EURASIAN MATHEMATICAL JOURNAL ISSN 2077-9879 Volume 1, Number 2 (2010), 136 – 141

ON IMBALANCES IN ORIENTED BIPARTITE GRAPHS

U. Samee, T.A. Chishti

Communicated by V.I. Burenkov

Key words: digraph, imbalance, outdegree, indegree, oriented graph, oriented bipartite graph, arc.

AMS Mathematics Subject Classification: 05C20.

Abstract. An oriented bipartite graph is the result of assigning a direction to each edge of a simple bipartite graph. For any vertex x in an oriented bipartite graph D(U, V), let d_x^+ and d_x^- respectively denote the outdegree and indegree of x. Define $a_{u_i} = d_{u_i}^+ - d_{u_i}^-$ and $b_{v_j} = d_{v_j}^+ - d_{v_j}^-$ respectively as the imbalances of vertices u_i in U and v_j in V. In this paper, we obtain constructive and existence criteria for a pair of sequences of integers to be the imbalances of some oriented bipartite graph. We also show the existence of a bipartite oriented graph with given imbalance set.

1 Introduction

A simple digraph is a digraph that is without loops and with no multiarcs. The imbalance of a vertex v_i in a digraph is b_{v_i} (or simply b_i) = $d_{v_i}^+ - d_{v_i}^-$, where $d_{v_i}^+$ and $d_{v_i}^-$ are respectively, the outdegree and indegree of v_i . The imbalance sequence of a simple digraph is formed by listing the vertex imbalances in non-increasing or non-decreasing order. A sequence of integers $F = [f_1 f_2, \dots, f_n]$ with $f_1 \ge f_2 \ge \dots \ge f_n$ is feasible if it has sum zero and satisfies

$$\sum_{i=1}^{k} f_i \le k(n-k),$$

for $1 \leq k < n$.

One can verify that a sequence is realizable as an imbalance sequence if and only if it is feasible.

This is equivalent to saying that a sequence of integers $B = [b_1, b_2, \dots, b_n]$ with $b_1 \ge b_2 \ge \dots \ge b_n$ is an imbalance sequence of a simple digraph if and only if

$$\sum_{i=1}^{k} b_i \le k(n-k),$$

for $1 \leq k < n$ with equality when k = n.

On arranging the imbalance sequence in non-decreasing order, we observe that a sequence of integers $B = [b_1, b_2, \dots, b_n]$ with $b_1 \leq b_2 \leq \dots \leq b_n$ is an imbalance sequence of a simple digraph if and only if for $1 \leq k < n$

$$\sum_{i=1}^{k} b_i \ge k(k-n),$$

with equality when k = n.

Various results for imbalances in simple digraphs and oriented graphs can be found in [1, 3].

2 Imbalances in oriented bipartite graphs

An oriented bipartite graph is the result of assigning a direction to each edge of a simple bipartite graph. Let $U = \{u_1, u_2, \dots, u_p\}$ and $V = \{v_1, v_2, \dots, v_q\}$ be the parts of an oriented bipartite graph D(U, V). For any vertex x in D(U, V), let d_x^+ and d_x^- denote the outdegree and indegree of x. Define a_{u_i} (or simply $a_i) = d_{u_i}^+ - d_{u_i}^-$ and b_{v_j} (or simply b_j) = $d_{v_j}^+ - d_{v_j}^-$ respectively, as imbalances of the vertices u_i in U and v_j in V. The sequences $A = [a_1, a_2, \dots, a_p]$ and $B = [b_1, b_2, \dots, b_q]$ in non-decreasing order is a pair of imbalance sequences of D(U, V).

In any oriented bipartite graph D(U, V), we have one of the following possibilities for a vertex u in U and a vertex v in V.

(i) An arc directed from u to v, denoted by u(1-0)v.

(ii) An arc directed from v to u, denoted by u(0-1)v.

(iii) There is no arc from u to v and there is no arc from v to u and this is denoted by u(0-0)v.

A tetra in an oriented bipartite graph is an induced sub-oriented graph with two vertices from each part. Define tetras of the form $u_1(1-0)v_1(1-0)u_2(1-0)v_2(1-0)u_1$ and $u_1(1-0)v_1(1-0)u_2(1-0)v_2(0-0)u_1$ to be of α -type, and all other tetras to be of β -type. An oriented bipartite graph is said to be of α -type or β -type according as all of its tetras are of α -type or β -type respectively.

Some results on oriented bipartite graphs can be found in [2, 4]. The following observation is an immediate consequence of the above definitions and facts.

Theorem 1. Among all oriented bipartite graphs with given imbalance sequence, those with the fewest arcs are of β -type.

A transmitter is a vertex with indegree zero. In a β -type oriented bipartite graph with imbalance sequences $A = [a_1, a_2, \dots, a_p]$ and $B = [b_1, b_2, \dots, b_q]$, either the vertex with imbalance a_p , or the vertex with imbalance b_q , or both may act as transmitters.

The next result provides a useful recursive test allowing to determine whether given sequences are the imbalance sequences of an oriented bipartite graph.

Theorem 2. Let $A = [a_1, a_2, \dots, a_p]$ and $B = [b_1, b_2, \dots, b_q]$ be sequences of integers in non-decreasing order with $a_p > 0$, $a_p \le q$ and $b_q \le p$. Let A' be obtained from A by

deleting one entry a_p , and B' be obtained from B by increasing a_p smallest entries of B by 1 each. Then A and B are the imbalance sequences of some oriented bipartite graph if and only if A' and B' are the imbalance sequences.

Proof. Let A' and B' be the imbalance sequences of some oriented bipartite graph D' with parts U' and V'. Then an oriented bipartite graph D with imbalance sequences A and B can be obtained by adding a transmitter u_p in U' such that $u_p(1-0)v_i$ for those vertices v_i in V' whose imbalances are increased by 1 in going from A and B to A' and B'.

Conversely, suppose A and B be the imbalance sequences of an oriented bipartite graph D with parts U and V. Without loss of generality, we chose D to be of β -type. Then there is a vertex u_p in U with imbalance a_p (or a vertex v_q in V with imbalance b_q , or both u_p and v_q) which is a transmitter. Let the vertex u_p in U with imbalance a_p be a transmitter. Clearly, $d_{u_p}^+ \ge 0$ and $d_{u_p}^- = 0$ so that $a_p = d_{u_p}^+ - d_{u_p}^- \ge 0$. Also, $d_{v_q}^+ \le p$ and $d_{v_q}^- \ge 0$ so that $b_q = d_{v_q}^+ - d_{v_q}^- \le p$.

Let V_1 be the set of a_p vertices of smallest imbalances in V, and let $W = V - V_1$. Construct D such that $u_p(1-0)v_i$ for all $v_i \in V_i$. Clearly, $D - \{u_p\}$ realizes A' and B'.

Theorem 2 provides an algorithm for determining whether two sequences of integers in non-decreasing order are the imbalance sequences, and for constructing a corresponding oriented bipartite graph. Suppose $A = [a_1, a_2, \dots, a_p]$ and $B = [b_1, b_2, \dots, b_q]$ are imbalance sequences of an oriented bipartite graph with parts $U = \{u_1, u_2, \dots, u_p\}$ and $V = \{v_1, v_2, \dots, v_q\}$, where $a_p > 0$, $a_p \leq q$ and $b_q \leq p$. Deleting a_p , and increasing a_p smallest entries of B by 1 each to form $B' = [b'_1, b'_2, \dots, b'_q]$. Then arcs are defined by $u_p(1-0)v_j$ for which $b'_{v_j} = b_{v_j} + 1$. Now, if the condition $a_p > 0$ does not hold, then we delete b_q (obviously $b_q > 0$), and increase b_q smallest entries of A by 1 each to form $A' = [a'_1, a'_2, \dots, a'_p]$. In this case, arcs are defined by $v_q(1-0)u_i$ for which $a'_{u_i} = a_{u_i} + 1$. If this method is applied successively, then (i) it tests whether A and B are the imbalance sequences and, if A and B are the imbalance sequences (ii) an oriented bipartite graph D(A, B) with imbalance sequences A and B is constructed.

We illustrate this reduction and the resulting construction as follows, beginning with sequences A_1 and B_1

 $\begin{array}{ll} A_1 = [-3, 1, 2, 2] & B_1 = [-3, -1, 0, 1, 1] \\ A_2 = [-3, 1, 2] & B_2 = [-2, 0, 0, 1, 1] & u_4(1-0)v_1, \ u_4(1-0)v_2 \\ A_3 = [-3, 1] & B_3 = [-1, 1, 0, 1, 1] & u_3(1-0)v_1, \ u_3(1-0)v_2 \\ \text{or} & A_3 = [-3, 1] & B_3 = [-1, 0, 1, 1, 1] \\ A_4 = [-3] & B_4 = [0, 0, 1, 1, 1] & u_2(1-0)v_1 \\ A_5 = [-2] & B_5 = [0, 0, 1, 1] & v_5(1-0)u_1 \\ A_6 = [-1] & B_6 = [0, 0, 1] & v_4(1-0)u_1 \\ A_7 = [0] & B_7 = [0, 0] & v_2(1-0)u_1 \end{array}$

Obviously, an oriented bipartite graph D with parts $U = \{u_1, u_2, u_3, u_4\}$ and $V = \{v_1, v_2, v_3, v_4, v_5\}$ in which $u_4(1-0)v_1$, $u_4(1-0)v_2$, $u_3(1-0)v_1$, $u_3(1-0)v_2$, $u_2(1-0)v_1$, $v_5(1-0)u_1$, $v_4(1-0)u_1$, $v_2(1-0)u_1$ are arcs has imbalance sequences [-3, 1, 2, 2] and [-3, -1, 0, 1, 1].

The following result is a combinatorial criterion for determining whether the sequences are realizable as imbalances.

Theorem 3. Two sequences $A = [a_1, a_2, \dots, a_p]$ and $B = [b_1, b_2, \dots, b_q]$ of integers in non-decreasing order are the imbalance sequences of some oriented bipartite graph if and only if

$$\sum_{i=1}^{k} a_i + \sum_{j=1}^{l} b_j \ge 2kl - kq - lp,$$
(1)

for $1 \le k \le p$, $1 \le l \le q$ with equality when k = p and l = q.

Proof. The necessity follows from the fact that an oriented sub-bipartite graph induced by k vertices from the first part and l vertices from the second part has a sum of imbalances 2kl - kq - lp.

For sufficiency, assume that $A = [a_1, a_2, \dots, a_p]$ and $B = [b_1, b_2, \dots, b_q]$ are the sequences of integers in non-decreasing order satisfying conditions (1) but are not the imbalance sequences of any oriented bipartite graph. Let these sequences be chosen in such a way that p and q are the smallest possible and a_1 is the least with that choice of p and q. We consider the following two cases.

Case(i). Suppose equality in (1) holds for some $k \leq p$ and l < q, so that

$$\sum_{i=1}^{k} a_i + \sum_{j=1}^{l} b_j = 2kl - kq - lp.$$

By the minimality of p and q, $A = [a_1, a_2, \dots, a_p]$ and $B = [b_1, b_2, \dots, b_q]$ are the imbalance sequences of some oriented bipartite graph $D_1(U_1, V_1)$. Let $A_2 = [a_{k+1}, a_{k+2}, \dots, a_p]$ and $B_2 = [b_{l+1}, b_{l+2}, \dots, b_q]$.

Now,

$$\begin{split} \sum_{i=1}^{f} a_{k+i} + \sum_{j=1}^{g} b_{l+j} &= \sum_{i=1}^{k+f} a_i + \sum_{j=1}^{l+g} b_j - (\sum_{i=1}^{k} a_i + \sum_{j=1}^{l} b_j) \\ &\geq 2(k+f)(l+g) - (k+f)q - (l+g)p - 2kl + kq + lp \\ &= 2kl + 2kg + 2fl + 2fg - kq - fq - lp - gp - 2kl + kq + lp \\ &= 2fg - fq - gp + 2kg + 2fl \\ &\geq 2fg - fq - gp, \end{split}$$

for $1 \leq f \leq p-k$ and $1 \leq g \leq q-l$, with equality when f = p-k and g = q-l. So, by the minimality for p and q, the sequences A_2 and B_2 form the imbalance sequences of some oriented bipartite graph $D_2(U_2, V_2)$. Now construct a new oriented bipartite graph D(U, V) as follows.

Let $U = U_1 \cup U_2$, $V = V_1 \cup V_2$ with $U_1 \cap U_2 = \varphi$, $V_1 \cap V_2 = \varphi$ and the arc set containing those arcs which are between U_1 and V_1 and between U_2 and V_2 . Then we obtain an oriented bipartite graph D(U, V) with the imbalance sequences A and B, which is a contradiction.

Case (ii). Suppose that the strict inequality holds in (1) for some $k \neq p$ and $l \neq q$.

Let $A_1 = [a_1 - 1, a_2, \dots, a_{p-1}, a_p]$ and $B_1 = [b_1, b_2, \dots, b_q]$, so that A_1 and B_1 satisfy the conditions (1). Thus by the minimality of a_1 , the sequences A_1 and B_1 are the imbalances sequences of some oriented bipartite graph $D_1(U_1, V_1)$. Let $a_{u_1} = a_1 - 1$ and $a_{u_p} = a_p + 1$. Since $a_{u_p} > a_{u_1} + 1$, therefore there exists a vertex $v_1 \in V_1$ such that $u_p(0 - 0)v_1(1 - 0)u_1$, or $u_p(1 - 0)v_1(0 - 0)u_1$, or $u_p(1 - 0)v_1(1 - 0)u_1$, or $u_p(0 - 0)v_1(0 - 0)u_1$, in $D_1(U_1, V_1)$ and if these are changed to $u_p(0 - 1)v_1(0 - 0)u_1$, or $u_p(0 - 0)v_1(0 - 1)u_1$, or $u_p(0 - 0)v_1(0 - 0)u_1$, or $u_p(0 - 1)v_1(0 - 1)u_1$ respectively, the result is an oriented bipartite graph with imbalances sequences A and B, which is a contradiction. This proves the result. \Box

The set of distinct imbalances of the vertices in an oriented bipartite graph is called its imbalance set.

Finally, we prove the existence of an oriented bipartite graph with a given imbalance set.

Theorem 4. Let $A = [a_1, a_2, \dots, a_n]$ and $B = [-b_1, -b_2, \dots, -b_n]$, where $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ are positive integers with $a_1 < a_2 < \dots < a_n$ and $b_1 < b_2 < \dots < b_n$. Then there exists an oriented bipartite graph with imbalance set $A \cup B$.

Proof. Construct an oriented bipartite graph D(U, V) as follows. Let $U = U_1 \cup U_2 \cup \cdots \cup U_n$, $V = V_1 \cup V_2 \cup \cdots \cup V_n$ with $U_i \cap U_j = \varphi(i \neq j)$, $V_i \cap V_j = \varphi(i \neq j)$, $|U_i| = b_i$ for all $i, 1 \leq i \leq n$ and $|V_j| = a_j$ for all $j, 1 \leq j \leq n$. Let there be an arc from every vertex of U_i to each vertex of V_i for all $i, 1 \leq i \leq n$, so that we obtain the oriented bipartite graph D(U, V) with the imbalances of vertices as follows.

For $1 \leq i, j \leq n$,

 $a_{u_i} = |V_i| - 0 = a_i$, for all $u_i \in U_i$ and $b_{v_j} = 0 - |U_j| = -b_j$, for all $v_i \in V_i$. Therefore the imbalance set of D(U, V) is $A \cup B$.

Obviously the oriented bipartite graph constructed above is not connected. In order to see the existence of oriented bipartite graph, whose underlying graph is connected, we proceed as under.

Taking $U_i = \{u_1, u_2, \dots, u_{b_i}\}$ and $V_j = \{v_1, v_2, \dots, v_{a_j}\}$, and let there be an arc from each vertex of U_i to every vertex of V_j except the arcs between u_{b_i} and v_{a_j} , that is $u_{b_i}(0-0)v_{a_j}$, $1 \le i \le n$ and $1 \le j \le n$. We take $u_{b_1}(0-0)v_{a_2}$, $u_{b_2}(0-0)v_{a_3}$, and so on $u_{b_{(n-1)}}(0-0)v_{a_n}$, $u_{b_n}(0-0)v_{a_1}$. The underlying graph of this oriented bipartite graph is connected.

References

- D. Mubayi, T.G. Will, D.B. West, *Realizing degree imbalances in directed graphs*. Discrete Mathematics, 239 (2001), 147 – 153.
- [2] S. Pirzada, Merajuddin, Yin Jainhua, On the scores of oriented bipartite graphs, J. Math. Study, 33, 4 (2000), 354 – 359.
- [3] S. Pirzada, On imbalances in digraphs. Kragujevac J. Mathematics, **31** (2008), 143 146.
- [4] S. Pirzada, T.A. Naikoo, T.A. Chishti, Score sets in oriented bipartite graphs. Novi Sad J. Mathematics, 36, 1 (2006), 35 – 45.

Umatul Samee Department of Mathematics University of Kashmir 190006 Srinagar, India E-mail: pzsamee@yahoo.co.in

Tariq Chishti Directorate of Distance Education University of Kashmir 190006 Srinagar, India E-mail: chishtita@yahoo.co.in

Received: 29.04.2010