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Volume 2



EURASIAN MATHEMATICAL JOURNAL
ISSN 2077-9879
Volume 4, Number 1 (2013), 7 – 20

ON THE BOUNDEDNESS OF THE ANISOTROPIC FRACTIONAL
MAXIMAL OPERATOR FROM ANISOTROPIC

COMPLEMENTARY MORREY-TYPE SPACES TO
ANISOTROPIC MORREY-TYPE SPACES

A. Akbulut, V.S. Guliyev, Sh.A. Muradova

Communicated by V.I. Burenkov

Key words: anisotropic fractional maximal operator, anisotropic local Morrey-type
spaces, anisotropic complementary Morrey-type spaces, dual Hardy operator.

AMS Mathematics Subject Classification: 42B20, 42B25, 42B35.

Abstract. The problem of the boundedness of the anisotropic fractional maximal op-
erator Md

α from anisotropic complementary Morrey-type spaces to anisotropic Morrey-
type spaces is reduced to the problem of boundedness of the dual Hardy operator in
weighted Lp-spaces on the cone of non-negative non-increasing functions, which allows
obtaining sharp sufficient conditions for the boundedness of Md

α.

1 Introduction

For x ∈ Rn and r > 0, let B(x, r) denote the open ball centered at x of radius r and
{
B(x, r) denote its complement. Let d = (d1, . . . , dn), di ≥ 1, i = 1, . . . , n, |d| =

∑n
i=1 di

and tdx ≡
(
td1x1, . . . , t

dnxn

)
. By [2, 9], the function F (x, ρ) =

∑n
i=1 x

2
i ρ
−2di , considered

for any fixed x ∈ Rn, is a decreasing one with respect to ρ > 0 and the equation
F (x, ρ) = 1 is uniquely solvable. This unique solution will be denoted by ρ(x). It
is a simple matter to check that ρ(x − y) defines a distance between any two points
x, y ∈ Rn. Thus Rn, endowed with the metric ρ, defines a homogeneous metric space
([2, 9]). The balls with respect to ρ, centered at x of radius r, are just the ellipsoids

Ed(x, r) =

{
y ∈ Rn :

(y1 − x1)
2

r2d1
+ · · ·+ (yn − xn)2

r2dn
< 1

}
,

with the Lebesgue measure |Ed(x, r)| = vnr
|d|, where vn is the volume of the unit ball

in Rn. Let also {Ed(x, r) = Rn \ Ed(x, r) be the complement of Ed(0, r). If d = 1 ≡
(1, . . . , 1), then clearly ρ(x) = |x| and E1(x, r) = B(x, r). Let f ∈ Lloc

1 (Rn). The
anisotropic fractional maximal operator Md

α is defined by(
Md

αf
)
(x) = sup

t>0
|E(x, t)|−1+α

n

∫
E(x,t)

|f(y)|dy,

where 0 ≤ α < n and |E(x, t)| is the Lebesgue measure of the ellipsoid E(x, t). If α = 0,
then Md ≡Md

0 is the anisotropic Hardy-Littlewood maximal operator.
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Definition 1. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function on
(0,∞). We denote by LMpθ,w,d the local Morrey-type space, the space of all functions
f ∈ Lloc

p (Rn) with finite quasi-norm

‖f‖LMpθ,w,d
≡ ‖f‖LMpθ,w,d(Rn) =

∥∥w(r)‖f‖Lp(E(0,r))

∥∥
Lθ(0,∞)

.

In [1] the following statement was proved. (The isotropic case was considered in
[5]).

Lemma 1.1. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function on
(0,∞). If for all t > 0

‖w(r)‖Lθ(t,∞) = ∞,

then LMpθ,w,d = Θ, where Θ is the set of all functions equivalent to 0 on Rn.

Definition 2. Let 0 < p, θ ≤ ∞. We denote by Ωθ the set of all functions w which are
non-negative, measurable on (0,∞), not equivalent to 0 and such that for some t > 0

‖w(r)‖Lθ(t,∞) <∞.

In the sequel, keeping in mind Lemma 1.1, when dealing with the spaces LMpθ,w,d

we always assume that w ∈ Ωθ.
Various sufficient conditions for the boundedness of Md

α from LMp1θ1,w1,d to
LMp2θ2,w2,d were obtained in [1]. Moreover, in [1] for some values of the parameters
also necessary and sufficient conditions for the boundedness of Md

α were obtained. See
also survey papers [3], Section 7; [4], Section 9.

We quote the main results of [1], which generalize the results for the isotropic case
proved in [7].

Lemma 1.2. [1] Let 1 < p1 ≤ ∞, 0 < p2 ≤ ∞, 0 ≤ α < |d|, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1

and w2 ∈ Ωθ2. Then the condition

α ≤ |d|
p1

is necessary for the boundedness of Md
α from LMp1θ1,w1,d to LMp2θ2,w2,d, in particular

from Lp1 to LMp2θ2,w2,d.

Theorem 1.1. [1] 1. If 1 < p1 ≤ ∞, 0 < p2 ≤ ∞, 0 ≤ α < |d|, 0 < θ1, θ2 ≤ ∞,
w1 ∈ Ωθ1 and w2 ∈ Ωθ2, then the condition

t
α− |d|

p1
+min{|d|−α,

|d|
p2
}

∥∥∥∥∥w2(r)
r
|d|
p2

(t+ r)
min{|d|−α,

|d|
p2
}

∥∥∥∥∥
Lθ2

(0,∞)

≤ c1 ‖w1‖Lθ1
(t,∞) (1.1)

for all t > 0, where c1 > 0 is independent of t, is necessary for the boundedness of Md
α

from LMp1θ1,w1,d to LMp2θ2,w2,d.
2. If 1 < p1 <∞, 0 < p2 <∞, 0 < θ1 ≤ θ2 ≤ ∞, θ1 ≤ p1, |d|

(
1
p1
− 1

p2

)
+
≤ α < |d|

p1
,

w1 ∈ Ωθ1 and w2 ∈ Ωθ2, then the condition∥∥∥∥∥w2(r)
r
|d|
p2

(t+ r)
|d|
p1
−α

∥∥∥∥∥
Lθ2

(0,∞)

≤ c2 ‖w1‖Lθ1
(t,∞) (1.2)
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for all t > 0, where c2 > 0 is independent of t, is sufficient for the boundedness of Md
α

from LMp1θ1,w1,d to LMp2θ2,w2,d.
3. In particular, if 1 < p1 ≤ p2 <∞, 0 < θ1 ≤ θ2 ≤ ∞, θ1 ≤ p1, α = |d|

(
1
p1
− 1

p2

)
,

w1 ∈ Ωθ1 and w2 ∈ Ωθ2, then the condition∥∥∥∥∥w2(r)

(
r

t+ r

) |d|
p2

∥∥∥∥∥
Lθ2

(0,∞)

≤ c3 ‖w1‖Lθ1
(t,∞) (1.3)

for all t > 0, where c3 > 0 is independent of t, is necessary and sufficient for the
boundedness of Md

α from LMp1θ1,w1,d to LMp2θ2,w2,d.

Since α ≤ |d|
p1

is a necessary condition for the boundedness of Md
α from LMp1θ1,w1,d to

LMp2θ2,w2,d and from Lp1 to LMp2θ,w2,d, a natural question arises whether, for |d|
p1
< α <

|d|, it is possible to find a space Z such that Md
α is bounded from Z to the same target

space LMp2θ2,w2,d. In this paper we show that this is possible if Z =
{
LMp1θ1,w1,d ∩Lp1 ,

where {
LMp1θ1,w1,d is the local complementary Morrey-type space defined below, and

we find necessary conditions and sufficient conditions close to necessary ones on w1 and
w2 ensuring that Md

α is bounded from {
LMp1θ1,w1,d ∩ Lp1 to LMp2θ2,w2,d.

2 Definitions and basic properties of complementary Morrey-
type spaces

Definition 3. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function on
(0,∞). By {

LMpθ,w,d we denote the local complementary Morrey-type space (briefly
the complementary Morrey-type or co-Morrey-type space), the space of all functions
f ∈ Lp(

{E(0, r)) for all r > 0 with finite quasinorm

‖f‖ {LMpθ,w,d
≡ ‖f‖ {LMpθ,w,d(Rn)

=
∥∥∥w(r)‖f‖

Lp( {E(0,r))

∥∥∥
Lθ(0,∞)

.

Along with the local Morrey-type spaces LMpθ,w,d it makes sense to consider the
global Morrey-type spaces GMpθ,w,d of all functions f ∈ Lloc

p (Rn) with finite quasi-norm

‖f‖GMpθ,w,d
= sup

x∈Rn

‖f(x+ ·)‖LMpθ,w,d
= sup

x∈Rn

∥∥w(r)‖f‖Lp(E(x,r))

∥∥
Lθ(0,∞)

.

However, in the case of the complementary Morrey-type spaces {
GMpθ,w,d the corre-

sponding global variant of the spaces defined by the finiteness of the quasi-norm

‖f‖ {GMpθ,w,d
= sup

x∈Rn

∥∥∥w(r)‖f‖
Lp( {E(x,r))

∥∥∥
Lθ(0,∞)

is of no particular interest because this expression is equal to the product
‖f‖Lp‖w‖Lθ(0,∞). Indeed, inequality ‖f‖ {GMpθ,w,d

≤ ‖f‖Lp‖w‖Lθ(0,∞) is obvious. On
the other hand, given R > 0, t > 0, let y = y(R, t) ∈ Rn be such that ρ(y) = R + t,
then for 0 < r ≤ t, {E(y, r) ⊃ E(0, R), hence

‖f‖ {
GMpθ,w,d

≥
∥∥∥w(r)‖f‖

Lp(
{E(y,r))

∥∥∥
Lθ(0,t)

≥ ‖f‖Lp(E(0,R))‖w(r)‖Lθ(0,t).
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Since this inequality holds for all R > 0, t > 0 it implies that

‖f‖ {GMpθ,w,d
≥ ‖f‖Lp‖w(r)‖Lθ(0,∞).

The condition f ∈ LMpθ,w,d is aimed at describing the behaviour of ‖f‖Lp(E(0,r))

for small r > 0 hence of f in a neighbourhood of the origin. If f /∈ Lp, then it also
imposes some restrictions on the behaviour of f at infinity. However, if f ∈ Lp it does
not impose any further restrictions on the behaviour of f at infinity. In contrast to
this, the condition f ∈ {

LMpθ,w,d is aimed at describing the behaviour of ‖f‖
Lp( {E(0,r))

for large r > 0 hence of f at infinity. If f /∈ Lp, then it also imposes some restrictions
on the behaviour of f in a neighbourhood of the origin. If f ∈ Lp, then it does not
impose any further restrictions on the behaviour of f in a neighbourhood of the origin.

Lemma 2.1. Let 0 < p, θ ≤ ∞ and w be a non-negative measurable function on (0,∞).
If for all t > 0

‖w(r)‖Lθ(0,t) = ∞, (2.1)

then {
LMpθ,w,d = Θ.

Proof. Let (2.1) be satisfied and f be not equivalent to zero. Then, for some t0 > 0,
‖f‖

Lp( {E(0,t0))
> 0. Hence

‖f‖ {LMpθ,w,d
≥
∥∥∥w(r)‖f‖

Lp( {E(0,r))

∥∥∥
Lθ(0,t0)

≥ ‖f‖
Lp( {E(0,t0))

‖w(r)‖Lθ(0,t0).

Therefore ‖f‖ {LMpθ,w,d
= ∞.

Definition 4. Let 0 < θ ≤ ∞. We denote by {
Ωθ the set of all functions w non-

negative and measurable on (0,∞) such that for some t > 0

‖w(r)‖Lθ(0,t) <∞. (2.2)

In the sequel, keeping in mind Lemma 2.1, when dealing with the spaces {
LMpθ,w,d

we always assume that w ∈ {
Ωθ.

Note that if w(r) ≡ 1, then LMp∞,1,d =
{
LMp∞,1,d = Lp.

For real-valued functions ϕ, ψ defined on a set I we shall write ϕ � ψ on I if there
exist c, c′ > 0 such that cϕ(t) ≤ ψ(t) ≤ c′ϕ(t) for all t ∈ I.

Lemma 2.2. Let 0 < p, θ ≤ ∞ and w1, w2 ∈
{
Ωθ. Then 1

{
LMpθ,w1,d =

{
LMpθ,w2,d ⇐⇒ ‖w1‖Lθ(0,t) � ‖w2‖Lθ(0,t) on (0,∞).

Proof. The proof is similar to the proof of Lemma 2.4 in [7].

Recall that if w1, w2 ∈ Ωθ, then LMpθ,w1,d = LMpθ,w2,d ⇐⇒ ‖w1‖Lθ(t,∞) �
‖w2‖Lθ(t,∞) on (0,∞) (see [1, 6]).

1 For quasi-normed spaces Z1 and Z2 the notation Z1 = Z2 means that two continuous embeddings
Z1 ⊂ Z2 and Z2 ⊂ Z1 hold.
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Corollary 2.1. Let 0 < p, θ ≤ ∞ and w1, w2 ∈ Lθ(0,∞), w1, w2 > 0. Then

{
LMpθ,w1,d =

{
LMpθ,w2,d ⇐⇒ ‖w1‖Lθ(0,t) � ‖w2‖Lθ(0,t) on (0, t0) for some t0 > 0.

Lemma 2.3. Let 1 < p1 ≤ ∞, 0 < p2 ≤ ∞, 0 ≤ α < |d|, 0 < θ1, θ2 ≤ ∞, w1 ∈
{
Ωθ1

and w2 ∈ Ωθ2. Then the condition

α ≥ |d|
p1

is necessary for the boundedness of Md
α from {

LMp1θ1,w1,d ∩ Lp1 to LMp2θ2,w2,d.

Proof. Assume that α < |d|
p1

and Md
α is bounded from {

LMp1θ1,w1,d to LMp2θ2,w2,d. Let
f(x) = ρ(x)−β if ρ(x) ≤ 1, where α < β < |d|

p1
, and f(x) = 0 if ρ(x) > 1. Then f ∈ Lp1

and f ∈ {
LMp1θ1,w1,d since

‖f‖ {LMp1θ1,w1,d
≤ ‖w1‖Lθ1

(0,1)

∥∥ρ(x)−β
∥∥

Lp1 (E(0,1))
<∞.

On the other hand for all x ∈ Rn

Md
αf(x) ≥ lim

t→0
|E(x, t)|−1+α

n

∫
E(x,t)\E(x,ρ(x)+2)

ρ(y)−βdy ≥ c4 lim
t→0

tα−β = ∞,

where c4 depends only on n, α and β.

3 Lp-estimates on the complements of balls

In order to obtain conditions on w1 and w2 ensuring the boundedness of Md
α for other

values of the parameters and to obtain simpler conditions for the case p1 = θ1, p2 = θ2

we shall reduce the problem of the boundedness ofMd
α from the complementary Morrey-

type spaces to the local Morrey-type spaces to the problem of the boundedness of the
dual Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing
functions.

Lemma 3.1. [1, 6] Let 1 < p1 <∞, 0 < p2 <∞ and |d|
(

1
p1
− 1

p2

)
+
≤ α < |d|. Then

there exists c5 > 0 such that

‖Md
αf‖Lp2 (E(0,r)) ≤ c5r

|d|
p2

(∫
Rn

|f(x)|p1

(ρ(x) + r)|d|−αp1
dx

) 1
p1

(3.1)

for all r > 0 and for all f ∈ Lloc
1 (Rn).

Lemma 3.2. Let ϕ be a function non-negative and measurable on Rn. Then for all
r > 0 and for β > 0

β 2−β

∫ ∞

r

(∫
E(0,t)

ϕ(x)dx

)
dt

t1+β
≤
∫

Rn

ϕ(x)dx

(ρ(x) + r)β
≤
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≤ β

∫ ∞

r

(∫
E(0,t)

ϕ(x)dx

)
dt

t1+β

and for all r > 0 and for β ≤ 0

r|β|
∫

Rn

ϕ(x)dx+ |β|
∫ ∞

r

(∫
{E(0,t)

ϕ(x)dx

)
dt

tβ+1
≤
∫

Rn

ϕ(x)dx

(ρ(x) + r)β
≤

≤ 2|β|
(
r|β|
∫

Rn

ϕ(x)dx+ |β|
∫ ∞

r

(∫
{E(0,t)

ϕ(x)dx

)
dt

tβ+1

)
.

Proof. The proof is similar to the proof of Lemma 4.3 in [7].

The proofs of main results in [1] were based on the following corollaries of Lemma
3.1 and the first part of Lemma 3.2.

Corollary 3.1. Let 1 < p1 < ∞, 0 < p2 < ∞ and |d|
(

1
p1
− 1

p2

)
+
≤ α < |d|

p1
. Then

there exists c6 > 0 such that

‖Md
αf‖Lp2 (E(0,r)) ≤ c6r

|d|
p2

(∫ ∞

r

(∫
E(0,t)

|f(x)|p1dx

)
dt

t|d|−αp1+1

) 1
p1

(3.2)

for all r > 0 and for all f ∈ Lloc
p1

(Rn).

Corollary 3.2. Let 1 < p1 <∞, 0 < p2 <∞ and |d|
(

1
p1
− 1

p2

)
+
≤ α ≤ |d|

p1
, then there

exists c7 > 0 such that

‖Md
αf‖Lp2 (E(0,r)) ≤ c7r

α−|d|
(

1
p1
− 1

p2

)
‖f‖Lp1

(3.3)

for all r > 0 and for all f ∈ Lp1.

Remark 1. Let 1 < p1 <∞, 0 < p2 <∞ and |d|
p1
< α < |d|. Then for any function ψ

non-negative and measurable on (r,∞) the inequality

‖Md
αf‖Lp2 (E(0,r)) ≤ c8(r)

(∫ ∞

r

(∫
E(0,t)

|f(x)|p1dx

)
ψ(t)dt

) 1
p1

, (3.4)

where c8(r) > 0 is independent of f , is meaningless. Indeed, if for all s > 0
∫∞

s
ψ(t)dt =

∞, then ∫ ∞

r

(∫
E(0,t)

|f(x)|p1dx

)
ψ(t)dt = ∞,

for all f which are not equivalent to 0 on Rn. If
∫∞

r
ψ(t)dt < ∞, then (3.4) implies

that

‖Md
αf‖Lp2 (E(0,r)) ≤ c8(r)

(∫ ∞

r

ψ(t)dt

) 1
p1

‖f‖Lp1
.
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However, this inequality cannot hold because there exists a function f ∈ Lp1(Rn), such
that (Md

αf)(x) = ∞ for all x ∈ Rn. For example, f(x) = ρ(x)−βχ {E(0,1)
(x), where

|d|
p1
< β < α. To prove this it suffices to notice that

(Md
αf)(x) = v

α
|d|−1

n sup
r>0

rα−|d|
∫

ρ(x−y)<r,ρ(y)≥1

ρ(y)−βdy

≥ v
α
|d|−1

n sup
r>ρ(x)

rα−|d|
∫

ρ(x−y)<r,ρ(y)≥1

ρ(y)−βdy.

Hence, since ρ(y) ≤ ρ(x) + ρ(x− y) ≤ 2r,

(Md
αf)(x) ≥ 2−βv

α
|d|−1

n sup
r>ρ(x)

rα−β−|d|
∫

ρ(x−y)<r,ρ(y)≥1

dy

≥ 2−βv
α
|d|
n sup

r>ρ(x)

rα−β−|d|(r|d| − 1) = ∞.

Further argument will be based on the following inequality which replaces inequality
(3.2) for |d|

p1
< α < |d|, which follows again by Lemma 3.1 and now by the second part

of Lemma 3.2.

Corollary 3.3. Let 1 < p1 < ∞, 0 < p2 < ∞ and |d|
p1
< α < |d|. Then there exists

c10 > 0 such that

‖Md
αf‖Lp2 (E(0,r)) ≤ c10

(
r

α−|d|
(

1
p1
− 1

p2

)
‖f‖Lp1

+ (3.5)

+ r
n
p2

(∫ ∞

r

(∫
{E(0,t)

|f(x)|p1dx

)
dt

t|d|−αp1+1

) 1
p1
)

(3.6)

for all r > 0 and for all f ∈ Lp1.

4 Fractional maximal operator and dual Hardy operator

Let H∗ be the dual Hardy operator, i.e.,

(H∗g)(r) =

∫ ∞

r

g(t)dt, 0 < r <∞.

Lemma 4.1. Let 1 < p1 < ∞, 0 < p2 < ∞, |d|
p1
< α < |d|, 0 < θ ≤ ∞, w ∈ Ωθ and

w(r)r
α− |d|

p1
+
|d|
p2 ∈ Lθ(0,∞). Then there exists c11 > 0 such that

‖Md
αf‖LMp2θ,w,d

≤ c11

(∥∥w(r)r
α−|d|( 1

p1
− 1

p2
)∥∥

Lθ(0,∞)
‖f‖Lp1

+ ‖H∗h‖
1

p1

L θ
p1

,v
(0,∞)

)
(4.1)

for all f ∈ Lp1, where

h(t) =

∫
{E
(
0,t

1
αp1−|d|

) |f(y)|p1dt (4.2)

and
v(r) =

(
w
(
r

1
αp1−|d|

)
r

1
αp1−|d|

(
|d|
p2

+ 1
θ
)− 1

θ
)p1 . (4.3)
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Proof. By Corollary 3.3

‖Md
αf‖LMp2θ,w,d

=
∥∥w(r)‖Md

αf‖Lp2 (E(0,r))

∥∥
Lθ(0,∞)

≤ c102
( 1

θ
−1)+

(∥∥w(r)r
α−|d|( 1

p1
− 1

p2
)∥∥

Lθ(0,∞)
‖f‖Lp1

+
∥∥∥w(r)r

|d|
p2

(∫ ∞

r

(∫
{E(0,t)

|f(x)|p1dx

)
dt

t|d|−αp1+1

) 1
p1
∥∥∥

Lθ(0,∞)

)
.

Note that the second summand in the brackets is equal to

(αp1 − |d|)−
1

p1

∥∥∥w(r)r
|d|
p2

(∫ ∞

rαp1−|d|

(∫
{E(0,τ

1
αp1−|d| )

|f(x)|p1dx

)
dτ

) 1
p1
∥∥∥

Lθ(0,∞)

= (αp1 − |d|)−
1

p1

(∫ ∞

0

(
w(r)r

|d|
p2

)θ(∫ ∞

rαp1−|d|
h(τ)dτ

) θ
p1

dr

) 1
θ

= (αp1 − |d|)−
1

p1
− 1

θ

(∫ ∞

0

(
w
(
ρ

1
αp1−|d|

)
ρ

n
p2(αp1−|d|)

)θ
ρ

1
αp1−|d|

−1

(∫ ∞

ρ

h(τ)dτ

) θ
p1

dρ

) 1
θ

= (αp1 − |d|)−
1

p1
− 1

θ ‖H∗h‖
1

p1

L θ
p1

,v
(0,∞) .

Hence inequality (4.1) follows.

Theorem 4.1. Let 1 < p1 < ∞, 0 < p2 < ∞, |d|
p1

< α < |d|, 0 < θ1, θ2 ≤ ∞,

w1 ∈
{
Ωθ1, w2 ∈ Ωθ2 and w2(r)r

α−|d|( 1
p1
− 1

p2
) ∈ Lθ2(0,∞). Assume that H∗ is a bounded

operator from L θ1
p1

,v1
(0,∞) to L θ2

p1
,v2

(0,∞) on the cone of all non-negative functions ϕ

non-increasing on (0,∞) and satisfying lim
t→∞

ϕ(t) = 0, where

v1(r) =
[
w1

(
r

1
αp1−|d|

)
r

1
(αp1−|d|)θ1

− 1
θ1

]p1

, (4.4)

v2(r) =

[
w2

(
r

1
αp1−|d|

)
r

1
αp1−|d|

(
|d|
p2

+ 1
θ2

)
− 1

θ2

]p1

. (4.5)

Then Md
α is bounded from {

LMp1θ1,w1,d ∩ Lp1 to LMp2θ2,w2,d.

Proof. Lemma 4.1 applied to LMp2θ2,w2,d

‖Md
αf‖LMp2θ2,w2,d

≤ c13

(∥∥∥w2(r)r
α−|d|( 1

p1
− 1

p2
)
∥∥∥

Lθ2
(0,∞)

‖f‖Lp1
+ ‖H∗h‖

1
p1

L θ2
p1

,v2
(0,∞)

)
,

where c13 > 0 is independent of f .
Since h is non-negative, non-increasing on (0,∞) and lim

t→∞
h(t) = 0 and H∗ is a

bounded operator from L θ1
p1

,v1
(0,∞) to L θ2

p1
,v2

(0,∞) on the cone of functions containing
h, we have

‖Md
αf‖LMp2θ2,w2,d

≤ c14

(∥∥∥w2(r)r
α−|d|( 1

p1
− 1

p2
)
∥∥∥

Lθ2
(0,∞)

‖f‖Lp1
+ ‖h‖

1
p1

L θ1
p1

,v1
(0,∞)

)
,
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where c14 > 0 is independent of f .
Note that

‖h‖
1

p1

L θ1
p1

,v1
(0,∞) =

(∫ ∞

0

v1(t)
θ1
p1 ‖f‖θ1

Lp1

(
{E

(
0,t

1
αp1−|d|

))dt
) 1

θ1

= (αp1 − |d|)
1

θ1

(∫ ∞

0

v1(r
αp1−|d|)

θ1
p1 rαp1−|d|−1‖f‖θ1

Lp1 ( {E(0,r))
dr

) 1
θ1

= (αp1 − |d|)
1

θ1

(∫ ∞

0

(
w1(r)‖f‖Lp1 ({E(0,r))

)θ1

dr

) 1
θ1

= (αp1 − |d|)
1

θ1 ‖f‖ {LMp1θ1,w1,d
.

Hence

‖Md
αf‖LMp2θ2,w2,d

≤ c15

(∥∥∥w2(r)r
α−|d|( 1

p1
− 1

p2
)
∥∥∥

Lθ2
(0,∞)

‖f‖Lp1
+ ‖f‖ {LMp1θ1,w1,d

)
,

where c15 > 0 is independent of f .

5 Necessary conditions and sufficient conditions

For the majority of cases the necessary and sufficient conditions for the validity of

‖H∗ϕ‖L θ2
p1

,v2
(0,∞) ≤ c16 ‖ϕ‖L θ1

p1
,v1

(0,∞) , (5.1)

where c16 > 0 are independent of ϕ, for all non-negative non-increasing functions ϕ
are known, for detailed information see [10]. Application of any of those conditions
gives sufficient conditions for the boundedness of the anisotropic fractional maximal
operator Md

α from {
LMp1θ1,w1,d ∩ Lp1 to LMp2θ2,w2,d.

In the case 0 < θ1 ≤ θ2 <∞ and θ1 ≤ p1 the necessary conditions (coinciding with
the sufficient ones) for the validity of inequality (5.1) for non-increasing functions are
rather simple and can be obtained by taking ϕ = χ(0,t) with an arbitrary t > 0.

Since in the proof of Theorem 4.1 inequality (5.1) is applied to the function ϕ = g,
where g is given by (4.2), it is natural, when proving the necessity, to choose, as test
functions, functions ft, t > 0, for which the integral

∫
{E(0,u

1
(αp1−|d|) )

|ft(y)|p1dy is equal

or close to A(t)χ(0,t)(u), u > 0, where A(t) is independent of u. The simplest choice of
f satisfying this requirement is

ft(y) = χE(0,2t)\E(0,t)
(y), y ∈ Rn, t > 0. (5.2)

Note that,

‖ft‖Lp1 ( {E(0,r))
= 0, 2t ≤ r <∞,

‖ft‖Lp1 (
{E(0,r))

≤ c17t
|d|
p1 , 0 < r < 2t, (5.3)

where c17 > 0 depends only on n and p1.
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Theorem 5.1. 1. If 1 ≤ p1 ≤ ∞, 0 < p2 ≤ ∞, |d|
p1
≤ α < |d|, 0 < θ1, θ2 ≤ ∞,

w1 ∈
{
Ωθ1 and w2 ∈ Ωθ2, then the condition

t
α− |d|

p1
+min{|d|−α,

|d|
p2
}
∥∥∥ w2(r)r

|d|
p2

(t+ r)
min{|d|−α,

|d|
p2
}

∥∥∥
Lθ2

(0,∞)
≤ c18

(
1 + ‖w1‖Lθ1

(0,t)

)
, (5.4)

where c18 > 0 is independent of t > 0, is necessary for the boundedness of Md
α from

{
LMp1θ1,w1,d ∩ Lp1 to LMp2θ2,w2,d.

2. Let 1 < p1 < ∞, 0 < p2 < ∞, 0 < θ1, θ2 ≤ ∞, |d|
p1
< α < |d|, w1 ∈

{
Ωθ1 and

w2 ∈ Ωθ2. If θ1 ≥ p1, then the condition
‖w2(r)r

α−|d|( 1
p1
− 1

p2
)‖Lθ2

(0,∞) <∞,

∥∥∥∥w2(r)r
|d|
p2 ‖w1(t)

−1t
αp1−|d|−1

p1 ‖Ls(r,∞)

∥∥∥∥
Lθ2

(0,∞)

<∞ ,

(5.5)

where s = θ1p1

θ1−p1
(if θ1 = p1, then s = ∞), and if θ1 ≤ min{p1, θ2}, then the condition

‖w2(r)r
α−|d|( 1

p1
− 1

p2
)‖Lθ2

(0,∞) <∞,

∥∥∥w2(r)r
|d|
p2

(
tαp1−|d| − rαp1−|d|

) 1
p 1

∥∥∥
Lθ2

(0,t)
≤ c19 ‖w1‖Lθ1

(0,t) , 0 < t <∞ ,

(5.6)

where c19 > 0 is independent of t, are sufficient for the boundedness of Md
α from

{
LMp1θ1,w1,d ∩ Lp1 to LMp2θ2,w2,d.

Proof. Sufficiency. First, let θ1 ≥ p1, then the statement follows by applying Theorem
5 and the following simple sufficient condition for the validity of (5.1)∥∥v2(r)

1
p1

∥∥v1(t)
− 1

p1

∥∥
Ls(r,∞)

∥∥
Lθ2

(0,∞)
<∞ ,

which follows by applying Hölder’s inequality, where v1 and v2 are defined by (4.4) and
(4.5), and replacing t by tαp1−|d| and then r by rαp1−|d|.

Next, let θ ≤ min{p1, θ2}. It is known [10] that the necessary and sufficient condi-
tions for the validity of (5.1), where 0 < θ1 ≤ θ2 ≤ ∞, θ1 ≤ p1, for all non-negative
decreasing on (0,∞) functions ϕ has the form: for some c20 > 0

‖v2(r)(t− r)‖L θ2
p1

(0,t) ≤ c20 ‖v1(r)‖L θ1
p1

(0,t)

for all t > 0. Applying this condition to the functions v1 and v2 defined by (4.4) and
(4.5) and replacing r by rαp1−|d| and then t by tαp1−|d|, we arrive at the second inequality
in (5.6). Now it suffices to apply Theorem 4.1.

Necessity. Assume that, for some c21 > 0 and for all f ∈ {
LMp1θ1,w1,d ∩ Lp1

‖Md
αf‖LMp2θ2,w2,d

≤ c21

(
‖f‖Lp1

+ ‖f‖ {LMp1θ1,w1,d

)
. (5.7)
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In (5.7) take f = ft, where ft is defined by (5.2). Then by (5.3) the right hand side
of (5.7) does not exceed a constant multiplied by

t
|d|
p1

(
1 + ‖w1‖Lθ1

(0,2t)

)
.

Furthermore, in the proof of the necessity in Theorem 11 in [6] it is shown that the
left-hand side of inequality (5.7) is greater than or equal to a constant multiplied by

t
α+min{|d|−α,

|d|
p2
}

∥∥∥∥∥w2(r)
r
|d|
p2

(t+ r)
min{|d|−α,

|d|
p2
}

∥∥∥∥∥
Lθ2

(0,∞)

.

Replacing 2t by t we arrive at (5.4).

Remark 2. Condition (5.4) implies that w2(r)r
α−|d|( 1

p1
− 1

p2
) ∈ Lθ2(0, t) for all t > 0,

because the left-hand side of (5.4) is greater than or equal to

t
α− |d|

p1
+min{|d|−α,

|d|
p2
}

∥∥∥∥∥ w2(r)r
α−|d|( 1

p1
− 1

p2
)

r
α− |d|

p1 (t+ r)
min{|d|−α,

|d|
p2
}

∥∥∥∥∥
Lθ2

(0,t)

≥ 2
−min{|d|−α,

|d|
p2
}
∥∥∥w2(r)r

α−|d|( 1
p1
− 1

p2
)
∥∥∥

Lθ2
(0,t)

since |d|
p1
< α < |d|.

If w1 ∈ Lθ1(0,∞), this inequality, together with inequality (5.4), also implies that the
condition

‖w2(r)r
α−|d|( 1

p1
− 1

p2
)‖Lθ2

(0,∞) <∞
is a necessary one.

Remark 3. According to [1] the first part of conditions (5.5) and (5.6) is a sufficient
condition for the boundedness of Md

α from Lp1 to LMp2θ2,w2,d for |d|( 1
p1
− 1

p2
)+ ≤ α ≤ |d|

p1
.

Moreover, the second part of condition (5.5) is a sufficient condition for the boundedness
of Md

α from LMp1θ1,w1,d to LMp2θ2,w2,d for |d|( 1
p1
− 1

p2
)+ ≤ α < |d|

p1
.

6 The case of weak Morrey-type spaces

Next we consider anisotropic local weak complementary Morrey-type spaces and formu-
late the results for the boundedness of Md

α in these space, which follow by the estimates
of the previous sections.

Definition 5. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function
on (0,∞). Denote by LWMpθ,w,d, the local weak Morrey-type space, the space of all
functions f ∈ Lloc

p (Rn) with finite quasinorm

‖f‖LWMpθ,w,d
≡ ‖f‖LWMpθ,w,d(Rn) =

∥∥w(r)‖f‖WLp(E(0,r))

∥∥
Lθ(0,∞)

,

where
‖f‖WLp(E(0,r)) = sup

t>0
t (meas {x ∈ E(0, r) : |f(x)| > t})

1
p .

If p = ∞, then WL∞ ≡ L∞ and LWM∞θ,w,d ≡ LM∞θ,w,d.
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Below we formulate the corresponding analogue of Theorem 5.1.

Theorem 6.1. 1. If 1 ≤ p1 ≤ ∞, 0 < p2 ≤ ∞, |d|
p1

< α < |d|, 0 < θ1, θ2 ≤ ∞,
w1 ∈

{
Ωθ1 and w2 ∈ Ωθ2, then the condition (5.4) is necessary for the boundedness of

Md
α from {

LMp1θ1,w1,d ∩ Lp1 to LWMp2θ2,w2,d.
2. Let 1 ≤ p1 < ∞, 0 < p2 < ∞, 0 < θ1, θ2 ≤ ∞, |d|

p1
< α < |d|, w1 ∈

{
Ωθ1 and

w2 ∈ Ωθ2. If θ1 ≥ p1 then condition (5.5) and if θ1 ≤ min{p1, θ2} then condition (5.6)
are sufficient for the boundedness of Md

α from {
LMp1θ1,w1,d ∩ Lp1 to LWMp2θ2,w2,d.

7 Concluding remarks

The assumption made at the beginning of the paper di ≥ 1, i = 1, . . . , n, is not
essential. One may assume that di > 0, i = 1, . . . , n. However, under this assumption
the function ρ(x − y), x, y ∈ Rn is in general a quasi-distance, which does note cause
any problem.

Also note that if ν > 0 then for all ν > 0

M νd
να = Md

α, ‖f‖Lp(Ed(0,r)) = ‖f‖Lp(Eνd(0,r1/ν)), ‖f‖
Lp( {Ed(0,r))

= ‖f‖
Lp( {Eνd(0,r1/ν))

.

Lemma 7.1. Let 1 < p1 ≤ p2 <∞, 0 < θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 and w2 ∈ Ωθ2. Then for
ν > 0

‖Md
αf‖ {LMp1θ1,w1,d∩Lp1→LMp2θ2,w2,d

= ‖M νd
ναf‖ {LM

p1θ1,w1(ρν )ρ

ν−1
θ1 ,νd

∩Lp1→LM
p2θ2,w2(ρν )ρ

ν−1
θ2

,νd
.

Proof.

‖Md
αf‖ {LMp1θ1,w1,d∩Lp1→LMp2θ2,w2,d

= sup
f�0,f∈ {LMp1θ1,w1,d∩Lp1

‖Md
αf‖LMp2θ2,w2,d

‖f‖ {LMp1θ1,w1,d∩Lp1

= sup
f�0,f∈ {

LMp1θ1,w1,d∩Lp1

‖w2(r)‖Md
αf‖Lp(Ed(0,r))‖Lθ2

(0,∞)

max
{
‖w1(r)‖f‖Lp( {Ed(0,r))

‖Lθ1
(0,∞), ‖f‖Lp

}
= sup

f�0,f∈ {LMp1θ1,w1,d∩Lp1

‖w2(r)‖M νd
ναf‖Lp(Eνd(0,r1/ν))‖Lθ2

(0,∞)

max
{
‖w1(r)‖f‖Lp( {Eνd(0,r1/ν))

‖Lθ1
(0,∞), ‖f‖Lp

}
= ν1/θ2−1/θ1 sup

f�0,f∈ {LMp1θ1,w1,d∩Lp1

‖w2(ρ
ν)ρ

ν−1
θ2 ‖M νd

ναf‖Lp(Eνd(0,ρ))‖Lθ2
(0,∞)

max
{
‖w1(ρν)ρ

ν−1
θ1 ‖f‖

Lp( {Eνd(0,ρ))
‖Lθ1

(0,∞), ‖f‖Lp

}
= ‖M νd

ναf‖ {LM
p1θ1,w1(ρν )ρ

ν−1
θ1 ,νd

∩Lp1→LM
p2θ2,w2(ρν )ρ

ν−1
θ2

,νd
.
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