup U_l(n L a> 1< ptn )p c
= n - - = _— = C12.
p>—a—1 p (n+B)p+1
By Step 1 ¢jy < c12, S0 €]y = C12.
3. Let f € HY(N), i.e. inequality (21) is satisfied for all 0 < r < co. Note that

1t CH (x5 )O)llzy000 = v 127" ; FX3, Y| Ly r,00)
t

= v, Il 18"z, o)

_ 1 gpad
= v, ((n—a)p = 1) 7" | fll 1y,

Hence by (21) for all » > 0

n—_

L n-1l_q a—n=l
1A llzasn) < val(n = a)p = 1)er™ e N[ f(2) 2" 5 (|1, 8,

which means that f € HDg(ci3N).
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4. Let cj3 be the minimal value of ¢ > 0 for which the inclusion Hy'(N) C HDj(cN)
holds. As in Step 2 consider the function f(z) = |z|* with u > —a — %. By Example
8 |z|* € Hy(ci1). On the other hand by Example 1 |z[* € HDg(M) if and only if

M > ¢3 |g=a, hence cj3c11 > ¢35 |p=a- Consequently

%
Ci3 = Sup
p>—a—Lt  C11

1
( 1 )((u+ﬂ)p+1>P
= sup v |ln———a||———) =c3.
p>—a—1 p ptn

By Step 3 ¢j3 < i3, S0 €5 = ci3.
5. Finally, inclusions (22) follow by inclusions (23) and (24). O

Remark 11. By FEzample 7 Theorem 3 is applicable to the function f(h) =
AR, @n) » where 0 < g < oco. This fact was used in [6] for establishing the equiv-
alence of certain quasi-norms tnvolving differences and similar quasi-norms involving
moduli of continuity. At a certain stage of the proof in [6] it was required to prove that

o1 o
Ht : "(U HAhngLq(Rn)dh>

n
nt B

Ly(0,00)

< cu [R77HAT

SOHLQ(Rn) Lo(R™)

where 0 <l < 0,0 <0 < o0 and c14 > 0 is independent of .

For 0 > 1 this inequality follows by applying the standard Hardy inequality. For
0 <0 <1 it was deduced by using Theorem 2, a particular case of the Corollary.
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