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Abstract. We establish estimates sharp in order for the Kolmogorov and linear widths
of the classes B57'( T*) and L™ (T*) of Nikol’skii-Besov, Lizorkin-Triebel types respec-
tively, in the space L,(T*) for a certain range of the parameters s, p, ¢, r, and m.

1 Introduction

Let X be a Banach space equipped with the norm || - | X || and F' be a centrally
symmetric set in X; N € N. Then the quantity

N
dN(Fa X) = inf sup inf Hf - Zcbgb ’ X“ (1)
=1

{9. 3, CX feF {a},CC
is called the Kolmogorov N-width of F'in X and the quantity

A(F,X) = inf sup |1 — Af| X] @)
A fer

(where the inf is taken over all linear operators A : X — X such that rank(A) < N) is
called the linear N-width of F'in X. Recall that widths (1) and (2) were introduced by
A.N. Kolmogorov [10], by V.M. Tikhomirov [22] respectively. Many papers are devoted
to calculating (mainly in the one-dimensional case) and estimating those widths of
various function classes in various function spaces. Some of them containing detailed
historical comments are cited in books [11], [21]; see also Remark 2 below for more
references and comments.

In the present paper we consider widths (1) and (2) with the classes B37"( T*) and
Ls™(T*) as F and the space L,(T*) as X.

Below we use the following notation. Let & € N, z, = {1,...,k}, Ny = NU {0},
and R, = (0, +00); for a finite set Y we denote by |Y| the number of its elements. For
r=(21,...,2),y = (Y1,...,y) € R¥ put 2y = 2191 + ... + 21y, |2| = |22] + ... +
2aly llall = vz, 2o = max{lz;] : € mbia <y (e <y) © o<y (@ <)
for all j € z.
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Let Z L,(T") (1 < p < o) be the space of functions f : T* — C, whose
pth-power is integrable on the k-dimensional torus T* = (R/Z)*, with the norm

L= ([ sera)

99 = [ o), ¢ez

and let

be the trigonometric Fourier coefficients of a function g € L.
Let J # @ be at most countable set and ¢,(J) (1 < ¢ < oco) be the space of all
numerical sequences (¢;) = (¢;);es with the finite norm

T, n—(Zrc]rq) Cl<g<n

jeJ
| () [ o (J) || = sup|cy].
JjeJ

Furthermore, we fix n € N, n < k, and a multi-index m = (my,...,m,) € N"
with my +---+m, =k (m =k whenn = 1 and m = 1 = (1,...,1) € N¥ when

n = k). We represent z = (r1,...,7;) € R¥ in the form = = (x!,..., 2"), where
= (2, 141,,%5,) ER™, jo=0,4, =my + ... + My, V E z,.

For brevity, we put £, = £,(Ng) and || - [ £, || = || - [(o(NG) || as well as €} = £4(zp)
and || - [ €)= - [} (zp0) || for M € N.

By (,(L,) = {,(L,(T*)) and L,(¢,) = L,(T*; ¢,) we denote the spaces of sequences
of functions (ga(2)) = (ga(2))aeny, © € T, with the finite norms

1 (ga(@)) (L)l = | (1 ga | Ly 1) 1 4 I
1(9a(2)) [ Lol = 11l (9a () 1 g 111 Ly |

respectively.
We consider infinitely differentiable functions 7§ : R™ — R (v € z,) such that

0<np(") <1, & eR™;

n5 (&) =1, when |£| < 1;
no(€”) =0, when |£"|w > 3/2;

and put
n"(€")
n; (§) =

o (27€") — g (€7),
(27, jeN.
Then the system

n= {na H 77% fu (ala s 7an) € Ng}

VEZnp
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forms a smooth diadic (product-type) resolution of unity. We introduce the operators
Al Ly — Ly, o € Nj, as follows: for a given g € Ly,

Al(g,x Na(€)G(€)e*™.
£€Zk

Definition 1. Let s = (s1,...,5,) €R}, 1 <p<oo,1<qg< o0, Then
(B) the space E;’qn = B;Z"L(Tk) of Nikol’skii-Besov type consists of all functions
f € L, for which the norm

IFIB = (22 AL(f.2)) | £o(Ly) |

s finite;
(L) the space L7t = L;?(Tk) of Lizorkin-Triebel type consists of all functions
fe Ep for which the norm

IFILN = [1(2% AL(f,2)) | Lp(Ly) |
is finite.
The unit balls
Byy =By (TH = {fe By | [f|BlI<1}
and
D=Ly ={fely | |fIL]<1}

of these spaces will be called the Nikol’skii-Besov classes, Lizorkin-Triebel classes re-
spectively.

Remark 1. For n = 1, the spaces ES = ESk and Es = Z;’; coincide with classical
(periodic) Nikol’skii- Besov spaces, Lzzorkm Trzebel spaces respectively [13], [19, Ch.3/;
for n =k, the spaces ]\/[BS BS1 and MLS LSl are the spaces with mized
smoothness (proper) (see [15’] [1], [20] /19, C’h 2]) Nezt, ZSQ is the Sobolev space
WS and ]\41/52 1S the correspondmg space MWS of functwns with dommatmg mized
derivative belonging to L when 1 < p < ooy the spaces L 12 and ]\41)12 are somewhat
narrower than the spaces Wl, ]\4VV1 respectively; HS = BS 18 the Nikol’skii space,
and MH; = MB;Oo s the corresponding space of functzons with dominating mized
difference belonging to L.

The study of the spaces E;;” and Z;;" in more general context (1 <n < k) and of
some other similar function spaces started in the 1980s (see [19, Ch.2]).

The current state of a number of aspects in the theory of these spaces is described
in survey [18]. In particular, these spaces do not depend on the choice of the system n,
and the norms defined by different such systems (and even more general) are equivalent.
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2 Main results

In this section we state and discuss estimates sharp in order for the Kolmogorov and
linear widths of the Nikol’skii-Besov class B* and the Lizorkin-Triebel class Lj7" in

space L, for a certain range of the parameters of these classes and of the space.

For s € R, m € N",a € R, and 1 < p < oo, we define the following numbers:
0, = S, /My, VE z,; p, = min{p, 2}, p* =max{p,2}, p =p/(p—1); a; = max{a,0}.
Without loss of generality, we assume that for some w € z,, 0 = min{o, : v € z,} =
oL =..=o0, <0,V E 7z, \ 7z, Below, log = log,, and for functions F' : R, — R,
and H : Ry — Ry we write F(u) < H(u) as u — oo, if there exists a constant
C = C(F,H) > 0 such that F(u) < CH(u) for u > uy > 0, and F(u) < H(u) if
F(u) < H(u) and H(u) < F(u) simultaneously.

The main results are as follows.

Theorem 1. I. Let 1 <r <p<oo;1<q<o00;s€eR}. Then

~ ~ log“ 1 N\ ° 11
(B L= (FE ) o )5

" . 1 wle o )
dn(Lyg's L) < (OgT) (log ™ N)—a)+,

II. Let 1<p<r<2,1<¢g<oo;s€eR]} anda>%—%. Then

1,1
~ log "N\ »"r s
dN(B;Zla Lr) = < gN _) (1ng lN) r q)+;
1,1
Tsm T logw_lN M
i 1 ()

IIT UIV. Let 1 <p<2<r<oo;1<g<oo0; seRY} anda>%. Then

~ ~ 1 w_lN U_%_'_% 11
B L= ()T e
1,1
Tsm T 1ng_1N et
dN(qu s L,«) = <T) .

V. Let2<p<r<oo;1<qg<o0; s €ERY and o > o(p, )= (; —7)/(1 = %). Then

" . 1 wle o )
(B L= (P ) o W

~ ~ loe* "t N\ 7 11
dn(Lyg', Lr) = (ogT) (log“ ! N)e—a),
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Theorem 2. I. Let 1 <r<p<oo;1<qg<oo;seR}. Then

~ ~ log“ " N\ 7 _ 11
(B T = (5 ) o w6
~ ~ log“ " N\ 7 B 1.1
(T B = (P ) oty

II. Letl<p<r<2;1<qg<oo;seRY} cmda>%—%. Then

1 1
~ log* PN\ # 7 (i1
By B =< (B )T o b

AN(i;Zl7 zr) = (—

IIT. Let2§r<oo,1§%+%;1§q§oo;5€R1 anda>%. Then

_ _ loo® L N\ 753
B )= (gT) (log*™* V)= 72)+:
1,1
Tsm T logw_lN Trtz
)\N(qu s LT) = <T) .

IV. Let1<p§2,%+%<1; 1<qg<r; seR} anda>1—%. Then

1 1
~ ~ log“ ' N\ 7 2"+ _ 11
By I < () et b

~ ~ log* ' N o3ty _ 11
)\N(L;ZL> LT) = <gT) (log‘” 1N)(T q)+.

V. Let2<p<r<oo,1<g<oo; seR} anda>%—l. Then

<

~ o~ log“ L N\ # 7 N 11
By I < () et b
1 1
Tsm T logw_lN ey
)\N(qu R LT-) = <T) .

Remark 2. Here we mention previous results which are directly related to Theorems
1 and 2; moreover, we point out only those of them which are related to the case
1<p,r<oo.

A) First we concentrate on results on the Kolmogorov widths:
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a) note that estimates sharp in order for the Kolmogorov widths of the classes
WZ = E";’;, ﬁ; = E;’;O, MW; = ig% for all 1 < p,r < o0, as well as of class
MH; = Bzio whenr > p* orp > r* are well known: their complete exposition including
the history of the question is given in books [20, Ch.II1], [21, Ch.II, §; Ch.III, §4];

b) estimates sharp in order for dN(E;,;,ZT) were obtained by A.S. Romanyuk for
the case I in [14], for the cases IIT U IV and V in [15], by E.M. Galeev [6] and A.S.
Romanyuk [17] for the cases 2 <r <p (1<g<o0)and r<2<p(2<qg<0);

¢) finally, note that estimates in Theorem 1 related to the class E;g” were partly
announced in [3].

B) Now we turn our attention to previous results on the linear widths:

a) estimates sharp in order for the linear widths of the classes W; and I:If, for all
p, 1 are also well known; for detailed exposition see [21, Ch. II, §4];

b) E.M. Galeev found estimates sharp in order for )\N(M\AN/;, ZT) foralll<p,r<
oo and for )\N(Mﬁz, L,) in the cases 11, 111, as well as when p > 1*; see [5] for details;

¢) A.S.Romanyuk [16, 17] established estimates sharp in order for )\N(EZ;,ZT) in
the following cases: 2 <r <p (1 <qg<o0);r<2<p 2<q¢g<o0); p<r<2
(I1<g<oo); p<2<r<yp (1<q<o0); p<2,p<r 2<q<r); 2<p<r
2<g<r);

d) finally, note that estimates in Theorem 2 related to the class E;Z“ were partly
announced in [2].

3 Wavelet characterization of the spaces E;Z]” and Z;g”t

Proofs of the main results in next sections will be based on embeddings and wavelet
characterization for the spaces By;" and L;" and related theorem of Littlewood-Paley
type.

In this section we list those results with relevant background.

Let v = w? : R — R and w! : R — R be a Meyer scaling function, a wavelet re-
spectively [12, Ch.2, §12, Ch.3, §2]. They are defined as follows. Let ¥(7) be an odd in-
finitely differentiable function equal to w/4 for 7 > 7/3 and monotonic on (—x/3,7/3).
Next, let 1(7) be the even function defined by

/4 + 9T — ), if 7€ [2n/3,47/3];
P(1) = m/4—=0(F —7), if 7€ ldr/3,87/3]; (3)
0, it 7€10,27/3)U (87/3,00).
Then /3
WO (t) = % /0 cos(tr) cos(th(r))dr (4)
and 5/
wl(t) = & / cos((t — 1/2)7) sin((7))dr. (5)
™ Jor/3
Next, put

B" = g*(0) = {0, 1}*, EF(1)=€6"\{(0,...,0)};
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Ak, j) =7ZFN[0,27 — 1]F, j € Ny,

and define the functions w* : R¥ = R (v = (u1,...,1) € EF) as follows:

w'(x) = w (zy) X - X w*(xy).

Furthermore, let '
wi(z) = w'(2’z) (j € No).

Finally, we define the functions wj, : Tk — R as follows
Wiy (x) = 2P (x —279X) (A € Ak, j), j € No, v € EY),
where h : TF — C is the periodization of a function h : R¥ — C

=) Ma—¢)

gezk
It is well known [12, ch.3| that the system of the Meyer wavelets
Wi ={@ | A€ A(k,j), € B*(signj), j € No}

forms a complete orthonormal system in Ly(T*). Finally, we introduce the (m-multiple)

system of wavelets . N _
e ® Wmn = (6)

Win = Wi, ® =
{w!,(x) = @;11 wl(@) xoxawlh L (2") | A€ A(m,a), L € E™(a), o € Nj}
here z € T* E™(a) = {t € E¥ : ¥ € E™(signa,), v € 2,}, and A(m,a) = {\ €

ZE | X e ANmy, ), v € 2,}.
We also introduce the operators AY (o € Nji) by

Aj(fa)= D, D (f W) @), where (£, = | f(@)

LEE™ (o) AEA(m,)

W'y () dx.

We need the following spaces §;? and f;gn of numerical sequences that are closely
related to B;g“, LSm respectively. Let Xax = Xp(m,a,n) be the characteristic function of

the paralleleplped
= Q(m17 aq, )\1) X X Q(mna Qp, )\n)’

P(m,a,\) =
N={a"eR” : 2%z =\ €[0,1]™} (a €Ny, \eZh).

Q(mw oy, A
For a numerical sequence (a;/\) =

q < o0 ands € RY.

Definition 2. Let 1 <
€ A(m, ) ), we introduce the following two norms:

b,
(a'y|a € Nj, L€ E™(« ))\

~ 1/q
”%)'BH:( DS a;Axam-)eruq) -

a€Ng 1ee™ () AeA(m,o)
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/p\ 1/
:(Z Z Qasqz—amq/p( Z |a;)\|p)qP) q

a€eNg 1ee™(a) AEA(m, o)

and

1/q
I () |L||—||(Z RIS a;AxM<->|q) L] =

aENG tee™ (o) AEA(m,a)
1/q
= | ( > 2 Y |a;Arqu<~>) Ly |
a€eNg ee™(a) AeA(m,a)
(with the natural modification for p = 0o or ¢ = 00).
Then . N
B,y =1{(an) ¢ [ (agy) [Bf| <ool,

and

Ly ={(at) ¢ (@) |T] < oo}

Now we are in position to formulate a theorem on characterization and representa-
tion of functions in the spaces BSm and LSm using the system W

Theorem A. Let 1 < p,q < oo and s € RY}.
B. For a function f € L, the followz'ng conditions are equivalent:

(1) the function f belongs to the space B;gl,

(ii) the sequence of functions (ZQSAz(f, x)) belongs to the space Eq(zp); i.e., the
quantity _ _

(2% AY(f,2)) | Le(Lp) |5 (7)
s finite;
(iii) the numerical sequence (2°™/2( f, @', )) belongs to the space B,
tity

pq s b€, the quan-

2 f.wen ) B (8)
s finite. B
The functionals (33) and (84) are norms in the space By which are equivalent to
the original norm || - | B|.
L. For a function f € Zp ,p < o0 the followmg conditions are equivalent:
(1) the function f belongs to the space L;Zl,
(ii) the sequence of functions (2°A¥(f,x)) belongs to the space Ly(Ly); i.c., the
quantity _ _
12 AL 2)) | L) s (9)
s finite;
(iii) the numerical sequence (2°™/2( f @', ) ) belongs to the space qu ;i.e., the quan-
tity
122 fowaa ) L. (10)
s finite. B
The functionals (35) and (36) are norms in the space Ly which are equivalent to

the original norm || - | L|.
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We also need the following theorem of Littlewood-Paley type for wavelet decompo-
sitions with respect to the system W,, and its corollary.

Theorem B. Let 1 < p < oo. Then there exists a constant C' = C(v,m,p) > 0 such
that
CTH LI SN A2 [ Lp() | < C N FI Lyl

CHNFIL N <UD DD @) Bl [ Ly M2 < C N FI Ly |-
o L A

for all functions f € Zp.

Corollary A. Let 1 < p < oco. Then, for any function f € Ep
I 1L 1l < Coym,p) | AL, 0) [ 6 (L) ]

For proofs of Theorems A and B and of Corollary A and detailed comments on
related results see [4]. N
Here we formulate embedding (of different metrics) theorem for spaces B,7" and
s
pq

Theorem C. Let s = (s1,...,8,), 7= (71,....,7) ER}, 1 <p<r<oo, 1 <qu<oo

and
G-3)
Sy—Ty=my| ——— |, VEaz,.
p T

Then
(1) the embedding

By (T*) — BI(T) (11)
holds if and only if ¢ < u;
(ii) the embedding

Lya(T%) < BI(T) (12)
holds if and only if p < u.

Moreover, let r < co. Then

(iii) the embedding

By (T%) — L7 (T (13)
holds if and only if ¢ < r;
(iv) the embedding

Lya (T%) — LT(T) (14)

holds for all 1 < q,u < o0.

In the cases of n = 1 and n = k, Theorem C and its counterpart for the spaces
Bs7(RF) and L5 (R*) are well known (see [13] - [1], [18]). In the case of 1 < n < k,
the nonperiodic counterpart of Theorem C is proved in [8]. Concerning Theorem C in
case of 1 <n <k, see Remark 5.1 in [4].

When deriving estimates of both theorems and estimating dimensions of certain
finite-dimensional linear spans we will apply the following lemma, which is a modifica-
tion of Lemmas B, C, and D from [20] for our case; the proof can be carried out in a
similar way.
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Lemma A. Let 3,7 € R be such that B, =, for v € z, and B, > v, v € 2, \ Zy;
and let L > 0. Then the following relations hold:

Ig”(u)z Z o-LaB  — g-Lujw-l as U — +o00; (15)
a€Ngay>u

TP (u) = Z oler = glugel as U — +00. (16)
a€eNg:af<u

4 Upper bounds in Theorems 1 and 2: simple cases
vy € z,, we consider

Together with s = (s1,...,8,), m = (mq,...,m,) and o, = ot

following vectors and numbers:

p T
1 Ow+1 On
y==8= (M1, e, My, Myyr1 ey My — ),
o o o
_1_ T, On
N = =8 = (M1, ey My Mg 1 — 5 <oy My — ).
o o o
It is clear that
_ _ I 1 _ _ _
c=min{s,: ve€zgt=0c—(-—=-) =a=..=0,<07,, V>uw,
p 1),
and
¥y =2y =m.

For vector 4 we choose numbers o/,, v € z,, such that:

oy =..=0,=0<o0, <0, V> w,

then the vector , )
o o

/ w41 n

v = (ma, .., My, My e m"?)

satisfies the inequality 7 >+ > m.

Next by Lemma A, formula(16) with
(17)

ﬁ:'y/? v=m, L:L

we obtain the following relation

Z 207 = Uyl as uw — 4o0. (18)

ay'<u

We begin with upper estimates in Theorem 1 for cases I, II and in Theorem 2 for

cases I, II, V.
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Cases I and II: for both classes E;Z‘ and E;Zl the required estimates follow by the
estimates of approximation of these classes by wavelets of the system Wm obtained
before in [4]. For a function f € L, consider its "hyperbolic" partial Fourier sum with
respect to Wm:

8“’5 (f,x) Z Aw (f,x)
af<u
(here u > 0 and 8 € R%).
Then by Theorem 4.1 in [4] we have for 1 <7 <p < 0o

sup{|| f — =7 (f) | L, ||| f € By} = 270G, (19)
sup{|| f — 8= (f) | Ll | f € Lymy = 27ovae D=0 (20)
and forl <p<r<oo
sup{[| f = SEV ()| Lol | f € By} = 27wt lom DG =, (21)
sup{|| f — SV ()| L ||| f € Ly} = 27t (22)

The dimension 6(7, u) of the linear span of {w’,, : A € A(m,a),t € E" (), ay’ < u}
is of order 2“u“~! (see Remark 5.2. in [4]). Choose u > 0 such that §(7/,u) < N and

N =< 2“y®~1. Therefore, from (19), (20) and definition (1) of the Kolmogorov width
and (2) of the linear width it follows that in case I we obtain

pq>’ pq>’

1 w—1 N g
dy(Br, L) <A@ L) < (—OgN ) (log®™! N) 33+,

pq> pq>’

1 wle o )
dy(@om, L) < (@, L) < <—OgN ) (log®~! N)3=9)+,
and by (21), (22) and (1), (2) it follows that in case II we have

log“ ' N

0’7;+% )
dy(BS™, L) < An(B™, L) < < I ) (log®™* N)(?_%)ﬂ“,

pq>’ pq>’

log”™! N\ 77+
dy(TEm, L) < (@ L) < (gT)
Similarly by (21), (22) and (2) it follows that in case V we have the following upper
bounds

1 w—lN 0—5-"—%
B L)< () oy

1,1
sm 1ng_1 N U_;—i_;
A (qu s L ) (T) .

Thus, the required upper estimates in Theorem 1 for cases I and II and in Theorem
2 for cases I, IT and V are proved.
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Let us consider case III U IV of Theorem 1. In virtue of Theorem C we have
By — By,
L Ly,
(here 5 = s — m(% — %), note that according to the assumptions of Theorem 1 in case
IITU IV § > 0; therefore, these embeddings hold true). Hence, upper bounds in this
case is reduced to corresponding upper estimates for case V:
dy(B37, L,) < dn (B3, L),

pq >
dN(L;S)f]na Lr) < dN(LgTv Lr)

Note that the assumption o > % for case III U IV is equivalent to the assumption of
case V with § and 2 replacing s, p respectively.

Concerning upper estimates in both Theorems 1 and 2 it remains to consider case
V of Theorem 1 and cases III and IV of Theorem 2.

Proofs of the rest of upper bounds as well as proofs of all lower bounds in both
Theorems 1 and 2 will be given in part II of this paper.

We conclude part I by constructing approximation operators GM* and H™* which
will be useful when we shall estimate from above the widths of the classes B)7" and

i;’,? in the remaining cases.
First we recall the following well-known estimates for the widths of finite-
dimensional sets which are due to B.S. Kashin [9] and E.D. Gluskin [7].
Let b) be the unit ball of £}/, 1 < N < M.
I.Let 2 <p<r< oo, then
dy(6M (M) = min{1, M2 @")/r N=ePY

prr

II.Let1<p<2<r<ooand%—|—%21,then

1 1 N
)\N(by,&{w) = maX{M%_%,min{l,M?N*E} 1-— M}
Hence we have the following facts:
I.let 2 < p < r < 00, then there exist an N-dimensional subspace LY C RM and
a map G%; : RM — LV such that for any x € RM
Ix = GRx | 61| < dn (b, 1) | x | 7] < [l x| || M@/ N =), (23)

p o tr
IT.let 1 <p <2< 7r < oo and %+% > 1, then there exists a linear operator
HY : RM — RM gych that the dimension of the subspace HL(R*) does not exceed N
and for any x € R
I — Hypx [ 1] < An (6", 1) [ x [ 6] <

porr

1 1 N
< ||x] e max{MrE,min{l,M%N_%} 1—M}. (24)
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Let also Idy; : RM — RM be the identity map.
Now let us construct operators GN'% : L, — L, and HV : L — L as follows.
Let € > 0 be sufficiently small; define numbers M,, N, € Ny, o € Njj as follows:

20&7’7’1,

am Y if Oé’yl S u7
Ma = 2 5 Na = { L2u(1+85')—80é§J’

if oy >u (25)

(here |a] is the integer part of a real number a).
Then taking into account (17) and (18) by Lemma A (formula (15) with 8 =7, v =
v, L =€) we find that

— ZZN — ZN& _ Z gam Z L2u(1+a6)—ao¢§J - 2uuw—1+

avy'<u ay'>u

+2u(1+€6) Z 9—eay - gu w1 + 2u(1+sc‘r)2—€6uuw—1 — Qug w1 (26)
af >u
We choose u > 0 such that N(u) < N and 2*u*~' < N.
Let f € L,. Then we put

(gor)r = GNa (far)n)s (hgp)r = HNa((fa,\)A) if t€E"(a),a€Ng: 1< N, <M,

Here Gy : RMe — RMe is operator from (23) and Hp® : RM> — RM= is operator
from (24) and
fé)\ = <f7{5;)\>7 A€ A(maa)a S Em(a>7 (OS Ng

Furthermore,
(gar)r = GNQ (far)n) = (hea)r = Hﬁz(( ‘) =0 € R,
if 1€ E"(a), a € Nj: N, = 0;
(gax)x = G ((faa)n) = (heo)x = Hyp ((fan)a) = Tdar, ((Fan)x) = (Fan),
it 1€ E™(a),aeNyj: oy <u.

Next, we define

gn(z) = GNU(f,2) = ZN’ gn,T) = ZZGN “(f, @)

where
G (f,x) = Z JorWa ()
AEA(m @)
and
h(e) = HY(f,2) = ZN hy,o) = HY(f @),
where

N, 2 : Lo
HL « ha/\wa)\

AeA(m,a)
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It it clear that H Nw ig a linear operator and the dimensions of the linear span {gy =
GNw(f): f € L.} and of the set {hy = HY¥(f): f € L.} do not exceed N(u) < N.
Therefore, we obtain that

dy(F5r L) < sup{||f —gn | L, | : f € F3m}, (27)
An(Fsm L) < sup{||f — hy | L, || f € B3, (28)

where F is B or L. 0
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