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Abstract. In this paper we prove that the norm of the Morrey spaceMp,λ is equivalent
to

sup

{∫
Rn

|fg| : inf
x∈Rn

∫ ∞

0

r
n−λ

p
−1‖g‖

Lp′ (
{B(x,r))

dr 6 1

}
.

1 Introduction

The well-known Morrey spaces Mp,λ introduced by C. Morrey in 1938 [7] in relation to
the study of partial differential equations, were widely investigated during last decades,
including the study of classical operators of harmonic analysis - maximal, singular and
potential operators - in generalizations of these spaces (so-called Morrey-type spaces).
These spaces appeared to be quite useful in the study of the local behaviour of solutions
to partial differential equations, a priori estimates and other topics in the theory of
partial differential equations.

In [4] local Morrey-type spaces LMpθ,ω and global Morrey-type spaces GMpθ,ω were
defined and some properties of these spaces were studied. Authors investigated the
boundedness of the Hardy-Littlewood maximal operator in these spaces. After this
paper there was intensive study of boundedness of other classical operators such as
fractional maximal operator, Riesz potential and Calderón-Zygmund singular integral
operator (see, for instance [2], [3], [6], for references).

Later in [5] so-called complementary local Morrey-type spaces {
LMpθ,ω were intro-

duced and the boundedness of fractional maximal operator from a complementary local
Morrey-type space {

LMpθ,ω to a local Morrey-type space LMpθ,ω was investigated. As
in the definition of the space {

LMpθ,ω the complement of a ball was used instead of a
ball, it was named a complementary local Morrey-type space. We note that relationship
between the spaces LMpθ,ω and {

LMpθ,ω was not studied.
In [6] the associated spaces and dual spaces of local Morrey-type spaces and comple-

mentary local Morrey-type spaces were characterized. More precisely, it was shown that
the associated spaces of local Morrey-type spaces are complementary local Morrey-type
spaces. Moreover, it was proved that for some values of the parameters these associated
spaces are duals of local Morrey-type spaces. Namely, it was proved that the space
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{
LMp′θ′,ω̃ is dual space of the space LMpθ,ω, where 1 6 p, θ < ∞, p′ and θ′ are the
conjugate exponents of p,θ respectively, and ω̃(t) = ωθ−1(t)

(∫∞
t
ωθ(s)ds

)−1.
In the present paper we show that similar results hold for LM{x}

pθ,ω and {
LM

{x}
pθ,w

spaces for any x ∈ Rn (see Section 2 for definitions). By means of these results we
prove Hölder’s inequality for the classical Morrey spaces.

The paper is organized as follows. We start with notation and give some prelim-
inaries in Section 2. In Section 3 we recall some results on associate spaces of local
Morrey-type spaces and complementary local Morrey-type spaces. New characteriza-
tion of the Morrey space is given in Section 4.

2 Notation and Preliminaries

Now we make some conventions. Throughout the paper, we always denote by c and C
a positive constant which is independent of main parameters, but it may vary from line
to line. By A . B we mean that A 6 cB with some positive constant c independent of
the appropriate quantities. If A . B and B . A, we write A ∼ B and say that A and
B are equivalent. A constant with subscript, such as c1, does not change in different
occurrences. For a measurable set E, χE denotes the characteristic function of E.

Unless a special remarks is made, the differential element dx is omitted when the
integrals under consideration are the Lebesgue integrals.

For a fixed p with p ∈ [1,∞), p′ denotes the conjugate exponent of p, namely,

p′ :=


p

1−p
if 0 < p < 1,

+∞ if p = 1,
p

p−1
if 1 < p < +∞,

1 if p = +∞,

and 1/(+∞) = 0, 0/0 = 0, 0 · (±∞) = 0.
If E is a nonempty measurable subset on Rn and f is a measurable function on E,

then we put

‖g‖Lp(E) : =

(∫
E

|f(y)|pdy
) 1

p

, 0 < p < +∞,

‖f‖L∞(E) : = sup{α : |{y ∈ E : |f(y)| > α}| > 0}.

If I is a nonempty measurable subset on (0,+∞) and g is a measurable function on I,
then we define ‖g‖Lp(I) and ‖g‖L∞(I), correspondingly.

For x ∈ Rn and r > 0, let B(x, r) be the open ball centered at x of radius r and
{
B(x, r) := Rn\B(x, r).

Morrey spacesMp,λ were introduced by C. Morrey in 1938 [7] and defined as follows:
for 0 6 λ 6 n, 1 6 p 6 ∞, f ∈Mp,λ if f ∈ Lloc

p (Rn) and

‖f‖Mp,λ
≡ ‖f‖Mp,λ(Rn) = sup

x∈Rn, r>0
r

λ−n
p ‖f‖Lp(B(x,r)) <∞.
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Note that Mp,0 = L∞(Rn) and Mp,n = Lp(Rn). If λ < 0 or λ > n, then Mp,λ = Θ,
where Θ is the set of all functions equivalent to 0 on Rn.

In [1] D.R.Adams introduced a variant of Morrey-type spaces as follows: For 0 6
λ 6 n, 1 6 p, θ 6 ∞, f ∈Mpθ,λ if f ∈ Lloc

p (Rn) and

‖f‖Mpθ,λ
≡ ‖f‖Mpθ,λ(Rn) = sup

x∈Rn

‖r
λ−n

p ‖f‖Lp(B(x,r))‖Lθ(0,∞) <∞.

(If θ = ∞, then Mpθ,λ = Mp,λ.)
Let us recall definitions of local Morrey-type space and complementary local

Morrey-type space.

Definition 1. ([4]) Let 0 < p, θ 6 ∞ and let w be a non-negative measurable function
on (0,∞). We denote by LMpθ,ω the local Morrey-type space, the space of all functions
f ∈ Lloc

p (Rn) with finite quasinorm

‖f‖LMpθ,ω
≡ ‖f‖LMpθ,ω(Rn) =

∥∥w(r)‖f‖Lp(B(0,r))

∥∥
Lθ(0,∞)

.

Definition 2. ([5]) Let 0 < p, θ 6 ∞ and let w be a non-negative measurable function
on (0,∞). We denote by {

LMpθ,ω the complementary local Morrey-type space, the
space of all functions f ∈ Lp(

{
B(0, t)) for all t > 0 with finite quasinorm

‖f‖ {LMpθ,ω
≡ ‖f‖ {LMpθ,ω(Rn)

=
∥∥∥w(r)‖f‖

Lp( {B(0,r))

∥∥∥
Lθ(0,∞)

.

Definition 3. Let 0 < p, θ 6 ∞. We denote by Ωθ the set all non-negative measurable
functions ω on (0,∞) such that

0 < ‖ω‖Lθ(t,∞) <∞, t > 0,

and by {
Ωθ the set all non-negative measurable functions ω on (0,∞) such that

0 < ‖ω‖Lθ(0,t) <∞, t > 0.

It is convenient to define local Morrey-type spaces and complementary local Morrey-
type spaces at any fixed point x ∈ Rn.

Definition 4. Let 0 < p, θ 6 ∞ and let w be a non-negative measurable function on
(0,∞). For any fixed x ∈ Rn we denote by LM{x}

pθ,ω, the local Morrey-type space: the
space of all functions f ∈ Lloc

p (Rn) with finite quasinorm

‖f‖
LM

{x}
pθ,ω

≡ ‖f‖
LM

{x}
pθ,ω(Rn)

:=
∥∥w(r)‖f‖Lp(B(x,r))

∥∥
Lθ(0,∞)

= ‖f(x+ ·)‖LMpθ,ω
.

Definition 5. Let 0 < p, θ 6 ∞ and let w be a non-negative measurable function
on (0,∞). For any fixed x ∈ Rn we denote by {

LM
{x}
pθ,w the complementary local

Morrey-type space, the space of all functions f ∈ Lp(
{
B(x, t)) for all t > 0 with finite

quasinorm

‖f‖ {LM
{x}
pθ,w

≡ ‖f‖ {LM
{x}
pθ,w(Rn)

:=
∥∥∥w(r)‖f‖

Lp( {B(x,r))

∥∥∥
Lθ(0,∞)

= ‖f(x+ ·)‖ {LMpθ,ω
.

Clearly LMpθ,ω = LM
{0}
pθ,ω and {

LMpθ,ω =
{
LM

{0}
pθ,w.
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3 Associate and dual spaces of local Morrey-type and comple-
mentary local Morrey-type spaces

Let (R, µ) be a totally σ-finite non-atomic measure space. Let M(R, µ) be the set of
all µ-measurable a.e. finite real functions on R.

Definition 6. Let X be a set of functions from M(R, µ), endowed with a positively
homogeneous functional ‖ · ‖X , defined for every f ∈ M(R, µ) and such that f ∈ X is
and only if ‖f‖X <∞. We define the associate space X ′ of X as the set of all functions
f ∈ M(R, µ) such that ‖f‖X′ <∞, where

‖f‖X′ = sup

{∫
R
|fg|dµ : ‖g‖X 6 1

}
.

In what follows we assume R = Rn and dµ = dx.
In [6] the associate spaces of local Morrey-type and complementary local Morrey-

type spaces were described. Our method of characterization of the Morrey space is
mainly based on these results. For the sake of completeness we recall some statements
from [6].

Theorem 3.1. ([6], Theorem 4.2) Assume 1 6 p <∞, 0 < θ 6 ∞. Let ω ∈ {
Ωθ. Set

X =
{
LMpθ,ω.

(i) Let 0 < θ 6 1. Then

‖f‖X′ ∼ sup
t∈(0,∞)

‖f‖Lp′ (B(0,t))‖ω‖−1
Lθ(0,t),

with the positive constant in the equivalency independent of f .
(ii) Let 1 < θ 6 ∞. Then

‖f‖X′ ∼
(∫

(0,∞)

‖f‖θ′

Lp′ (B(0,t))d
(
−‖ω‖−θ′

Lθ(0,t+)

)) 1
θ′

+
‖f‖Lp′ (Rn)

‖ω‖Lθ(0,∞)

,

with the positive constant in the equivalency independent of f , where

‖ω‖Lθ(0,t+) := lim
s→t+

‖ω‖Lθ(0,s), t ∈ (0,∞).

Theorem 3.2. ([6], Theorem 4.3) Assume 1 6 p < ∞, 0 < θ 6 ∞. Let ω ∈ Ωθ. Set
X = LMpθ,ω.

(i) Let 0 < θ 6 1. Then

‖f‖X′ ∼ sup
t∈(0,∞)

‖f‖
Lp′ (

{
B(0,t))

‖ω‖−1
Lθ(t,∞),

with the positive constant in the equivalency independent of f .
(ii) Let 1 < θ 6 ∞. Then

‖f‖X′ ∼
(∫

(0,∞)

‖f‖θ′

Lp′ (
{
B(0,t))

d‖ω‖−θ′

Lθ(t−,∞)

) 1
θ′

+
‖f‖Lp′ (Rn)

‖ω‖Lθ(0,∞)

,

with the positive constant in the equivalency independent of f , where

‖ω‖Lθ(t−,∞) := lim
s→t−

‖ω‖Lθ(s,∞), t ∈ (0,∞).
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In fact more general results, which are important for our applications, are true.

Theorem 3.3. Assume 1 6 p < ∞, 0 < θ 6 ∞. Let ω ∈ {
Ωθ. For any fixed x ∈ Rn

set X =
{
LM

{x}
pθ,ω.

(i) Let 0 < θ 6 1. Then

‖f‖X′ ∼ sup
t∈(0,∞)

‖f‖Lp′ (B(x,t))‖ω‖−1
Lθ(0,t),

with the positive constant in the equivalency independent of f and x.
(ii) Let 1 < θ 6 ∞. Then

‖f‖X′ ∼
(∫

(0,∞)

‖f‖θ′

Lp′ (B(x,t))d
(
−‖ω‖−θ′

Lθ(0,t+)

)) 1
θ′

+
‖f‖Lp′ (Rn)

‖ω‖Lθ(0,∞)

,

with the positive constant in the equivalency independent of f and x.

Proof. Let x be any fixed point in Rn. Then

‖f‖X′ = ‖f‖(
{LM

{x}
pθ,ω

)′ = sup

{∫
Rn

|f(y)g(y)|dy : ‖g‖ {LM
{x}
pθ,ω

6 1

}
= sup

{∫
Rn

|f(x+ y)g(x+ y)|dy : ‖g(x+ ·)‖ {LMpθ,ω
6 1

}
= sup

{∫
Rn

|f(x+ y)g(y)|dy : ‖g‖ {LMpθ,ω
6 1

}
= ‖f(x+ ·)‖(

{LMpθ,ω

)′ .
It remains to apply Theorem 3.1.

Theorem 3.4. Assume 1 6 p < ∞, 0 < θ 6 ∞. Let ω ∈ Ωθ. For any fixed x ∈ Rn

set X = LM
{x}
pθ,ω.

(i) Let 0 < θ 6 1. Then

‖f‖X′ ∼ sup
t∈(0,∞)

‖f‖
Lp′ (

{
B(x,t))

‖ω‖−1
Lθ(t,∞),

with the positive constant in the equivalency independent of f and x.
(ii) Let 1 < θ 6 ∞. Then

‖f‖X′ ∼
(∫

(0,∞)

‖f‖θ′

Lp′ (
{
B(x,t))

d‖ω‖−θ′

Lθ(t−,∞)

) 1
θ′

+
‖f‖Lp′ (Rn)

‖ω‖Lθ(0,∞)

,

with the positive constant in the equivalency independent of f and x.

The proof of Theorem 3.4 is similar to that of Theorem 3.3 (we only need to apply
Theorem 3.2 instead of Theorem 3.1) and we omit it.

It was shown in [6] that for some values of parameters the dual spaces coincide with
the asssociated spaces. Namely, the following theorems were proved.
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Theorem 3.5. ([6], Theorem 6.1) Assume 1 6 p < ∞, 1 6 θ < ∞. Let ω ∈ Ωθ and
‖ω‖Lθ(0,∞) = ∞. Then

(LMpθ,ω)∗ =
{
LMp′θ′,ω̃ , (3.1)

where ω̃(t) = ωθ−1(t)
(∫∞

t
ωθ(s)ds

)−1
, under the following pairing:

< f, g >=

∫
Rn

fg.

Moreover ‖f‖ {LMp′θ′,ω̃
= supg

∣∣∫
Rn fg

∣∣ , where the supremum is taken over all functions
g ∈ LMpθ,ω with ‖g‖LMpθ,ω

6 1.

Theorem 3.6. ([6], Theorem 6.2) Assume 1 6 p < ∞, 1 6 θ < ∞. Let ω ∈ {
Ωθ and

‖ω‖Lθ(0,∞) = ∞. Then (
{
LMpθ,ω

)∗
= LMp′θ′,ω, (3.2)

where ω(t) = ωθ−1(t)
(∫ t

0
ωθ(s)ds

)−1

, under the following pairing:

< f, g >=

∫
Rn

fg.

Moreover ‖f‖LMp′θ′,ω
= supg

∣∣∫
Rn fg

∣∣ , where the supremum is taken over all functions
g ∈ {

LMpθ,ω : ‖g‖ {LMpθ,ω
6 1.

In fact more general results hold true.

Theorem 3.7. Assume 1 6 p < ∞, 1 6 θ < ∞. Let ω ∈ Ωθ and ‖ω‖Lθ(0,∞) = ∞.
Then for any x ∈ Rn (

LM
{x}
pθ,ω

)∗
=

{
LM

{x}
p′θ′,ω̃ , (3.3)

where ω̃(t) = ωθ−1(t)
(∫∞

t
ωθ(s)ds

)−1
, under the following pairing:

< f, g >=

∫
Rn

fg.

Moreover ‖f‖ {
LM

{x}
p′θ′,ω̃

= supg

∣∣∫
Rn fg

∣∣ , where the supremum is taken over all functions

g ∈ LM{x}
pθ,ω with ‖g‖

LM
{x}
pθ,ω

6 1.

Theorem 3.8. Assume 1 6 p < ∞, 1 6 θ < ∞. Let ω ∈ {
Ωθ and ‖ω‖Lθ(0,∞) = ∞.

Then for any x ∈ Rn (
{
LM

{x}
pθ,ω

)∗
= LM

{x}
p′θ′,ω, (3.4)

where ω(t) = ωθ−1(t)
(∫ t

0
ωθ(s)ds

)−1

, under the following pairing:

< f, g >=

∫
Rn

fg.

Moreover ‖f‖
LM

{x}
p′θ′,ω

= supg

∣∣∫
Rn fg

∣∣ , where the supremum is taken over all functions

g ∈ {
LM

{x}
pθ,ω : ‖g‖ {

LM
{x}
pθ,ω

6 1.
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The proofs of Theorem 3.7 and Theorem 3.8 are analogous to the proofs of
Theorem 3.5, Theorem 3.6 respectively, and we omit them.

4 New characterization of Morrey space

In this section we give a new characterization of the classical Morrey space.
Note that

g 7→ inf
x∈Rn

∫ ∞

0

r
n−λ

p
−1‖g‖

Lp′ (
{B(x,r))

dr

is a positively homogeneous functional on
⋃

x∈Rn

{
LM

{x}
p′1, n−λ

p
−1

.
Denote by

M̃p,λ :=
{
f ∈ M(Rn, dx) : ‖f‖M̃p,λ

<∞
}

(4.1)

the associate space of the set of functions
⋃

x∈Rn

{
LM

{x}
p′1, n−λ

p
−1

, where

‖f‖M̃p,λ
:= sup

{∫
Rn

|fg| : inf
x∈Rn

∫ ∞

0

r
n−λ

p
−1‖g‖

Lp′ (
{B(x,r))

dr 6 1

}
. (4.2)

To study properties of the space M̃p,λ the following Hölder’s inequality for the classical
Morrey spaces are useful.

Lemma 4.1. Let 1 6 p <∞ and 0 < λ < n. Then the inequality∫
Rn

|fg| 6 C‖f‖Mp,λ
inf

x∈Rn

∫ ∞

0

r
n−λ

p
−1‖g‖

Lp′ (
{B(x,r))

dr, (4.3)

holds with a positive constant C independent of functions f, g ∈ M(Rn, dx).

Proof. For θ = ∞ and w(t) = t
λ−n

p Theorem 3.4 (part (ii)) implies the following
inequality ∫

Rn

|fg| 6 C

(
sup
t>0

t
λ−n

p ‖f‖Lp(B(x,t))

)∫ ∞

0

r
n−λ

p
−1‖g‖

Lp′ (
{
B(x,r))

dr, (4.4)

with a constant C independent of f , g and x ∈ Rn. Therefore∫
Rn

|fg| 6 C

(
sup

x∈Rn, t>0
t

λ−n
p ‖f‖Lp(B(x,t))

)∫ ∞

0

r
n−λ

p
−1‖g‖

Lp′ (
{
B(x,r))

dr

= C‖f‖Mp,λ

∫ ∞

0

r
n−λ

p
−1‖g‖

Lp′ (
{B(x,r))

dr.

(4.5)

In view of arbitrariness of x we arrive at (4.3).

Lemma 4.2. Let 1 6 p <∞ and 0 < λ < n. Then

inf
x∈Rn

∫ ∞

0

r
n−λ

p
−1‖g‖

Lp′ (
{B(x,r))

dr = 0 (4.6)

if and only if g = 0 a.e. on Rn.
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Proof. Obviously, inf
x∈Rn

∫∞
0
r

n−λ
p
−1‖g‖

Lp′ (
{B(x,r))

dr = 0, when g = 0 a.e. on Rn.

Now assume that inf
x∈Rn

∫∞
0
r

n−λ
p
−1‖g‖

Lp′ (
{B(x,r))

dr = 0. For any fixed R > 0 consider

the function f = χB(0,R). Obviously, f ∈ Mp,λ, since ‖χB(0,R)‖Mp,λ
≈ Rλ/p. Then

by inequality (4.3), we have
∫

B(0,R)
|g| = 0, therefore, g = 0 a.e. on B(0, R). By

arbitrariness of R, we get that g ∈ Θ.

Lemma 4.3. Let 1 6 p <∞ and 0 < λ < n. Then⋃
x∈Rn

{
LM

{x}
p′1, n−λ

p
−1
⊂ Lloc

1 (Rn).

Proof. Let g be any function in
⋃

x∈Rn

{
LM

{x}
p′1, n−λ

p
−1

. Then there exists x ∈ Rn such

that g ∈ {
LM

{x}
p′1, n−λ

p
−1

. Let R be any fixed positive number. Since the function

f = χB(x,R) ∈Mp,λ and ‖f‖Mp,λ
≈ Rλ/p, by the inequality (4.5) we get∫

B(x,R)

|g(y)|dy 6 CR
λ
p ‖g‖ {LM

{x}
p′1, n−λ

p −1

<∞.

In view of arbitrariness of R we get that g ∈ Lloc
1 (Rn).

Lemma 4.4. Assume 1 6 p < ∞ and 0 < λ < n. Moreover, let f ∈ Lloc
p′ (Rn). Then

for any fixed x ∈ Rn and R > 0

fχB(x,R) ∈
{
LM

{x}
p′1, n−λ

p
−1
.

Proof. Indeed, for any fixed x ∈ Rn and R : 0 < R <∞, we get

‖fχB(x,R)‖ {LM
{x}
p′1, n−λ

p −1

=

∫ ∞

0

r
n−λ

p
−1‖fχB(x,R)‖Lp′ (

{B(x,r))
dr

=

∫ ∞

0

r
n−λ

p
−1

(∫
{B(x,r)∩B(x,R)

|f |p′
) 1

p′

dr

=

∫ R

0

r
n−λ

p
−1

(∫
{B(x,r)∩B(x,R)

|f |p′
) 1

p′

dr

6

(∫
B(x,R)

|f |p′
) 1

p′
∫ R

0

r
n−λ

p
−1dr

= c1R
n−λ

p

(∫
B(x,R)

|f |p′
) 1

p′

<∞.

Our main result in this section reads as follows.

Theorem 4.1. Assume 1 6 p <∞ and 0 < λ < n. Then

‖f‖Mp,λ
≈ ‖f‖M̃p,λ

. (4.7)
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Proof. By Lemma 4.1, it is easy to see that

‖f‖M̃p,λ
. ‖f‖Mp,λ

.

Let us prove the opposite estimate ‖f‖Mp,λ
. ‖f‖M̃p,λ

. If ‖f‖M̃p,λ
= ∞, then there is

nothing to prove. Assume that ‖f‖M̃p,λ
<∞.

Observe that for g ∈ Lloc
p′ (Rn) the inequality∫

B(x,R)

|fg| 6 CR
n−λ

p

(∫
B(x,R)

|g|p′
) 1

p′

‖f‖M̃p,λ
(4.8)

holds with a constant C > 0 independent of f , g, x and R. Indeed, let x be any fixed
point in Rn and R > 0. When

∫
B(x,R)

|g|p′ = 0 there is nothing to prove, since in this
case g = 0 a.e. on B(x,R). Assume that

∫
B(x,R)

|g|p′ > 0. Denote

h(y) =
g(y)χB(x,R)(y)

c1R
n−λ

p

(∫
B(x,R)

|g|p′
) 1

p′
. (4.9)

By Lemma 4.4
h ∈ {

LM
{x}
p′1, n−λ

p
−1
,

and moreover, ‖h‖ {LM
{x}
p′1, n−λ

p −1

6 1. Consequently,

inf
x∈Rn

∫ ∞

0

r
n−λ

p
−1‖h‖

Lp′ (
{B(x,r))

dr 6 1.

Therefore ∫
Rn

|hf | 6 ‖f‖M̃p,λ
, (4.10)

and from (4.9), we get (4.8).
Inequality (4.8) implies that f ∈ Lloc

1 (Rn). By Theorem of Resonance (see [8,
Lemma 27, p. 283]) we get that f ∈ Lloc

p (Rn). The function g := |f |p−1χB(x,R) ∈
Lloc

p′ (Rn), and if we put the function g in inequality (4.8), we obtain∫
B(x,R)

|f |p 6 cR
n−λ

p

(∫
B(x,R)

|f |p
) 1

p′

‖f‖M̃p,λ
.

Therefore,

R
λ−n

p

(∫
B(x,R)

|f |p
) 1

p

6 c‖f‖M̃p,λ
.

Since a constant c is independent of x and R, we get

‖f‖Mp,λ
6 c‖f‖M̃p,λ

.
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