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Abstract. The limit of a locally uniformly converging sequence of analytic functions is an analytic
function. Yu.G. Reshetnyak obtained a natural generalization of that in the theory of mappings
with bounded distortion: the limit of every locally uniformly converging sequence of mappings with
bounded distortion is a mapping with bounded distortion, and established the weak continuity of
the Jacobians.

In this article, similar problems are studied for a sequence of Sobolev-class homeomorphisms
defined on a domain in a two-step Carnot group. We show that if such a sequence converges to some
homeomorphism locally uniformly, the sequence of horizontal differentials of its terms is bounded in
Lν,loc, and the Jacobians of the terms of the sequence are nonnegative almost everywhere, then the
sequence of Jacobians converges to the Jacobian of the limit homeomorphism weakly in L1,loc; here ν
is the Hausdorff dimension of the group.
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1 Introduction

Consider a mapping f = (f 1, . . . , fn) of class W 1
1,loc(Ω;Rn), where Ω is a domain in Rn. Given two

multi-indices I = (i1, . . . , ik) and J = (j1, . . . , jk) of length k ≤ n with i1 < i2 < . . . < ik and
j1 < j2 < . . . < jk, denote the (I, J)-minor of the generalized differential Df of f by

∂f I

∂xJ
= det

(
∂f iα

∂xjβ

)k
α,β=1

.

The following nontrivial property holds for the differentials of Sobolev-class mappings: the ∗-weak
continuity of their minors.

Theorem 1.1. Given a positive integer k ≤ n and some domain Ω ⊂ Rn, consider a sequence
{fm : Ω → Rn} of mappings of class W 1

p,loc(Ω;Rn) bounded in W 1
p,loc(Ω;Rn), where p ≥ k. If the

sequence {fm} converges in L1,loc(Ω;Rn) to some mapping f0, then for every pair of multi-indices
(I, J) of length k the sequence

{
∂fIm
∂xJ

}
converges in the sense of distributions to the (I, J)-minor of

the generalized differential of f0, that is

lim
m→∞

∫
Ω

∂f Im
∂xJ

(x)θ(x) dx =

∫
Ω

∂f I0
∂xJ

(x)θ(x) dx (1.1)

for all functions θ ∈ C∞0 (Ω).
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This property was obtained in the case n = 2 in [2], while in the form presented above it was
established in [15, Chapter II, Lemma 4.9] and [12]. Note that in [15] Theorem 1.1 appears as
a corollary to a claim about the convergence of transported exterior differential k-forms. See [9,
Theorem 8.2.1] as well.

Recall that for 1 < q < ∞ the dual space to the Lebesgue space Lq(D) is the Lebesgue space
Lq′(D), where the Hölder exponent q′ dual to q is determined by the condition 1

q′
+ 1

q
= 1, while the

dual space to L1(D) is the space L∞(D) of essentially bounded functions.
Since the space of C∞0 functions on a domain D b Ω is dense in Lr(D) for each 1 ≤ r <∞, and

the hypotheses of Theorem 1.1 imply that the sequence of minors
{∂fIm
∂xJ

}
is bounded in Lp/k,loc(Ω), we

conclude that for p > k it is not difficult to extend (1.1) to all functions θ ∈ L(p/k)′(Ω) with compact
supports in Ω. The latter means that for p > k the sequence of (I, J)-minors of the differentials
of fm converges weakly in the space Lp/k,loc(Ω) to the (I, J)-minor of the differential of the limit
mapping f0.

At the same time, continuous functions do not constitute a dense subspace in L∞(D). Therefore,
for p = k = n the transition in (1.1) from C∞0 functions to all functions θ ∈ L∞(Ω) with compact
supports in Ω is not obvious. However, that turns out feasible if we assume in addition that the Ja-
cobians are nonnegative: detDfm ≥ 0 almost everywhere. In this case the local uniform integrability
of the sequence {detDfm} established in [13] plays a key role.

Note that the conditions imposed on the sequence {fm} in Theorem 1.1 are equivalent to the
weak convergence of {fm} to f0 in the space W 1

p,loc(Ω;Rn).
The main result of this article is the following generalization of Theorem 1.1 to the case of Carnot

groups, where ν stands for the homogeneous dimension of the group G; see also [20], where a similar
result on Carnot groups is established for sequences of mappings with bounded distortion.

Theorem 1.2. Consider domains Ω, Ω′0, Ω′1, . . . in a two-step Carnot group G and a sequence
{ϕk : Ω → Ω′k}∞k=1 of homeomorphisms of class W 1

ν,loc(Ω;G). Suppose that {ϕk} converges to
some homeomorphism ϕ0 : Ω → Ω′0 locally uniformly in Ω, the sequence {|Dhϕk|}∞k=1 is bounded
in Lν,loc(Ω), and det D̂ϕk ≥ 0 almost everywhere, for k = 1, 2, . . ..

Then the sequence of Jacobians {det D̂ϕk} converges to det D̂ϕ0 weakly in L1,loc(Ω), that is,

lim
k→∞

∫
Ω

θ(x) det D̂ϕk(x) dx =

∫
Ω

θ(x) det D̂ϕ0(x) dx

for each function θ ∈ L∞(Ω) vanishing almost everywhere outside some compact set K ⊂ Ω.

In the case of H-type Carnot groups the local uniform convergence of a sequence {ϕk} of homeo-
morphisms of class W 1

ν,loc(Ω;G), the horizontal differentials of whose terms are bounded in Lν,loc(Ω),
to some mapping ϕ0 is equivalent to the convergence of {ϕk} to ϕ0 in L1,loc(Ω;G) because this
sequence possesses a common local continuity modulus [22].

The weak continuity of minors of the differentials of Sobolev-class mappings is one of the main
arguments when studying the existence of solutions to nonlinear elasticity problems. Namely, it is
related to the possibility of applying Mazur’s lemma to establish the semicontinuity of the functionals
satisfying the polyconvexity condition, which is a generalized convexity condition, see [1], [4], [13],
and [11] for instance.

Even though Theorem 1.2 assumes that the limit mapping ϕ0 is bijective, this variation of The-
orem 1.1 turns out suitable for deriving theorems about the existence of solutions to the model
problems of elasticity on Carnot groups which will be considered by the authors in forthcoming
articles.
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2 Preliminaries

Carnot groups. Recall that a stratified graded nilpotent group or a Carnot group, see [5, Chapter 1]
for instance, is a connected simply-connected Lie group G whose Lie algebra g of left-invariant vector
fields decomposes as a direct sum g = g1 ⊕ g2 ⊕ · · · ⊕ gm of subspaces gi satisfying the conditions
[g1, gi] = gi+1 for i = 1, . . . ,m− 1 and [g1, gm] = {0}. A Carnot group G is called two-step whenever
m = 2.

Fix some inner product in g. The subspace g1 ⊂ g is called the horizontal space of the algebra g,
and its elements are horizontal vector fields. Put N = dim g and ni = dim gi for i = 1, . . . ,m. For
convenience also put n = n1. Fix an orthonormal basis Xi1, . . . , Xini of gi. Since the exponential
mapping

g = exp
( m∑
i=1

ni∑
j=1

xijXij

)
(e),

where e is the neutral element of G, is a global diffeomorphism of g onto G [5, Proposition 1.2], we
can identify the point g ∈ G with the point x = (xij) ∈ RN . Then e = 0 and x−1 = −x. The dilation
δλ specified as δλ(xij) = (λixij) is an automorphism of the group for all λ > 0.

A homogeneous norm on G is a continuous function ρ : G→ [0,+∞) of class C∞(G \ {0}) such
that

(a) ρ(x) = 0 if and only if x = 0;
(b) ρ(x−1) = ρ(x) and ρ(δλx) = λρ(x).
This definition also implies [5, Proposition 1.6] the following properties:
(c) there exists a number c > 0 such that ρ(xy) ≤ c

(
ρ(x) + ρ(y)

)
for all x, y ∈ G;

(d) two arbitrary homogeneous norms are equivalent, that is, given two homogeneous norms ρ1

and ρ2, there are numbers 0 < α ≤ β <∞ such that αρ1(x) ≤ ρ2(x) ≤ βρ1(x) for all x ∈ G.

Example 1. Given some point x = (xij) ∈ G and some index i = 1, . . . ,m, define X(i) ∈ gi as
ni∑
j=1

xijXij. The equality

ρ(x) =
( m∑
i=1

|X(i)|2m!/i
) 1

2m!
, (2.1)

where |X(i)| is the Euclidean norm in gi, defines a homogeneous norm ρ : G→ [0; +∞).

A piecewise smooth curve γ : [a; b] → G is called horizontal whenever γ̇(t) ∈ g1(γ(t)) for almost
all t. The Carnot–Carathéodory distance dcc(x, y) between two points x, y ∈ G is the greatest lower
bound of the lengths

∫ b
a
|γ̇(t)| dt of horizontal curves with endpoints x and y. According to the

Rashevskĭı–Chow theorem, see [7, §0.4, §1.1] for instance, we can connect two arbitrary points with
a piecewise smooth horizontal curve of finite length. The metric dcc and every homogeneous norm ρ
are equivalent: there exist positive constants α and β such that

αdcc(x, y) ≤ ρ(y−1x) ≤ βdcc(x, y). (2.2)

The Lebesgue measure dx on RN is a bi-invariant Haar measure on G and d(δλx) = λνdx, where

ν =
m∑
i=1

i ni is the homogeneous dimension of the group G. The measure is normalized by choosing

its value on the unit ball: |B(0, 1)| = 1. Here B(x, r) = {y ∈ G | dcc(x, y) < r} is a ball with respect
to the Carnot–Carathéodory metric. We denote balls and spheres in the homogeneous norm ρ by
Bρ(x, r) = {y ∈ G | ρ(y−1x) < r} and Sρ(x, r) = {y ∈ G | ρ(y−1x) = r} respectively.
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Example 2. The Heisenberg group Hk = (R2k+1, ∗) with the group operation

(x, y, z) ∗ (x′, y′, z′) =
(
x+ x′, y + y′, z + z′ + x·y′−x′·y

2

)
, x, x′, y, y′ ∈ Rk, z, z′ ∈ R,

is the classical example of a nonabelian Carnot group. Its Lie algebra hk is formed by the vector
fields

Xi =
∂

∂xi
− yi

2

∂

∂z
, Yi =

∂

∂yi
+
xi
2

∂

∂z
, i = 1, . . . , k, Z =

∂

∂z
.

Here hk1 = span{Xi, Yi | i = 1, . . . , k} and hk2 = span{Z}, while the only nontrivial Lie brackets are
[Xi, Yi] = Z for i = 1, . . . , k. The homogeneous dimension of Hk equals ν = 2k + 2.

Sobolev-class mappings. Consider a domain Ω ⊂ G, which is a nonempty connected open
subset of G. The space Lp(Ω), where p ∈ [1;∞), consists of all measurable functions u : Ω → R
integrable to power p. The norm on Lp(Ω) is defined as

‖u | Lp(Ω)‖ =

(∫
Ω

|u(x)|p dx
) 1

p

.

The space L∞(Ω) consists of all measurable essentially bounded functions u : Ω→ R. The norm on
L∞(Ω) is defined as

‖u | L∞(Ω)‖ = ess sup
x∈Ω
|u(x)|,

where ess sup
x∈Ω
|u(x)| is the essential supremum of u. A function u belongs to Lp,loc(Ω), where p ∈

[1;∞], whenever u ∈ Lp(K) for every compact set K ⊂ Ω.
Take some basisX1 = X11, . . . , Xn = X1n of the horizontal space g1. Denote by Πj the hyperplane

{x ∈ G | xj = 0}, for j = 1, . . . , n, where xj = x1j is the horizontal coordinate of the point x = (xij).
The measure dµj = ı(Xj)dx on Πj is determined by the contraction of Xj with the volume form.
Associated to each y ∈ Πj there is the integral line γj(t) = exp(tXj)(y). A mapping ϕ : Ω → M
from some domain Ω ⊂ G into some metric space M is absolutely continuous on almost all lines,
briefly ϕ ∈ ACL(Ω;M), if we can modify it on a measure zero set so that for each j = 1, . . . , n it
becomes absolutely continuous on the integral line {exp(tXj)(y) | t ∈ R} ∩ Ω of the vector field Xj

for µj-almost all y ∈ Πj. Put ACL(Ω) = ACL(Ω;R).
The space L1

p(Ω), where p ∈ [1;∞], consists of all functions u ∈ L1,loc(Ω) ∩ ACL(Ω) with the
classical derivatives1 Xju lying in Lp(Ω) for all j = 1, . . . , n. The seminorm of the function u ∈ L1

p(Ω)

equals ‖u | L1
p(Ω)‖ =

∥∥ |∇hu| | Lp(Ω)
∥∥, where ∇hu = (X1u, . . . , Xnu) =

n∑
j=1

(Xju)Xj is the horizontal

gradient of u. Henceforth, instead of
∥∥ |∇hu| | Lp(Ω)

∥∥ we write ‖∇hu | Lp(Ω)‖.
An equivalent definition of the space L1

p(Ω) relies on the concept of generalized derivative in the
sense of Sobolev: a locally summable function uj : Ω→ R is called the generalized derivative of the
function u ∈ L1,loc(Ω) along the vector field Xj, for j = 1, . . . , n, whenever∫

Ω

uj(x)v(x) dx = −
∫
Ω

u(x)Xjv(x) dx

for every test function v ∈ C∞0 (Ω). A locally summable function u : Ω → R belongs to L1
p(Ω) if

and only if its generalized derivatives uj ∈ Lp(Ω) exist for j = 1 . . . , n. Moreover, uj = Xju almost

1More exactly, the derivatives of a representative of the function u which is absolutely continuous on almost all
integral lines of X1, . . . , Xn. The classical derivatives of this representative exist almost everywhere.
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everywhere, where Xju are the classical derivatives of the function2 u ∈ ACL(Ω), which exist almost
everywhere.

The Sobolev space W 1
p (Ω) consists of all functions u ∈ Lp(Ω) ∩ L1

p(Ω) and is equipped with the
norm

‖u | W 1
p (Ω)‖ = ‖u | Lp(Ω)‖+ ‖u | L1

p(Ω)‖.

Given two Carnot groups G and G̃ and a domain Ω ⊂ G, consider ϕ ∈ ACL(Ω; G̃). Then
Xjϕ(x) ∈ g̃1(ϕ(x)) for almost all x ∈ Ω [14, Proposition 4.1]. The matrix Dhϕ(x) = (Xiϕj), where
i = 1, . . . , n and j = 1, . . . , ñ, determines the linear operator Dhϕ(x) : g1 → g̃1 called the horizontal
differential of ϕ. It is known [18, Theorem 1.2] that for almost all x ∈ Ω the linear operator Dhϕ(x)

is defined and extends to a Lie algebra homomorphism D̂ϕ(x) : g → g̃, which we can also consider
as a linear operator D̂ϕ(x) : TxG→ Tϕ(x)G̃. The norms of both operators satisfy∣∣Dhϕ(x)

∣∣ ≤ ∣∣D̂ϕ(x)
∣∣ ≤ C

∣∣Dhϕ(x)
∣∣, (2.3)

where C depends only on the group structures. Here the norm of D̂ϕ(x) is defined as

sup
{
ρ̃
(
D̂ϕ(x)〈X〉

)
| X ∈ g, ρ(X) ≤ 1

}
, (2.4)

where we put ρ(X) = ρ(exp(X)) and ρ̃(X̃) = ρ̃(ẽxp(X̃)) for X ∈ g and X̃ ∈ g̃ for brevity. Corre-
sponding to D̂ϕ(x), there is the group homomorphism

DPϕ(x) = ẽxp ◦ D̂ϕ(x) ◦ exp−1

known as the Pansu differential, which is the approximative differential of ϕ with respect to the
group structure [18].

Definition 1. The class W 1
p (Ω; G̃) of Sobolev mappings consists of all measurable mappings ϕ ∈

ACL(Ω; G̃) for which ∥∥ϕ | W 1
p (Ω)

∥∥ = ‖ρ ◦ ϕ | Lp(Ω)‖+ ‖ |Dhϕ| | Lp(Ω)‖

is finite. A mapping ϕ belongs toW 1
p,loc(Ω; G̃) whenever ϕ ∈ W 1

p (U ; G̃) for every compactly embedded
domain U b Ω. Henceforth we write ‖Dhϕ | Lp(Ω)‖ instead of ‖ |Dhϕ| | Lp(Ω)‖.

Some equivalent descriptions of Sobolev-class mappings of Carnot groups appeared in [18, Propo-
sition 4.2]. If ϕ ∈ W 1

p (Ω; G̃) then all coordinate functions ϕi for i = 1, . . . , Ñ belong to W 1
p (Ω).

3 Uniform integrability and weak continuity of the determinant of the
Pansu differential

First, we establish the uniform integrability of the Jacobians of a sequence of orientation-preserving
mappings whose horizontal differentials are bounded in Lν,loc. In connection with that we generalize
to the case of Carnot groups the results of paper [16], in which the L logL-norm of an arbitrary
summable function f is estimated via the L1-norm of its maximal function Mf , as well as the
results of paper [13], in which the L1-norm of the maximal function of the Jacobian of an arbitrary
orientation-preserving mapping of class W 1

n is estimated.
2Namely, the derivatives of a representative of the function u which is absolutely continuous on almost all lines.
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In order to reproduce the arguments of paper [16], we extend the widely known Calderon–
Zygmund lemma [3, Lemma 1] to Carnot groups by replacing a system of binary cubes with a suitable
system of Borel sets adequate for the geometry of Carnot groups.

Since in a Carnot group equipped with the Carnot–Carathéodory metric each open ball can be
covered with a finite number, independent of the ball, of open balls of half the radius, [8, Theorem
2.2] directly implies the following lemma3.

Lemma 3.1. Given an arbitrary Carnot group G, there exist collections {xk,i ∈ G}i∈N, for k ∈ Z,
of points and {Qk,i ⊂ G}i∈N, for k ∈ Z, of Borel sets with the following properties:

(1) for all k ∈ Z the collection {Qk,i}i∈N is disjoint and G =
⋃
i∈N

Qk,i;

(2) if m ≥ k then either Qm,j ⊂ Qk,i or Qm,j ∩Qk,i = ∅;

(3) for all k ∈ Z and i ∈ N we have the inclusions

B
(
xk,i, c

1

24k

)
⊂ Qk,i ⊂ B

(
xk,i, C

1

24k

)
,

where c = 1
3
and C = 4.

Proposition 3.1. Given an arbitrary Carnot group G and a nonnegative function f ∈ L1(G), for
every α > 0 the collection {Qk,i | i ∈ N, k ∈ Z} of Lemma 3.1 includes a disjoint subcollection4

Q = {Qj} of Borel sets such that

α ≤ 1

|Qj|

∫
Qj

f(x) dx ≤ 288να for all j, (3.1)

and f(x) ≤ α for almost all x /∈
⋃
j Qj.

Proof. Put Qk = {Qk,i}i∈N for k ∈ Z. Since f is an integrable function and each Qk,i contains a ball
of radius 1

3
· 1

24k
, there is k0 ∈ Z such that

1

|Qk0,i|

∫
Qk0,i

f(x) dx < α

for all i ∈ N. Fix such k0 ∈ Z and an arbitrary i ∈ N. Add to Q the sets Q ∈ Qk0+1 included into
Qk0,i with

1

|Q|

∫
Q

f(x) dx ≥ α.

For these Q claim (3) of Lemma 3.1 yields

1

|Q|

∫
Q

f(x) dx ≤
(24C

c

)ν 1

|Qk0,i|

∫
Qk0,i

f(x) dx ≤ 288να.

Repeat this procedure taking instead of Qk0,i each set Q ∈ Qk0+1 with Q ⊂ Qk0,i still not in Q
while they exist. Continue this process by induction and take the union of the resulting collections
over i ∈ N.

3In Theorem 2.2 of [8] it suffices to put A0 = 1, c0 = 1, C0 = 2, and δ = 1
24 and choose the families {xk,i}i as

maximal δk-sparse sets in (G, dcc). Each of these collections is obviously countable.
4The collection in question can be countable, finite, or empty.
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The construction of the family Q immediately implies that (3.1) holds. It is clear also that if
some set Q ∈ {Qk,i | k ∈ Z, i ∈ N} is disjoint from all sets in Q then 1

|Q|

∫
Q

f(x) dx < α.

Assuming now that y /∈
⋃
Q is a Lebesgue point of the functions fχ(

⋃
Q)c and χ(

⋃
Q)c , verify that

f(y) ≤ α. Since every point z /∈
⋃
Q lies in some Qk,i for all sufficiently large k, it follows that for

arbitrary r > 0 we can express the complement Q(r) = B(y, r) \
⋃
Q as the union of a countable

collection of disjoint sets Qk,i with

1

|Qk,i|

∫
Qk,i

f(x) dx < α.

Their union Q(r) =
⋃
Qk,i also satisfies

1

|Q(r)|

∫
Q(r)

f(x) dx < α.

Since lim
r→0

|Q(r)|
|B(y,r)| = 1 and

1

|B(y, r)|

∫
Q(r)

f(x) dx =
1

|B(y, r)|

∫
B(y,r)

(fχ(
⋃
Q)c)(x) dx→ f(y)

as r → 0, we infer that f(y) ≤ α.

In the following statement we consider the maximal function in the sense of balls B(x, r) = {y ∈
G | dcc(x, y) < r} with respect to the Carnot–Carathéodory metric:

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy.

Theorem 3.1. Given an arbitrary Carnot group G, let a function f ∈ L1(G) vanish almost ev-
erywhere outside the ball B = B(0, R). If Mf ∈ L1(2B), then |f | log+ |f | ∈ L1(B). Moreover, we
have ∥∥|f | log+ |f | | L1(B)

∥∥ ≤ CL ·
(
‖Mf | L1(2B)‖+ ‖f | L1(B)‖+R−ν‖f | L1(B)‖2

)
,

where CL depends only on the homogeneous dimension ν of G.

Proof. We may assume that f ≥ 0. Fix α > 0. Choose {Qj} according to Proposition 3.1. Take
z ∈ Qj. By claim (3) of Lemma 3.1, we can choose r > 0 such that the ball B(z, r) includes Qj and
|B(z, r)| < c0|Qj|, where the constant c0 depends only on ν. The definition of the maximal function
and the choice of {Qj} show that

Mf(z) ≥ 1

|B(z, r)|

∫
B(z,r)

f(x) dx >
c−1

0

|Qj|

∫
Qj

f(x) dx ≥ c−1
0 α.

This means that
⋃
j Qj ⊂ {z ∈ G |Mf(z) > c−1

0 α}. Since the collection {Qj} is disjoint, we infer
that5

|{z ∈ G |Mf(z) > c−1
0 α}| ≥

∑
j

|Qj| ≥
288−ν

α

∑
j

∫
Qj

f(x) dx ≥ 288−ν

α

∫
f>α

f(x) dx.

5If for this α > 0 the collection {Qj} is empty then the required inequality is obvious because in this case f ≤ α
almost everywhere.
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Replacing α with c0α, we obtain

|{z ∈ G |Mf(z) > α}| ≥ 288−νc−1
0

α

∫
f>c0α

f(x) dx.

Integrate this over α ∈ (c−1
0 ;∞). Thanks to the Cavalieri–Lebesgue formula, the left-hand side equals∫

Mf>c−1
0
Mf(x) dx. Rearranging the integral in the right-hand side,

∞∫
c−1
0

∫
f>c0α

1

α
f(x) dxdα =

∞∫
1

∫
f>β

1

β
f(x) dxdβ =

∫
f>1

f(x)∫
1

1

β
f(x) dβdx

=

∫
f>1

f(x) log f(x) dx =

∫
G

f(x) log+ f(x) dx,

we arrive at the inequality ∫
G

f(x) log+ f(x) dx ≤ c1

∫
Mf>c2

Mf(x) dx,

where c1 = 288νc0 and c2 = c−1
0 .

In order to estimate
∫

Mf>c2

Mf(x) dx, take z /∈ B; therefore, dcc(z, 0) > R. For t < (dcc(z, 0)−R)

the intersection B(z, t) ∩B is empty. Since the function f vanishes almost everywhere outside B, it
follows that

Mf(z) ≤ ‖f | L1(B)‖(
dcc(z, 0)−R

)ν . (3.2)

Hence, for dcc(z, 0) ≥ Rf = c3‖f | L1(B)‖1/ν+R, where c3 = c
−1/ν
2 , the value of the maximal function

Mf at z is at most c2, and so the set {x ∈ G | Mf(x) > c2} lies in the ball B(0, Rf ). Using (3.2),
we infer that∫
Mf>c2

Mf(x) dx ≤
∫
2B

Mf(x) dx+

∫
B(0,Rf )\2B

Mf(x) dx

≤
∫
2B

Mf(x) dx+
‖f | L1(B)‖

Rν
Rν
f

=

∫
2B

Mf(x) dx+
‖f | L1(B)‖

Rν

(
c3‖f | L1(B)‖1/ν +R

)ν
.

Consider the maximal function defined with respect to some homogeneous norm ρ:

Mρf(x) = sup
r>0

1

Bρ(x, r)

∫
Bρ(x,r)

|f(y)| dy.

Since the Carnot–Carathéodory metric dcc is equivalent to every homogeneous norm, we have

aMf(x) ≤Mρf(x) ≤ bMf(x) for all x,

where the constants a and b depend only on ρ. This implies that Theorem 3.1 remains valid when
we replace Mf by Mρf .
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Definition 2. A sequence of integrable functions {fk} defined on a measurable space X endowed
with some measure µ is called uniformly integrable whenever the sequence of integrals

∫
X

|fk| dµ is

bounded and, given a positive number ε, there is positive δ such that∫
E

|fk| dµ < ε

for all k and all measurable sets E ⊂ X with µ(E) < δ.

By the commensurability of the maximal functionsMf andMρf , Theorem 3.1 and the de la Vallée
Poussin theorem directly imply the following corollary.

Corollary 3.1. Given a domain Ω in an arbitrary Carnot group G and an arbitrary homogeneous
norm ρ on G, if {fk ∈ L1,loc(Ω)} is a sequence of functions such that for each compact set K b Ω
the sequence {Mρ(fkχK)} is bounded in L1,loc(Ω), then the sequence {fk} is uniformly integrable on
every compact subset of Ω.

In the following two statements we denote by ρ homogeneous norm (2.1), while Hν−1 stands for
the spherical Hausdorff measure defined with respect to ρ. The adjoint operator adjD̂ϕ(y) : g → g
is determined by the condition

D̂ϕ(y) · adjD̂ϕ(y) = det D̂ϕ(y) · Id

provided that the determinant of the N × N matrix D̂ϕ(y) is nonzero and extended by continuity
in the topology of RN×N otherwise. Its norm |adjD̂ϕ(y)| is defined by analogy with (2.4).

Lemma 3.2 ([21, Theorem 3.1]). Given a two-step Carnot group G and a bounded domain Ω ⊂ G,
consider ϕ ∈ W 1

ν (Ω;G).
Then for almost all x ∈ Ω and almost all r ∈ (0; distρ(x, ∂Ω)) we have∣∣∣ ∫

Bρ(x,r)

det D̂ϕ(y) dy
∣∣∣ ν−1

ν ≤ CI

∫
Sρ(x,r)

|adjD̂ϕ(y)| dHν−1(y),

where the constant CI is independent of ϕ.

Proposition 3.2. Given a two-step Carnot group G and a bounded domain Ω ⊂ G, consider ϕ ∈
W 1
ν (Ω;G) with det D̂ϕ ≥ 0 almost everywhere. Then for every measurable set K b Ω there is

a constant C(K) independent of ϕ such that

‖Mρ(χK det D̂ϕ) | L1(Ω)‖ ≤ C(K)
(
‖Dhϕ | Lν(Ω)‖

ν
ν−1 + |Ω| · ‖Dhϕ | Lν(Ω)‖

)
.

Proof. Fix a measurable set K b Ω. Put g = χK det D̂ϕ and d = distρ(K, ∂Ω), as well as α = 1
2c
,

and β = 1
6c2

, where c is the constant involved in the generalized triangle inequality. To estimate
1

|Bρ(x,R)|

∫
Bρ(x,R)

g(y) dy, make a brute-force search of the cases.

If x ∈ Ω is an arbitrary point and R > βd, then

1

|Bρ(x,R)|

∫
Bρ(x,R)

g(y) dy ≤ c1(βd)−ν
∫
Ω

det D̂ϕ(y) dy.
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However, if distρ(x,K) > αd and R ≤ βd, then by the choice of α and β the intersection
K ∩Bρ(x,R) is empty, and so 1

|Bρ(x,R)|

∫
Bρ(x,R)

g(y) dy = 0.

Assume now that distρ(x,K) ≤ αd and R ≤ βd. In this case the ball Bρ(x, 2R) lies in Ω, and so
for almost all x with distρ(x,K) ≤ αd and almost all r ∈ (R; 2R) we have( ∫

Bρ(x,R)

g(y) dy
) ν−1

ν ≤
( ∫
Bρ(x,r)

det D̂ϕ(y) dy
) ν−1

ν ≤ CI

∫
Sρ(x,r)

|adjD̂ϕ(y)| dHν−1(y).

Integrate the last inequality over r ∈ (R; 2R), see the coarea formula [10, Theorem 6.1], and divide
by |Bρ(x,R)|. Taking into account the local boundedness of the horizontal gradient of the function ρ
and making some easy rearrangements, we obtain6

( 1

|Bρ(x, r)|

∫
Bρ(x,R)

g(y) dy
) ν−1

ν ≤ C

|Bρ(x, 2R)|

∫
Bρ(x,2R)

|adjD̂ϕ(y)| dy ≤ CMρf(x),

where f = |adjD̂ϕ| ∈ L ν
ν−1

(Ω), while C is a constant independent of ϕ, x and r. Adding the resulting
estimates, we see that

Mρg(x) ≤ C(K)
(
(Mρf(x))

ν
ν−1 + ‖ det D̂ϕ | L1(Ω)‖

)
for almost all x ∈ Ω. Integrating this over x ∈ Ω, we obtain

‖Mρg | L1(Ω)‖ ≤ C(K)
(
‖Mρf | L ν

ν−1
(Ω)‖

ν
ν−1 + |Ω| · ‖ det D̂ϕ | L1(Ω)‖

)
.

It remains to observe that the Hardy–Littlewood theorem [17, Chapter I.3, Theorem 1], Hölder’s
inequality, and (2.3) yield

‖Mρf | L ν
ν−1

(Ω)‖ ≤ C‖adjD̂ϕ | L ν
ν−1

(Ω)‖ ≤ C‖Dhϕ | Lν(Ω)‖,

‖ det D̂ϕ | L1(Ω)‖ ≤ C‖Dhϕ | Lν(Ω)‖.

Corollary 3.1 and Proposition 3.2 directly imply the following statement.

Theorem 3.2. Given a domain Ω in a two-step Carnot group G, if {ϕk : Ω→ G} is a sequence of
mappings of class W 1

ν,loc(Ω;G) such that det D̂ϕk ≥ 0 almost everywhere and the sequence {|Dhϕk|}
is bounded in Lν,loc(Ω), then the sequence {det D̂ϕk} of Jacobians is uniformly integrable on every
compact set K b Ω.

Let us use the following particular case of Theorem 1 of [6].

Lemma 3.3. Consider domains Ω, Ω′0, Ω′1, . . . in RN and a sequence of homeomorphisms {ϕk : Ω→
Ω′k}∞k=1 converging locally uniformly in Ω to some homeomorphism ϕ0 : Ω→ Ω′0.

Then every compact set K b Ω′0 lies in Ω′k for all sufficiently large k, while the sequence {ϕ−1
k }

of the inverse homeomorphisms converges to ϕ−1
0 locally uniformly on Ω′0.

6In these estimates we use the property that the full-dimensional Hausdorff ν-measure and the Hausdorff measure
on the level lines of the function ϕ(y) = ρ(y−1x) considered in [10, Theorem 6.1] are equivalent respectively to the
Lebesgue measure and the Hausdorff measure defined with respect to homogeneous norm (2.1).
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Recall that the space C0(Ω) consists of all continuous functions θ : Ω→ R with compact support
in Ω.

Lemma 3.4. Consider domains Ω, Ω′0, Ω′1, . . . in some Carnot group G and a sequence {ϕk : Ω →
Ω′k}∞k=1 of homeomorphisms of class W 1

ν,loc(Ω;G) such that {ϕk} converges to some homeomorphism
ϕ0 : Ω→ Ω′0 locally uniformly in Ω, the sequence {|Dhϕk|}∞k=1 is bounded in Lν,loc(Ω), and det D̂ϕk ≥
0 almost everywhere, for k = 1, 2, . . ..

Then the sequence {det D̂ϕk} of Jacobians converges ∗-weakly in L1,loc(Ω) to det D̂ϕ0, that is

lim
k→∞

∫
Ω

θ(x) det D̂ϕk(x) dx =

∫
Ω

θ(x) det D̂ϕ0(x) dx

for all functions θ ∈ C0(Ω).

Proof. Since the sequence {|Dhϕk|} is bounded in Lν,loc(Ω), the limit homeomorphism ϕ0 is also of
class W 1

ν,loc(Ω;G) [22, Proposition 3.3].
For all quasi-monotone mappings ϕ ∈ W 1

ν,loc(Ω;G), in particular for all homeomorphisms, we
have the following change-of-variables formula [19, Theorem 4]:∫

D

(u ◦ ϕ)(x) det D̂ϕ(x) dx =

∫
G

u(y)µ(y, ϕ,D) dy, (3.3)

where D b Ω is a compactly embedded subdomain such that |ϕ(∂D)| = 0, while µ(y, ϕ,D) is the
topological degree of the mapping ϕ at y /∈ ϕ(∂D) defined with respect to the domain D, while u is
an arbitrary measurable function such that the function y 7→ u(y)µ(y, ϕ,D) is integrable on G.

According to [19, Theorem 3], all quasi-monotone mappings of class W 1
ν,loc(Ω;G) have Luzin’s N -

property. Hence, for every finite collection of balls Bj b Ω and arbitrary k = 0, 1, . . . the measure of
the set ϕk(∂

⋃
j Bj) vanishes. Consequently, we can put D =

⋃
j Bj in (3.3).

The degree µ(·, ϕ,D) of each homeomorphism ϕ : D → G is a constant on the image ϕ(D) and
equals either 1 or −1. Since det D̂ϕk ≥ 0 almost everywhere on Ω, for k = 1, 2, . . ., we find that (3.3)
applied to the mapping ϕ = ϕk and the functions u = χϕk(D) and D =

⋃
j Bj for k = 1, 2, . . . implies

that µ(y, ϕk, D) = 1 for y ∈ ϕk(D).
Furthermore, the continuity of the degree of a mapping under uniform convergence also implies

that µ(y, ϕ0, D) = 1 for y ∈ ϕ0(D). Now put ϕ = ϕ0 and u = χU in (3.3), where U ⊂ ϕ0(D) is
an arbitrary open set. This yields∫

ϕ−1
0 (U)

det D̂ϕ0(x) dx =

∫
U

µ(y, ϕ0, D) dy = |U | > 0. (3.4)

Since ϕ0 is a homeomorphism, while the open set U ⊂ ϕ0(D) and the balls Bj b Ω which constitute
the subdomain D are arbitrary, (3.4) implies that det D̂ϕ0 is nonnegative almost everywhere on Ω.

Put ψk = ϕ−1
k . For θ ∈ C0(Ω) and k = 0, 1, 2, . . . the change-of-variables formula (3.3) yields7∫

Ω

θ(x) det D̂ϕk(x) dx =

∫
Ω′k

θ(ψk(y)) dy.

7As D we should consider a finite union of compactly embedded balls in Ω covering the support of the function θ.
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Since {ϕk}∞k=1 converges uniformly to ϕ0 on the support of θ, according to Lemma 3.3 the supports
of the functions θ ◦ ψk for all sufficiently large k lie in some compact set K b Ω′0. The uniform
convergence of {ψk} to ψ0 on K implies that

lim
k→∞

∫
Ω

θ(x) det D̂ϕk(x) dx = lim
k→∞

∫
Ω′k

θ(ψk(y)) dy = lim
k→∞

∫
K

θ(ψk(y)) dy

=

∫
K

θ(ψ0(y)) dy =

∫
Ω′0

θ(ψ0(y)) dy =

∫
Ω

θ(x) det D̂ϕ0(x) dx.

Finally, Theorem 3.2 and Lemma 3.4 imply Theorem 1.2 in the standard fashion.
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