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Abstract. The notion of a hypodecreasing function is introduced. Some properties of
hypodecreasing functions are proved and several examples are given. It is established
that the Hardy-type inequality for Lp-spaces with 0 < p < 1 is satis�ed for some spaces
of hypodecreasing functions. The obtained result is in a certain sense sharp.

1 Introduction
It is well known that for Lp-spaces with 0 < p < 1 the Hardy inequality is not satis�ed
for arbitrary non-negative measurable functions, but it is satis�ed for non-negative
non-increasing functions. Moreover, in [3], pp. 90-91, the sharp constant in the Hardy-
type inequality for non-negative non-increasing functions was found. (See [4] for more
details.) Namely the following statement was proved there.

Theorem 1. Let 0 < p < 1 and −1
p
< α < 1− 1

p
. Then for all functions f non-negative

and non-increasing on (0,∞)

∥∥∥∥xα−1

∫ x

0

fdy

∥∥∥∥
Lp(0,∞)

≤
(
1− 1

p
− α

)− 1
p ‖xαf(x)‖Lp(0,∞) , (1)

and the constant (1− 1
p
− α)−

1
p is sharp.

Remark 1. If α ≥ 1− 1
p
, then there exists a function f non-negative and non-increasing

on (0,∞) such that ‖xαf(x)‖Lp((0,∞)) < ∞, but ‖xα−1f(x)‖Lp((0,∞)) = ∞. (For exam-
ple, this holds for any function f non-negative non-increasing continuous on [0,∞)
which is not equivalent to zero and is such that supp f ⊂ [0,∞).) If α ≤ −1

p
, then

for each function which is non-negative non-increasing on (0,∞) and is not identically
equal to zero ‖xαf(x)‖Lp((0,∞)) = ∞.

Later inequalities of type (1) were proved in [1], [2] for non-negative quasi-decreasing
functions, also with sharp constants.
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In [7] the Hardy-type inequality for 0 < p < 1 was proved under weaker assumptions
on f but still of monotonicity type. The result was proved for the n-dimensional variant
of the Hardy operator, namely for the operator H de�ned for all functions f ∈ Lloc1 (Rn)
by

(Hf)(t) =
1

vntn

∫

Bt

fdy, 0 < t <∞,

where Bt is the ball centered at the origin of radius r and vn is the volume of the unit
ball in Rn.

Theorem 2. Let 0 < p < 1, α < n− 1
p
and M > 0.

Moreover, let f be a function non-negative measurable on Rn such that
‖f(x)|x| n

p′ ‖Lp(Br) <∞ and

‖f(x)‖L1(Br) ≤M‖f(x)|x| n
p′ ‖Lp(Br) (2)

for all r > 0, where p′ = p
p−1

.
Then

‖tα(Hf)(t)‖Lp((0,∞)) ≤ N‖f(x)|x|α−n−1
p ‖Lp(Rn) , (3)

where
N = v−1

n ((n− α)p− 1)−
1
pM. (4)

The aim of this paper is �nding a still wider space of functions such that for all
functions f in this space inequality (3) is satis�ed with some N > 0, independent of f .
It will be shown that for 0 < p < 1 a slightly stronger version of inequality (3) is itself
a certain condition of monotonicity type on a function f .

2 Spaces of hypodecreasing functions
De�nition 1. Let 0 < p < 1, α ∈ R and M > 0. We say that a function f is
hypodecreasing with the parameters p, α and M if f is a function non-negative and
measurable on Rn for which

‖f(x)|x|α−n−1
p ‖Lp(Br) <∞

and
‖f‖L1(Br) ≤Mrn−

1
p
−α‖f(x)|x|α−n−1

p ‖Lp(Br) (5)

for all r > 0.
We also say that a function f is hypodecreasing with the parameters p and α if for

some M > 0 it is hypodecreasing with the parameters p, α and M .

In order to simplify the formulation of the main result it is convenient to agree that
if the right hand side of inequality (5) is in�nite, then this inequality is satis�ed, and
to denote by HDα

p (M) the space of all functions f non-negative and measurable on
Rn for which inequality (5) holds for all 0 < r < ∞. So the space HDα

p (M) contains
all functions f hypodecreasing with the parameters p, α and M and also all functions
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f non negative and measurable on Rn for which ‖f(x)|x|α−n−1
p ‖Lp(Br) = ∞ for all

0 < r <∞. We also set
HDα

p =
⋃
M>0

HDα
p (M).

Remark 2. If ‖f(x)|x|α−n−1
p ‖Lp(Rn) <∞ and α > n− 1

p
, then inequality (5) holds for

all r > 0 only if f is equivalent to zero on Rn. This follows by passing to the limit as
r →∞.

Remark 3. If 1 α ≤ n − 1
p
, then inequality (5) implies that for all 0 < ρ ≤ ∞ and

r > 0
‖fχ

Bρ
‖L1(Br) ≤Mrn−

1
p
−α‖f(x)χ

Bρ
(x)|x|α−n−1

p ‖Lp(Br).

For ρ = ∞ this is inequality (5). If ρ < ∞ and 0 < r ≤ ρ, it again coincides with
inequality (5). If ρ < r <∞, then by inequality (5) with r = ρ

‖fχ
Bρ
‖L1(Br) = ‖f‖L1(Br) ≤Mρn−

1
p
−α‖f(x)|x|α−n−1

p ‖Lp(Bρ)

≤Mrn−
1
p
−α‖f(x)χ

Bρ
(x)|x|α−n−1

p ‖Lp(Br) ,

because n− 1
p
− α ≥ 0.

Thus for α ≤ n− 1
p

f ∈ HDα
p (M) =⇒ fχ

Br
∈ HDα

p (M)

for all 0 < r <∞.

Remark 4. If p ≥ 1 and α < n − 1
p
for p > 1 α ≤ n − 1 for p = 1, then by H�older's

inequality

‖f‖L1(Br) ≤ ‖|x|−α+n−1
p ‖Lp′ (Br)‖f(x)|x|α−n−1

p ‖Lp(Br)

= c1r
n− 1

p
−α‖f(x)|x|α−n−1

p ‖Lp(Br) ,

where

c1 = σ
1
p′
n

[(
n− 1

p
− α

)
p′ + n

]− 1
p′

if p > 1 and c1 = 1 if p = 1. Here σn = nvn is the surface area of the unit sphere in
Rn.

Next note that

sup
‖f‖L1(Br)

rn−
1
p
−α‖f(x)|x|α−n−1

p ‖Lp(Br)

=





c1 if 1 < p ≤ ∞, α < n− 1
p
,

1 if p = 1, α ≤ n− 1,

∞ if 0 < p < 1, α ∈ R,
1We are mostly interested in the case α ≤ n − 1

p , because the formulation of the main result in
Section 4 contains this assumption.



30 V.I. Burenkov, A. Senouci, T.V. Tararykova

where the supremum is taken with respect to all r > 0 and all non-negative measurable
functions f for which

0 < ‖f(x)|x|α−n−1
p ‖Lp(Br) <∞

for all r > 0.
The statement for 1 < p ≤ ∞ follows since for f(x) = |x|(−α+n−1

p
)p′ the above

inequality turns in an equality. The statement for p = 1 follows if one takes f = eν|x|,
1 ≤ ν <∞ and passes to limit as ν →∞. The statement for 0 < p < 1 follows if one
takes r = 1, f = χ

B1\Bν
, 0 < ν < 1, and passes to the limit as ν → 1−. Therefore for

1 < p ≤ ∞, α < n− 1
p
or p = 1, α ≤ n− 1 inequality (5) with M ≥ c1 does not impose

any further restrictions on a function f for which ‖f(x)|x|α−n−1
p ‖Lp(Br) < ∞ for all

r > 0, whilst for 0 < p < 1 it imposes further restrictions for any α ∈ R and M > 0.
Remark 5. In terms of the introduced de�nition, in Theorem 2 for 0 < p < 1 and α <
n− 1

p
Hardy-type inequality (3) is proved under the assumption that f ∈ HDn− 1

p
p (M).

Remark 6. The spaces HDα
p (M) possess monotonicity properties in the indices p and

α. Namely, if 0 < p < q < 1, α ∈ R,M > 0, then

HDα
p (M) ⊂ HDα

q (σ
1
p
− 1

q
n M), (6)

and if 0 < p < 1, α ∈ R, β < α, then
HDα

p (M) ⊂ HDβ
p (M). (7)

More generally, if 0 < α ≤ q < 1 and β < α + 1
p
− 1

q
, then

HDα
p (M) ⊂ HDβ

q (c2M), (8)

where

c2 = σ
1
p
− 1

q
n

[
(α− β)

(
1

p
− 1

q

)−1

+ 1

] 1
q
− 1

p

.

Inclusion (8) implies that
HDα

p ⊂ HDβ
q . (9)

Indeed, let f ∈ HDα
p (M). Then by H�older's inequality with the exponent q

p
> 1

‖f(x)|x|α−n−1
p ‖Lp(Br) ≤ ‖|x|α−β−(n−1)( 1

p
− 1

q
)‖Ls(Br)‖f(x)|x|β−n−1

q ‖Lq(Br)

where 1
s

= 1
p
− 1

q
. Since

‖|x|α−β−(n−1)( 1
p
− 1

q
)‖Ls(Br) = c2r

α−β+ 1
p
− 1

q ,

we have
‖f‖L1(Br) ≤ Mrn−

1
p
−α‖f(x)|x|α−n−1

p ‖Lp(Br)

≤ c2Mrn−
1
q
−β‖f(x)|x|β−n−1

q ‖Lq(Br) ,

hence inclusion (8) follows.
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Lemma. Let 0 < p < ∞, α ∈ R, c3 > 0, and let f be a function non-negative and
measurable on Rn such that ‖f(y)|y|α−n−1

p ‖Lp(Br) <∞ for all r > 0 and

f(x) ≤ c3

|x|α+ 1
p

‖f(y)|y|α−n−1
p ‖Lp(B|x|) (10)

for almost all x ∈ Rn.
1. If α ≤ n− 1

p
, then inequality (5) is satis�ed with

M = pc1−p3 . (11)

(Hence f ∈ HDα
p (pc1−p3 ).)

2. If α = n− 1
p
, then this constant is sharp.

3. If α > n− 1
p
, then inequality (10) does not imply inequality (5) with any M > 0

independent of fand r.

Proof. 1. Let α ≤ n− 1
p
. Note that for all r > 0 for almost all x ∈ Br

f(x) = (f(x)|x|α+ 1
p )1−p(fp(x)|x|αp−n+1)|x|n− 1

p
−α

≤ rn−
1
p
−α(f(x)|x|α+ 1

p )1−p(f p(x)|x|αp−n+1) , (12)

hence by (10)

f(x) ≤ c1−p3 rn−
1
p
−α

(∫

B|x|
fp(y)|y|αp−n+1dy

) 1
p
−1

fp(x)|x|αp−n+1. (13)

Integrating over Br and taking thrice the spherical coordinates we have

‖f‖L1(Br) ≤ c1−p3 rn−
1
p
−ασnI ,

where

I =

∫ r

0

(∫

Bρ

fp(y)|y|αp−n+1dy

) 1
p
−1 (∫

Sn−1

f p(ρ(σ)dσ)

)
ρpαdρ .

Moreover, I = σ
1
p
−1

n J , where

J =

∫ r

0

(∫ ρ

0

(∫

Sn−1

f p (tσ) dσ

)
tpαdt

) 1
p
−1 (∫

Sn−1

f p(ρ(σ)dσ)

)
ρpαdρ.

Therefore
‖f‖L1(Br)

≤ pc1−p3 rn−
1
p
−ασ

1
p
n

∫ r

0

[(∫ ρ

0

(∫

Sn−1

f p(tσ)dσ

)
tpαdt

) 1
p

]′
dρ
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= pc1−p3 rn−
1
p
−α

(
σn

∫ r

0

∫ r

0

(∫

Sn−1

fp(tσ)dσ

)
tpαdt

) 1
p

= pc1−p3 rn−
1
p
−α

(∫

Br

fp(x)|x|µp−n+1dx

) 1
p

= pc1−p3 rn−
1
p
−α‖f(x)|x|α−n−1

p ‖Lp(Br).

Hence the �rst statement follows.

2. By the above argument it follows that if in inequalities (12) and (13) there are
equalities, then

‖f‖L1(Br) = pc1−p3 ‖f(x)|x|α−n−1
p ‖Lp(Br),

which implies that inequality (5) is satis�ed with M = pc1−p3 and is not satis�ed
with any M < pc1−p3 . Hence the constant pc1−p3 is sharp if there exists a function
f ∈ Lloc1 (Rn) for which inequalities (12) and (13) turn in equalities and which is not
equivalent to zero on Rn.

3. Let α = n− 1
p
, then there is equality in (12). Assume that f(x) = g(|x|) where

g is a non-negative di�erentiable function on (0,∞) and equality (12) is satis�ed, i.e.

g(ρ) = c1−p3

(∫

Bρ

g(|y|)p|y|n(p−1)dy

) 1
p
−1

g(ρ)pρn(p−1), 0 < ρ <∞.

By taking the spherical coordinates it follows for all ρ > 0

(g(ρ)ρn)p = cp3σn

∫ ρ

0

gp(t)tnp−1dt.

By di�erentiating this equality and carrying out simple calculations it follows that

g′(ρ)ρ+ ag(ρ) = 0

where
a = n− cp3σn

p
.

This equation is satis�ed by g(ρ) = ρ−a.
Thus equations (12) and (13) are satis�ed for f(x) = |x|−a for all x ∈ Rn , x 6= 0.

Also f ∈ Lloc1 (Rn) since a < n. Hence the second statement of the lemma follows.

4. Let α > n − 1
p
,−α − 1

p
< µ < −n and f(x) = |x|µ for all x ∈ Rn, x 6= 0. Then

‖f(x)|x|α−n−1
p ‖Lp(Br) < ∞ for all r > 0 because α − n−1

p
> −n

p
, but ‖f‖L1(Br) = ∞

because µ < −n, hence inequality (5) does not hold for this function f for any M > 0.
¤

Remark 7. In [7] for the case α = n − 1
p
by a simpler argument it was proved that

under the assumptions of the Lemma inequality (5) is satis�ed with M = c1−p3 .
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3 Examples of hypodecreasing functions
Example 1. Let 0 < p < 1, α ∈ R and M > 0. Then the function |x|µ, µ ∈ R is
hypodecreasing with the parameters p and α if and only if µ > max {−n,−α− 1

p
} and it

is hypodecreasing with the parameters p and α and M if only if µ > max {−n,−α− 1
p
}

and M ≥ c3, where

c3 =
σ

1− 1
p

n [(µ+ α)p+ 1]
1
p

µ+ n
. (14)

This follows since,

‖ |x|µ‖L1(Br) ⇐⇒ µ > −n, ‖|x|µ+α−n−1
p ‖L1(Br) <∞⇐⇒ µ > −α− 1

p

and the minimal value of M > 0 for which inequality (5) is satis�ed is equal to

sup
r>0

‖|x|µ‖L1(Br)

rn−
1
p
−α‖|x|µ+α−n−1

p ‖L1(Br)

=
σn

µ+ n

(
σn

(µ+ α)p+ 1

)− 1
p

= c3.

Moreover,2

|x|µ ∈ HDα
p ⇐⇒

{
−∞ < µ <∞ if α ≤ n− 1

p
,

µ ≤ −α− 1
p

or µ > −n if α > n− 1
p
.

(15)

It su�ces to take into account that in the case µ ≤ −α− 1
p
one has ‖|x|µ+α−n−1

p ‖Lp(Br) =

∞ for all 0 < r <∞, hence inequality (5) is trivially satis�ed.

Example 2. Let 0 < p < 1, α ∈ R. Then the function |x|µχ
B1

(x), µ ∈ R, is hypode-
creasing with the parameters p and α if only if α ≤ n− 1

p
and µ > −α− 1

p
, and

|x|µχ
B1

(x) ∈ HDα
p ⇐⇒ α ≤ n− 1

p
and −∞ < µ <∞.

This follows because if α > n− 1
p
, then

sup
r≥1

‖|x|µχ
B1

(x)‖L1(Br)

rn−
1
p
−α‖|x|µ+α−n−1

p χ
B1

(x)‖L1(Br)

= ∞.

Moreover,
|x|µχc

B1
(x) 6∈ HDα

p for all µ, α ∈ R ,
because

sup
r>0

‖|x|µχc
B1

(x)‖L1(Br)

rn−
1
p
−α‖|x|µ+α−n−1

p χc
B1

(x)‖Lp(Br)

2Recall that we are mostly interested in the case α ≤ n− 1
p .
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≥ lim
r→1+

‖|x|µ‖L1(Br\B1)

rn−
1
p
−α‖|x|µ+α−n−1

p ‖L1(Br\B1)

≥ lim
r→1+

min{rµ, 1}vn(rn − 1)

rn−
1
p
−α max{rµ+α−n−1

p , 1}v
1
p
n (rn − 1)

1
p

= ∞ .

In particular,

χ
B1
∈ HDα

p ⇐⇒ α ≤ n− 1

p
and χ

B1
6∈ HDα

p for all α ∈ R .

Moreover, if −1
p
< α ≤ n− 1

p
, then

χ
B1
∈ HDα

p (M) ⇐⇒M ≥ c4 ,

where
c4 = σ

1− 1
p

n n−1(pα+ 1)
1
p .

If α ≤ −1
p
, then

χ
B1
∈ HDα

p (M) for all M > 0 .

Example 3. If 0 < p < ∞, α > −1
p
and f(x) = g(|x|), x ∈ Rn, where g is a non-

negative non-increasing function on (0,∞) such that ‖g(ρ)ρα‖Lp(0,1) < ∞, then the
right hand side of inequality (10) is �nite for all x 6= 0 and inequality (10) is satis�ed
with

c3 =

(
pα+ 1

σn

) 1
p

.

Moreover, this constant is sharp.
Indeed, for all x ∈ Rn, x 6= 0

‖f(y)|y|α−n−1
p ‖Lp(B|x|) = ‖g(|y|)|y|α−n−1

p ‖Lp(B|x|)

≥ g(|x|)
(∫

B|x|
|y|pα−n+1dy

) 1
p

=
(

σn

pα+1

) 1
p
f(x)|x|α+ 1

p ,

and the �rst statement follows. To verify the second one it su�ces to consider f(x) ≡ 1.

Example 4. Let 0 < p < 1 and f(x) = g(|x|) where g is non-negative non-increasing
on (0,∞) and g 6≡ 0. If −1

p
< α ≤ n− 1

p
, then f ∈ HDα

p (c5), where c5 = p
1
p

(
α+ 1

p

σn

) 1
p
−1

.

If α = n − 1
p
, then f ∈ HD

n− 1
p

p (p
1
pv

1
p
−1

n ) and there exists a function f satisfying the

above conditions such that f 6∈ HDα
p (M) for any 0 < M < p

1
p v

1
p
−1

n .
The �rst statement immediately follows by the Lemma and Example 1. One should

also note that 1 ∈ HDα
p (M) if and only if M ≥ p

1
pv

1
p
−1

n (by Example 1).
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Example 5. Let β ≥ 0. Consider the space of quasi-decreasing function QDβ which
consists of all functions f such that f(x) = g(|x|), x ∈ Rn, where g is a non-negative
function on (0,∞) and such that the function ρ−βg(ρ) is non-increasing on (0,∞).
Similarly to Example 3, if 0 < p ≤ ∞, α > −β − 1

p
and ‖ραg(ρ)‖Lp(0,1) < ∞, then the

right-hand side of inequality (10) is �nite for all x 6= 0 and inequality (10) is satis�ed
with

c3 =

(
(α + β)p+ 1

σn

) 1
p

.

Moreover, this constant is sharp.
Indeed, for all x ∈ Rn, x 6= 0

‖f(y)|y|α−n−1
p ‖Lp(B|x|) = ‖g(|y|)|y|−β|y|α+β−n−1

p ‖Lp(B|x|)

≥ g(|x|)|x|−β
(∫

B|x|
|y|p(α+β)−n+1dy

) 1
p

=
(

σn

p(α+β)+1

) 1
p
f(x)|x|α+ 1

p

and equality is attained if f(x) = |x|β.
Similarly to Example 4, if 0 < p < 1, α ≤ n− 1

p
, then

QDβ ⊂ HDα
p (c6), where c6 = p

1
p

(
α+ β + 1

p

σn

) 1
p
−1

, (16)

hence
QDβ ⊂ HDα

p . (17)

In particular for any β ≥ 0

QDβ ⊂ HD
n− 1

p
p (c7), where c7 = p

1
p

(
n+ β

σn

) 1
p
−1

. (18)

Also
QDβ 6⊂ HD

n− 1
p

p (M) for any 0 < M < c7. (19)

This follows since |x|β ∈ QDβ but by Example 1 |x|β 6∈ HDn− 1
p

p (M) for any 0 < M <
c7.
Example 6. Let 0 < p < 1 and α ≤ n − 1

p
. Example 1 shows that a hypodecreasing

function with the parameters p and α can be a radially increasing function. Moreover,
any power function |x|µ, µ > 0, is hypodecreasing with the parameters p and α.

However, there are restrictions on the rapidness of growth of a hypodecreasing func-
tion. For example, if g is a positive continuous function on (0,∞) for which both limits

lim
r→0+

g(r)rn∫ r

0

g(ρ)ρn−1dρ

, lim
r→+∞

g(r)rn∫ r

0

g(ρ)ρn−1dρ

(20)



36 V.I. Burenkov, A. Senouci, T.V. Tararykova

are �nite, then the function g(|x|) is hypodecreasing with the parameters p and n − 1
p

(and hence, by Remark 6, also with the parameters p and α < n − 1
p
), but if at least

one of these limits is in�nite, then it is not hypodecreasing with the parameters p and
n− 1

p
.

Indeed, for α = n− 1
p

Sp ≡
(

sup
r>0

‖g(|x|)‖L1(Br)∥∥g(|x|)|x| n
p′

∥∥
Lp(Br)

)p

= σp−1
n sup

r>0

( ∫ r

0

g(ρ)ρn−1dρ
)p

∫ r

0

g(ρ)pρnp−1dρ

.

If both limits (20) are �nite, then by the L'Hospital rule

lim
r→0+

( ∫ r

0

g(ρ)ρn−1dρ
)p

∫ r

0

g(ρ)pρnp−1dρ

= p lim
r→0+

(
g(r)rn∫ r

0

g(ρ)ρn−1dρ

)1−p

<∞

and similarly the limit as r → +∞ is �nite, hence S < ∞. If at least one of limits
(20) is in�nite, then for the same reason S = ∞, and the statement follows.

By applying the L'Hospital rule once more it follows that if g is a positive contin-
uously di�erentiable function on (0,∞) for which both limits

lim
r→0+

rg′(r)
g(r)

, lim
r→+∞

rg′(r)
g(r)

are �nite, then the function g(|x|) is hypodecreasing with the parameters p and α ≤
n − 1

p
, and if one of these limits is in�nite, then g is not hypodecreasing with the

parameters p and n− 1
p
.

In particular, if ψ is a positive continuously di�erentiable function on (0,∞) such
that ψ′(r) > 0 for all r > 0 and lim

r→+∞
ψ(r) = ∞, then

|x|ψ(|x|) /∈ HDn− 1
p

p

for any 0 < p < 1 because of too rapid growth at in�nity. For example, for any ε > 0

e|x|
ε
/∈ HDn− 1

p
p .

(Roughly speaking, any radially increasing function which grows at in�nity quicker
than any power function is not hypodecreasing with the parameters p and n− 1

p
.)

Example 7. Let σ ∈ N, h ∈ Rn, 0 < q ≤ ∞, ∆σ
hϕ be the di�erence of order σ with

step h of a function ϕ ∈ Lq(Rn) and

f(h) = ‖∆σ
hϕ‖Lq(Rn)

.

Then for all 0 < p ≤ ∞ and α ∈ R the function f satis�es inequality (10) with some
c3 > 0 depending only on p, q, σ, α and h (see, for example [5], [7] and [6]). Hence by
the lemma f ∈ HDα

p for any 0 < p < 1 and α ≤ n− 1
p
.
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4 The main result
In this section, for 0 < p < 1, we give su�cient conditions close to necessary ones in
terms of spaces of hypodecreasing functions ensuring that the following stronger version
of the Hardy-type equality is satis�ed for all functions f non-negative and measurable
on Lp(Rn)

‖tα(H(fχ
Br

))(t)‖Lp(0,∞) ≤ N‖f(x)χ
Br

(x)|x|α−n−1
p ‖Lp(Rn) (21)

for all 0 < r ≤ ∞, where N > 0 is independent of f and r. If r = ∞ this is inequality
(5).
Remark 8. If α ≥ n − 1

p
, then for any continuous function with compact support

the right hand side of inequality (5) is �nite for all r > 0 whilst the left hand side is
in�nite. Hence, for any space Z(Rn) of functions de�ned on Rn, containing at least
one continuous function with compact support, inequality (5) cannot be satis�ed for
all functions f ∈ Z(Rn). Since all spaces Z(Rn) under consideration contain some
continuous functions with compact supports, it is natural to assume that α < n− 1

p
.

De�nition 2. Given 0 < p < 1, α < n − 1
p
and N > 0, we denote by Hα

p (N) the
space of all functions f non-negative and measurable on Rn for which inequality (21)
is satis�ed 3 for all 0 < r ≤ ∞. We also set

Hα
p =

⋃
N>0

Hα
p (N).

Example 8. Let 0 < p < 1, α < n− 1
p
. Then

|x|µ ∈ Hα
p for all µ ∈ R .

The case µ ≤ −α − 1
p
is trivial since in this case ‖|x|µ+α−n−1

p ‖Lp(Br) = ∞ for all
0 < r ≤ ∞. If µ > −α− 1

p
and N > 0, then

|x|µ ∈ Hα
p (N) ⇐⇒ N ≥ c11,

where
c11 = nσ

− 1
p

n

(
n− 1

p
− α

)−1

(µ+ n)
1
p
−1 .

Indeed, in this case for all 0 < r <∞

‖|x|µ+α−n−1
p ‖Lp(Br) = σ

1
p
n [(µ+ α)p+ 1]−

1
p rµ+α+ 1

p ,

for all 0 < r, t <∞ and µ > −n
(
H(|x|µχ

Br
(x))

)
(t) =

σn
vntn

∫ min{t,r}

0

ρµ+n−1dρ

3As in the case of inequality (5), the convention is that if the right hand side of inequality (21)
is in�nite, then this inequality is satis�ed. This convention implies that any function f non-negative
and measurable on Rn for which ‖f(x)|x|α−n−1

p ‖Lp(Br) = ∞ for all r > 0 belongs to the space Hα
p (N)

for all N > 0.
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=
n

µ+ n
t−n min{t, r}µ+n

and
‖tα (

H(|x|µχ
Br

(x))
)
(t)‖Lp(0,∞)

=
n

µ+ n

(∫ r

0

t(α+µ)pdt+ rµ+n

∫ +∞

r

t(α−n)pdt

) 1
p

= np
1
p ((µ+ α)p+ 1)−

1
p ((n− α)p− 1)−

1
p (µ+ n)

1
p
−1 <∞

if and only if α < n− 1
p

(hence µ > −n). Therefore the minimal value of N for which
inequality (21) is satis�ed for the function |x|µ is equal to

sup
0<r<∞

‖tα (
H(|x|µχ

Br
(x))

)
(t)‖Lp(0,∞)

‖|x|µχ
Br

(x)|x|α−n−1
p ‖Lp(0,∞)

= c11.

Example 9. Let 0 < p < 1, α < n − 1
p
. Consider the space H̃α

p of all functions f
measurable on Rn for which ‖f(x)|x|α−n−1

p ‖Lp(Br) < ∞ for all 0 < r < ∞ and for
some N > 0 inequality (21) is satis�ed for all 0 < r < ∞. Example 8 shows that the
space H̃α

p contains some radially increasing functions. Moreover, any power function
|x|µ, µ > 0, belongs to H̃α

p .
However, there are restrictions on the rapidness of growth of a function belonging

to H̃α
p . For example, if g is a positive continuous function on (0,∞) for which both

limits (20) are �nite, then g(|x|) ∈ H̃α
p , but if at least one of limits (20) is in�nite, then

g(|x|) /∈ H̃α
p .

Indeed,

T p ≡ sup
0<r<∞

‖tα(H(g(|x|)χ
Br

(x))(t)‖pLp(0,∞)

‖g(|x|)χ
Br

(x)|x|α−n−1
p ‖pLp(0,∞)

=
np

σn
sup

0<r<∞
T (r)p ,

where
T (r)p =

I1 + I2∫ r

0

g(%)p%αpd%

and
I1 =

∫ r

0

t(α−n)p
( ∫ t

0

g(%)%n−1d%
)p
dt ,

I2 =
r(α−n)p+1

(n− α)p− 1

( ∫ r

0

g(%)%n−1d%
)p
.

If both limits (20) are �nite, then by the L'Hospital rule

lim
r→0+

T (r)p =
(
n− 1

p
− α

)−1
lim
r→0+

(
g(r)rn∫ r

0

g(ρ)ρn−1dρ

)1−p

<∞ ,
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and similarly the limit as r → +∞ is �nite, hence T < ∞. If at least one of limits
(20) is in�nite, then for the same reason T = ∞, and the statement follows.

Similarly to Example 6 it follows that if ψ is a positive continuously di�erentiable
function on (0,∞) such that ψ′(r) > 0 for all r > 0 and lim

r→+∞
ψ(r) = ∞, then

|x|ψ(|x|) /∈ H̃α
p

for any 0 < p < 1 and α < n− 1
p
.

Theorem 3. Let 0 < p < 1 and α < n− 1
p
.

1. For all α < β ≤ n− 1
p

HDβ
p ⊂ Hα

p ⊂ HDα
p . (22)

2. For all α < β ≤ n− 1
p
and M > 0

HDβ
p (M) ⊂ Hα

p (c12M) (23)

where c12 = v−1
n ((β − α)p)−

1
p and this constant is sharp.

3. For all N > 0
Hα
p (N) ⊂ HDα

p (c13N) (24)

where c13 = vn((n− α)p− 1)
1
p and this constant is sharp.

Remark 9. In terms of inequalities inclusions (22) mean that if a function f non-
negative and measurable on Rn satis�es for some N > 0 inequality (21) for all 0 < r ≤
∞, then it also satis�es inequality (5) with some M = M(N, n, α, p) > 0, depending
only on N, n, α and p, for all 0 < r <∞.

Moreover, if a function f non-negative and measurable on Rn satis�es for some
M > 0 a slightly stronger inequality than inequality (5), namely inequality (5) where α
is replaced by any β ∈ (α, n − 1

p
], for all 0 < r < ∞, then it also satis�es inequality

(21) with some N = N(M,n, α, β, p) > 0, depending only on N,n, α, β and p, for all
0 < r ≤ ∞. In particular, it satis�es inequality (3).

Hence, all functions f which satisfy inequality (21), a stronger version of inequality
(3), and are such that ‖f(x)|x|α−n−1

p ‖Lp(Br) for all r > 0, are hypodecreasing with the
parameters p and α.

Statements 2 and 3 are more precise versions of the above. In the �rst part
M(N,n, α, p) = c13N , and c13 cannot be replaced by a smaller quantity. In the second
part N(M,n, α, β, p) = c12M , and c12 cannot be replaced by a smaller quantity.

Corollary. Let 0 < p < 1, α < β ≤ n − 1
p
and M > 0. Then for each function f

hypodecreasing with the parameters p, β and M inequality (3) is satis�ed with N =
c12M , and the quantity c12 cannot be replaced by a smaller one.

Remark 10. For β = n− 1
p
the �rst statement of the Corollary coincides with Theorem

2.
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Proof. 1. Let α < β ≤ n− 1
p
,M > 0 and f ∈ HDβ

p (M). Then by inequality (5)

‖tα(Hf)(t)‖Lp(0,∞)

= v−1
n

(∫ ∞

0

t(α−n)p

(∫

Bt

f(x)dx

)p

dt

) 1
p

≤ v−1
n M

(∫ ∞

0

t(α−β)p−1

(∫

Bt

fp(x)|x|βp−n+1dx

)
dt

) 1
p

= v−1
n M

(∫

Rn

f p(x)|x|βp−n+1

∫ ∞

|x|
t(α−β)p−1dt

) 1
p

= v−1
n ((β − α)p)−

1
pM

(∫

Rn

f p(x)|x|αp−n+1dx

) 1
p

= v−1
n ((β − α)p)

1
pM‖f(x)|x|α−n−1

p ‖Lp(Rn),

and inequality (20) for all r = ∞ follows with N = v−1
n ((β − α)p)−

1
pM .

By Remark 3 fχ
Br
∈ HDβ

p (M) for all 0 < r <∞, therefore in the above argument
the function f can be replaced by fχ

Br
which implies inequality (21) for all 0 < r <∞.

2. Let c∗12 be the minimal value of c > 0 for which the inclusion HDβ
p (M) ⊂

HDα
p (cM) holds. Consider the function f(x) = |x|µ with µ > −α− 1

p
, hence µ > −β− 1

p

and µ > −n. By Example 1 |x|µ ∈ HDα
p (c3). On the other hand by Example 8

|x|µ ∈ Hα
p (N) if and only if N ≥ c11, hence c∗12c3 ≥ c11. Consequently

c∗12 ≥ sup
µ>−α− 1

p

c11

c3

= sup
µ>−α− 1

p

v−1
n

(
n− 1

p
− α

)−1 (
µ+ n

(µ+ β)p+ 1

) 1
p

= c12.

By Step 1 c∗12 ≤ c12, so c∗12 = c12.
3. Let f ∈ Hα

p (N), i.e. inequality (21) is satis�ed for all 0 < r ≤ ∞. Note that

‖tα(H(fχ
Br

)(t)‖Lp(0,∞) ≥ v−1
n ‖tα−n

∫

Bt

fχ
Br
dy‖Lp(r,∞)

= v−1
n ‖f‖L1(Br)‖tα−n‖Lp(r,∞)

= v−1
n ((n− α)p− 1)−

1
p rα−n+ 1

p‖f‖L1(Br).

Hence by (21) for all r > 0

‖f‖L1(Br) ≤ vn((n− α)p− 1)
1
p rn−

1
p
−αN‖f(x)|x|α−n−1

p ‖Lp(Br)

which means that f ∈ HDα
p (c13N).
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4. Let c∗13 be the minimal value of c > 0 for which the inclusionHα
p (N) ⊂ HDα

p (cN)
holds. As in Step 2 consider the function f(x) = |x|µ with µ > −α − 1

p
. By Example

8 |x|µ ∈ Hα
p (c11). On the other hand by Example 1 |x|µ ∈ HDα

p (M) if and only if
M ≥ c3 |β=α, hence c∗13c11 ≥ c3 |β=α. Consequently

c∗13 ≥ sup
µ>−α− 1

p

c3 |β=α

c11

= sup
µ>−α− 1

p

vn

(
n− 1

p
− α

)(
(µ+ β)p+ 1

µ+ n

) 1
p

= c13.

By Step 3 c∗13 ≤ c13, so c∗13 = c13.
5. Finally, inclusions (22) follow by inclusions (23) and (24). ¤

Remark 11. By Example 7 Theorem 3 is applicable to the function f(h) =
‖∆σ

hϕ‖Lq(Rn)
, where 0 < q ≤ ∞. This fact was used in [6] for establishing the equiv-

alence of certain quasi-norms involving di�erences and similar quasi-norms involving
moduli of continuity. At a certain stage of the proof in [6] it was required to prove that

∥∥∥∥t−l−
1
θ

(
1

vntn

∫

Bt

‖∆σ
hϕ‖Lq(Rn)

dh

)∥∥∥∥
Lθ(0,∞)

≤ c14

∥∥∥ |h|−l−n
θ ‖∆σ

hϕ‖Lq(Rn)

∥∥∥
Lθ(Rn)

,

where 0 < l < σ, 0 < θ ≤ ∞ and c14 > 0 is independent of ϕ.
For θ ≥ 1 this inequality follows by applying the standard Hardy inequality. For

0 < θ < 1 it was deduced by using Theorem 2, a particular case of the Corollary.
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