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Abstract. We consider the real interpolation method and prove that for general local
Morrey-type spaces, in the case when they have the same integrability parameter,
the interpolation spaces are again general local Morrey-type spaces with appropriately
chosen parameters.

1 Introduction

Let 0 < p < oo and 0 < A < 7. The Morrey spaces M, were defined in [10] as the
spaces of all functions f € L*(R") such that

£ llazy = sup supr | fllL, B < o0,
z€R™ >0

where B(z,r) is the open ball of radius r > Onwith center at point x € R™. If A\ = 0,
then My = L,(R"), while if A = 2, then My = Lo(R"). If A < 0 or A > %, then
MpA = O, where O is the set of all functions that are equivalent to zero on R".

The Morrey spaces and their generalizations have found wide applications in many
problems of real analysis and partial differential equations. The boundedness of classi-
cal operators of real analysis in the Morrey spaces and in general Morrey-type spaces
was studied by many authors. See survey papers [2, 3, 7, 8, 12, 14, 15, 11].

Interpolation of these spaces was considered in [16, 6, 11]. It follows by the results
of [11] that

A A1 A
(Mp07Mp )9,00 C Mp )

where A = (1 — )Xo + OXA;. See also [9], Theorem 3 (v). In [13, 1] it was established
that this inclusion is strict, which raised the problem of giving a complete description
of the interpolation spaces. This problem still remains open.

In [4] a similar problem was considered for a local variant of the Morrey spaces and
for their generalizations involving an additional parameter.
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The local Morrey-type spaces LM, )‘ are defined for A > 0, and 0 < p,q < o0 as
the spaces of all functions f € LZOC(R”) such that

1
00 q
_ dr
£y, = | [ 61 emon)" | < oe.

0

with the conventional modification for ¢ = oo
Note that LM;:Q # © if and only if A > 0 for ¢ < co and A > 0 for ¢ = co. If
g = oo, then LM;?,oo = L,(R™). Moreover, for p = ¢, we have

LM;p = L,A(R")

and X
1flleary, = (Ap) P L f |z, m),
where L, ,(R") is the weighted Lebesgue space of all functions f Lebesgue measurable
on R"™ for which
11|z = [F @)yl L, @ny < oo
It appeared that for py = p;, in contrast to the scale of the Morrey spaces M;‘,

the scale of the local Morrey-type spaces LM;Q is closed under the procedure of
interpolation. Namely, the following statement was proved in [4].

Theorem 1.1. ([4]) Let 0 < p,qo,q1,q < 00 and 0 < 6 < 1. Suppose, in addi-
tion, that \g # A\ and 0 < Ao, \; < % if p < oo and at least one of the parameters
qo,q1 and q 1is finite, and 0 < Ao, A\; < % if g = q = q=00. Then

(LMps,. LMpy), = LM, (1.1)

Pp,qo0’ P,q1 P’

where X = (1 — 0)\g + 0.

Remark 1. Note that in Theorem 1.1 there are additional assumptions on Xy
and A\i: 0 < Mg, A < % if ¢ < ooand 0 < Mg, A1 < % if ¢ = oco. They appeared

—
because in [4] in the proof of Theorem 1.1 the equality LM, = LM, , was used where
—

LM, , is the space of all functions f € LI(R™) such that

(e}

q
_ adr
1, = | [ (1 m0m) | <00

0

where

. 1 >
T :|B<x,r>psup(— / |f<y>|”dy) ,
Ey(Bte) "\ Bz, p)]

B(=,p)
and |B(z,t)| is the Lebesgue measure of the ball B(x,t), and this equality holds only

under the additional assumptions on \y and A\; mentioned above.
In present note we state a similar result for general local Morrey-type spaces

LMZf:q(G,u).
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2 Main result

Let (€2, 1) be a space with a positive o-finite Borel measure p. By G = {G},., we
denote a parametric family of p-measurable subsets of €2, for which

Gy #Q forsomet >0, Gy CGy, if 0<t) <ty <oo and UGt:Q. (2.1)

t>0

Definition 1. Let 0 < p,g < occand 0 < A < wif g <ooand 0 < A < o0 if ¢ = o0
We define the space L p’q(G, i) as the space of all functions f p-measurable on
such that for ¢ < oo

N th 1/q
1fll Loy ) = < E M fllzpcom) _> < 0,

0\8

and for ¢ = oo
HJCHLMA (Gp) = supt HfHLp(Gt7N) < o0,

Il — ( / e Ipdu),

with the conventional modification for p = oc.

where

Remark 2. Let 0 < p,g < oo and a > 0. Let v be a function positive, lo-
cally absolutely continuous, strictly increasing on (a, c0) and such that v = 0 on (0, al,
lim v(t) = a, tliin v(t) = co. Moreover, let 1 be the Lebesgue measure on R”. If in

t—at

definition 1 we take A =1, Q = R",

G — g, if 0<t<a
ET1 B(0,vED(1), if a <t < oo,
and
£ B 0, if 0<t<a
Lp(G1) Iz, By, if a<t<oo,

then

- 1/q

-1 g dt (—1)
||f||LM,%,q(G,u) = (t ||f||Lp(B(0,v(*1>(t)))> T = (U (t) = 7’)

a

1/q

[ r 1 d’U T
= HfHLM;j;) = / <HszszE§f;(0 ))) U(Eﬁ)) |

o

hence LM} (G, u) = LM;y”.
A similar argument shows that for any 0 < A < oo

_1
||f||LM,?,q(G7u) =A q||f”LM;’;\()
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and LM)\ (G ,LL) _ LMU/\()
G pq
Note also that if
@7 lf 0 < t < CL,
Gi(A) = { B(0, (U%)(—l)(t)), if o<t < o0,
then

1
- A_7 v(-
0,8 oy = g

1 :
and LMpyy(G(A), 1) = LM;;( g

Remark 3. Let 0 < p,q < oo, and let w be a positive measurable function on (0, c0)
such that ||wl|z,(t,00) < 00 for some ¢ > 0. Set a = inf{t > 0 : [|w]|r,¢00) < 00}, and

let in Remark 2
0, if 0<t<a,
v(t) =

1 _ _
q quHqu(t,oo)’ if a<t< oo,

and o = tlircgr q_%Hszql(tm). Clearly, if ¢ < oo, then tEerooU(t) = 00. If ¢ = oo, then, in
order that this equality also hold, we shall assume, in addition, that . ligl |w]| Lo (t,00) =
0. In this case

LM;q(G, ©) = LMpg

— the general local Morrey-type space, studied in a number of papers by V.I. Burenkov
and his coauthors!. See survey papers [2, 3, 5]. Moreover,

11120ty 0 = WLty = 101 llzpa0m] o000
because v~ 7! (r)v/(r) = wi(r) for almost all 7 > a.

A similar argument shows that for any 0 < A < oo

_1
W easy ey = A M fllenme,

pg,w(+)
and LM;:q(G, ,u) = LMpq,w*(-) .

Theorem 2.1. Let 0 < p,qo,q1,q < 00, 0 < X, A1 < 00, Ay # A1, and
0<0<1,QCR" and let p be a o-finite Borel measure on Q and G = {G,}4~0 be a
family of pu-measurable sets Gy, satisfying (2.1). Then

(LMAO (G7 :u)v LMM (G’ N))Q,q = LM}i\,q<G7 :u)a

P;qo psq1

where X\ = (1 — 0)\g + ON1. Moreover, there exist ¢1,co > 0, depending only on
P, 90,41, 49, A07 A1 and 07 such that

CleHLMé\’q(G,,u) < ‘|f‘|(LM;§\,%O(G7M)7LM;\,1@{1(Gyli))e,q < CQHfHLMaq(G,u)

! Usually this space is considered under slightly weaker assumptions on w, namely it is assumed
that w € Qg < w is non-negative measurable on (0, c0), not equivalent to 0 on (¢, 00) for all £ > 0 and
such that || f]|1,(t,0c) < 00 for some ¢ > 0. Recall that, given a function w non-negative measurable on
(0,00) and not equivalent to 0 (,00) for all £ > 0, the space LM, ) is non-trivial, i.e. consists not
only of functions equivalent to 0 if and only if w € Q,. (See [2] for details.) So, w € €, is a minimal

natural assumption on w when studying the spaces LM, (.-
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forall f € LM (G, ).

Corollary 2.1. FEquality (3.2) holds under the assumptions of Theorem 2.1 on
the parameters.

Corollary 2.2. Let 0 < p,qo,q1,9 < 00, 0 < A, A\{ <00, A\g Z A, 0 <0 <1, and
function v be as in Remark 2. Then

(L0 L070) = LM,
where A = (1 — 0)\g + O\.
Remark 4. Note that the equality
(LMpg 00 LMP‘]hw)\l(‘))Q,q = LMpgun ()5 (2.2)

where A = (1 — )Xo + 61, may not hold even for the case of the power function
w(r) =r"% s> 0. In this case equality (2.2) holds if A is replaced by

g 4+ = (2.3)

Indeed, by Corollary 2.1

1

SAO_L SA1——
(LM (r=)20(-)> LM (Tfs))‘l('))&q = (Lano 0 LMpg ) )
q

Pqo, pai,

vs—1t
- LMp,q 7= LMpq,(rfs)u

However, equality (2.2) holds for one special choice of Ay and ;.

Corollary 2.3. Let 0 < p,qo,q1,9 < o0, o # q1, 0 < 0 < 1, equality (2.3)
be satisfied, and let w be a such positive measurable function on (0,00), that
w € Ly(t,00) for some ¢t > 0. Then 2

(LM L LM 1>:LM L
0,q

p,go,w 90 (-) p.q1,w It (-) w4 ()

Let M be the cone of all functions ¢ non-negative and non-decreasing on (0, c0).
Moreover, for 0 < A < 0o if p < 00, and for 0 < A < o0 if p = 00, let CIDI\’p denote the
space of all functions ¢ € M for which

21n [17] this result is extended to all functions w € €.
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p dt

lellen, = | [ 10" ) < oo

0
if p < 0o, and
@11, = €58 SUP se(o.00)t ™ |io(t)] < 00
if p = 0.
Let, for s > 0 and a function ¢ € M, the functions A,p and By be defined by

o), it 0<t<s,
Asp(t) = { o(s), if t>s,

and
Bsp(t) = p(t)x, ., (1), t >0,

where x,  is the characteristic function of the interval (s, o).
The proof of Theorem 2.1 is based on the following statement.

Theorem 2.2 Let 0 < pg,p1,q < 00,0<0<1,0< A\ <A, and A= (1—0)\g+60)\;.
Then there exist cy,co > 0 depending only on py, p1,q, Ao, A1, 60 such that

cillelle,, < || inf (11 Asllos, o, +t||Bs90||<I>M,p1)H<pM < callollay,
for all functions ¢ € @I\,p.

Detailed proofs of Theorems 2.1 and 2.2 and of more general statements of such
type are contained in [5].
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